GNU Linux-libre 4.14.290-gnu1
[releases.git] / arch / arm64 / kvm / hyp / switch.c
1 /*
2  * Copyright (C) 2015 - ARM Ltd
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
16  */
17
18 #include <linux/arm-smccc.h>
19 #include <linux/types.h>
20 #include <linux/jump_label.h>
21 #include <uapi/linux/psci.h>
22
23 #include <kvm/arm_psci.h>
24
25 #include <asm/extable.h>
26 #include <asm/kvm_asm.h>
27 #include <asm/kvm_emulate.h>
28 #include <asm/kvm_hyp.h>
29 #include <asm/fpsimd.h>
30 #include <asm/vectors.h>
31
32 extern struct exception_table_entry __start___kvm_ex_table;
33 extern struct exception_table_entry __stop___kvm_ex_table;
34
35 static bool __hyp_text __fpsimd_enabled_nvhe(void)
36 {
37         return !(read_sysreg(cptr_el2) & CPTR_EL2_TFP);
38 }
39
40 static bool __hyp_text __fpsimd_enabled_vhe(void)
41 {
42         return !!(read_sysreg(cpacr_el1) & CPACR_EL1_FPEN);
43 }
44
45 static hyp_alternate_select(__fpsimd_is_enabled,
46                             __fpsimd_enabled_nvhe, __fpsimd_enabled_vhe,
47                             ARM64_HAS_VIRT_HOST_EXTN);
48
49 bool __hyp_text __fpsimd_enabled(void)
50 {
51         return __fpsimd_is_enabled()();
52 }
53
54 static void __hyp_text __activate_traps_vhe(void)
55 {
56         u64 val;
57
58         val = read_sysreg(cpacr_el1);
59         val |= CPACR_EL1_TTA;
60         val &= ~CPACR_EL1_FPEN;
61         write_sysreg(val, cpacr_el1);
62
63         write_sysreg(kvm_get_hyp_vector(), vbar_el1);
64 }
65
66 static void __hyp_text __activate_traps_nvhe(void)
67 {
68         u64 val;
69
70         val = CPTR_EL2_DEFAULT;
71         val |= CPTR_EL2_TTA | CPTR_EL2_TFP;
72         write_sysreg(val, cptr_el2);
73 }
74
75 static hyp_alternate_select(__activate_traps_arch,
76                             __activate_traps_nvhe, __activate_traps_vhe,
77                             ARM64_HAS_VIRT_HOST_EXTN);
78
79 static void __hyp_text __activate_traps(struct kvm_vcpu *vcpu)
80 {
81         u64 val;
82
83         /*
84          * We are about to set CPTR_EL2.TFP to trap all floating point
85          * register accesses to EL2, however, the ARM ARM clearly states that
86          * traps are only taken to EL2 if the operation would not otherwise
87          * trap to EL1.  Therefore, always make sure that for 32-bit guests,
88          * we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit.
89          * If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to
90          * it will cause an exception.
91          */
92         val = vcpu->arch.hcr_el2;
93         if (!(val & HCR_RW) && system_supports_fpsimd()) {
94                 write_sysreg(1 << 30, fpexc32_el2);
95                 isb();
96         }
97         write_sysreg(val, hcr_el2);
98         /* Trap on AArch32 cp15 c15 accesses (EL1 or EL0) */
99         write_sysreg(1 << 15, hstr_el2);
100         /*
101          * Make sure we trap PMU access from EL0 to EL2. Also sanitize
102          * PMSELR_EL0 to make sure it never contains the cycle
103          * counter, which could make a PMXEVCNTR_EL0 access UNDEF at
104          * EL1 instead of being trapped to EL2.
