GNU Linux-libre 4.19.286-gnu1
[releases.git] / arch / arm64 / include / asm / cacheflush.h
1 /*
2  * Based on arch/arm/include/asm/cacheflush.h
3  *
4  * Copyright (C) 1999-2002 Russell King.
5  * Copyright (C) 2012 ARM Ltd.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 #ifndef __ASM_CACHEFLUSH_H
20 #define __ASM_CACHEFLUSH_H
21
22 #include <linux/kgdb.h>
23 #include <linux/mm.h>
24
25 /*
26  * This flag is used to indicate that the page pointed to by a pte is clean
27  * and does not require cleaning before returning it to the user.
28  */
29 #define PG_dcache_clean PG_arch_1
30
31 /*
32  *      MM Cache Management
33  *      ===================
34  *
35  *      The arch/arm64/mm/cache.S implements these methods.
36  *
37  *      Start addresses are inclusive and end addresses are exclusive; start
38  *      addresses should be rounded down, end addresses up.
39  *
40  *      See Documentation/core-api/cachetlb.rst for more information. Please note that
41  *      the implementation assumes non-aliasing VIPT D-cache and (aliasing)
42  *      VIPT I-cache.
43  *
44  *      flush_cache_mm(mm)
45  *
46  *              Clean and invalidate all user space cache entries
47  *              before a change of page tables.
48  *
49  *      flush_icache_range(start, end)
50  *
51  *              Ensure coherency between the I-cache and the D-cache in the
52  *              region described by start, end.
53  *              - start  - virtual start address
54  *              - end    - virtual end address
55  *
56  *      invalidate_icache_range(start, end)
57  *
58  *              Invalidate the I-cache in the region described by start, end.
59  *              - start  - virtual start address
60  *              - end    - virtual end address
61  *
62  *      __flush_cache_user_range(start, end)
63  *
64  *              Ensure coherency between the I-cache and the D-cache in the
65  *              region described by start, end.
66  *              - start  - virtual start address
67  *              - end    - virtual end address
68  *
69  *      __flush_dcache_area(kaddr, size)
70  *
71  *              Ensure that the data held in page is written back.
72  *              - kaddr  - page address
73  *              - size   - region size
74  */
75 extern void __flush_icache_range(unsigned long start, unsigned long end);
76 extern int  invalidate_icache_range(unsigned long start, unsigned long end);
77 extern void __flush_dcache_area(void *addr, size_t len);
78 extern void __inval_dcache_area(void *addr, size_t len);
79 extern void __clean_dcache_area_poc(void *addr, size_t len);
80 extern void __clean_dcache_area_pop(void *addr, size_t len);
81 extern void __clean_dcache_area_pou(void *addr, size_t len);
82 extern long __flush_cache_user_range(unsigned long start, unsigned long end);
83 extern void sync_icache_aliases(void *kaddr, unsigned long len);
84
85 static inline void flush_icache_range(unsigned long start, unsigned long end)
86 {
87         __flush_icache_range(start, end);
88
89         /*
90          * IPI all online CPUs so that they undergo a context synchronization
91          * event and are forced to refetch the new instructions.
92          */
93
94         /*
95          * KGDB performs cache maintenance with interrupts disabled, so we
96          * will deadlock trying to IPI the secondary CPUs. In theory, we can
97          * set CACHE_FLUSH_IS_SAFE to 0 to avoid this known issue, but that
98          * just means that KGDB will elide the maintenance altogether! As it
99          * turns out, KGDB uses IPIs to round-up the secondary CPUs during
100          * the patching operation, so we don't need extra IPIs here anyway.
101          * In which case, add a KGDB-specific bodge and return early.
102          */
103         if (in_dbg_master())
104                 return;
105
106         kick_all_cpus_sync();
107 }
108
109 static inline void flush_cache_mm(struct mm_struct *mm)
110 {
111 }
112
113 static inline void flush_cache_page(struct vm_area_struct *vma,
114                                     unsigned long user_addr, unsigned long pfn)
115 {
116 }
117
118 static inline void flush_cache_range(struct vm_area_struct *vma,
119                                      unsigned long start, unsigned long end)
120 {
121 }
122
123 /*
124  * Cache maintenance functions used by the DMA API. No to be used directly.
125  */
126 extern void __dma_map_area(const void *, size_t, int);
127 extern void __dma_unmap_area(const void *, size_t, int);
128 extern void __dma_flush_area(const void *, size_t);
129
130 /*
131  * Copy user data from/to a page which is mapped into a different
132  * processes address space.  Really, we want to allow our "user
133  * space" model to handle this.
134  */
135 extern void copy_to_user_page(struct vm_area_struct *, struct page *,
136         unsigned long, void *, const void *, unsigned long);
137 #define copy_from_user_page(vma, page, vaddr, dst, src, len) \
138         do {                                                    \
139                 memcpy(dst, src, len);                          \
140         } while (0)
141
142 #define flush_cache_dup_mm(mm) flush_cache_mm(mm)
143
144 /*
145  * flush_dcache_page is used when the kernel has written to the page
146  * cache page at virtual address page->virtual.
147  *
148  * If this page isn't mapped (ie, page_mapping == NULL), or it might
149  * have userspace mappings, then we _must_ always clean + invalidate
150  * the dcache entries associated with the kernel mapping.
151  *
152  * Otherwise we can defer the operation, and clean the cache when we are
153  * about to change to user space.  This is the same method as used on SPARC64.
154  * See update_mmu_cache for the user space part.
155  */
156 #define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1
157 extern void flush_dcache_page(struct page *);
158
159 static inline void __flush_icache_all(void)
160 {
161         if (cpus_have_const_cap(ARM64_HAS_CACHE_DIC))
162                 return;
163
164         asm("ic ialluis");
165         dsb(ish);
166 }
167
168 #define flush_dcache_mmap_lock(mapping)         do { } while (0)
169 #define flush_dcache_mmap_unlock(mapping)       do { } while (0)
170
171 /*
172  * We don't appear to need to do anything here.  In fact, if we did, we'd
173  * duplicate cache flushing elsewhere performed by flush_dcache_page().
174  */
175 #define flush_icache_page(vma,page)     do { } while (0)
176
177 /*
178  * Not required on AArch64 (PIPT or VIPT non-aliasing D-cache).
179  */
180 static inline void flush_cache_vmap(unsigned long start, unsigned long end)
181 {
182 }
183
184 static inline void flush_cache_vunmap(unsigned long start, unsigned long end)
185 {
186 }
187
188 int set_memory_valid(unsigned long addr, int numpages, int enable);
189
190 #endif