GNU Linux-libre 4.4.284-gnu1
[releases.git] / arch / arm64 / kernel / cpufeature.c
1 /*
2  * Contains CPU feature definitions
3  *
4  * Copyright (C) 2015 ARM Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18
19 #define pr_fmt(fmt) "CPU features: " fmt
20
21 #include <linux/bsearch.h>
22 #include <linux/cpumask.h>
23 #include <linux/sort.h>
24 #include <linux/stop_machine.h>
25 #include <linux/types.h>
26 #include <asm/cpu.h>
27 #include <asm/cpufeature.h>
28 #include <asm/cpu_ops.h>
29 #include <asm/processor.h>
30 #include <asm/sysreg.h>
31
32 unsigned long elf_hwcap __read_mostly;
33 EXPORT_SYMBOL_GPL(elf_hwcap);
34
35 #ifdef CONFIG_COMPAT
36 #define COMPAT_ELF_HWCAP_DEFAULT        \
37                                 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
38                                  COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
39                                  COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
40                                  COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
41                                  COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
42                                  COMPAT_HWCAP_LPAE)
43 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
44 unsigned int compat_elf_hwcap2 __read_mostly;
45 #endif
46
47 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
48
49 #define __ARM64_FTR_BITS(SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
50         {                                               \
51                 .sign = SIGNED,                         \
52                 .strict = STRICT,                       \
53                 .type = TYPE,                           \
54                 .shift = SHIFT,                         \
55                 .width = WIDTH,                         \
56                 .safe_val = SAFE_VAL,                   \
57         }
58
59 /* Define a feature with signed values */
60 #define ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
61         __ARM64_FTR_BITS(FTR_SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
62
63 /* Define a feature with unsigned value */
64 #define U_ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
65         __ARM64_FTR_BITS(FTR_UNSIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
66
67 #define ARM64_FTR_END                                   \
68         {                                               \
69                 .width = 0,                             \
70         }
71
72 static struct arm64_ftr_bits ftr_id_aa64isar0[] = {
73         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
74         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
75         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0),
76         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
77         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
78         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
79         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
80         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
81         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* RAZ */
82         ARM64_FTR_END,
83 };
84
85 static struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
86         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
87         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0),
88         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_GIC_SHIFT, 4, 0),
89         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
90         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
91         /* Linux doesn't care about the EL3 */
92         ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64PFR0_EL3_SHIFT, 4, 0),
93         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL2_SHIFT, 4, 0),
94         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
95         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
96         ARM64_FTR_END,
97 };
98
99 static struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
100         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
101         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
102         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
103         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
104         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
105         /* Linux shouldn't care about secure memory */
106         ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
107         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
108         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
109         /*
110          * Differing PARange is fine as long as all peripherals and memory are mapped
111          * within the minimum PARange of all CPUs
112          */
113         U_ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
114         ARM64_FTR_END,
115 };
116
117 static struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
118         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
119         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
120         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
121         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
122         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
123         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
124         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
125         ARM64_FTR_END,
126 };
127
128 static struct arm64_ftr_bits ftr_ctr[] = {
129         U_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 31, 1, 1),      /* RES1 */
130         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 30, 1, 0),
131         U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 29, 1, 1), /* DIC */
132         U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 28, 1, 1), /* IDC */
133         U_ARM64_FTR_BITS(FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, 24, 4, 0),        /* CWG */
134         U_ARM64_FTR_BITS(FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, 20, 4, 0),        /* ERG */
135         U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 1), /* DminLine */
136         /*
137          * Linux can handle differing I-cache policies. Userspace JITs will
138          * make use of *minLine
139          */
140         U_ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, 14, 2, 0),   /* L1Ip */
141         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 10, 0),        /* RAZ */
142         U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),  /* IminLine */
143         ARM64_FTR_END,
144 };
145
146 static struct arm64_ftr_bits ftr_id_mmfr0[] = {
147         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0),        /* InnerShr */
148         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0),        /* FCSE */
149         ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0),        /* AuxReg */
150         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 4, 0),        /* TCM */
151         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0),        /* ShareLvl */
152         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0), /* OuterShr */
153         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* PMSA */
154         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* VMSA */