105          */
106         write_sysreg(0, pmselr_el0);
107         write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0);
108         write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2);
109         __activate_traps_arch()();
110 }
111
112 static void __hyp_text __deactivate_traps_vhe(void)
113 {
114         const char *host_vectors = vectors;
115         u64 mdcr_el2 = read_sysreg(mdcr_el2);
116
117         mdcr_el2 &= MDCR_EL2_HPMN_MASK |
118                     MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT |
119                     MDCR_EL2_TPMS;
120
121
122         write_sysreg(mdcr_el2, mdcr_el2);
123         write_sysreg(HCR_HOST_VHE_FLAGS, hcr_el2);
124         write_sysreg(CPACR_EL1_FPEN, cpacr_el1);
125
126         if (!arm64_kernel_unmapped_at_el0())
127                 host_vectors = __this_cpu_read(this_cpu_vector);
128         write_sysreg(host_vectors, vbar_el1);
129 }
130
131 static void __hyp_text __deactivate_traps_nvhe(void)
132 {
133         u64 mdcr_el2 = read_sysreg(mdcr_el2);
134
135         mdcr_el2 &= MDCR_EL2_HPMN_MASK;
136         mdcr_el2 |= MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT;
137
138         write_sysreg(mdcr_el2, mdcr_el2);
139         write_sysreg(HCR_HOST_NVHE_FLAGS, hcr_el2);
140         write_sysreg(CPTR_EL2_DEFAULT, cptr_el2);
141 }
142
143 static hyp_alternate_select(__deactivate_traps_arch,
144                             __deactivate_traps_nvhe, __deactivate_traps_vhe,
145                             ARM64_HAS_VIRT_HOST_EXTN);
146
147 static void __hyp_text __deactivate_traps(struct kvm_vcpu *vcpu)
148 {
149         /*
150          * If we pended a virtual abort, preserve it until it gets
151          * cleared. See D1.14.3 (Virtual Interrupts) for details, but
152          * the crucial bit is "On taking a vSError interrupt,
153          * HCR_EL2.VSE is cleared to 0."
154          */
155         if (vcpu->arch.hcr_el2 & HCR_VSE)
156                 vcpu->arch.hcr_el2 = read_sysreg(hcr_el2);
157
158         __deactivate_traps_arch()();
159         write_sysreg(0, hstr_el2);
160         write_sysreg(0, pmuserenr_el0);
161 }
162
163 static void __hyp_text __activate_vm(struct kvm_vcpu *vcpu)
164 {
165         struct kvm *kvm = kern_hyp_va(vcpu->kvm);
166         write_sysreg(kvm->arch.vttbr, vttbr_el2);
167 }
168
169 static void __hyp_text __deactivate_vm(struct kvm_vcpu *vcpu)
170 {
171         write_sysreg(0, vttbr_el2);
172 }
173
174 static void __hyp_text __vgic_save_state(struct kvm_vcpu *vcpu)
175 {
176         if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
177                 __vgic_v3_save_state(vcpu);
178         else
179                 __vgic_v2_save_state(vcpu);
180
181         write_sysreg(read_sysreg(hcr_el2) & ~HCR_INT_OVERRIDE, hcr_el2);
182 }
183
184 static void __hyp_text __vgic_restore_state(struct kvm_vcpu *vcpu)
185 {
186         u64 val;
187
188         val = read_sysreg(hcr_el2);
189         val |=  HCR_INT_OVERRIDE;
190         val |= vcpu->arch.irq_lines;
191         write_sysreg(val, hcr_el2);
192
193         if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
194                 __vgic_v3_restore_state(vcpu);
195         else
196                 __vgic_v2_restore_state(vcpu);
197 }
198
199 static bool __hyp_text __true_value(void)
200 {
201         return true;
202 }
203
204 static bool __hyp_text __false_value(void)
205 {
206         return false;
207 }
208
209 static hyp_alternate_select(__check_arm_834220,
210                             __false_value, __true_value,
211                             ARM64_WORKAROUND_834220);
212
213 static bool __hyp_text __translate_far_to_hpfar(u64 far, u64 *hpfar)
214 {
215         u64 par, tmp;
216
217         /*
218          * Resolve the IPA the hard way using the guest VA.
