GNU Linux-libre 4.19.264-gnu1
[releases.git] / arch / arm64 / kvm / sys_regs.c
1 /*
2  * Copyright (C) 2012,2013 - ARM Ltd
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * Derived from arch/arm/kvm/coproc.c:
6  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
7  * Authors: Rusty Russell <rusty@rustcorp.com.au>
8  *          Christoffer Dall <c.dall@virtualopensystems.com>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License, version 2, as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
21  */
22
23 #include <linux/bsearch.h>
24 #include <linux/kvm_host.h>
25 #include <linux/mm.h>
26 #include <linux/printk.h>
27 #include <linux/uaccess.h>
28
29 #include <asm/cacheflush.h>
30 #include <asm/cputype.h>
31 #include <asm/debug-monitors.h>
32 #include <asm/esr.h>
33 #include <asm/kvm_arm.h>
34 #include <asm/kvm_coproc.h>
35 #include <asm/kvm_emulate.h>
36 #include <asm/kvm_host.h>
37 #include <asm/kvm_hyp.h>
38 #include <asm/kvm_mmu.h>
39 #include <asm/perf_event.h>
40 #include <asm/sysreg.h>
41
42 #include <trace/events/kvm.h>
43
44 #include "sys_regs.h"
45
46 #include "trace.h"
47
48 /*
49  * All of this file is extremly similar to the ARM coproc.c, but the
50  * types are different. My gut feeling is that it should be pretty
51  * easy to merge, but that would be an ABI breakage -- again. VFP
52  * would also need to be abstracted.
53  *
54  * For AArch32, we only take care of what is being trapped. Anything
55  * that has to do with init and userspace access has to go via the
56  * 64bit interface.
57  */
58
59 static bool read_from_write_only(struct kvm_vcpu *vcpu,
60                                  struct sys_reg_params *params,
61                                  const struct sys_reg_desc *r)
62 {
63         WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
64         print_sys_reg_instr(params);
65         kvm_inject_undefined(vcpu);
66         return false;
67 }
68
69 static bool write_to_read_only(struct kvm_vcpu *vcpu,
70                                struct sys_reg_params *params,
71                                const struct sys_reg_desc *r)
72 {
73         WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
74         print_sys_reg_instr(params);
75         kvm_inject_undefined(vcpu);
76         return false;
77 }
78
79 u64 vcpu_read_sys_reg(struct kvm_vcpu *vcpu, int reg)
80 {
81         if (!vcpu->arch.sysregs_loaded_on_cpu)
82                 goto immediate_read;
83
84         /*
85          * System registers listed in the switch are not saved on every
86          * exit from the guest but are only saved on vcpu_put.
87          *
88          * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
89          * should never be listed below, because the guest cannot modify its
90          * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's
91          * thread when emulating cross-VCPU communication.
92          */
93         switch (reg) {
94         case CSSELR_EL1:        return read_sysreg_s(SYS_CSSELR_EL1);
95         case SCTLR_EL1:         return read_sysreg_s(sctlr_EL12);
96         case ACTLR_EL1:         return read_sysreg_s(SYS_ACTLR_EL1);
97         case CPACR_EL1:         return read_sysreg_s(cpacr_EL12);
98         case TTBR0_EL1:         return read_sysreg_s(ttbr0_EL12);
99         case TTBR1_EL1:         return read_sysreg_s(ttbr1_EL12);
100         case TCR_EL1:           return read_sysreg_s(tcr_EL12);
101         case ESR_EL1:           return read_sysreg_s(esr_EL12);
102         case AFSR0_EL1:         return read_sysreg_s(afsr0_EL12);
103         case AFSR1_EL1:         return read_sysreg_s(afsr1_EL12);
104         case FAR_EL1:           return read_sysreg_s(far_EL12);
105         case MAIR_EL1:          return read_sysreg_s(mair_EL12);
106         case VBAR_EL1:          return read_sysreg_s(vbar_EL12);
107         case CONTEXTIDR_EL1:    return read_sysreg_s(contextidr_EL12);
108         case TPIDR_EL0:         return read_sysreg_s(SYS_TPIDR_EL0);
109         case TPIDRRO_EL0:       return read_sysreg_s(SYS_TPIDRRO_EL0);
110         case TPIDR_EL1:         return read_sysreg_s(SYS_TPIDR_EL1);
111         case AMAIR_EL1:         return read_sysreg_s(amair_EL12);
112         case CNTKCTL_EL1:       return read_sysreg_s(cntkctl_EL12);
113         case PAR_EL1:           return read_sysreg_s(SYS_PAR_EL1);
114         case DACR32_EL2:        return read_sysreg_s(SYS_DACR32_EL2);
115         case IFSR32_EL2:        return read_sysreg_s(SYS_IFSR32_EL2);
116         case DBGVCR32_EL2:      return read_sysreg_s(SYS_DBGVCR32_EL2);
117         }
118
119 immediate_read:
120         return __vcpu_sys_reg(vcpu, reg);
121 }
122
123 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
124 {
125         if (!vcpu->arch.sysregs_loaded_on_cpu)
126                 goto immediate_write;
127
128         /*
129          * System registers listed in the switch are not restored on every
130          * entry to the guest but are only restored on vcpu_load.
131          *
132          * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
133          * should never be listed below, because the the MPIDR should only be
134          * set once, before running the VCPU, and never changed later.