155         ARM64_FTR_END,
156 };
157
158 static struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
159         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
160         U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
161         U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
162         U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
163         U_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
164         U_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
165         U_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
166         ARM64_FTR_END,
167 };
168
169 static struct arm64_ftr_bits ftr_mvfr2[] = {
170         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0),        /* RAZ */
171         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),         /* FPMisc */
172         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),         /* SIMDMisc */
173         ARM64_FTR_END,
174 };
175
176 static struct arm64_ftr_bits ftr_dczid[] = {
177         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 5, 27, 0),        /* RAZ */
178         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 1, 1),         /* DZP */
179         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),    /* BS */
180         ARM64_FTR_END,
181 };
182
183
184 static struct arm64_ftr_bits ftr_id_isar5[] = {
185         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_RDM_SHIFT, 4, 0),
186         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 20, 4, 0),        /* RAZ */
187         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_CRC32_SHIFT, 4, 0),
188         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA2_SHIFT, 4, 0),
189         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA1_SHIFT, 4, 0),
190         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_AES_SHIFT, 4, 0),
191         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SEVL_SHIFT, 4, 0),
192         ARM64_FTR_END,
193 };
194
195 static struct arm64_ftr_bits ftr_id_mmfr4[] = {
196         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0),        /* RAZ */
197         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),         /* ac2 */
198         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),         /* RAZ */
199         ARM64_FTR_END,
200 };
201
202 static struct arm64_ftr_bits ftr_id_pfr0[] = {
203         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 16, 0),       /* RAZ */
204         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0),        /* State3 */
205         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0),         /* State2 */
206         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),         /* State1 */
207         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),         /* State0 */
208         ARM64_FTR_END,
209 };
210
211 /*
212  * Common ftr bits for a 32bit register with all hidden, strict
213  * attributes, with 4bit feature fields and a default safe value of
214  * 0. Covers the following 32bit registers:
215  * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
216  */
217 static struct arm64_ftr_bits ftr_generic_32bits[] = {
218         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
219         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
220         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
221         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
222         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
223         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
224         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
225         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
226         ARM64_FTR_END,
227 };
228
229 static struct arm64_ftr_bits ftr_generic[] = {
230         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
231         ARM64_FTR_END,
232 };
233
234 static struct arm64_ftr_bits ftr_generic32[] = {
235         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 32, 0),
236         ARM64_FTR_END,
237 };
238
239 static struct arm64_ftr_bits ftr_aa64raz[] = {
240         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
241         ARM64_FTR_END,
242 };
243
244 #define ARM64_FTR_REG(id, table)                \
245         {                                       \
246                 .sys_id = id,                   \
247                 .name = #id,                    \
248                 .ftr_bits = &((table)[0]),      \
249         }
250
251 static struct arm64_ftr_reg arm64_ftr_regs[] = {
252
253         /* Op1 = 0, CRn = 0, CRm = 1 */
254         ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
255         ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
256         ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_generic_32bits),
257         ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
258         ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
259         ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
260         ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
261
262         /* Op1 = 0, CRn = 0, CRm = 2 */
263         ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
264         ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
265         ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
266         ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
267         ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
268         ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
269         ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
270
271         /* Op1 = 0, CRn = 0, CRm = 3 */
272         ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
273         ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
274         ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
275
276         /* Op1 = 0, CRn = 0, CRm = 4 */
277         ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
278         ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_aa64raz),
279
280         /* Op1 = 0, CRn = 0, CRm = 5 */
281         ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
282         ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_generic),
283
284         /* Op1 = 0, CRn = 0, CRm = 6 */
285         ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
286         ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_aa64raz),
287
288         /* Op1 = 0, CRn = 0, CRm = 7 */
289         ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
290         ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
291
292         /* Op1 = 3, CRn = 0, CRm = 0 */
293         ARM64_FTR_REG(SYS_CTR_EL0, ftr_ctr),
294         ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
295
296         /* Op1 = 3, CRn = 14, CRm = 0 */
297         ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_generic32),
298 };
299
300 static int search_cmp_ftr_reg(const void *id, const void *regp)
301 {
302         return (int)(unsigned long)id - (int)((const struct arm64_ftr_reg *)regp)->sys_id;
303 }
304
305 /*
306  * get_arm64_ftr_reg - Lookup a feature register entry using its
307  * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
308  * ascending order of sys_id , we use binary search to find a matching
309  * entry.