219          *
220          * Stage-1 translation already validated the memory access
221          * rights. As such, we can use the EL1 translation regime, and
222          * don't have to distinguish between EL0 and EL1 access.
223          *
224          * We do need to save/restore PAR_EL1 though, as we haven't
225          * saved the guest context yet, and we may return early...
226          */
227         par = read_sysreg(par_el1);
228         if (!__kvm_at("s1e1r", far))
229                 tmp = read_sysreg(par_el1);
230         else
231                 tmp = 1; /* back to the guest */
232         write_sysreg(par, par_el1);
233
234         if (unlikely(tmp & 1))
235                 return false; /* Translation failed, back to guest */
236
237         /* Convert PAR to HPFAR format */
238         *hpfar = ((tmp >> 12) & ((1UL << 36) - 1)) << 4;
239         return true;
240 }
241
242 static bool __hyp_text __populate_fault_info(struct kvm_vcpu *vcpu)
243 {
244         u64 esr = read_sysreg_el2(esr);
245         u8 ec = ESR_ELx_EC(esr);
246         u64 hpfar, far;
247
248         vcpu->arch.fault.esr_el2 = esr;
249
250         if (ec != ESR_ELx_EC_DABT_LOW && ec != ESR_ELx_EC_IABT_LOW)
251                 return true;
252
253         far = read_sysreg_el2(far);
254
255         /*
256          * The HPFAR can be invalid if the stage 2 fault did not
257          * happen during a stage 1 page table walk (the ESR_EL2.S1PTW
258          * bit is clear) and one of the two following cases are true:
259          *   1. The fault was due to a permission fault
260          *   2. The processor carries errata 834220
261          *
262          * Therefore, for all non S1PTW faults where we either have a
263          * permission fault or the errata workaround is enabled, we
264          * resolve the IPA using the AT instruction.
265          */
266         if (!(esr & ESR_ELx_S1PTW) &&
267             (__check_arm_834220()() || (esr & ESR_ELx_FSC_TYPE) == FSC_PERM)) {
268                 if (!__translate_far_to_hpfar(far, &hpfar))
269                         return false;
270         } else {
271                 hpfar = read_sysreg(hpfar_el2);
272         }
273
274         vcpu->arch.fault.far_el2 = far;
275         vcpu->arch.fault.hpfar_el2 = hpfar;
276         return true;
277 }
278
279 static void __hyp_text __skip_instr(struct kvm_vcpu *vcpu)
280 {
281         *vcpu_pc(vcpu) = read_sysreg_el2(elr);
282
283         if (vcpu_mode_is_32bit(vcpu)) {
284                 vcpu->arch.ctxt.gp_regs.regs.pstate = read_sysreg_el2(spsr);
285                 kvm_skip_instr32(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
286                 write_sysreg_el2(vcpu->arch.ctxt.gp_regs.regs.pstate, spsr);
287         } else {
288                 *vcpu_pc(vcpu) += 4;
289         }
290
291         write_sysreg_el2(*vcpu_pc(vcpu), elr);
292 }
293
294 static inline bool __hyp_text __needs_ssbd_off(struct kvm_vcpu *vcpu)
295 {
296         if (!cpus_have_const_cap(ARM64_SSBD))
297                 return false;
298
299         return !(vcpu->arch.workaround_flags & VCPU_WORKAROUND_2_FLAG);
300 }
301
302 static void __hyp_text __set_guest_arch_workaround_state(struct kvm_vcpu *vcpu)
303 {
304 #ifdef CONFIG_ARM64_SSBD
305         /*
306          * The host runs with the workaround always present. If the
307          * guest wants it disabled, so be it...
308          */
309         if (__needs_ssbd_off(vcpu) &&
310             __hyp_this_cpu_read(arm64_ssbd_callback_required))
311                 arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, 0, NULL);
312 #endif
313 }
314
315 static void __hyp_text __set_host_arch_workaround_state(struct kvm_vcpu *vcpu)
316 {
317 #ifdef CONFIG_ARM64_SSBD
318         /*
319          * If the guest has disabled the workaround, bring it back on.
