GNU Linux-libre 4.4.284-gnu1
[releases.git] / arch / arm / kvm / mmu.c
1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License, version 2, as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  */
18
19 #include <linux/mman.h>
20 #include <linux/kvm_host.h>
21 #include <linux/io.h>
22 #include <linux/hugetlb.h>
23 #include <trace/events/kvm.h>
24 #include <asm/pgalloc.h>
25 #include <asm/cacheflush.h>
26 #include <asm/kvm_arm.h>
27 #include <asm/kvm_mmu.h>
28 #include <asm/kvm_mmio.h>
29 #include <asm/kvm_asm.h>
30 #include <asm/kvm_emulate.h>
31
32 #include "trace.h"
33
34 extern char  __hyp_idmap_text_start[], __hyp_idmap_text_end[];
35
36 static pgd_t *boot_hyp_pgd;
37 static pgd_t *hyp_pgd;
38 static pgd_t *merged_hyp_pgd;
39 static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
40
41 static unsigned long hyp_idmap_start;
42 static unsigned long hyp_idmap_end;
43 static phys_addr_t hyp_idmap_vector;
44
45 #define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
46
47 #define kvm_pmd_huge(_x)        (pmd_huge(_x) || pmd_trans_huge(_x))
48 #define kvm_pud_huge(_x)        pud_huge(_x)
49
50 #define KVM_S2PTE_FLAG_IS_IOMAP         (1UL << 0)
51 #define KVM_S2_FLAG_LOGGING_ACTIVE      (1UL << 1)
52
53 static bool memslot_is_logging(struct kvm_memory_slot *memslot)
54 {
55         return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
56 }
57
58 /**
59  * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
60  * @kvm:        pointer to kvm structure.
61  *
62  * Interface to HYP function to flush all VM TLB entries
63  */
64 void kvm_flush_remote_tlbs(struct kvm *kvm)
65 {
66         kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
67 }
68
69 static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
70 {
71         /*
72          * This function also gets called when dealing with HYP page
73          * tables. As HYP doesn't have an associated struct kvm (and
74          * the HYP page tables are fairly static), we don't do
75          * anything there.
76          */
77         if (kvm)
78                 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
79 }
80
81 /*
82  * D-Cache management functions. They take the page table entries by
83  * value, as they are flushing the cache using the kernel mapping (or
84  * kmap on 32bit).
85  */
86 static void kvm_flush_dcache_pte(pte_t pte)
87 {
88         __kvm_flush_dcache_pte(pte);
89 }
90
91 static void kvm_flush_dcache_pmd(pmd_t pmd)
92 {
93         __kvm_flush_dcache_pmd(pmd);
94 }
95
96 static void kvm_flush_dcache_pud(pud_t pud)
97 {
98         __kvm_flush_dcache_pud(pud);
99 }
100
101 static bool kvm_is_device_pfn(unsigned long pfn)
102 {
103         return !pfn_valid(pfn);
104 }
105
106 /**
107  * stage2_dissolve_pmd() - clear and flush huge PMD entry
108  * @kvm:        pointer to kvm structure.
109  * @addr:       IPA
110  * @pmd:        pmd pointer for IPA
111  *
112  * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs. Marks all
113  * pages in the range dirty.
114  */
115 static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
116 {
117         if (!kvm_pmd_huge(*pmd))
118                 return;
119
120         pmd_clear(pmd);
121         kvm_tlb_flush_vmid_ipa(kvm, addr);
122         put_page(virt_to_page(pmd));
123 }
124
125 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
126                                   int min, int max)
127 {
128         void *page;
129
130         BUG_ON(max > KVM_NR_MEM_OBJS);
131         if (cache->nobjs >= min)
132                 return 0;
133         while (cache->nobjs < max) {
134                 page = (void *)__get_free_page(PGALLOC_GFP);
135                 if (!page)
136                         return -ENOMEM;
137                 cache->objects[cache->nobjs++] = page;
138         }
139         return 0;
140 }
141
142 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
143 {
144         while (mc->nobjs)
145                 free_page((unsigned long)mc->objects[--mc->nobjs]);
146 }
147
148 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
149 {
150         void *p;
151
152         BUG_ON(!mc || !mc->nobjs);
153         p = mc->objects[--mc->nobjs];
154         return p;
155 }
156
157 static void clear_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
158 {
159         pud_t *pud_table __maybe_unused = pud_offset(pgd, 0);
160         pgd_clear(pgd);
161         kvm_tlb_flush_vmid_ipa(kvm, addr);
162         pud_free(NULL, pud_table);
163         put_page(virt_to_page(pgd));
164 }
165
166 static void clear_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
167 {
168         pmd_t *pmd_table = pmd_offset(pud, 0);
169         VM_BUG_ON(pud_huge(*pud));
170         pud_clear(pud);
171         kvm_tlb_flush_vmid_ipa(kvm, addr);
172         pmd_free(NULL, pmd_table);
173         put_page(virt_to_page(pud));
174 }
175
176 static void clear_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
177 {
178         pte_t *pte_table = pte_offset_kernel(pmd, 0);
179         VM_BUG_ON(kvm_pmd_huge(*pmd));
180         pmd_clear(pmd);
181         kvm_tlb_flush_vmid_ipa(kvm, addr);
182         pte_free_kernel(NULL, pte_table);
183         put_page(virt_to_page(pmd));
184 }
185
186 /*
187  * Unmapping vs dcache management:
188  *
189  * If a guest maps certain memory pages as uncached, all writes will
190  * bypass the data cache and go directly to RAM.  However, the CPUs
191  * can still speculate reads (not writes) and fill cache lines with
192  * data.
193  *
194  * Those cache lines will be *clean* cache lines though, so a
195  * clean+invalidate operation is equivalent to an invalidate
196  * operation, because no cache lines are marked dirty.
197  *
198  * Those clean cache lines could be filled prior to an uncached write
199  * by the guest, and the cache coherent IO subsystem would therefore
200  * end up writing old data to disk.
201  *
202  * This is why right after unmapping a page/section and invalidating
203  * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
204  * the IO subsystem will never hit in the cache.