310  *
311  * returns - Upon success,  matching ftr_reg entry for id.
312  *         - NULL on failure. It is upto the caller to decide
313  *           the impact of a failure.
314  */
315 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
316 {
317         return bsearch((const void *)(unsigned long)sys_id,
318                         arm64_ftr_regs,
319                         ARRAY_SIZE(arm64_ftr_regs),
320                         sizeof(arm64_ftr_regs[0]),
321                         search_cmp_ftr_reg);
322 }
323
324 static u64 arm64_ftr_set_value(struct arm64_ftr_bits *ftrp, s64 reg, s64 ftr_val)
325 {
326         u64 mask = arm64_ftr_mask(ftrp);
327
328         reg &= ~mask;
329         reg |= (ftr_val << ftrp->shift) & mask;
330         return reg;
331 }
332
333 static s64 arm64_ftr_safe_value(struct arm64_ftr_bits *ftrp, s64 new, s64 cur)
334 {
335         s64 ret = 0;
336
337         switch (ftrp->type) {
338         case FTR_EXACT:
339                 ret = ftrp->safe_val;
340                 break;
341         case FTR_LOWER_SAFE:
342                 ret = new < cur ? new : cur;
343                 break;
344         case FTR_HIGHER_OR_ZERO_SAFE:
345                 if (!cur || !new)
346                         break;
347                 /* Fallthrough */
348         case FTR_HIGHER_SAFE:
349                 ret = new > cur ? new : cur;
350                 break;
351         default:
352                 BUG();
353         }
354
355         return ret;
356 }
357
358 static int __init sort_cmp_ftr_regs(const void *a, const void *b)
359 {
360         return ((const struct arm64_ftr_reg *)a)->sys_id -
361                  ((const struct arm64_ftr_reg *)b)->sys_id;
362 }
363
364 static void __init swap_ftr_regs(void *a, void *b, int size)
365 {
366         struct arm64_ftr_reg tmp = *(struct arm64_ftr_reg *)a;
367         *(struct arm64_ftr_reg *)a = *(struct arm64_ftr_reg *)b;
368         *(struct arm64_ftr_reg *)b = tmp;
369 }
370
371 static void __init sort_ftr_regs(void)
372 {
373         /* Keep the array sorted so that we can do the binary search */
374         sort(arm64_ftr_regs,
375                 ARRAY_SIZE(arm64_ftr_regs),
376                 sizeof(arm64_ftr_regs[0]),
377                 sort_cmp_ftr_regs,
378                 swap_ftr_regs);
379 }
380
381 /*
382  * Initialise the CPU feature register from Boot CPU values.
383  * Also initiliases the strict_mask for the register.