135          */
136         switch (reg) {
137         case CSSELR_EL1:        write_sysreg_s(val, SYS_CSSELR_EL1);    return;
138         case SCTLR_EL1:         write_sysreg_s(val, sctlr_EL12);        return;
139         case ACTLR_EL1:         write_sysreg_s(val, SYS_ACTLR_EL1);     return;
140         case CPACR_EL1:         write_sysreg_s(val, cpacr_EL12);        return;
141         case TTBR0_EL1:         write_sysreg_s(val, ttbr0_EL12);        return;
142         case TTBR1_EL1:         write_sysreg_s(val, ttbr1_EL12);        return;
143         case TCR_EL1:           write_sysreg_s(val, tcr_EL12);          return;
144         case ESR_EL1:           write_sysreg_s(val, esr_EL12);          return;
145         case AFSR0_EL1:         write_sysreg_s(val, afsr0_EL12);        return;
146         case AFSR1_EL1:         write_sysreg_s(val, afsr1_EL12);        return;
147         case FAR_EL1:           write_sysreg_s(val, far_EL12);          return;
148         case MAIR_EL1:          write_sysreg_s(val, mair_EL12);         return;
149         case VBAR_EL1:          write_sysreg_s(val, vbar_EL12);         return;
150         case CONTEXTIDR_EL1:    write_sysreg_s(val, contextidr_EL12);   return;
151         case TPIDR_EL0:         write_sysreg_s(val, SYS_TPIDR_EL0);     return;
152         case TPIDRRO_EL0:       write_sysreg_s(val, SYS_TPIDRRO_EL0);   return;
153         case TPIDR_EL1:         write_sysreg_s(val, SYS_TPIDR_EL1);     return;
154         case AMAIR_EL1:         write_sysreg_s(val, amair_EL12);        return;
155         case CNTKCTL_EL1:       write_sysreg_s(val, cntkctl_EL12);      return;
156         case PAR_EL1:           write_sysreg_s(val, SYS_PAR_EL1);       return;
157         case DACR32_EL2:        write_sysreg_s(val, SYS_DACR32_EL2);    return;
158         case IFSR32_EL2:        write_sysreg_s(val, SYS_IFSR32_EL2);    return;
159         case DBGVCR32_EL2:      write_sysreg_s(val, SYS_DBGVCR32_EL2);  return;
160         }
161
162 immediate_write:
163          __vcpu_sys_reg(vcpu, reg) = val;
164 }
165
166 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
167 static u32 cache_levels;
168
169 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
170 #define CSSELR_MAX 12
171
172 /* Which cache CCSIDR represents depends on CSSELR value. */
173 static u32 get_ccsidr(u32 csselr)
174 {
175         u32 ccsidr;
176
177         /* Make sure noone else changes CSSELR during this! */
178         local_irq_disable();
179         write_sysreg(csselr, csselr_el1);
180         isb();
181         ccsidr = read_sysreg(ccsidr_el1);
182         local_irq_enable();
183
184         return ccsidr;
185 }
186
187 /*
188  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
189  */
190 static bool access_dcsw(struct kvm_vcpu *vcpu,
191                         struct sys_reg_params *p,
192                         const struct sys_reg_desc *r)
193 {
194         if (!p->is_write)
195                 return read_from_write_only(vcpu, p, r);
196
197         /*
198          * Only track S/W ops if we don't have FWB. It still indicates
199          * that the guest is a bit broken (S/W operations should only
200          * be done by firmware, knowing that there is only a single
201          * CPU left in the system, and certainly not from non-secure
202          * software).
203          */
204         if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
205                 kvm_set_way_flush(vcpu);
206
207         return true;
208 }
209
210 /*
211  * Generic accessor for VM registers. Only called as long as HCR_TVM
212  * is set. If the guest enables the MMU, we stop trapping the VM
213  * sys_regs and leave it in complete control of the caches.
214  */
215 static bool access_vm_reg(struct kvm_vcpu *vcpu,
216                           struct sys_reg_params *p,
217                           const struct sys_reg_desc *r)
218 {
219         bool was_enabled = vcpu_has_cache_enabled(vcpu);
220         u64 val;
221         int reg = r->reg;
222
223         BUG_ON(!p->is_write);
224
225         /* See the 32bit mapping in kvm_host.h */
226         if (p->is_aarch32)
227                 reg = r->reg / 2;
228
229         if (!p->is_aarch32 || !p->is_32bit) {
230                 val = p->regval;
231         } else {
232                 val = vcpu_read_sys_reg(vcpu, reg);
233                 if (r->reg % 2)
234                         val = (p->regval << 32) | (u64)lower_32_bits(val);
235                 else
236                         val = ((u64)upper_32_bits(val) << 32) |
237                                 lower_32_bits(p->regval);
238         }
239         vcpu_write_sys_reg(vcpu, val, reg);
240
241         kvm_toggle_cache(vcpu, was_enabled);
242         return true;
243 }
244
245 /*
246  * Trap handler for the GICv3 SGI generation system register.
247  * Forward the request to the VGIC emulation.
248  * The cp15_64 code makes sure this automatically works
249  * for both AArch64 and AArch32 accesses.
250  */
251 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
252                            struct sys_reg_params *p,
253                            const struct sys_reg_desc *r)
254 {
255         bool g1;
256
257         if (!p->is_write)
258                 return read_from_write_only(vcpu, p, r);
259
260         /*
261          * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
262          * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
263          * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
264          * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
265          * group.
266          */
267         if (p->is_aarch32) {
268                 switch (p->Op1) {
269                 default:                /* Keep GCC quiet */
270                 case 0:                 /* ICC_SGI1R */
271                         g1 = true;
272                         break;
273                 case 1:                 /* ICC_ASGI1R */
274                 case 2:                 /* ICC_SGI0R */
275                         g1 = false;
276                         break;
277                 }
278         } else {
279                 switch (p->Op2) {
280                 default:                /* Keep GCC quiet */
281                 case 5:                 /* ICC_SGI1R_EL1 */
282                         g1 = true;
283                         break;
284                 case 6:                 /* ICC_ASGI1R_EL1 */
285                 case 7:                 /* ICC_SGI0R_EL1 */
286                         g1 = false;
287                         break;
288                 }
289         }
290
291         vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
292
293         return true;
294 }
295
296 static bool access_gic_sre(struct kvm_vcpu *vcpu,
297                            struct sys_reg_params *p,
298                            const struct sys_reg_desc *r)
299 {
300         if (p->is_write)
301                 return ignore_write(vcpu, p);
302
303         p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
304         return true;
305 }
306
307 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
308                         struct sys_reg_params *p,
309                         const struct sys_reg_desc *r)
310 {
311         if (p->is_write)
312                 return ignore_write(vcpu, p);
313         else
314                 return read_zero(vcpu, p);
315 }
316
317 static bool trap_undef(struct kvm_vcpu *vcpu,
318                        struct sys_reg_params *p,
319                        const struct sys_reg_desc *r)
320 {
321         kvm_inject_undefined(vcpu);
322         return false;
323 }
324
325 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
326                            struct sys_reg_params *p,
327                            const struct sys_reg_desc *r)
328 {
329         if (p->is_write) {
330                 return ignore_write(vcpu, p);
331         } else {
332                 p->regval = (1 << 3);
333                 return true;
334         }
335 }
336
337 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
338                                    struct sys_reg_params *p,
339                                    const struct sys_reg_desc *r)
340 {
341         if (p->is_write) {
342                 return ignore_write(vcpu, p);
343         } else {
344                 p->regval = read_sysreg(dbgauthstatus_el1);
345                 return true;
346         }
347 }
348
349 /*
350  * We want to avoid world-switching all the DBG registers all the
351  * time:
352  * 
353  * - If we've touched any debug register, it is likely that we're
354  *   going to touch more of them. It then makes sense to disable the
355  *   traps and start doing the save/restore dance
356  * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
357  *   then mandatory to save/restore the registers, as the guest
358  *   depends on them.
359  * 
360  * For this, we use a DIRTY bit, indicating the guest has modified the
361  * debug registers, used as follow:
362  *
363  * On guest entry:
364  * - If the dirty bit is set (because we're coming back from trapping),
365  *   disable the traps, save host registers, restore guest registers.
366  * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
367  *   set the dirty bit, disable the traps, save host registers,
368  *   restore guest registers.