205  */
206 static void unmap_ptes(struct kvm *kvm, pmd_t *pmd,
207                        phys_addr_t addr, phys_addr_t end)
208 {
209         phys_addr_t start_addr = addr;
210         pte_t *pte, *start_pte;
211
212         start_pte = pte = pte_offset_kernel(pmd, addr);
213         do {
214                 if (!pte_none(*pte)) {
215                         pte_t old_pte = *pte;
216
217                         kvm_set_pte(pte, __pte(0));
218                         kvm_tlb_flush_vmid_ipa(kvm, addr);
219
220                         /* No need to invalidate the cache for device mappings */
221                         if (!kvm_is_device_pfn(pte_pfn(old_pte)))
222                                 kvm_flush_dcache_pte(old_pte);
223
224                         put_page(virt_to_page(pte));
225                 }
226         } while (pte++, addr += PAGE_SIZE, addr != end);
227
228         if (kvm_pte_table_empty(kvm, start_pte))
229                 clear_pmd_entry(kvm, pmd, start_addr);
230 }
231
232 static void unmap_pmds(struct kvm *kvm, pud_t *pud,
233                        phys_addr_t addr, phys_addr_t end)
234 {
235         phys_addr_t next, start_addr = addr;
236         pmd_t *pmd, *start_pmd;
237
238         start_pmd = pmd = pmd_offset(pud, addr);
239         do {
240                 next = kvm_pmd_addr_end(addr, end);
241                 if (!pmd_none(*pmd)) {
242                         if (kvm_pmd_huge(*pmd)) {
243                                 pmd_t old_pmd = *pmd;
244
245                                 pmd_clear(pmd);
246                                 kvm_tlb_flush_vmid_ipa(kvm, addr);
247
248                                 kvm_flush_dcache_pmd(old_pmd);
249
250                                 put_page(virt_to_page(pmd));
251                         } else {
252                                 unmap_ptes(kvm, pmd, addr, next);
253                         }
254                 }
255         } while (pmd++, addr = next, addr != end);
256
257         if (kvm_pmd_table_empty(kvm, start_pmd))
258                 clear_pud_entry(kvm, pud, start_addr);
259 }
260
261 static void unmap_puds(struct kvm *kvm, pgd_t *pgd,
262                        phys_addr_t addr, phys_addr_t end)
263 {
264         phys_addr_t next, start_addr = addr;
265         pud_t *pud, *start_pud;
266
267         start_pud = pud = pud_offset(pgd, addr);
268         do {
269                 next = kvm_pud_addr_end(addr, end);
270                 if (!pud_none(*pud)) {
271                         if (pud_huge(*pud)) {
272                                 pud_t old_pud = *pud;
273
274                                 pud_clear(pud);
275                                 kvm_tlb_flush_vmid_ipa(kvm, addr);
276
277                                 kvm_flush_dcache_pud(old_pud);
278
279                                 put_page(virt_to_page(pud));
280                         } else {
281                                 unmap_pmds(kvm, pud, addr, next);
282                         }
283                 }
284         } while (pud++, addr = next, addr != end);
285
286         if (kvm_pud_table_empty(kvm, start_pud))
287                 clear_pgd_entry(kvm, pgd, start_addr);
288 }
289
290
291 static void unmap_range(struct kvm *kvm, pgd_t *pgdp,
292                         phys_addr_t start, u64 size)
293 {
294         pgd_t *pgd;
295         phys_addr_t addr = start, end = start + size;
296         phys_addr_t next;
297
298         pgd = pgdp + kvm_pgd_index(addr);
299         do {
300                 next = kvm_pgd_addr_end(addr, end);
301                 if (!pgd_none(*pgd))
302                         unmap_puds(kvm, pgd, addr, next);
303         } while (pgd++, addr = next, addr != end);
304 }
305
306 static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
307                               phys_addr_t addr, phys_addr_t end)
308 {
309         pte_t *pte;
310
311         pte = pte_offset_kernel(pmd, addr);
312         do {
313                 if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte)))
314                         kvm_flush_dcache_pte(*pte);
315         } while (pte++, addr += PAGE_SIZE, addr != end);
316 }
317
318 static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
319                               phys_addr_t addr, phys_addr_t end)
320 {
321         pmd_t *pmd;
322         phys_addr_t next;
323
324         pmd = pmd_offset(pud, addr);
325         do {
326                 next = kvm_pmd_addr_end(addr, end);
327                 if (!pmd_none(*pmd)) {
328                         if (kvm_pmd_huge(*pmd))
329                                 kvm_flush_dcache_pmd(*pmd);
330                         else
331                                 stage2_flush_ptes(kvm, pmd, addr, next);
332                 }
333         } while (pmd++, addr = next, addr != end);
334 }
335
336 static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
337                               phys_addr_t addr, phys_addr_t end)
338 {
339         pud_t *pud;
340         phys_addr_t next;
341
342         pud = pud_offset(pgd, addr);
343         do {
344                 next = kvm_pud_addr_end(addr, end);
345                 if (!pud_none(*pud)) {
346                         if (pud_huge(*pud))
347                                 kvm_flush_dcache_pud(*pud);
348                         else
349                                 stage2_flush_pmds(kvm, pud, addr, next);
350                 }
351         } while (pud++, addr = next, addr != end);
352 }
353
354 static void stage2_flush_memslot(struct kvm *kvm,
355                                  struct kvm_memory_slot *memslot)
356 {
357         phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
358         phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
359         phys_addr_t next;
360         pgd_t *pgd;
361
362         pgd = kvm->arch.pgd + kvm_pgd_index(addr);
363         do {
364                 next = kvm_pgd_addr_end(addr, end);
365                 stage2_flush_puds(kvm, pgd, addr, next);
366         } while (pgd++, addr = next, addr != end);
367 }
368
369 /**
370  * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
371  * @kvm: The struct kvm pointer
372  *
373  * Go through the stage 2 page tables and invalidate any cache lines
374  * backing memory already mapped to the VM.
375  */
376 static void stage2_flush_vm(struct kvm *kvm)
377 {
378         struct kvm_memslots *slots;
379         struct kvm_memory_slot *memslot;
380         int idx;
381
382         idx = srcu_read_lock(&kvm->srcu);
383         spin_lock(&kvm->mmu_lock);
384
385         slots = kvm_memslots(kvm);
386         kvm_for_each_memslot(memslot, slots)
387                 stage2_flush_memslot(kvm, memslot);
388
389         spin_unlock(&kvm->mmu_lock);
390         srcu_read_unlock(&kvm->srcu, idx);
391 }
392
393 /**
394  * free_boot_hyp_pgd - free HYP boot page tables
395  *
396  * Free the HYP boot page tables. The bounce page is also freed.
397  */
398 void free_boot_hyp_pgd(void)
399 {
400         mutex_lock(&kvm_hyp_pgd_mutex);
401
402         if (boot_hyp_pgd) {
403                 unmap_range(NULL, boot_hyp_pgd, hyp_idmap_start, PAGE_SIZE);
404                 unmap_range(NULL, boot_hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
405                 free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
406                 boot_hyp_pgd = NULL;
407         }
408
409         if (hyp_pgd)
410                 unmap_range(NULL, hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
411
412         mutex_unlock(&kvm_hyp_pgd_mutex);
413 }
414
415 /**
416  * free_hyp_pgds - free Hyp-mode page tables
417  *
418  * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
419  * therefore contains either mappings in the kernel memory area (above
420  * PAGE_OFFSET), or device mappings in the vmalloc range (from
421  * VMALLOC_START to VMALLOC_END).
422  *
423  * boot_hyp_pgd should only map two pages for the init code.
424  */
425 void free_hyp_pgds(void)
426 {
427         unsigned long addr;
428
429         free_boot_hyp_pgd();
430
431         mutex_lock(&kvm_hyp_pgd_mutex);
432
433         if (hyp_pgd) {
434                 for (addr = PAGE_OFFSET; virt_addr_valid(addr); addr += PGDIR_SIZE)
435                         unmap_range(NULL, hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
436                 for (addr = VMALLOC_START; is_vmalloc_addr((void*)addr); addr += PGDIR_SIZE)
437                         unmap_range(NULL, hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
438
439                 free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
440                 hyp_pgd = NULL;
441         }
442         if (merged_hyp_pgd) {
443                 clear_page(merged_hyp_pgd);
444                 free_page((unsigned long)merged_hyp_pgd);
445                 merged_hyp_pgd = NULL;
446         }
447
448         mutex_unlock(&kvm_hyp_pgd_mutex);
449 }
450
451 static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
452                                     unsigned long end, unsigned long pfn,
453                                     pgprot_t prot)
454 {
455         pte_t *pte;
456         unsigned long addr;
457
458         addr = start;
459         do {
460                 pte = pte_offset_kernel(pmd, addr);
461                 kvm_set_pte(pte, pfn_pte(pfn, prot));
462                 get_page(virt_to_page(pte));
463                 kvm_flush_dcache_to_poc(pte, sizeof(*pte));
464                 pfn++;
465         } while (addr += PAGE_SIZE, addr != end);
466 }
467
468 static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
469                                    unsigned long end, unsigned long pfn,
470                                    pgprot_t prot)
471 {
472         pmd_t *pmd;
473         pte_t *pte;
474         unsigned long addr, next;
475
476         addr = start;
477         do {
478                 pmd = pmd_offset(pud, addr);
479
480                 BUG_ON(pmd_sect(*pmd));
481
482                 if (pmd_none(*pmd)) {
483                         pte = pte_alloc_one_kernel(NULL, addr);
484                         if (!pte) {
485                                 kvm_err("Cannot allocate Hyp pte\n");
486                                 return -ENOMEM;
487                         }
488                         pmd_populate_kernel(NULL, pmd, pte);