384  */
385 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
386 {
387         u64 val = 0;
388         u64 strict_mask = ~0x0ULL;
389         struct arm64_ftr_bits *ftrp;
390         struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
391
392         BUG_ON(!reg);
393
394         for (ftrp  = reg->ftr_bits; ftrp->width; ftrp++) {
395                 s64 ftr_new = arm64_ftr_value(ftrp, new);
396
397                 val = arm64_ftr_set_value(ftrp, val, ftr_new);
398                 if (!ftrp->strict)
399                         strict_mask &= ~arm64_ftr_mask(ftrp);
400         }
401         reg->sys_val = val;
402         reg->strict_mask = strict_mask;
403 }
404
405 void __init init_cpu_features(struct cpuinfo_arm64 *info)
406 {
407         /* Before we start using the tables, make sure it is sorted */
408         sort_ftr_regs();
409
410         init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
411         init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
412         init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
413         init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
414         init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
415         init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
416         init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
417         init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
418         init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
419         init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
420         init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
421         init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
422         init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
423         init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
424         init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
425         init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
426         init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
427         init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
428         init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
429         init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
430         init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
431         init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
432         init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
433         init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
434         init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
435         init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
436         init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
437 }
438
439 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
440 {
441         struct arm64_ftr_bits *ftrp;
442
443         for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
444                 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
445                 s64 ftr_new = arm64_ftr_value(ftrp, new);
446
447                 if (ftr_cur == ftr_new)
448                         continue;
449                 /* Find a safe value */
450                 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
451                 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
452         }
453
454 }
455
456 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
457 {
458         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
459
460         BUG_ON(!regp);
461         update_cpu_ftr_reg(regp, val);
462         if ((boot & regp->strict_mask) == (val & regp->strict_mask))
463                 return 0;
464         pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
465                         regp->name, boot, cpu, val);
466         return 1;
467 }
468
469 /*
470  * Update system wide CPU feature registers with the values from a
471  * non-boot CPU. Also performs SANITY checks to make sure that there
472  * aren't any insane variations from that of the boot CPU.
473  */
474 void update_cpu_features(int cpu,
475                          struct cpuinfo_arm64 *info,
476                          struct cpuinfo_arm64 *boot)
477 {
478         int taint = 0;
479
480         /*
481          * The kernel can handle differing I-cache policies, but otherwise
482          * caches should look identical. Userspace JITs will make use of
483          * *minLine.
484          */
485         taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
486                                       info->reg_ctr, boot->reg_ctr);
487
488         /*
489          * Userspace may perform DC ZVA instructions. Mismatched block sizes
490          * could result in too much or too little memory being zeroed if a
491          * process is preempted and migrated between CPUs.
492          */
493         taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
494                                       info->reg_dczid, boot->reg_dczid);
495
496         /* If different, timekeeping will be broken (especially with KVM) */
497         taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
498                                       info->reg_cntfrq, boot->reg_cntfrq);
499
500         /*
501          * The kernel uses self-hosted debug features and expects CPUs to
502          * support identical debug features. We presently need CTX_CMPs, WRPs,
503          * and BRPs to be identical.
504          * ID_AA64DFR1 is currently RES0.
505          */
506         taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
507                                       info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
508         taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
509                                       info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
510         /*
511          * Even in big.LITTLE, processors should be identical instruction-set
512          * wise.
513          */
514         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
515                                       info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
516         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
517                                       info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
518
519         /*
520          * Differing PARange support is fine as long as all peripherals and
521          * memory are mapped within the minimum PARange of all CPUs.
522          * Linux should not care about secure memory.
523          */
524         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
525                                       info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
526         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
527                                       info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
528
529         /*
530          * EL3 is not our concern.
531          * ID_AA64PFR1 is currently RES0.
532          */
533         taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
534                                       info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
535         taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
536                                       info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
537
538         /*
539          * If we have AArch32, we care about 32-bit features for compat. These
540          * registers should be RES0 otherwise.