320          */
321         if (__needs_ssbd_off(vcpu) &&
322             __hyp_this_cpu_read(arm64_ssbd_callback_required))
323                 arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, 1, NULL);
324 #endif
325 }
326
327 int __hyp_text __kvm_vcpu_run(struct kvm_vcpu *vcpu)
328 {
329         struct kvm_cpu_context *host_ctxt;
330         struct kvm_cpu_context *guest_ctxt;
331         bool fp_enabled;
332         u64 exit_code;
333
334         vcpu = kern_hyp_va(vcpu);
335
336         host_ctxt = kern_hyp_va(vcpu->arch.host_cpu_context);
337         host_ctxt->__hyp_running_vcpu = vcpu;
338         guest_ctxt = &vcpu->arch.ctxt;
339
340         __sysreg_save_host_state(host_ctxt);
341         __debug_cond_save_host_state(vcpu);
342
343         __activate_traps(vcpu);
344         __activate_vm(vcpu);
345
346         __vgic_restore_state(vcpu);
347         __timer_restore_state(vcpu);
348
349         /*
350          * We must restore the 32-bit state before the sysregs, thanks
351          * to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72).
352          */
353         __sysreg32_restore_state(vcpu);
354         __sysreg_restore_guest_state(guest_ctxt);
355         __debug_restore_state(vcpu, kern_hyp_va(vcpu->arch.debug_ptr), guest_ctxt);
356
357         __set_guest_arch_workaround_state(vcpu);
358
359         /* Jump in the fire! */
360 again:
361         exit_code = __guest_enter(vcpu, host_ctxt);
362         /* And we're baaack! */
363
364         /*
365          * We're using the raw exception code in order to only process
366          * the trap if no SError is pending. We will come back to the
367          * same PC once the SError has been injected, and replay the
368          * trapping instruction.
369          */
370         if (exit_code == ARM_EXCEPTION_TRAP && !__populate_fault_info(vcpu))
371                 goto again;
372
373         if (static_branch_unlikely(&vgic_v2_cpuif_trap) &&
374             exit_code == ARM_EXCEPTION_TRAP) {
375                 bool valid;
376
377                 valid = kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_DABT_LOW &&
378                         kvm_vcpu_trap_get_fault_type(vcpu) == FSC_FAULT &&
379                         kvm_vcpu_dabt_isvalid(vcpu) &&
380                         !kvm_vcpu_dabt_isextabt(vcpu) &&
381                         !kvm_vcpu_dabt_iss1tw(vcpu);
382
383                 if (valid) {
384                         int ret = __vgic_v2_perform_cpuif_access(vcpu);
385
386                         if (ret == 1) {
387                                 __skip_instr(vcpu);
388                                 goto again;
389                         }
390
391                         if (ret == -1) {
392                                 /* Promote an illegal access to an SError */
393                                 __skip_instr(vcpu);
394                                 exit_code = ARM_EXCEPTION_EL1_SERROR;
395                         }
396
397                         /* 0 falls through to be handler out of EL2 */
398                 }
399         }
400
401         if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
402             exit_code == ARM_EXCEPTION_TRAP &&
403             (kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_SYS64 ||
404              kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_CP15_32)) {
405                 int ret = __vgic_v3_perform_cpuif_access(vcpu);
406
407                 if (ret == 1) {
408                         __skip_instr(vcpu);
409                         goto again;
410                 }
411
412                 /* 0 falls through to be handled out of EL2 */
413         }
414
415         __set_host_arch_workaround_state(vcpu);
416
417         fp_enabled = __fpsimd_enabled();
418
419         __sysreg_save_guest_state(guest_ctxt);
420         __sysreg32_save_state(vcpu);
421         __timer_save_state(vcpu);
422         __vgic_save_state(vcpu);
423
424         __deactivate_traps(vcpu);
425         __deactivate_vm(vcpu);
426
427         __sysreg_restore_host_state(host_ctxt);
428
429         if (fp_enabled) {
430                 __fpsimd_save_state(&guest_ctxt->gp_regs.fp_regs);
431                 __fpsimd_restore_state(&host_ctxt->gp_regs.fp_regs);
432         }
433
434         __debug_save_state(vcpu, kern_hyp_va(vcpu->arch.debug_ptr), guest_ctxt);
435         /*
436          * This must come after restoring the host sysregs, since a non-VHE
437          * system may enable SPE here and make use of the TTBRs.