369  * - Otherwise, enable the traps
370  *
371  * On guest exit:
372  * - If the dirty bit is set, save guest registers, restore host
373  *   registers and clear the dirty bit. This ensure that the host can
374  *   now use the debug registers.
375  */
376 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
377                             struct sys_reg_params *p,
378                             const struct sys_reg_desc *r)
379 {
380         if (p->is_write) {
381                 vcpu_write_sys_reg(vcpu, p->regval, r->reg);
382                 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
383         } else {
384                 p->regval = vcpu_read_sys_reg(vcpu, r->reg);
385         }
386
387         trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
388
389         return true;
390 }
391
392 /*
393  * reg_to_dbg/dbg_to_reg
394  *
395  * A 32 bit write to a debug register leave top bits alone
396  * A 32 bit read from a debug register only returns the bottom bits
397  *
398  * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
399  * hyp.S code switches between host and guest values in future.
400  */
401 static void reg_to_dbg(struct kvm_vcpu *vcpu,
402                        struct sys_reg_params *p,
403                        u64 *dbg_reg)
404 {
405         u64 val = p->regval;
406
407         if (p->is_32bit) {
408                 val &= 0xffffffffUL;
409                 val |= ((*dbg_reg >> 32) << 32);
410         }
411
412         *dbg_reg = val;
413         vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
414 }
415
416 static void dbg_to_reg(struct kvm_vcpu *vcpu,
417                        struct sys_reg_params *p,
418                        u64 *dbg_reg)
419 {
420         p->regval = *dbg_reg;
421         if (p->is_32bit)
422                 p->regval &= 0xffffffffUL;
423 }
424
425 static bool trap_bvr(struct kvm_vcpu *vcpu,
426                      struct sys_reg_params *p,
427                      const struct sys_reg_desc *rd)
428 {
429         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
430
431         if (p->is_write)
432                 reg_to_dbg(vcpu, p, dbg_reg);
433         else
434                 dbg_to_reg(vcpu, p, dbg_reg);
435
436         trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
437
438         return true;
439 }
440
441 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
442                 const struct kvm_one_reg *reg, void __user *uaddr)
443 {
444         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
445
446         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
447                 return -EFAULT;
448         return 0;
449 }
450
451 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
452         const struct kvm_one_reg *reg, void __user *uaddr)
453 {
454         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
455
456         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
457                 return -EFAULT;
458         return 0;
459 }
460
461 static void reset_bvr(struct kvm_vcpu *vcpu,
462                       const struct sys_reg_desc *rd)
463 {
464         vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = rd->val;
465 }
466
467 static bool trap_bcr(struct kvm_vcpu *vcpu,
468                      struct sys_reg_params *p,
469                      const struct sys_reg_desc *rd)
470 {
471         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
472
473         if (p->is_write)
474                 reg_to_dbg(vcpu, p, dbg_reg);
475         else
476                 dbg_to_reg(vcpu, p, dbg_reg);
477
478         trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
479
480         return true;
481 }
482
483 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
484                 const struct kvm_one_reg *reg, void __user *uaddr)
485 {
486         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
487
488         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
489                 return -EFAULT;
490
491         return 0;
492 }
493
494 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
495         const struct kvm_one_reg *reg, void __user *uaddr)
496 {
497         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
498
499         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
500                 return -EFAULT;
501         return 0;
502 }
503
504 static void reset_bcr(struct kvm_vcpu *vcpu,
505                       const struct sys_reg_desc *rd)
506 {
507         vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = rd->val;
508 }
509
510 static bool trap_wvr(struct kvm_vcpu *vcpu,
511                      struct sys_reg_params *p,
512                      const struct sys_reg_desc *rd)
513 {
514         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
515
516         if (p->is_write)
517                 reg_to_dbg(vcpu, p, dbg_reg);
518         else
519                 dbg_to_reg(vcpu, p, dbg_reg);
520
521         trace_trap_reg(__func__, rd->CRm, p->is_write,
522                 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]);
523
524         return true;
525 }
526
527 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
528                 const struct kvm_one_reg *reg, void __user *uaddr)
529 {
530         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
531
532         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
533                 return -EFAULT;
534         return 0;
535 }
536
537 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
538         const struct kvm_one_reg *reg, void __user *uaddr)
539 {
540         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
541
542         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
543                 return -EFAULT;
544         return 0;
545 }
546
547 static void reset_wvr(struct kvm_vcpu *vcpu,
548                       const struct sys_reg_desc *rd)
549 {
550         vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = rd->val;
551 }
552
553 static bool trap_wcr(struct kvm_vcpu *vcpu,
554                      struct sys_reg_params *p,
555                      const struct sys_reg_desc *rd)
556 {
557         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
558
559         if (p->is_write)
560                 reg_to_dbg(vcpu, p, dbg_reg);
561         else
562                 dbg_to_reg(vcpu, p, dbg_reg);
563
564         trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
565
566         return true;
567 }
568
569 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
570                 const struct kvm_one_reg *reg, void __user *uaddr)
571 {
572         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
573
574         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
575                 return -EFAULT;
576         return 0;
577 }
578
579 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
580         const struct kvm_one_reg *reg, void __user *uaddr)
581 {
582         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
583
584         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
585                 return -EFAULT;
586         return 0;
587 }
588
589 static void reset_wcr(struct kvm_vcpu *vcpu,
590                       const struct sys_reg_desc *rd)
591 {
592         vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = rd->val;
593 }
594
595 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
596 {
597         u64 amair = read_sysreg(amair_el1);
598         vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
599 }
600
601 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
602 {
603         u64 mpidr;
604
605         /*
606          * Map the vcpu_id into the first three affinity level fields of
607          * the MPIDR. We limit the number of VCPUs in level 0 due to a
608          * limitation to 16 CPUs in that level in the ICC_SGIxR registers
609          * of the GICv3 to be able to address each CPU directly when
610          * sending IPIs.
611          */
612         mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
613         mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
614         mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
615         vcpu_write_sys_reg(vcpu, (1ULL << 31) | mpidr, MPIDR_EL1);
616 }
617
618 static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
619 {
620         u64 pmcr, val;
621
622         /* No PMU available, PMCR_EL0 may UNDEF... */
623         if (!kvm_arm_support_pmu_v3())
624                 return;
625
626         pmcr = read_sysreg(pmcr_el0);
627         /*
628          * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
629          * except PMCR.E resetting to zero.