489                         get_page(virt_to_page(pmd));
490                         kvm_flush_dcache_to_poc(pmd, sizeof(*pmd));
491                 }
492
493                 next = pmd_addr_end(addr, end);
494
495                 create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
496                 pfn += (next - addr) >> PAGE_SHIFT;
497         } while (addr = next, addr != end);
498
499         return 0;
500 }
501
502 static int create_hyp_pud_mappings(pgd_t *pgd, unsigned long start,
503                                    unsigned long end, unsigned long pfn,
504                                    pgprot_t prot)
505 {
506         pud_t *pud;
507         pmd_t *pmd;
508         unsigned long addr, next;
509         int ret;
510
511         addr = start;
512         do {
513                 pud = pud_offset(pgd, addr);
514
515                 if (pud_none_or_clear_bad(pud)) {
516                         pmd = pmd_alloc_one(NULL, addr);
517                         if (!pmd) {
518                                 kvm_err("Cannot allocate Hyp pmd\n");
519                                 return -ENOMEM;
520                         }
521                         pud_populate(NULL, pud, pmd);
522                         get_page(virt_to_page(pud));
523                         kvm_flush_dcache_to_poc(pud, sizeof(*pud));
524                 }
525
526                 next = pud_addr_end(addr, end);
527                 ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
528                 if (ret)
529                         return ret;
530                 pfn += (next - addr) >> PAGE_SHIFT;
531         } while (addr = next, addr != end);
532
533         return 0;
534 }
535
536 static int __create_hyp_mappings(pgd_t *pgdp,
537                                  unsigned long start, unsigned long end,
538                                  unsigned long pfn, pgprot_t prot)
539 {
540         pgd_t *pgd;
541         pud_t *pud;
542         unsigned long addr, next;
543         int err = 0;
544
545         mutex_lock(&kvm_hyp_pgd_mutex);
546         addr = start & PAGE_MASK;
547         end = PAGE_ALIGN(end);
548         do {
549                 pgd = pgdp + pgd_index(addr);
550
551                 if (pgd_none(*pgd)) {
552                         pud = pud_alloc_one(NULL, addr);
553                         if (!pud) {
554                                 kvm_err("Cannot allocate Hyp pud\n");
555                                 err = -ENOMEM;
556                                 goto out;
557                         }
558                         pgd_populate(NULL, pgd, pud);
559                         get_page(virt_to_page(pgd));
560                         kvm_flush_dcache_to_poc(pgd, sizeof(*pgd));
561                 }
562
563                 next = pgd_addr_end(addr, end);
564                 err = create_hyp_pud_mappings(pgd, addr, next, pfn, prot);
565                 if (err)
566                         goto out;
567                 pfn += (next - addr) >> PAGE_SHIFT;
568         } while (addr = next, addr != end);
569 out:
570         mutex_unlock(&kvm_hyp_pgd_mutex);
571         return err;
572 }
573
574 static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
575 {
576         if (!is_vmalloc_addr(kaddr)) {
577                 BUG_ON(!virt_addr_valid(kaddr));
578                 return __pa(kaddr);
579         } else {
580                 return page_to_phys(vmalloc_to_page(kaddr)) +
581                        offset_in_page(kaddr);
582         }
583 }
584
585 /**
586  * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
587  * @from:       The virtual kernel start address of the range
588  * @to:         The virtual kernel end address of the range (exclusive)
589  *
590  * The same virtual address as the kernel virtual address is also used
591  * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
592  * physical pages.
593  */
594 int create_hyp_mappings(void *from, void *to)
595 {
596         phys_addr_t phys_addr;
597         unsigned long virt_addr;
598         unsigned long start = KERN_TO_HYP((unsigned long)from);
599         unsigned long end = KERN_TO_HYP((unsigned long)to);
600
601         start = start & PAGE_MASK;
602         end = PAGE_ALIGN(end);
603
604         for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
605                 int err;
606
607                 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
608                 err = __create_hyp_mappings(hyp_pgd, virt_addr,
609                                             virt_addr + PAGE_SIZE,
610                                             __phys_to_pfn(phys_addr),
611                                             PAGE_HYP);
612                 if (err)
613                         return err;
614         }
615
616         return 0;
617 }
618
619 /**
620  * create_hyp_io_mappings - duplicate a kernel IO mapping into Hyp mode
621  * @from:       The kernel start VA of the range
622  * @to:         The kernel end VA of the range (exclusive)
623  * @phys_addr:  The physical start address which gets mapped
624  *
625  * The resulting HYP VA is the same as the kernel VA, modulo
626  * HYP_PAGE_OFFSET.
627  */
628 int create_hyp_io_mappings(void *from, void *to, phys_addr_t phys_addr)
629 {
630         unsigned long start = KERN_TO_HYP((unsigned long)from);
631         unsigned long end = KERN_TO_HYP((unsigned long)to);
632
633         /* Check for a valid kernel IO mapping */
634         if (!is_vmalloc_addr(from) || !is_vmalloc_addr(to - 1))
635                 return -EINVAL;
636
637         return __create_hyp_mappings(hyp_pgd, start, end,
638                                      __phys_to_pfn(phys_addr), PAGE_HYP_DEVICE);
639 }
640
641 /* Free the HW pgd, one page at a time */
642 static void kvm_free_hwpgd(void *hwpgd)
643 {
644         free_pages_exact(hwpgd, kvm_get_hwpgd_size());
645 }
646
647 /* Allocate the HW PGD, making sure that each page gets its own refcount */
648 static void *kvm_alloc_hwpgd(void)
649 {
650         unsigned int size = kvm_get_hwpgd_size();
651
652         return alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO);
653 }
654
655 /**
656  * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
657  * @kvm:        The KVM struct pointer for the VM.
658  *
659  * Allocates the 1st level table only of size defined by S2_PGD_ORDER (can
660  * support either full 40-bit input addresses or limited to 32-bit input
661  * addresses). Clears the allocated pages.
662  *
663  * Note we don't need locking here as this is only called when the VM is
664  * created, which can only be done once.
665  */
666 int kvm_alloc_stage2_pgd(struct kvm *kvm)
667 {
668         pgd_t *pgd;
669         void *hwpgd;
670
671         if (kvm->arch.pgd != NULL) {
672                 kvm_err("kvm_arch already initialized?\n");
673                 return -EINVAL;
674         }
675
676         hwpgd = kvm_alloc_hwpgd();
677         if (!hwpgd)
678                 return -ENOMEM;
679
680         /* When the kernel uses more levels of page tables than the
681          * guest, we allocate a fake PGD and pre-populate it to point
682          * to the next-level page table, which will be the real
683          * initial page table pointed to by the VTTBR.
684          *
685          * When KVM_PREALLOC_LEVEL==2, we allocate a single page for
686          * the PMD and the kernel will use folded pud.
687          * When KVM_PREALLOC_LEVEL==1, we allocate 2 consecutive PUD
688          * pages.
689          */
690         if (KVM_PREALLOC_LEVEL > 0) {
691                 int i;
692
693                 /*
694                  * Allocate fake pgd for the page table manipulation macros to
695                  * work.  This is not used by the hardware and we have no
696                  * alignment requirement for this allocation.
697                  */
698                 pgd = kmalloc(PTRS_PER_S2_PGD * sizeof(pgd_t),
699                                 GFP_KERNEL | __GFP_ZERO);
700
701                 if (!pgd) {
702                         kvm_free_hwpgd(hwpgd);
703                         return -ENOMEM;
704                 }
705
706                 /* Plug the HW PGD into the fake one. */
707                 for (i = 0; i < PTRS_PER_S2_PGD; i++) {
708                         if (KVM_PREALLOC_LEVEL == 1)
709                                 pgd_populate(NULL, pgd + i,
710                                              (pud_t *)hwpgd + i * PTRS_PER_PUD);
711                         else if (KVM_PREALLOC_LEVEL == 2)
712                                 pud_populate(NULL, pud_offset(pgd, 0) + i,
713                                              (pmd_t *)hwpgd + i * PTRS_PER_PMD);
714                 }
715         } else {
716                 /*
717                  * Allocate actual first-level Stage-2 page table used by the
718                  * hardware for Stage-2 page table walks.
719                  */
720                 pgd = (pgd_t *)hwpgd;
721         }
722
723         kvm_clean_pgd(pgd);
724         kvm->arch.pgd = pgd;
725         return 0;
726 }
727
728 /**
729  * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
730  * @kvm:   The VM pointer
731  * @start: The intermediate physical base address of the range to unmap
732  * @size:  The size of the area to unmap
733  *
734  * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
735  * be called while holding mmu_lock (unless for freeing the stage2 pgd before
736  * destroying the VM), otherwise another faulting VCPU may come in and mess
737  * with things behind our backs.
738  */
739 static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
740 {
741         assert_spin_locked(&kvm->mmu_lock);
742         unmap_range(kvm, kvm->arch.pgd, start, size);
743 }
744
745 static void stage2_unmap_memslot(struct kvm *kvm,
746                                  struct kvm_memory_slot *memslot)
747 {
748         hva_t hva = memslot->userspace_addr;
749         phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
750         phys_addr_t size = PAGE_SIZE * memslot->npages;
751         hva_t reg_end = hva + size;
752
753         /*
754          * A memory region could potentially cover multiple VMAs, and any holes
755          * between them, so iterate over all of them to find out if we should
756          * unmap any of them.