541          */
542         taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
543                                         info->reg_id_dfr0, boot->reg_id_dfr0);
544         taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
545                                         info->reg_id_isar0, boot->reg_id_isar0);
546         taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
547                                         info->reg_id_isar1, boot->reg_id_isar1);
548         taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
549                                         info->reg_id_isar2, boot->reg_id_isar2);
550         taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
551                                         info->reg_id_isar3, boot->reg_id_isar3);
552         taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
553                                         info->reg_id_isar4, boot->reg_id_isar4);
554         taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
555                                         info->reg_id_isar5, boot->reg_id_isar5);
556
557         /*
558          * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
559          * ACTLR formats could differ across CPUs and therefore would have to
560          * be trapped for virtualization anyway.
561          */
562         taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
563                                         info->reg_id_mmfr0, boot->reg_id_mmfr0);
564         taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
565                                         info->reg_id_mmfr1, boot->reg_id_mmfr1);
566         taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
567                                         info->reg_id_mmfr2, boot->reg_id_mmfr2);
568         taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
569                                         info->reg_id_mmfr3, boot->reg_id_mmfr3);
570         taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
571                                         info->reg_id_pfr0, boot->reg_id_pfr0);
572         taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
573                                         info->reg_id_pfr1, boot->reg_id_pfr1);
574         taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
575                                         info->reg_mvfr0, boot->reg_mvfr0);
576         taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
577                                         info->reg_mvfr1, boot->reg_mvfr1);
578         taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
579                                         info->reg_mvfr2, boot->reg_mvfr2);
580
581         /*
582          * Mismatched CPU features are a recipe for disaster. Don't even
583          * pretend to support them.
584          */
585         WARN_TAINT_ONCE(taint, TAINT_CPU_OUT_OF_SPEC,
586                         "Unsupported CPU feature variation.\n");
587 }
588
589 u64 read_system_reg(u32 id)
590 {
591         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
592
593         /* We shouldn't get a request for an unsupported register */
594         BUG_ON(!regp);
595         return regp->sys_val;
596 }
597
598 #include <linux/irqchip/arm-gic-v3.h>
599
600 static bool
601 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
602 {
603         int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
604
605         return val >= entry->min_field_value;
606 }
607
608 static bool
609 has_cpuid_feature(const struct arm64_cpu_capabilities *entry)
610 {
611         u64 val;
612
613         val = read_system_reg(entry->sys_reg);
614         return feature_matches(val, entry);
615 }
616
617 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry)
618 {
619         bool has_sre;
620
621         if (!has_cpuid_feature(entry))
622                 return false;
623
624         has_sre = gic_enable_sre();
625         if (!has_sre)
626                 pr_warn_once("%s present but disabled by higher exception level\n",
627                              entry->desc);
628
629         return has_sre;
630 }
631
632 static const struct arm64_cpu_capabilities arm64_features[] = {
633         {
634                 .desc = "GIC system register CPU interface",
635                 .capability = ARM64_HAS_SYSREG_GIC_CPUIF,
636                 .matches = has_useable_gicv3_cpuif,
637                 .sys_reg = SYS_ID_AA64PFR0_EL1,
638                 .field_pos = ID_AA64PFR0_GIC_SHIFT,
639                 .sign = FTR_UNSIGNED,
640                 .min_field_value = 1,
641         },
642 #ifdef CONFIG_ARM64_PAN
643         {
644                 .desc = "Privileged Access Never",
645                 .capability = ARM64_HAS_PAN,
646                 .matches = has_cpuid_feature,
647                 .sys_reg = SYS_ID_AA64MMFR1_EL1,
648                 .field_pos = ID_AA64MMFR1_PAN_SHIFT,
649                 .sign = FTR_UNSIGNED,
650                 .min_field_value = 1,
651                 .enable = cpu_enable_pan,
652         },
653 #endif /* CONFIG_ARM64_PAN */
654 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
655         {
656                 .desc = "LSE atomic instructions",
657                 .capability = ARM64_HAS_LSE_ATOMICS,
658                 .matches = has_cpuid_feature,