630          */
631         val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
632                | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
633         __vcpu_sys_reg(vcpu, r->reg) = val;
634 }
635
636 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
637 {
638         u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
639         bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
640
641         if (!enabled)
642                 kvm_inject_undefined(vcpu);
643
644         return !enabled;
645 }
646
647 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
648 {
649         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
650 }
651
652 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
653 {
654         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
655 }
656
657 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
658 {
659         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
660 }
661
662 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
663 {
664         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
665 }
666
667 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
668                         const struct sys_reg_desc *r)
669 {
670         u64 val;
671
672         if (!kvm_arm_pmu_v3_ready(vcpu))
673                 return trap_raz_wi(vcpu, p, r);
674
675         if (pmu_access_el0_disabled(vcpu))
676                 return false;
677
678         if (p->is_write) {
679                 /* Only update writeable bits of PMCR */
680                 val = __vcpu_sys_reg(vcpu, PMCR_EL0);
681                 val &= ~ARMV8_PMU_PMCR_MASK;
682                 val |= p->regval & ARMV8_PMU_PMCR_MASK;
683                 __vcpu_sys_reg(vcpu, PMCR_EL0) = val;
684                 kvm_pmu_handle_pmcr(vcpu, val);
685         } else {
686                 /* PMCR.P & PMCR.C are RAZ */
687                 val = __vcpu_sys_reg(vcpu, PMCR_EL0)
688                       & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
689                 p->regval = val;
690         }
691
692         return true;
693 }
694
695 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
696                           const struct sys_reg_desc *r)
697 {
698         if (!kvm_arm_pmu_v3_ready(vcpu))
699                 return trap_raz_wi(vcpu, p, r);
700
701         if (pmu_access_event_counter_el0_disabled(vcpu))
702                 return false;
703
704         if (p->is_write)
705                 __vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
706         else
707                 /* return PMSELR.SEL field */
708                 p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
709                             & ARMV8_PMU_COUNTER_MASK;
710
711         return true;
712 }
713
714 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
715                           const struct sys_reg_desc *r)
716 {
717         u64 pmceid;
718
719         if (!kvm_arm_pmu_v3_ready(vcpu))
720                 return trap_raz_wi(vcpu, p, r);
721
722         BUG_ON(p->is_write);
723
724         if (pmu_access_el0_disabled(vcpu))
725                 return false;
726
727         if (!(p->Op2 & 1))
728                 pmceid = read_sysreg(pmceid0_el0);
729         else
730                 pmceid = read_sysreg(pmceid1_el0);
731
732         p->regval = pmceid;
733
734         return true;
735 }
736
737 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
738 {
739         u64 pmcr, val;
740
741         pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
742         val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
743         if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
744                 kvm_inject_undefined(vcpu);
745                 return false;
746         }
747
748         return true;
749 }
750
751 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
752                               struct sys_reg_params *p,
753                               const struct sys_reg_desc *r)
754 {
755         u64 idx;
756
757         if (!kvm_arm_pmu_v3_ready(vcpu))
758                 return trap_raz_wi(vcpu, p, r);
759
760         if (r->CRn == 9 && r->CRm == 13) {
761                 if (r->Op2 == 2) {
762                         /* PMXEVCNTR_EL0 */
763                         if (pmu_access_event_counter_el0_disabled(vcpu))
764                                 return false;
765
766                         idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
767                               & ARMV8_PMU_COUNTER_MASK;
768                 } else if (r->Op2 == 0) {
769                         /* PMCCNTR_EL0 */
770                         if (pmu_access_cycle_counter_el0_disabled(vcpu))
771                                 return false;
772
773                         idx = ARMV8_PMU_CYCLE_IDX;
774                 } else {
775                         return false;
776                 }
777         } else if (r->CRn == 0 && r->CRm == 9) {
778                 /* PMCCNTR */
779                 if (pmu_access_event_counter_el0_disabled(vcpu))
780                         return false;
781
782                 idx = ARMV8_PMU_CYCLE_IDX;
783         } else if (r->CRn == 14 && (r->CRm & 12) == 8) {
784                 /* PMEVCNTRn_EL0 */
785                 if (pmu_access_event_counter_el0_disabled(vcpu))
786                         return false;
787
788                 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
789         } else {
790                 return false;
791         }
792
793         if (!pmu_counter_idx_valid(vcpu, idx))
794                 return false;
795
796         if (p->is_write) {
797                 if (pmu_access_el0_disabled(vcpu))
798                         return false;
799
800                 kvm_pmu_set_counter_value(vcpu, idx, p->regval);
801         } else {
802                 p->regval = kvm_pmu_get_counter_value(vcpu, idx);
803         }
804
805         return true;
806 }
807
808 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
809                                const struct sys_reg_desc *r)
810 {
811         u64 idx, reg;
812
813         if (!kvm_arm_pmu_v3_ready(vcpu))
814                 return trap_raz_wi(vcpu, p, r);
815
816         if (pmu_access_el0_disabled(vcpu))
817                 return false;
818
819         if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
820                 /* PMXEVTYPER_EL0 */
821                 idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
822                 reg = PMEVTYPER0_EL0 + idx;
823         } else if (r->CRn == 14 && (r->CRm & 12) == 12) {
824                 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
825                 if (idx == ARMV8_PMU_CYCLE_IDX)
826                         reg = PMCCFILTR_EL0;
827                 else
828                         /* PMEVTYPERn_EL0 */
829                         reg = PMEVTYPER0_EL0 + idx;
830         } else {
831                 BUG();
832         }
833
834         if (!pmu_counter_idx_valid(vcpu, idx))
835                 return false;
836
837         if (p->is_write) {
838                 kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
839                 __vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
840         } else {
841                 p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
842         }
843
844         return true;
845 }
846
847 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
848                            const struct sys_reg_desc *r)
849 {
850         u64 val, mask;
851
852         if (!kvm_arm_pmu_v3_ready(vcpu))
853                 return trap_raz_wi(vcpu, p, r);
854
855         if (pmu_access_el0_disabled(vcpu))
856                 return false;
857
858         mask = kvm_pmu_valid_counter_mask(vcpu);
859         if (p->is_write) {
860                 val = p->regval & mask;
861                 if (r->Op2 & 0x1) {
862                         /* accessing PMCNTENSET_EL0 */
863                         __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
864                         kvm_pmu_enable_counter(vcpu, val);
865                 } else {
866                         /* accessing PMCNTENCLR_EL0 */
867                         __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
868                         kvm_pmu_disable_counter(vcpu, val);
869                 }
870         } else {
871                 p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask;
872         }
873
874         return true;