757          *
758          *     +--------------------------------------------+
759          * +---------------+----------------+   +----------------+
760          * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
761          * +---------------+----------------+   +----------------+
762          *     |               memory region                |
763          *     +--------------------------------------------+
764          */
765         do {
766                 struct vm_area_struct *vma = find_vma(current->mm, hva);
767                 hva_t vm_start, vm_end;
768
769                 if (!vma || vma->vm_start >= reg_end)
770                         break;
771
772                 /*
773                  * Take the intersection of this VMA with the memory region
774                  */
775                 vm_start = max(hva, vma->vm_start);
776                 vm_end = min(reg_end, vma->vm_end);
777
778                 if (!(vma->vm_flags & VM_PFNMAP)) {
779                         gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
780                         unmap_stage2_range(kvm, gpa, vm_end - vm_start);
781                 }
782                 hva = vm_end;
783         } while (hva < reg_end);
784 }
785
786 /**
787  * stage2_unmap_vm - Unmap Stage-2 RAM mappings
788  * @kvm: The struct kvm pointer
789  *
790  * Go through the memregions and unmap any reguler RAM
791  * backing memory already mapped to the VM.
792  */
793 void stage2_unmap_vm(struct kvm *kvm)
794 {
795         struct kvm_memslots *slots;
796         struct kvm_memory_slot *memslot;
797         int idx;
798
799         idx = srcu_read_lock(&kvm->srcu);
800         down_read(&current->mm->mmap_sem);
801         spin_lock(&kvm->mmu_lock);
802
803         slots = kvm_memslots(kvm);
804         kvm_for_each_memslot(memslot, slots)
805                 stage2_unmap_memslot(kvm, memslot);
806
807         spin_unlock(&kvm->mmu_lock);
808         up_read(&current->mm->mmap_sem);
809         srcu_read_unlock(&kvm->srcu, idx);
810 }
811
812 /**
813  * kvm_free_stage2_pgd - free all stage-2 tables
814  * @kvm:        The KVM struct pointer for the VM.
815  *
816  * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
817  * underlying level-2 and level-3 tables before freeing the actual level-1 table
818  * and setting the struct pointer to NULL.
819  */
820 void kvm_free_stage2_pgd(struct kvm *kvm)
821 {
822         void *pgd = NULL;
823         void *hwpgd = NULL;
824
825         spin_lock(&kvm->mmu_lock);
826         if (kvm->arch.pgd) {
827                 unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
828                 pgd = READ_ONCE(kvm->arch.pgd);
829                 hwpgd = kvm_get_hwpgd(kvm);
830                 kvm->arch.pgd = NULL;
831         }
832         spin_unlock(&kvm->mmu_lock);
833
834         if (hwpgd)
835                 kvm_free_hwpgd(hwpgd);
836         if (KVM_PREALLOC_LEVEL > 0 && pgd)
837                 kfree(pgd);
838 }
839
840 static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
841                              phys_addr_t addr)
842 {
843         pgd_t *pgd;
844         pud_t *pud;
845
846         pgd = kvm->arch.pgd + kvm_pgd_index(addr);
847         if (WARN_ON(pgd_none(*pgd))) {
848                 if (!cache)
849                         return NULL;
850                 pud = mmu_memory_cache_alloc(cache);
851                 pgd_populate(NULL, pgd, pud);
852                 get_page(virt_to_page(pgd));
853         }
854
855         return pud_offset(pgd, addr);
856 }
857
858 static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
859                              phys_addr_t addr)
860 {
861         pud_t *pud;
862         pmd_t *pmd;
863
864         pud = stage2_get_pud(kvm, cache, addr);
865         if (!pud)
866                 return NULL;
867
868         if (pud_none(*pud)) {
869                 if (!cache)
870                         return NULL;
871                 pmd = mmu_memory_cache_alloc(cache);
872                 pud_populate(NULL, pud, pmd);
873                 get_page(virt_to_page(pud));
874         }
875
876         return pmd_offset(pud, addr);
877 }
878
879 static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
880                                *cache, phys_addr_t addr, const pmd_t *new_pmd)
881 {
882         pmd_t *pmd, old_pmd;
883
884         pmd = stage2_get_pmd(kvm, cache, addr);
885         VM_BUG_ON(!pmd);
886
887         old_pmd = *pmd;
888         if (pmd_present(old_pmd)) {
889                 /*
890                  * Multiple vcpus faulting on the same PMD entry, can
891                  * lead to them sequentially updating the PMD with the
892                  * same value. Following the break-before-make
893                  * (pmd_clear() followed by tlb_flush()) process can
894                  * hinder forward progress due to refaults generated
895                  * on missing translations.
896                  *
897                  * Skip updating the page table if the entry is
898                  * unchanged.
899                  */
900                 if (pmd_val(old_pmd) == pmd_val(*new_pmd))
901                         return 0;
902
903                 /*
904                  * Mapping in huge pages should only happen through a
905                  * fault.  If a page is merged into a transparent huge
906                  * page, the individual subpages of that huge page
907                  * should be unmapped through MMU notifiers before we
908                  * get here.
909                  *
910                  * Merging of CompoundPages is not supported; they
911                  * should become splitting first, unmapped, merged,
912                  * and mapped back in on-demand.
913                  */
914                 VM_BUG_ON(pmd_pfn(old_pmd) != pmd_pfn(*new_pmd));
915
916                 pmd_clear(pmd);
917                 kvm_tlb_flush_vmid_ipa(kvm, addr);
918         } else {
919                 get_page(virt_to_page(pmd));
920         }
921
922         kvm_set_pmd(pmd, *new_pmd);
923         return 0;
924 }
925
926 static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
927                           phys_addr_t addr, const pte_t *new_pte,
928                           unsigned long flags)
929 {
930         pmd_t *pmd;
931         pte_t *pte, old_pte;
932         bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
933         bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;
934
935         VM_BUG_ON(logging_active && !cache);
936
937         /* Create stage-2 page table mapping - Levels 0 and 1 */
938         pmd = stage2_get_pmd(kvm, cache, addr);
939         if (!pmd) {
940                 /*
941                  * Ignore calls from kvm_set_spte_hva for unallocated
942                  * address ranges.
943                  */
944                 return 0;
945         }
946
947         /*
948          * While dirty page logging - dissolve huge PMD, then continue on to
949          * allocate page.
950          */
951         if (logging_active)
952                 stage2_dissolve_pmd(kvm, addr, pmd);
953
954         /* Create stage-2 page mappings - Level 2 */
955         if (pmd_none(*pmd)) {
956                 if (!cache)
957                         return 0; /* ignore calls from kvm_set_spte_hva */
958                 pte = mmu_memory_cache_alloc(cache);
959                 kvm_clean_pte(pte);
960                 pmd_populate_kernel(NULL, pmd, pte);
961                 get_page(virt_to_page(pmd));
962         }
963
964         pte = pte_offset_kernel(pmd, addr);
965
966         if (iomap && pte_present(*pte))
967                 return -EFAULT;
968
969         /* Create 2nd stage page table mapping - Level 3 */
970         old_pte = *pte;
971         if (pte_present(old_pte)) {
972                 /* Skip page table update if there is no change */
973                 if (pte_val(old_pte) == pte_val(*new_pte))
974                         return 0;
975
976                 kvm_set_pte(pte, __pte(0));
977                 kvm_tlb_flush_vmid_ipa(kvm, addr);
978         } else {
979                 get_page(virt_to_page(pte));
980         }
981
982         kvm_set_pte(pte, *new_pte);
983         return 0;
984 }
985
986 /**
987  * kvm_phys_addr_ioremap - map a device range to guest IPA
988  *
989  * @kvm:        The KVM pointer
990  * @guest_ipa:  The IPA at which to insert the mapping
991  * @pa:         The physical address of the device
992  * @size:       The size of the mapping
993  */
994 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
995                           phys_addr_t pa, unsigned long size, bool writable)
996 {
997         phys_addr_t addr, end;
998         int ret = 0;
999         unsigned long pfn;
1000         struct kvm_mmu_memory_cache cache = { 0, };
1001
1002         end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
1003         pfn = __phys_to_pfn(pa);
1004
1005         for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
1006                 pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
1007
1008                 if (writable)
1009                         kvm_set_s2pte_writable(&pte);
1010
1011                 ret = mmu_topup_memory_cache(&cache, KVM_MMU_CACHE_MIN_PAGES,
1012                                                 KVM_NR_MEM_OBJS);
1013                 if (ret)
1014                         goto out;
1015                 spin_lock(&kvm->mmu_lock);
1016                 ret = stage2_set_pte(kvm, &cache, addr, &pte,
1017                                                 KVM_S2PTE_FLAG_IS_IOMAP);
1018                 spin_unlock(&kvm->mmu_lock);
1019                 if (ret)
1020                         goto out;
1021
1022                 pfn++;
1023         }
1024
1025 out:
1026         mmu_free_memory_cache(&cache);
1027         return ret;
1028 }
1029
1030 static bool transparent_hugepage_adjust(pfn_t *pfnp, phys_addr_t *ipap)
1031 {
1032         pfn_t pfn = *pfnp;
1033         gfn_t gfn = *ipap >> PAGE_SHIFT;
1034
1035         if (PageTransCompound(pfn_to_page(pfn))) {
1036                 unsigned long mask;
1037                 /*
1038                  * The address we faulted on is backed by a transparent huge
1039                  * page.  However, because we map the compound huge page and
1040                  * not the individual tail page, we need to transfer the
1041                  * refcount to the head page.  We have to be careful that the
1042                  * THP doesn't start to split while we are adjusting the
1043                  * refcounts.