659                 .sys_reg = SYS_ID_AA64ISAR0_EL1,
660                 .field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
661                 .sign = FTR_UNSIGNED,
662                 .min_field_value = 2,
663         },
664 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
665         {
666                 .desc = "32-bit EL0 Support",
667                 .capability = ARM64_HAS_32BIT_EL0,
668                 .matches = has_cpuid_feature,
669                 .sys_reg = SYS_ID_AA64PFR0_EL1,
670                 .field_pos = ID_AA64PFR0_EL0_SHIFT,
671                 .sign = FTR_UNSIGNED,
672                 .min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
673         },
674         {},
675 };
676
677 #define HWCAP_CAP(reg, field, s, min_value, type, cap)  \
678         {                                                       \
679                 .desc = #cap,                                   \
680                 .matches = has_cpuid_feature,                   \
681                 .sys_reg = reg,                                 \
682                 .field_pos = field,                             \
683                 .sign = s,                                      \
684                 .min_field_value = min_value,                   \
685                 .hwcap_type = type,                             \
686                 .hwcap = cap,                                   \
687         }
688
689 static const struct arm64_cpu_capabilities arm64_hwcaps[] = {
690         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_PMULL),
691         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_AES),
692         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA1),
693         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA2),
694         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_CRC32),
695         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ATOMICS),
696         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_FP),
697         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_ASIMD),
698 #ifdef CONFIG_COMPAT
699         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
700         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
701         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
702         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
703         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
704 #endif
705         {},
706 };
707
708 static void cap_set_hwcap(const struct arm64_cpu_capabilities *cap)
709 {
710         switch (cap->hwcap_type) {
711         case CAP_HWCAP:
712                 elf_hwcap |= cap->hwcap;
713                 break;
714 #ifdef CONFIG_COMPAT
715         case CAP_COMPAT_HWCAP:
716                 compat_elf_hwcap |= (u32)cap->hwcap;
717                 break;
718         case CAP_COMPAT_HWCAP2:
719                 compat_elf_hwcap2 |= (u32)cap->hwcap;
720                 break;
721 #endif
722         default:
723                 WARN_ON(1);
724                 break;
725         }
726 }
727
728 /* Check if we have a particular HWCAP enabled */
729 static bool __maybe_unused cpus_have_hwcap(const struct arm64_cpu_capabilities *cap)
730 {
731         bool rc;
732
733         switch (cap->hwcap_type) {
734         case CAP_HWCAP:
735                 rc = (elf_hwcap & cap->hwcap) != 0;
736                 break;
737 #ifdef CONFIG_COMPAT
738         case CAP_COMPAT_HWCAP:
739                 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
740                 break;
741         case CAP_COMPAT_HWCAP2:
742                 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
743                 break;
744 #endif
745         default:
746                 WARN_ON(1);
747                 rc = false;
748         }
749
750         return rc;
751 }
752
753 static void setup_cpu_hwcaps(void)
754 {
755         int i;
756         const struct arm64_cpu_capabilities *hwcaps = arm64_hwcaps;
757
758         for (i = 0; hwcaps[i].desc; i++)
759                 if (hwcaps[i].matches(&hwcaps[i]))
760                         cap_set_hwcap(&hwcaps[i]);
761 }
762
763 void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
764                             const char *info)
765 {
766         int i;
767
768         for (i = 0; caps[i].desc; i++) {
769                 if (!caps[i].matches(&caps[i]))
770                         continue;
771
772                 if (!cpus_have_cap(caps[i].capability))
773                         pr_info("%s %s\n", info, caps[i].desc);
774                 cpus_set_cap(caps[i].capability);
775         }
776 }
777
778 /*
779  * Run through the enabled capabilities and enable() it on all active
780  * CPUs
781  */
782 static void enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps)
783 {
784         int i;
785
786         for (i = 0; caps[i].desc; i++)
787                 if (caps[i].enable && cpus_have_cap(caps[i].capability))
788                         /*
789                          * Use stop_machine() as it schedules the work allowing
790                          * us to modify PSTATE, instead of on_each_cpu() which
791                          * uses an IPI, giving us a PSTATE that disappears when
792                          * we return.