875 }
876
877 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
878                            const struct sys_reg_desc *r)
879 {
880         u64 mask = kvm_pmu_valid_counter_mask(vcpu);
881
882         if (!kvm_arm_pmu_v3_ready(vcpu))
883                 return trap_raz_wi(vcpu, p, r);
884
885         if (!vcpu_mode_priv(vcpu)) {
886                 kvm_inject_undefined(vcpu);
887                 return false;
888         }
889
890         if (p->is_write) {
891                 u64 val = p->regval & mask;
892
893                 if (r->Op2 & 0x1)
894                         /* accessing PMINTENSET_EL1 */
895                         __vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
896                 else
897                         /* accessing PMINTENCLR_EL1 */
898                         __vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
899         } else {
900                 p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1) & mask;
901         }
902
903         return true;
904 }
905
906 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
907                          const struct sys_reg_desc *r)
908 {
909         u64 mask = kvm_pmu_valid_counter_mask(vcpu);
910
911         if (!kvm_arm_pmu_v3_ready(vcpu))
912                 return trap_raz_wi(vcpu, p, r);
913
914         if (pmu_access_el0_disabled(vcpu))
915                 return false;
916
917         if (p->is_write) {
918                 if (r->CRm & 0x2)
919                         /* accessing PMOVSSET_EL0 */
920                         __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
921                 else
922                         /* accessing PMOVSCLR_EL0 */
923                         __vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
924         } else {
925                 p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0) & mask;
926         }
927
928         return true;
929 }
930
931 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
932                            const struct sys_reg_desc *r)
933 {
934         u64 mask;
935
936         if (!kvm_arm_pmu_v3_ready(vcpu))
937                 return trap_raz_wi(vcpu, p, r);
938
939         if (!p->is_write)
940                 return read_from_write_only(vcpu, p, r);
941
942         if (pmu_write_swinc_el0_disabled(vcpu))
943                 return false;
944
945         mask = kvm_pmu_valid_counter_mask(vcpu);
946         kvm_pmu_software_increment(vcpu, p->regval & mask);
947         return true;
948 }
949
950 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
951                              const struct sys_reg_desc *r)
952 {
953         if (!kvm_arm_pmu_v3_ready(vcpu))
954                 return trap_raz_wi(vcpu, p, r);
955
956         if (p->is_write) {
957                 if (!vcpu_mode_priv(vcpu)) {
958                         kvm_inject_undefined(vcpu);
959                         return false;
960                 }
961
962                 __vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
963                                p->regval & ARMV8_PMU_USERENR_MASK;
964         } else {
965                 p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
966                             & ARMV8_PMU_USERENR_MASK;
967         }
968
969         return true;
970 }
971
972 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
973 #define DBG_BCR_BVR_WCR_WVR_EL1(n)                                      \
974         { SYS_DESC(SYS_DBGBVRn_EL1(n)),                                 \
975           trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr },                \
976         { SYS_DESC(SYS_DBGBCRn_EL1(n)),                                 \
977           trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr },                \
978         { SYS_DESC(SYS_DBGWVRn_EL1(n)),                                 \
979           trap_wvr, reset_wvr, 0, 0,  get_wvr, set_wvr },               \
980         { SYS_DESC(SYS_DBGWCRn_EL1(n)),                                 \
981           trap_wcr, reset_wcr, 0, 0,  get_wcr, set_wcr }
982
983 /* Macro to expand the PMEVCNTRn_EL0 register */
984 #define PMU_PMEVCNTR_EL0(n)                                             \
985         { SYS_DESC(SYS_PMEVCNTRn_EL0(n)),                                       \
986           access_pmu_evcntr, reset_unknown, (PMEVCNTR0_EL0 + n), }
987
988 /* Macro to expand the PMEVTYPERn_EL0 register */
989 #define PMU_PMEVTYPER_EL0(n)                                            \
990         { SYS_DESC(SYS_PMEVTYPERn_EL0(n)),                                      \
991           access_pmu_evtyper, reset_unknown, (PMEVTYPER0_EL0 + n), }
992
993 static bool access_cntp_tval(struct kvm_vcpu *vcpu,
994                 struct sys_reg_params *p,
995                 const struct sys_reg_desc *r)
996 {
997         u64 now = kvm_phys_timer_read();
998         u64 cval;
999
1000         if (p->is_write) {
1001                 kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL,
1002                                       p->regval + now);
1003         } else {
1004                 cval = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL);
1005                 p->regval = cval - now;
1006         }
1007
1008         return true;
1009 }
1010
1011 static bool access_cntp_ctl(struct kvm_vcpu *vcpu,
1012                 struct sys_reg_params *p,
1013                 const struct sys_reg_desc *r)
1014 {
1015         if (p->is_write)
1016                 kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CTL, p->regval);
1017         else
1018                 p->regval = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CTL);
1019
1020         return true;
1021 }
1022
1023 static bool access_cntp_cval(struct kvm_vcpu *vcpu,
1024                 struct sys_reg_params *p,
1025                 const struct sys_reg_desc *r)
1026 {
1027         if (p->is_write)
1028                 kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL, p->regval);
1029         else
1030                 p->regval = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL);
1031
1032         return true;
1033 }
1034
1035 /* Read a sanitised cpufeature ID register by sys_reg_desc */
1036 static u64 read_id_reg(struct sys_reg_desc const *r, bool raz)
1037 {
1038         u32 id = sys_reg((u32)r->Op0, (u32)r->Op1,
1039                          (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
1040         u64 val = raz ? 0 : read_sanitised_ftr_reg(id);
1041
1042         if (id == SYS_ID_AA64PFR0_EL1) {
1043                 if (val & (0xfUL << ID_AA64PFR0_SVE_SHIFT))
1044                         kvm_debug("SVE unsupported for guests, suppressing\n");
1045
1046                 val &= ~(0xfUL << ID_AA64PFR0_SVE_SHIFT);
1047         } else if (id == SYS_ID_AA64MMFR1_EL1) {
1048                 if (val & (0xfUL << ID_AA64MMFR1_LOR_SHIFT))
1049                         kvm_debug("LORegions unsupported for guests, suppressing\n");
1050
1051                 val &= ~(0xfUL << ID_AA64MMFR1_LOR_SHIFT);
1052         }
1053
1054         return val;
1055 }
1056
1057 /* cpufeature ID register access trap handlers */
1058
1059 static bool __access_id_reg(struct kvm_vcpu *vcpu,
1060                             struct sys_reg_params *p,
1061                             const struct sys_reg_desc *r,
1062                             bool raz)
1063 {
1064         if (p->is_write)
1065                 return write_to_read_only(vcpu, p, r);
1066
1067         p->regval = read_id_reg(r, raz);
1068         return true;
1069 }
1070
1071 static bool access_id_reg(struct kvm_vcpu *vcpu,
1072                           struct sys_reg_params *p,
1073                           const struct sys_reg_desc *r)
1074 {
1075         return __access_id_reg(vcpu, p, r, false);
1076 }
1077
1078 static bool access_raz_id_reg(struct kvm_vcpu *vcpu,
1079                               struct sys_reg_params *p,
1080                               const struct sys_reg_desc *r)
1081 {
1082         return __access_id_reg(vcpu, p, r, true);
1083 }
1084
1085 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id);
1086 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id);
1087 static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
1088
1089 /*
1090  * cpufeature ID register user accessors
1091  *
1092  * For now, these registers are immutable for userspace, so no values
1093  * are stored, and for set_id_reg() we don't allow the effective value
1094  * to be changed.