1044                  *
1045                  * We are sure this doesn't happen, because mmu_notifier_retry
1046                  * was successful and we are holding the mmu_lock, so if this
1047                  * THP is trying to split, it will be blocked in the mmu
1048                  * notifier before touching any of the pages, specifically
1049                  * before being able to call __split_huge_page_refcount().
1050                  *
1051                  * We can therefore safely transfer the refcount from PG_tail
1052                  * to PG_head and switch the pfn from a tail page to the head
1053                  * page accordingly.
1054                  */
1055                 mask = PTRS_PER_PMD - 1;
1056                 VM_BUG_ON((gfn & mask) != (pfn & mask));
1057                 if (pfn & mask) {
1058                         *ipap &= PMD_MASK;
1059                         kvm_release_pfn_clean(pfn);
1060                         pfn &= ~mask;
1061                         kvm_get_pfn(pfn);
1062                         *pfnp = pfn;
1063                 }
1064
1065                 return true;
1066         }
1067
1068         return false;
1069 }
1070
1071 static bool kvm_is_write_fault(struct kvm_vcpu *vcpu)
1072 {
1073         if (kvm_vcpu_trap_is_iabt(vcpu))
1074                 return false;
1075
1076         return kvm_vcpu_dabt_iswrite(vcpu);
1077 }
1078
1079 /**
1080  * stage2_wp_ptes - write protect PMD range
1081  * @pmd:        pointer to pmd entry
1082  * @addr:       range start address
1083  * @end:        range end address
1084  */
1085 static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
1086 {
1087         pte_t *pte;
1088
1089         pte = pte_offset_kernel(pmd, addr);
1090         do {
1091                 if (!pte_none(*pte)) {
1092                         if (!kvm_s2pte_readonly(pte))
1093                                 kvm_set_s2pte_readonly(pte);
1094                 }
1095         } while (pte++, addr += PAGE_SIZE, addr != end);
1096 }
1097
1098 /**
1099  * stage2_wp_pmds - write protect PUD range
1100  * @pud:        pointer to pud entry
1101  * @addr:       range start address
1102  * @end:        range end address
1103  */
1104 static void stage2_wp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
1105 {
1106         pmd_t *pmd;
1107         phys_addr_t next;
1108
1109         pmd = pmd_offset(pud, addr);
1110
1111         do {
1112                 next = kvm_pmd_addr_end(addr, end);
1113                 if (!pmd_none(*pmd)) {
1114                         if (kvm_pmd_huge(*pmd)) {
1115                                 if (!kvm_s2pmd_readonly(pmd))
1116                                         kvm_set_s2pmd_readonly(pmd);
1117                         } else {
1118                                 stage2_wp_ptes(pmd, addr, next);
1119                         }
1120                 }
1121         } while (pmd++, addr = next, addr != end);
1122 }
1123
1124 /**
1125   * stage2_wp_puds - write protect PGD range
1126   * @pgd:       pointer to pgd entry
1127   * @addr:      range start address
1128   * @end:       range end address
1129   *
1130   * Process PUD entries, for a huge PUD we cause a panic.
1131   */
1132 static void  stage2_wp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
1133 {
1134         pud_t *pud;
1135         phys_addr_t next;
1136
1137         pud = pud_offset(pgd, addr);
1138         do {
1139                 next = kvm_pud_addr_end(addr, end);
1140                 if (!pud_none(*pud)) {
1141                         /* TODO:PUD not supported, revisit later if supported */
1142                         BUG_ON(kvm_pud_huge(*pud));
1143                         stage2_wp_pmds(pud, addr, next);
1144                 }
1145         } while (pud++, addr = next, addr != end);
1146 }
1147
1148 /**
1149  * stage2_wp_range() - write protect stage2 memory region range
1150  * @kvm:        The KVM pointer
1151  * @addr:       Start address of range
1152  * @end:        End address of range
1153  */
1154 static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
1155 {
1156         pgd_t *pgd;
1157         phys_addr_t next;
1158
1159         pgd = kvm->arch.pgd + kvm_pgd_index(addr);
1160         do {
1161                 /*
1162                  * Release kvm_mmu_lock periodically if the memory region is
1163                  * large. Otherwise, we may see kernel panics with
1164                  * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
1165                  * CONFIG_LOCKDEP. Additionally, holding the lock too long
1166                  * will also starve other vCPUs.
1167                  */
1168                 if (need_resched() || spin_needbreak(&kvm->mmu_lock))
1169                         cond_resched_lock(&kvm->mmu_lock);
1170
1171                 next = kvm_pgd_addr_end(addr, end);
1172                 if (pgd_present(*pgd))
1173                         stage2_wp_puds(pgd, addr, next);
1174         } while (pgd++, addr = next, addr != end);
1175 }
1176
1177 /**
1178  * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
1179  * @kvm:        The KVM pointer
1180  * @slot:       The memory slot to write protect
1181  *
1182  * Called to start logging dirty pages after memory region
1183  * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1184  * all present PMD and PTEs are write protected in the memory region.
1185  * Afterwards read of dirty page log can be called.
1186  *
1187  * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
1188  * serializing operations for VM memory regions.
1189  */
1190 void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
1191 {
1192         struct kvm_memslots *slots = kvm_memslots(kvm);
1193         struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
1194         phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
1195         phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1196
1197         spin_lock(&kvm->mmu_lock);
1198         stage2_wp_range(kvm, start, end);
1199         spin_unlock(&kvm->mmu_lock);
1200         kvm_flush_remote_tlbs(kvm);
1201 }
1202
1203 /**
1204  * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
1205  * @kvm:        The KVM pointer
1206  * @slot:       The memory slot associated with mask
1207  * @gfn_offset: The gfn offset in memory slot
1208  * @mask:       The mask of dirty pages at offset 'gfn_offset' in this memory
1209  *              slot to be write protected
1210  *
1211  * Walks bits set in mask write protects the associated pte's. Caller must
1212  * acquire kvm_mmu_lock.
1213  */
1214 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1215                 struct kvm_memory_slot *slot,
1216                 gfn_t gfn_offset, unsigned long mask)
1217 {
1218         phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
1219         phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
1220         phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
1221
1222         stage2_wp_range(kvm, start, end);
1223 }
1224
1225 /*
1226  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1227  * dirty pages.
1228  *
1229  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1230  * enable dirty logging for them.