793                          */
794                         stop_machine(caps[i].enable, NULL, cpu_online_mask);
795 }
796
797 #ifdef CONFIG_HOTPLUG_CPU
798
799 /*
800  * Flag to indicate if we have computed the system wide
801  * capabilities based on the boot time active CPUs. This
802  * will be used to determine if a new booting CPU should
803  * go through the verification process to make sure that it
804  * supports the system capabilities, without using a hotplug
805  * notifier.
806  */
807 static bool sys_caps_initialised;
808
809 static inline void set_sys_caps_initialised(void)
810 {
811         sys_caps_initialised = true;
812 }
813
814 /*
815  * __raw_read_system_reg() - Used by a STARTING cpu before cpuinfo is populated.
816  */
817 static u64 __raw_read_system_reg(u32 sys_id)
818 {
819         switch (sys_id) {
820         case SYS_ID_PFR0_EL1:           return (u64)read_cpuid(ID_PFR0_EL1);
821         case SYS_ID_PFR1_EL1:           return (u64)read_cpuid(ID_PFR1_EL1);
822         case SYS_ID_DFR0_EL1:           return (u64)read_cpuid(ID_DFR0_EL1);
823         case SYS_ID_MMFR0_EL1:          return (u64)read_cpuid(ID_MMFR0_EL1);
824         case SYS_ID_MMFR1_EL1:          return (u64)read_cpuid(ID_MMFR1_EL1);
825         case SYS_ID_MMFR2_EL1:          return (u64)read_cpuid(ID_MMFR2_EL1);
826         case SYS_ID_MMFR3_EL1:          return (u64)read_cpuid(ID_MMFR3_EL1);
827         case SYS_ID_ISAR0_EL1:          return (u64)read_cpuid(ID_ISAR0_EL1);
828         case SYS_ID_ISAR1_EL1:          return (u64)read_cpuid(ID_ISAR1_EL1);
829         case SYS_ID_ISAR2_EL1:          return (u64)read_cpuid(ID_ISAR2_EL1);
830         case SYS_ID_ISAR3_EL1:          return (u64)read_cpuid(ID_ISAR3_EL1);
831         case SYS_ID_ISAR4_EL1:          return (u64)read_cpuid(ID_ISAR4_EL1);
832         case SYS_ID_ISAR5_EL1:          return (u64)read_cpuid(ID_ISAR4_EL1);
833         case SYS_MVFR0_EL1:             return (u64)read_cpuid(MVFR0_EL1);
834         case SYS_MVFR1_EL1:             return (u64)read_cpuid(MVFR1_EL1);
835         case SYS_MVFR2_EL1:             return (u64)read_cpuid(MVFR2_EL1);
836
837         case SYS_ID_AA64PFR0_EL1:       return (u64)read_cpuid(ID_AA64PFR0_EL1);
838         case SYS_ID_AA64PFR1_EL1:       return (u64)read_cpuid(ID_AA64PFR0_EL1);
839         case SYS_ID_AA64DFR0_EL1:       return (u64)read_cpuid(ID_AA64DFR0_EL1);
840         case SYS_ID_AA64DFR1_EL1:       return (u64)read_cpuid(ID_AA64DFR0_EL1);
841         case SYS_ID_AA64MMFR0_EL1:      return (u64)read_cpuid(ID_AA64MMFR0_EL1);
842         case SYS_ID_AA64MMFR1_EL1:      return (u64)read_cpuid(ID_AA64MMFR1_EL1);
843         case SYS_ID_AA64ISAR0_EL1:      return (u64)read_cpuid(ID_AA64ISAR0_EL1);
844         case SYS_ID_AA64ISAR1_EL1:      return (u64)read_cpuid(ID_AA64ISAR1_EL1);
845
846         case SYS_CNTFRQ_EL0:            return (u64)read_cpuid(CNTFRQ_EL0);
847         case SYS_CTR_EL0:               return (u64)read_cpuid(CTR_EL0);
848         case SYS_DCZID_EL0:             return (u64)read_cpuid(DCZID_EL0);
849         default:
850                 BUG();
851                 return 0;
852         }
853 }
854
855 /*
856  * Park the CPU which doesn't have the capability as advertised
857  * by the system.