1095  */
1096 static int __get_id_reg(const struct sys_reg_desc *rd, void __user *uaddr,
1097                         bool raz)
1098 {
1099         const u64 id = sys_reg_to_index(rd);
1100         const u64 val = read_id_reg(rd, raz);
1101
1102         return reg_to_user(uaddr, &val, id);
1103 }
1104
1105 static int __set_id_reg(const struct sys_reg_desc *rd, void __user *uaddr,
1106                         bool raz)
1107 {
1108         const u64 id = sys_reg_to_index(rd);
1109         int err;
1110         u64 val;
1111
1112         err = reg_from_user(&val, uaddr, id);
1113         if (err)
1114                 return err;
1115
1116         /* This is what we mean by invariant: you can't change it. */
1117         if (val != read_id_reg(rd, raz))
1118                 return -EINVAL;
1119
1120         return 0;
1121 }
1122
1123 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1124                       const struct kvm_one_reg *reg, void __user *uaddr)
1125 {
1126         return __get_id_reg(rd, uaddr, false);
1127 }
1128
1129 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1130                       const struct kvm_one_reg *reg, void __user *uaddr)
1131 {
1132         return __set_id_reg(rd, uaddr, false);
1133 }
1134
1135 static int get_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1136                           const struct kvm_one_reg *reg, void __user *uaddr)
1137 {
1138         return __get_id_reg(rd, uaddr, true);
1139 }
1140
1141 static int set_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1142                           const struct kvm_one_reg *reg, void __user *uaddr)
1143 {
1144         return __set_id_reg(rd, uaddr, true);
1145 }
1146
1147 /* sys_reg_desc initialiser for known cpufeature ID registers */
1148 #define ID_SANITISED(name) {                    \
1149         SYS_DESC(SYS_##name),                   \
1150         .access = access_id_reg,                \
1151         .get_user = get_id_reg,                 \
1152         .set_user = set_id_reg,                 \
1153 }
1154
1155 /*
1156  * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
1157  * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
1158  * (1 <= crm < 8, 0 <= Op2 < 8).
1159  */
1160 #define ID_UNALLOCATED(crm, op2) {                      \
1161         Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2),     \
1162         .access = access_raz_id_reg,                    \
1163         .get_user = get_raz_id_reg,                     \
1164         .set_user = set_raz_id_reg,                     \
1165 }
1166
1167 /*
1168  * sys_reg_desc initialiser for known ID registers that we hide from guests.
1169  * For now, these are exposed just like unallocated ID regs: they appear
1170  * RAZ for the guest.
1171  */
1172 #define ID_HIDDEN(name) {                       \
1173         SYS_DESC(SYS_##name),                   \
1174         .access = access_raz_id_reg,            \
1175         .get_user = get_raz_id_reg,             \
1176         .set_user = set_raz_id_reg,             \
1177 }
1178
1179 /*
1180  * Architected system registers.
1181  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
1182  *
1183  * Debug handling: We do trap most, if not all debug related system
1184  * registers. The implementation is good enough to ensure that a guest
1185  * can use these with minimal performance degradation. The drawback is
1186  * that we don't implement any of the external debug, none of the
1187  * OSlock protocol. This should be revisited if we ever encounter a
1188  * more demanding guest...
1189  */
1190 static const struct sys_reg_desc sys_reg_descs[] = {
1191         { SYS_DESC(SYS_DC_ISW), access_dcsw },
1192         { SYS_DESC(SYS_DC_CSW), access_dcsw },
1193         { SYS_DESC(SYS_DC_CISW), access_dcsw },
1194
1195         DBG_BCR_BVR_WCR_WVR_EL1(0),
1196         DBG_BCR_BVR_WCR_WVR_EL1(1),
1197         { SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
1198         { SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
1199         DBG_BCR_BVR_WCR_WVR_EL1(2),
1200         DBG_BCR_BVR_WCR_WVR_EL1(3),
1201         DBG_BCR_BVR_WCR_WVR_EL1(4),
1202         DBG_BCR_BVR_WCR_WVR_EL1(5),
1203         DBG_BCR_BVR_WCR_WVR_EL1(6),
1204         DBG_BCR_BVR_WCR_WVR_EL1(7),
1205         DBG_BCR_BVR_WCR_WVR_EL1(8),
1206         DBG_BCR_BVR_WCR_WVR_EL1(9),
1207         DBG_BCR_BVR_WCR_WVR_EL1(10),
1208         DBG_BCR_BVR_WCR_WVR_EL1(11),
1209         DBG_BCR_BVR_WCR_WVR_EL1(12),
1210         DBG_BCR_BVR_WCR_WVR_EL1(13),
1211         DBG_BCR_BVR_WCR_WVR_EL1(14),
1212         DBG_BCR_BVR_WCR_WVR_EL1(15),
1213
1214         { SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
1215         { SYS_DESC(SYS_OSLAR_EL1), trap_raz_wi },
1216         { SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1 },
1217         { SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
1218         { SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
1219         { SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
1220         { SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
1221         { SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
1222
1223         { SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
1224         { SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
1225         // DBGDTR[TR]X_EL0 share the same encoding
1226         { SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
1227
1228         { SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
1229
1230         { SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
1231
1232         /*
1233          * ID regs: all ID_SANITISED() entries here must have corresponding
1234          * entries in arm64_ftr_regs[].