1231  */
1232 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1233                 struct kvm_memory_slot *slot,
1234                 gfn_t gfn_offset, unsigned long mask)
1235 {
1236         kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1237 }
1238
1239 static void coherent_cache_guest_page(struct kvm_vcpu *vcpu, pfn_t pfn,
1240                                       unsigned long size, bool uncached)
1241 {
1242         __coherent_cache_guest_page(vcpu, pfn, size, uncached);
1243 }
1244
1245 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1246                           struct kvm_memory_slot *memslot, unsigned long hva,
1247                           unsigned long fault_status)
1248 {
1249         int ret;
1250         bool write_fault, writable, hugetlb = false, force_pte = false;
1251         unsigned long mmu_seq;
1252         gfn_t gfn = fault_ipa >> PAGE_SHIFT;
1253         struct kvm *kvm = vcpu->kvm;
1254         struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1255         struct vm_area_struct *vma;
1256         pfn_t pfn;
1257         pgprot_t mem_type = PAGE_S2;
1258         bool fault_ipa_uncached;
1259         bool logging_active = memslot_is_logging(memslot);
1260         unsigned long flags = 0;
1261
1262         write_fault = kvm_is_write_fault(vcpu);
1263         if (fault_status == FSC_PERM && !write_fault) {
1264                 kvm_err("Unexpected L2 read permission error\n");
1265                 return -EFAULT;
1266         }
1267
1268         /* Let's check if we will get back a huge page backed by hugetlbfs */
1269         down_read(&current->mm->mmap_sem);
1270         vma = find_vma_intersection(current->mm, hva, hva + 1);
1271         if (unlikely(!vma)) {
1272                 kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1273                 up_read(&current->mm->mmap_sem);
1274                 return -EFAULT;
1275         }
1276
1277         if (is_vm_hugetlb_page(vma) && !logging_active) {
1278                 hugetlb = true;
1279                 gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT;
1280         } else {
1281                 /*
1282                  * Pages belonging to memslots that don't have the same
1283                  * alignment for userspace and IPA cannot be mapped using
1284                  * block descriptors even if the pages belong to a THP for
1285                  * the process, because the stage-2 block descriptor will
1286                  * cover more than a single THP and we loose atomicity for
1287                  * unmapping, updates, and splits of the THP or other pages
1288                  * in the stage-2 block range.
1289                  */
1290                 if ((memslot->userspace_addr & ~PMD_MASK) !=
1291                     ((memslot->base_gfn << PAGE_SHIFT) & ~PMD_MASK))
1292                         force_pte = true;
1293         }
1294         up_read(&current->mm->mmap_sem);
1295
1296         /* We need minimum second+third level pages */
1297         ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
1298                                      KVM_NR_MEM_OBJS);
1299         if (ret)
1300                 return ret;
1301
1302         mmu_seq = vcpu->kvm->mmu_notifier_seq;
1303         /*
1304          * Ensure the read of mmu_notifier_seq happens before we call
1305          * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
1306          * the page we just got a reference to gets unmapped before we have a
1307          * chance to grab the mmu_lock, which ensure that if the page gets
1308          * unmapped afterwards, the call to kvm_unmap_hva will take it away
1309          * from us again properly. This smp_rmb() interacts with the smp_wmb()
1310          * in kvm_mmu_notifier_invalidate_<page|range_end>.
1311          */
1312         smp_rmb();
1313
1314         pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
1315         if (is_error_pfn(pfn))
1316                 return -EFAULT;
1317
1318         if (kvm_is_device_pfn(pfn)) {
1319                 mem_type = PAGE_S2_DEVICE;
1320                 flags |= KVM_S2PTE_FLAG_IS_IOMAP;
1321         } else if (logging_active) {
1322                 /*
1323                  * Faults on pages in a memslot with logging enabled
1324                  * should not be mapped with huge pages (it introduces churn
1325                  * and performance degradation), so force a pte mapping.
1326                  */
1327                 force_pte = true;
1328                 flags |= KVM_S2_FLAG_LOGGING_ACTIVE;
1329
1330                 /*
1331                  * Only actually map the page as writable if this was a write
1332                  * fault.
1333                  */
1334                 if (!write_fault)
1335                         writable = false;
1336         }
1337
1338         spin_lock(&kvm->mmu_lock);
1339         if (mmu_notifier_retry(kvm, mmu_seq))
1340                 goto out_unlock;
1341
1342         if (!hugetlb && !force_pte)
1343                 hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
1344
1345         fault_ipa_uncached = memslot->flags & KVM_MEMSLOT_INCOHERENT;
1346
1347         if (hugetlb) {
1348                 pmd_t new_pmd = pfn_pmd(pfn, mem_type);
1349                 new_pmd = pmd_mkhuge(new_pmd);
1350                 if (writable) {
1351                         kvm_set_s2pmd_writable(&new_pmd);
1352                         kvm_set_pfn_dirty(pfn);
1353                 }
1354                 coherent_cache_guest_page(vcpu, pfn, PMD_SIZE, fault_ipa_uncached);
1355                 ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
1356         } else {
1357                 pte_t new_pte = pfn_pte(pfn, mem_type);
1358
1359                 if (writable) {
1360                         kvm_set_s2pte_writable(&new_pte);
1361                         kvm_set_pfn_dirty(pfn);
1362                         mark_page_dirty(kvm, gfn);
1363                 }
1364                 coherent_cache_guest_page(vcpu, pfn, PAGE_SIZE, fault_ipa_uncached);
1365                 ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
1366         }
1367
1368 out_unlock:
1369         spin_unlock(&kvm->mmu_lock);
1370         kvm_set_pfn_accessed(pfn);
1371         kvm_release_pfn_clean(pfn);
1372         return ret;
1373 }
1374
1375 /*
1376  * Resolve the access fault by making the page young again.
1377  * Note that because the faulting entry is guaranteed not to be
1378  * cached in the TLB, we don't need to invalidate anything.
1379  */
1380 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1381 {
1382         pmd_t *pmd;
1383         pte_t *pte;
1384         pfn_t pfn;
1385         bool pfn_valid = false;
1386
1387         trace_kvm_access_fault(fault_ipa);
1388
1389         spin_lock(&vcpu->kvm->mmu_lock);
1390
1391         pmd = stage2_get_pmd(vcpu->kvm, NULL, fault_ipa);
1392         if (!pmd || pmd_none(*pmd))     /* Nothing there */
1393                 goto out;
1394
1395         if (kvm_pmd_huge(*pmd)) {       /* THP, HugeTLB */
1396                 *pmd = pmd_mkyoung(*pmd);
1397                 pfn = pmd_pfn(*pmd);
1398                 pfn_valid = true;
1399                 goto out;
1400         }
1401
1402         pte = pte_offset_kernel(pmd, fault_ipa);
1403         if (pte_none(*pte))             /* Nothing there either */
1404                 goto out;
1405
1406         *pte = pte_mkyoung(*pte);       /* Just a page... */
1407         pfn = pte_pfn(*pte);
1408         pfn_valid = true;
1409 out:
1410         spin_unlock(&vcpu->kvm->mmu_lock);
1411         if (pfn_valid)
1412                 kvm_set_pfn_accessed(pfn);
1413 }
1414
1415 /**
1416  * kvm_handle_guest_abort - handles all 2nd stage aborts
1417  * @vcpu:       the VCPU pointer
1418  * @run:        the kvm_run structure
1419  *
1420  * Any abort that gets to the host is almost guaranteed to be caused by a
1421  * missing second stage translation table entry, which can mean that either the
1422  * guest simply needs more memory and we must allocate an appropriate page or it
1423  * can mean that the guest tried to access I/O memory, which is emulated by user
1424  * space. The distinction is based on the IPA causing the fault and whether this
1425  * memory region has been registered as standard RAM by user space.
1426  */
1427 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
1428 {
1429         unsigned long fault_status;
1430         phys_addr_t fault_ipa;
1431         struct kvm_memory_slot *memslot;
1432         unsigned long hva;
1433         bool is_iabt, write_fault, writable;
1434         gfn_t gfn;
1435         int ret, idx;
1436
1437         is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1438         fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1439
1440         trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
1441                               kvm_vcpu_get_hfar(vcpu), fault_ipa);
1442
1443         /* Check the stage-2 fault is trans. fault or write fault */
1444         fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
1445         if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
1446             fault_status != FSC_ACCESS) {
1447                 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1448                         kvm_vcpu_trap_get_class(vcpu),
1449                         (unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1450                         (unsigned long)kvm_vcpu_get_hsr(vcpu));
1451                 return -EFAULT;
1452         }
1453
1454         idx = srcu_read_lock(&vcpu->kvm->srcu);
1455
1456         gfn = fault_ipa >> PAGE_SHIFT;
1457         memslot = gfn_to_memslot(vcpu->kvm, gfn);
1458         hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1459         write_fault = kvm_is_write_fault(vcpu);
1460         if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1461                 if (is_iabt) {
1462                         /* Prefetch Abort on I/O address */
1463                         kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1464                         ret = 1;
1465                         goto out_unlock;
1466                 }
1467
1468                 /*
1469                  * The IPA is reported as [MAX:12], so we need to
1470                  * complement it with the bottom 12 bits from the
1471                  * faulting VA. This is always 12 bits, irrespective
1472                  * of the page size.