438          */
439         __debug_cond_restore_host_state(vcpu);
440
441         return exit_code;
442 }
443
444 static const char __hyp_panic_string[] = "HYP panic:\nPS:%08llx PC:%016llx ESR:%08llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%p\n";
445
446 static void __hyp_text __hyp_call_panic_nvhe(u64 spsr, u64 elr, u64 par,
447                                              struct kvm_vcpu *vcpu)
448 {
449         unsigned long str_va;
450
451         /*
452          * Force the panic string to be loaded from the literal pool,
453          * making sure it is a kernel address and not a PC-relative
454          * reference.
455          */
456         asm volatile("ldr %0, =%1" : "=r" (str_va) : "S" (__hyp_panic_string));
457
458         __hyp_do_panic(str_va,
459                        spsr,  elr,
460                        read_sysreg(esr_el2),   read_sysreg_el2(far),
461                        read_sysreg(hpfar_el2), par, vcpu);
462 }
463
464 static void __hyp_text __hyp_call_panic_vhe(u64 spsr, u64 elr, u64 par,
465                                             struct kvm_vcpu *vcpu)
466 {
467         panic(__hyp_panic_string,
468               spsr,  elr,
469               read_sysreg_el2(esr),   read_sysreg_el2(far),
470               read_sysreg(hpfar_el2), par, vcpu);
471 }
472
473 static hyp_alternate_select(__hyp_call_panic,
474                             __hyp_call_panic_nvhe, __hyp_call_panic_vhe,
475                             ARM64_HAS_VIRT_HOST_EXTN);
476
477 void __hyp_text __noreturn hyp_panic(struct kvm_cpu_context *host_ctxt)
478 {
479         struct kvm_vcpu *vcpu = NULL;
480
481         u64 spsr = read_sysreg_el2(spsr);
482         u64 elr = read_sysreg_el2(elr);
483         u64 par = read_sysreg(par_el1);
484
485         if (read_sysreg(vttbr_el2)) {
486                 vcpu = host_ctxt->__hyp_running_vcpu;
487                 __timer_save_state(vcpu);
488                 __deactivate_traps(vcpu);
489                 __deactivate_vm(vcpu);
490                 __sysreg_restore_host_state(host_ctxt);
491         }
492
493         /* Call panic for real */
494         __hyp_call_panic()(spsr, elr, par, vcpu);
495
496         unreachable();
497 }
498
499 asmlinkage void __hyp_text kvm_unexpected_el2_exception(void)
500 {
501         unsigned long addr, fixup;
502         struct kvm_cpu_context *host_ctxt;
503         struct exception_table_entry *entry, *end;
504         unsigned long elr_el2 = read_sysreg(elr_el2);
505
506         entry = hyp_symbol_addr(__start___kvm_ex_table);
507         end = hyp_symbol_addr(__stop___kvm_ex_table);
508         host_ctxt = __hyp_this_cpu_ptr(kvm_host_cpu_state);
509
510         while (entry < end) {
511                 addr = (unsigned long)&entry->insn + entry->insn;
512                 fixup = (unsigned long)&entry->fixup + entry->fixup;
513
514                 if (addr != elr_el2) {
515                         entry++;
516                         continue;
517                 }
518
519                 write_sysreg(fixup, elr_el2);
520                 return;
521         }
522
523         hyp_panic(host_ctxt);
524 }