1235          */
1236
1237         /* AArch64 mappings of the AArch32 ID registers */
1238         /* CRm=1 */
1239         ID_SANITISED(ID_PFR0_EL1),
1240         ID_SANITISED(ID_PFR1_EL1),
1241         ID_SANITISED(ID_DFR0_EL1),
1242         ID_HIDDEN(ID_AFR0_EL1),
1243         ID_SANITISED(ID_MMFR0_EL1),
1244         ID_SANITISED(ID_MMFR1_EL1),
1245         ID_SANITISED(ID_MMFR2_EL1),
1246         ID_SANITISED(ID_MMFR3_EL1),
1247
1248         /* CRm=2 */
1249         ID_SANITISED(ID_ISAR0_EL1),
1250         ID_SANITISED(ID_ISAR1_EL1),
1251         ID_SANITISED(ID_ISAR2_EL1),
1252         ID_SANITISED(ID_ISAR3_EL1),
1253         ID_SANITISED(ID_ISAR4_EL1),
1254         ID_SANITISED(ID_ISAR5_EL1),
1255         ID_SANITISED(ID_MMFR4_EL1),
1256         ID_UNALLOCATED(2,7),
1257
1258         /* CRm=3 */
1259         ID_SANITISED(MVFR0_EL1),
1260         ID_SANITISED(MVFR1_EL1),
1261         ID_SANITISED(MVFR2_EL1),
1262         ID_UNALLOCATED(3,3),
1263         ID_UNALLOCATED(3,4),
1264         ID_UNALLOCATED(3,5),
1265         ID_UNALLOCATED(3,6),
1266         ID_UNALLOCATED(3,7),
1267
1268         /* AArch64 ID registers */
1269         /* CRm=4 */
1270         ID_SANITISED(ID_AA64PFR0_EL1),
1271         ID_SANITISED(ID_AA64PFR1_EL1),
1272         ID_UNALLOCATED(4,2),
1273         ID_UNALLOCATED(4,3),
1274         ID_UNALLOCATED(4,4),
1275         ID_UNALLOCATED(4,5),
1276         ID_UNALLOCATED(4,6),
1277         ID_UNALLOCATED(4,7),
1278
1279         /* CRm=5 */
1280         ID_SANITISED(ID_AA64DFR0_EL1),
1281         ID_SANITISED(ID_AA64DFR1_EL1),
1282         ID_UNALLOCATED(5,2),
1283         ID_UNALLOCATED(5,3),
1284         ID_HIDDEN(ID_AA64AFR0_EL1),
1285         ID_HIDDEN(ID_AA64AFR1_EL1),
1286         ID_UNALLOCATED(5,6),
1287         ID_UNALLOCATED(5,7),
1288
1289         /* CRm=6 */
1290         ID_SANITISED(ID_AA64ISAR0_EL1),
1291         ID_SANITISED(ID_AA64ISAR1_EL1),
1292         ID_SANITISED(ID_AA64ISAR2_EL1),
1293         ID_UNALLOCATED(6,3),
1294         ID_UNALLOCATED(6,4),
1295         ID_UNALLOCATED(6,5),
1296         ID_UNALLOCATED(6,6),
1297         ID_UNALLOCATED(6,7),
1298
1299         /* CRm=7 */
1300         ID_SANITISED(ID_AA64MMFR0_EL1),
1301         ID_SANITISED(ID_AA64MMFR1_EL1),
1302         ID_SANITISED(ID_AA64MMFR2_EL1),
1303         ID_UNALLOCATED(7,3),
1304         ID_UNALLOCATED(7,4),
1305         ID_UNALLOCATED(7,5),
1306         ID_UNALLOCATED(7,6),
1307         ID_UNALLOCATED(7,7),
1308
1309         { SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
1310         { SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
1311         { SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
1312         { SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
1313         { SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
1314
1315         { SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
1316         { SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
1317         { SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
1318
1319         { SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
1320         { SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
1321         { SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
1322         { SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
1323         { SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
1324         { SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
1325         { SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
1326         { SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
1327
1328         { SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
1329         { SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
1330
1331         { SYS_DESC(SYS_PMINTENSET_EL1), access_pminten, reset_unknown, PMINTENSET_EL1 },
1332         { SYS_DESC(SYS_PMINTENCLR_EL1), access_pminten, NULL, PMINTENSET_EL1 },
1333
1334         { SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
1335         { SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
1336
1337         { SYS_DESC(SYS_LORSA_EL1), trap_undef },
1338         { SYS_DESC(SYS_LOREA_EL1), trap_undef },
1339         { SYS_DESC(SYS_LORN_EL1), trap_undef },
1340         { SYS_DESC(SYS_LORC_EL1), trap_undef },
1341         { SYS_DESC(SYS_LORID_EL1), trap_undef },
1342
1343         { SYS_DESC(SYS_VBAR_EL1), NULL, reset_val, VBAR_EL1, 0 },
1344         { SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
1345
1346         { SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
1347         { SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
1348         { SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
1349         { SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
1350         { SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
1351         { SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
1352         { SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
1353         { SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
1354         { SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
1355         { SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
1356         { SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
1357         { SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
1358
1359         { SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
1360         { SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
1361
1362         { SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
1363
1364         { SYS_DESC(SYS_CSSELR_EL1), NULL, reset_unknown, CSSELR_EL1 },
1365
1366         { SYS_DESC(SYS_PMCR_EL0), access_pmcr, reset_pmcr, PMCR_EL0 },
1367         { SYS_DESC(SYS_PMCNTENSET_EL0), access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
1368         { SYS_DESC(SYS_PMCNTENCLR_EL0), access_pmcnten, NULL, PMCNTENSET_EL0 },
1369         { SYS_DESC(SYS_PMOVSCLR_EL0), access_pmovs, NULL, PMOVSSET_EL0 },
1370         { SYS_DESC(SYS_PMSWINC_EL0), access_pmswinc, reset_unknown, PMSWINC_EL0 },
1371         { SYS_DESC(SYS_PMSELR_EL0), access_pmselr, reset_unknown, PMSELR_EL0 },
1372         { SYS_DESC(SYS_PMCEID0_EL0), access_pmceid },
1373         { SYS_DESC(SYS_PMCEID1_EL0), access_pmceid },
1374         { SYS_DESC(SYS_PMCCNTR_EL0), access_pmu_evcntr, reset_unknown, PMCCNTR_EL0 },
1375         { SYS_DESC(SYS_PMXEVTYPER_EL0), access_pmu_evtyper },
1376         { SYS_DESC(SYS_PMXEVCNTR_EL0), access_pmu_evcntr },
1377         /*
1378          * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
1379          * in 32bit mode. Here we choose to reset it as zero for consistency.