858  */
859 static void fail_incapable_cpu(char *cap_type,
860                                  const struct arm64_cpu_capabilities *cap)
861 {
862         int cpu = smp_processor_id();
863
864         pr_crit("CPU%d: missing %s : %s\n", cpu, cap_type, cap->desc);
865         /* Mark this CPU absent */
866         set_cpu_present(cpu, 0);
867
868         /* Check if we can park ourselves */
869         if (cpu_ops[cpu] && cpu_ops[cpu]->cpu_die)
870                 cpu_ops[cpu]->cpu_die(cpu);
871         asm(
872         "1:     wfe\n"
873         "       wfi\n"
874         "       b       1b");
875 }
876
877 /*
878  * Run through the enabled system capabilities and enable() it on this CPU.
879  * The capabilities were decided based on the available CPUs at the boot time.
880  * Any new CPU should match the system wide status of the capability. If the
881  * new CPU doesn't have a capability which the system now has enabled, we
882  * cannot do anything to fix it up and could cause unexpected failures. So
883  * we park the CPU.
884  */
885 void verify_local_cpu_capabilities(void)
886 {
887         int i;
888         const struct arm64_cpu_capabilities *caps;
889
890         /*
891          * If we haven't computed the system capabilities, there is nothing
892          * to verify.
893          */
894         if (!sys_caps_initialised)
895                 return;
896
897         caps = arm64_features;
898         for (i = 0; caps[i].desc; i++) {
899                 if (!cpus_have_cap(caps[i].capability) || !caps[i].sys_reg)
900                         continue;
901                 /*
902                  * If the new CPU misses an advertised feature, we cannot proceed
903                  * further, park the cpu.
904                  */
905                 if (!feature_matches(__raw_read_system_reg(caps[i].sys_reg), &caps[i]))
906                         fail_incapable_cpu("arm64_features", &caps[i]);
907                 if (caps[i].enable)
908                         caps[i].enable(NULL);
909         }
910
911         for (i = 0, caps = arm64_hwcaps; caps[i].desc; i++) {
912                 if (!cpus_have_hwcap(&caps[i]))
913                         continue;
914                 if (!feature_matches(__raw_read_system_reg(caps[i].sys_reg), &caps[i]))
915                         fail_incapable_cpu("arm64_hwcaps", &caps[i]);
916         }
917 }
918
919 #else   /* !CONFIG_HOTPLUG_CPU */
920
921 static inline void set_sys_caps_initialised(void)
922 {
923 }
924
925 #endif  /* CONFIG_HOTPLUG_CPU */
926
927 static void setup_feature_capabilities(void)
928 {
929         update_cpu_capabilities(arm64_features, "detected feature:");
930         enable_cpu_capabilities(arm64_features);
931 }
932
933 void __init setup_cpu_features(void)
934 {
935         u32 cwg;
936         int cls;
937
938         /* Set the CPU feature capabilies */
939         setup_feature_capabilities();
940         setup_cpu_hwcaps();
941
942         /* Advertise that we have computed the system capabilities */
943         set_sys_caps_initialised();
944
945         /*
946          * Check for sane CTR_EL0.CWG value.
947          */
948         cwg = cache_type_cwg();
949         cls = cache_line_size();
950         if (!cwg)
951                 pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
952                         cls);
953         if (L1_CACHE_BYTES < cls)
954                 pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
955                         L1_CACHE_BYTES, cls);
956 }