1473                  */
1474                 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
1475                 ret = io_mem_abort(vcpu, run, fault_ipa);
1476                 goto out_unlock;
1477         }
1478
1479         /* Userspace should not be able to register out-of-bounds IPAs */
1480         VM_BUG_ON(fault_ipa >= KVM_PHYS_SIZE);
1481
1482         if (fault_status == FSC_ACCESS) {
1483                 handle_access_fault(vcpu, fault_ipa);
1484                 ret = 1;
1485                 goto out_unlock;
1486         }
1487
1488         ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1489         if (ret == 0)
1490                 ret = 1;
1491 out_unlock:
1492         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1493         return ret;
1494 }
1495
1496 static int handle_hva_to_gpa(struct kvm *kvm,
1497                              unsigned long start,
1498                              unsigned long end,
1499                              int (*handler)(struct kvm *kvm,
1500                                             gpa_t gpa, void *data),
1501                              void *data)
1502 {
1503         struct kvm_memslots *slots;
1504         struct kvm_memory_slot *memslot;
1505         int ret = 0;
1506
1507         slots = kvm_memslots(kvm);
1508
1509         /* we only care about the pages that the guest sees */
1510         kvm_for_each_memslot(memslot, slots) {
1511                 unsigned long hva_start, hva_end;
1512                 gfn_t gfn, gfn_end;
1513
1514                 hva_start = max(start, memslot->userspace_addr);
1515                 hva_end = min(end, memslot->userspace_addr +
1516                                         (memslot->npages << PAGE_SHIFT));
1517                 if (hva_start >= hva_end)
1518                         continue;
1519
1520                 /*
1521                  * {gfn(page) | page intersects with [hva_start, hva_end)} =
1522                  * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1523                  */
1524                 gfn = hva_to_gfn_memslot(hva_start, memslot);
1525                 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1526
1527                 for (; gfn < gfn_end; ++gfn) {
1528                         gpa_t gpa = gfn << PAGE_SHIFT;
1529                         ret |= handler(kvm, gpa, data);
1530                 }
1531         }
1532
1533         return ret;
1534 }
1535
1536 static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
1537 {
1538         unmap_stage2_range(kvm, gpa, PAGE_SIZE);
1539         return 0;
1540 }
1541
1542 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1543 {
1544         unsigned long end = hva + PAGE_SIZE;
1545
1546         if (!kvm->arch.pgd)
1547                 return 0;
1548
1549         trace_kvm_unmap_hva(hva);
1550         handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
1551         return 0;
1552 }
1553
1554 int kvm_unmap_hva_range(struct kvm *kvm,
1555                         unsigned long start, unsigned long end)
1556 {
1557         if (!kvm->arch.pgd)
1558                 return 0;
1559
1560         trace_kvm_unmap_hva_range(start, end);
1561         handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
1562         return 0;
1563 }
1564
1565 static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, void *data)
1566 {
1567         pte_t *pte = (pte_t *)data;
1568
1569         /*
1570          * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
1571          * flag clear because MMU notifiers will have unmapped a huge PMD before
1572          * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
1573          * therefore stage2_set_pte() never needs to clear out a huge PMD
1574          * through this calling path.
1575          */
1576         stage2_set_pte(kvm, NULL, gpa, pte, 0);
1577         return 0;
1578 }
1579
1580
1581 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1582 {
1583         unsigned long end = hva + PAGE_SIZE;
1584         pte_t stage2_pte;
1585
1586         if (!kvm->arch.pgd)
1587                 return;
1588
1589         trace_kvm_set_spte_hva(hva);
1590         stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2);
1591         handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
1592 }
1593
1594 static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
1595 {
1596         pmd_t *pmd;
1597         pte_t *pte;
1598
1599         pmd = stage2_get_pmd(kvm, NULL, gpa);
1600         if (!pmd || pmd_none(*pmd))     /* Nothing there */
1601                 return 0;
1602
1603         if (kvm_pmd_huge(*pmd)) {       /* THP, HugeTLB */
1604                 if (pmd_young(*pmd)) {
1605                         *pmd = pmd_mkold(*pmd);
1606                         return 1;
1607                 }
1608
1609                 return 0;
1610         }
1611
1612         pte = pte_offset_kernel(pmd, gpa);
1613         if (pte_none(*pte))
1614                 return 0;
1615
1616         if (pte_young(*pte)) {
1617                 *pte = pte_mkold(*pte); /* Just a page... */
1618                 return 1;
1619         }
1620
1621         return 0;
1622 }
1623
1624 static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
1625 {
1626         pmd_t *pmd;
1627         pte_t *pte;
1628
1629         pmd = stage2_get_pmd(kvm, NULL, gpa);
1630         if (!pmd || pmd_none(*pmd))     /* Nothing there */
1631                 return 0;
1632
1633         if (kvm_pmd_huge(*pmd))         /* THP, HugeTLB */
1634                 return pmd_young(*pmd);
1635
1636         pte = pte_offset_kernel(pmd, gpa);
1637         if (!pte_none(*pte))            /* Just a page... */
1638                 return pte_young(*pte);
1639
1640         return 0;
1641 }
1642
1643 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1644 {
1645         if (!kvm->arch.pgd)
1646                 return 0;
1647         trace_kvm_age_hva(start, end);
1648         return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
1649 }
1650
1651 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1652 {
1653         if (!kvm->arch.pgd)
1654                 return 0;
1655         trace_kvm_test_age_hva(hva);
1656         return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL);
1657 }
1658
1659 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1660 {
1661         mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
1662 }
1663
1664 phys_addr_t kvm_mmu_get_httbr(void)
1665 {
1666         if (__kvm_cpu_uses_extended_idmap())
1667                 return virt_to_phys(merged_hyp_pgd);
1668         else
1669                 return virt_to_phys(hyp_pgd);
1670 }
1671
1672 phys_addr_t kvm_mmu_get_boot_httbr(void)
1673 {
1674         if (__kvm_cpu_uses_extended_idmap())
1675                 return virt_to_phys(merged_hyp_pgd);
1676         else
1677                 return virt_to_phys(boot_hyp_pgd);
1678 }
1679
1680 phys_addr_t kvm_get_idmap_vector(void)
1681 {
1682         return hyp_idmap_vector;
1683 }
1684
1685 int kvm_mmu_init(void)
1686 {
1687         int err;
1688
1689         hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
1690         hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
1691         hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
1692
1693         /*
1694          * We rely on the linker script to ensure at build time that the HYP
1695          * init code does not cross a page boundary.
1696          */
1697         BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
1698
1699         hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
1700         boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
1701
1702         if (!hyp_pgd || !boot_hyp_pgd) {
1703                 kvm_err("Hyp mode PGD not allocated\n");
1704                 err = -ENOMEM;
1705                 goto out;
1706         }
1707
1708         /* Create the idmap in the boot page tables */
1709         err =   __create_hyp_mappings(boot_hyp_pgd,
1710                                       hyp_idmap_start, hyp_idmap_end,
1711                                       __phys_to_pfn(hyp_idmap_start),
1712                                       PAGE_HYP);
1713
1714         if (err) {
1715                 kvm_err("Failed to idmap %lx-%lx\n",
1716                         hyp_idmap_start, hyp_idmap_end);
1717                 goto out;
1718         }
1719
1720         if (__kvm_cpu_uses_extended_idmap()) {
1721                 merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1722                 if (!merged_hyp_pgd) {
1723                         kvm_err("Failed to allocate extra HYP pgd\n");
1724                         goto out;
1725                 }
1726                 __kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd,
1727                                     hyp_idmap_start);
1728                 return 0;
1729         }
1730
1731         /* Map the very same page at the trampoline VA */
1732         err =   __create_hyp_mappings(boot_hyp_pgd,
1733                                       TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
1734                                       __phys_to_pfn(hyp_idmap_start),
1735                                       PAGE_HYP);
1736         if (err) {
1737                 kvm_err("Failed to map trampoline @%lx into boot HYP pgd\n",
1738                         TRAMPOLINE_VA);
1739                 goto out;
1740         }
1741
1742         /* Map the same page again into the runtime page tables */
1743         err =   __create_hyp_mappings(hyp_pgd,
1744                                       TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
1745                                       __phys_to_pfn(hyp_idmap_start),
1746                                       PAGE_HYP);
1747         if (err) {
1748                 kvm_err("Failed to map trampoline @%lx into runtime HYP pgd\n",
1749                         TRAMPOLINE_VA);
1750                 goto out;
1751         }
1752
1753         return 0;
1754 out:
1755         free_hyp_pgds();
1756         return err;
1757 }
1758
1759 void kvm_arch_commit_memory_region(struct kvm *kvm,
1760                                    const struct kvm_userspace_memory_region *mem,
1761                                    const struct kvm_memory_slot *old,
1762                                    const struct kvm_memory_slot *new,
1763                                    enum kvm_mr_change change)
1764 {
1765         /*
1766          * At this point memslot has been committed and there is an
1767          * allocated dirty_bitmap[], dirty pages will be be tracked while the
1768          * memory slot is write protected.
1769          */
1770         if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES)
1771                 kvm_mmu_wp_memory_region(kvm, mem->slot);
1772 }
1773
1774 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1775                                    struct kvm_memory_slot *memslot,
1776                                    const struct kvm_userspace_memory_region *mem,
1777                                    enum kvm_mr_change change)
1778 {
1779         hva_t hva = mem->userspace_addr;
1780         hva_t reg_end = hva + mem->memory_size;
1781         bool writable = !(mem->flags & KVM_MEM_READONLY);
1782         int ret = 0;
1783
1784         if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
1785                         change != KVM_MR_FLAGS_ONLY)
1786                 return 0;
1787
1788         /*
1789          * Prevent userspace from creating a memory region outside of the IPA
1790          * space addressable by the KVM guest IPA space.
1791          */
1792         if (memslot->base_gfn + memslot->npages >
1793             (KVM_PHYS_SIZE >> PAGE_SHIFT))
1794                 return -EFAULT;
1795
1796         down_read(&current->mm->mmap_sem);
1797         /*
1798          * A memory region could potentially cover multiple VMAs, and any holes
1799          * between them, so iterate over all of them to find out if we can map
1800          * any of them right now.
1801          *
1802          *     +--------------------------------------------+
1803          * +---------------+----------------+   +----------------+
1804          * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
1805          * +---------------+----------------+   +----------------+
1806          *     |               memory region                |
1807          *     +--------------------------------------------+
1808          */
1809         do {
1810                 struct vm_area_struct *vma = find_vma(current->mm, hva);
1811                 hva_t vm_start, vm_end;
1812
1813                 if (!vma || vma->vm_start >= reg_end)
1814                         break;
1815
1816                 /*
1817                  * Mapping a read-only VMA is only allowed if the
1818                  * memory region is configured as read-only.
1819                  */
1820                 if (writable && !(vma->vm_flags & VM_WRITE)) {
1821                         ret = -EPERM;
1822                         break;
1823                 }
1824
1825                 /*
1826                  * Take the intersection of this VMA with the memory region
1827                  */
1828                 vm_start = max(hva, vma->vm_start);
1829                 vm_end = min(reg_end, vma->vm_end);
1830
1831                 if (vma->vm_flags & VM_PFNMAP) {
1832                         gpa_t gpa = mem->guest_phys_addr +
1833                                     (vm_start - mem->userspace_addr);
1834                         phys_addr_t pa;
1835
1836                         pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
1837                         pa += vm_start - vma->vm_start;
1838
1839                         /* IO region dirty page logging not allowed */
1840                         if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1841                                 ret = -EINVAL;
1842                                 goto out;
1843                         }
1844
1845                         ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
1846                                                     vm_end - vm_start,
1847                                                     writable);
1848                         if (ret)
1849                                 break;
1850                 }
1851                 hva = vm_end;
1852         } while (hva < reg_end);
1853
1854         if (change == KVM_MR_FLAGS_ONLY)
1855                 goto out;
1856
1857         spin_lock(&kvm->mmu_lock);
1858         if (ret)
1859                 unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
1860         else
1861                 stage2_flush_memslot(kvm, memslot);
1862         spin_unlock(&kvm->mmu_lock);
1863 out:
1864         up_read(&current->mm->mmap_sem);
1865         return ret;
1866 }
1867
1868 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
1869                            struct kvm_memory_slot *dont)
1870 {
1871 }
1872
1873 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
1874                             unsigned long npages)
1875 {
1876         /*
1877          * Readonly memslots are not incoherent with the caches by definition,
1878          * but in practice, they are used mostly to emulate ROMs or NOR flashes
1879          * that the guest may consider devices and hence map as uncached.
1880          * To prevent incoherency issues in these cases, tag all readonly
1881          * regions as incoherent.
1882          */
1883         if (slot->flags & KVM_MEM_READONLY)
1884                 slot->flags |= KVM_MEMSLOT_INCOHERENT;
1885         return 0;
1886 }
1887
1888 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
1889 {
1890 }
1891
1892 void kvm_arch_flush_shadow_all(struct kvm *kvm)
1893 {
1894         kvm_free_stage2_pgd(kvm);
1895 }
1896
1897 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1898                                    struct kvm_memory_slot *slot)
1899 {
1900         gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
1901         phys_addr_t size = slot->npages << PAGE_SHIFT;
1902
1903         spin_lock(&kvm->mmu_lock);
1904         unmap_stage2_range(kvm, gpa, size);
1905         spin_unlock(&kvm->mmu_lock);
1906 }
1907
1908 /*
1909  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
1910  *
1911  * Main problems:
1912  * - S/W ops are local to a CPU (not broadcast)
1913  * - We have line migration behind our back (speculation)
1914  * - System caches don't support S/W at all (damn!)
1915  *
1916  * In the face of the above, the best we can do is to try and convert
1917  * S/W ops to VA ops. Because the guest is not allowed to infer the
1918  * S/W to PA mapping, it can only use S/W to nuke the whole cache,
1919  * which is a rather good thing for us.
1920  *
1921  * Also, it is only used when turning caches on/off ("The expected
1922  * usage of the cache maintenance instructions that operate by set/way
1923  * is associated with the cache maintenance instructions associated
1924  * with the powerdown and powerup of caches, if this is required by
1925  * the implementation.").
1926  *
1927  * We use the following policy:
1928  *
1929  * - If we trap a S/W operation, we enable VM trapping to detect
1930  *   caches being turned on/off, and do a full clean.
1931  *
1932  * - We flush the caches on both caches being turned on and off.
1933  *
1934  * - Once the caches are enabled, we stop trapping VM ops.
1935  */
1936 void kvm_set_way_flush(struct kvm_vcpu *vcpu)
1937 {
1938         unsigned long hcr = vcpu_get_hcr(vcpu);
1939
1940         /*
1941          * If this is the first time we do a S/W operation
1942          * (i.e. HCR_TVM not set) flush the whole memory, and set the
1943          * VM trapping.
1944          *
1945          * Otherwise, rely on the VM trapping to wait for the MMU +
1946          * Caches to be turned off. At that point, we'll be able to
1947          * clean the caches again.
1948          */
1949         if (!(hcr & HCR_TVM)) {
1950                 trace_kvm_set_way_flush(*vcpu_pc(vcpu),
1951                                         vcpu_has_cache_enabled(vcpu));
1952                 stage2_flush_vm(vcpu->kvm);
1953                 vcpu_set_hcr(vcpu, hcr | HCR_TVM);
1954         }
1955 }
1956
1957 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
1958 {
1959         bool now_enabled = vcpu_has_cache_enabled(vcpu);
1960
1961         /*
1962          * If switching the MMU+caches on, need to invalidate the caches.
1963          * If switching it off, need to clean the caches.
1964          * Clean + invalidate does the trick always.
1965          */
1966         if (now_enabled != was_enabled)
1967                 stage2_flush_vm(vcpu->kvm);
1968
1969         /* Caches are now on, stop trapping VM ops (until a S/W op) */
1970         if (now_enabled)
1971                 vcpu_set_hcr(vcpu, vcpu_get_hcr(vcpu) & ~HCR_TVM);
1972
1973         trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
1974 }