1380          */
1381         { SYS_DESC(SYS_PMUSERENR_EL0), access_pmuserenr, reset_val, PMUSERENR_EL0, 0 },
1382         { SYS_DESC(SYS_PMOVSSET_EL0), access_pmovs, reset_unknown, PMOVSSET_EL0 },
1383
1384         { SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
1385         { SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
1386
1387         { SYS_DESC(SYS_CNTP_TVAL_EL0), access_cntp_tval },
1388         { SYS_DESC(SYS_CNTP_CTL_EL0), access_cntp_ctl },
1389         { SYS_DESC(SYS_CNTP_CVAL_EL0), access_cntp_cval },
1390
1391         /* PMEVCNTRn_EL0 */
1392         PMU_PMEVCNTR_EL0(0),
1393         PMU_PMEVCNTR_EL0(1),
1394         PMU_PMEVCNTR_EL0(2),
1395         PMU_PMEVCNTR_EL0(3),
1396         PMU_PMEVCNTR_EL0(4),
1397         PMU_PMEVCNTR_EL0(5),
1398         PMU_PMEVCNTR_EL0(6),
1399         PMU_PMEVCNTR_EL0(7),
1400         PMU_PMEVCNTR_EL0(8),
1401         PMU_PMEVCNTR_EL0(9),
1402         PMU_PMEVCNTR_EL0(10),
1403         PMU_PMEVCNTR_EL0(11),
1404         PMU_PMEVCNTR_EL0(12),
1405         PMU_PMEVCNTR_EL0(13),
1406         PMU_PMEVCNTR_EL0(14),
1407         PMU_PMEVCNTR_EL0(15),
1408         PMU_PMEVCNTR_EL0(16),
1409         PMU_PMEVCNTR_EL0(17),
1410         PMU_PMEVCNTR_EL0(18),
1411         PMU_PMEVCNTR_EL0(19),
1412         PMU_PMEVCNTR_EL0(20),
1413         PMU_PMEVCNTR_EL0(21),
1414         PMU_PMEVCNTR_EL0(22),
1415         PMU_PMEVCNTR_EL0(23),
1416         PMU_PMEVCNTR_EL0(24),
1417         PMU_PMEVCNTR_EL0(25),
1418         PMU_PMEVCNTR_EL0(26),
1419         PMU_PMEVCNTR_EL0(27),
1420         PMU_PMEVCNTR_EL0(28),
1421         PMU_PMEVCNTR_EL0(29),
1422         PMU_PMEVCNTR_EL0(30),
1423         /* PMEVTYPERn_EL0 */
1424         PMU_PMEVTYPER_EL0(0),
1425         PMU_PMEVTYPER_EL0(1),
1426         PMU_PMEVTYPER_EL0(2),
1427         PMU_PMEVTYPER_EL0(3),
1428         PMU_PMEVTYPER_EL0(4),
1429         PMU_PMEVTYPER_EL0(5),
1430         PMU_PMEVTYPER_EL0(6),
1431         PMU_PMEVTYPER_EL0(7),
1432         PMU_PMEVTYPER_EL0(8),
1433         PMU_PMEVTYPER_EL0(9),
1434         PMU_PMEVTYPER_EL0(10),
1435         PMU_PMEVTYPER_EL0(11),
1436         PMU_PMEVTYPER_EL0(12),
1437         PMU_PMEVTYPER_EL0(13),
1438         PMU_PMEVTYPER_EL0(14),
1439         PMU_PMEVTYPER_EL0(15),
1440         PMU_PMEVTYPER_EL0(16),
1441         PMU_PMEVTYPER_EL0(17),
1442         PMU_PMEVTYPER_EL0(18),
1443         PMU_PMEVTYPER_EL0(19),
1444         PMU_PMEVTYPER_EL0(20),
1445         PMU_PMEVTYPER_EL0(21),
1446         PMU_PMEVTYPER_EL0(22),
1447         PMU_PMEVTYPER_EL0(23),
1448         PMU_PMEVTYPER_EL0(24),
1449         PMU_PMEVTYPER_EL0(25),
1450         PMU_PMEVTYPER_EL0(26),
1451         PMU_PMEVTYPER_EL0(27),
1452         PMU_PMEVTYPER_EL0(28),
1453         PMU_PMEVTYPER_EL0(29),
1454         PMU_PMEVTYPER_EL0(30),
1455         /*
1456          * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
1457          * in 32bit mode. Here we choose to reset it as zero for consistency.
1458          */
1459         { SYS_DESC(SYS_PMCCFILTR_EL0), access_pmu_evtyper, reset_val, PMCCFILTR_EL0, 0 },
1460
1461         { SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
1462         { SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
1463         { SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x700 },
1464 };
1465
1466 static bool trap_dbgidr(struct kvm_vcpu *vcpu,
1467                         struct sys_reg_params *p,
1468                         const struct sys_reg_desc *r)
1469 {
1470         if (p->is_write) {
1471                 return ignore_write(vcpu, p);
1472         } else {
1473                 u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1474                 u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1475                 u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
1476
1477                 p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
1478                              (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
1479                              (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
1480                              | (6 << 16) | (el3 << 14) | (el3 << 12));
1481                 return true;
1482         }
1483 }
1484
1485 static bool trap_debug32(struct kvm_vcpu *vcpu,
1486                          struct sys_reg_params *p,
1487                          const struct sys_reg_desc *r)
1488 {
1489         if (p->is_write) {
1490                 vcpu_cp14(vcpu, r->reg) = p->regval;
1491                 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
1492         } else {
1493                 p->regval = vcpu_cp14(vcpu, r->reg);
1494         }
1495
1496         return true;
1497 }
1498
1499 /* AArch32 debug register mappings
1500  *
1501  * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
1502  * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
1503  *
1504  * All control registers and watchpoint value registers are mapped to
1505  * the lower 32 bits of their AArch64 equivalents. We share the trap
1506  * handlers with the above AArch64 code which checks what mode the
1507  * system is in.
1508  */
1509
1510 static bool trap_xvr(struct kvm_vcpu *vcpu,
1511                      struct sys_reg_params *p,
1512                      const struct sys_reg_desc *rd)
1513 {
1514         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
1515
1516         if (p->is_write) {
1517                 u64 val = *dbg_reg;
1518
1519                 val &= 0xffffffffUL;
1520                 val |= p->regval << 32;
1521                 *dbg_reg = val;
1522
1523                 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
1524         } else {
1525                 p->regval = *dbg_reg >> 32;
1526         }
1527
1528         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
1529
1530         return true;
1531 }
1532
1533 #define DBG_BCR_BVR_WCR_WVR(n)                                          \
1534         /* DBGBVRn */                                                   \
1535         { Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n },     \
1536         /* DBGBCRn */                                                   \
1537         { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },     \
1538         /* DBGWVRn */                                                   \
1539         { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },     \
1540         /* DBGWCRn */                                                   \
1541         { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
1542
1543 #define DBGBXVR(n)                                                      \
1544         { Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
1545
1546 /*
1547  * Trapped cp14 registers. We generally ignore most of the external
1548  * debug, on the principle that they don't really make sense to a
1549  * guest. Revisit this one day, would this principle change.
1550  */
1551 static const struct sys_reg_desc cp14_regs[] = {
1552         /* DBGIDR */
1553         { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
1554         /* DBGDTRRXext */
1555         { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
1556
1557         DBG_BCR_BVR_WCR_WVR(0),
1558         /* DBGDSCRint */
1559         { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
1560         DBG_BCR_BVR_WCR_WVR(1),
1561         /* DBGDCCINT */
1562         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32, NULL, cp14_DBGDCCINT },
1563         /* DBGDSCRext */
1564         { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32, NULL, cp14_DBGDSCRext },
1565         DBG_BCR_BVR_WCR_WVR(2),
1566         /* DBGDTR[RT]Xint */
1567         { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
1568         /* DBGDTR[RT]Xext */
1569         { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
1570         DBG_BCR_BVR_WCR_WVR(3),
1571         DBG_BCR_BVR_WCR_WVR(4),
1572         DBG_BCR_BVR_WCR_WVR(5),
1573         /* DBGWFAR */
1574         { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
1575         /* DBGOSECCR */
1576         { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
1577         DBG_BCR_BVR_WCR_WVR(6),
1578         /* DBGVCR */
1579         { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32, NULL, cp14_DBGVCR },
1580         DBG_BCR_BVR_WCR_WVR(7),
1581         DBG_BCR_BVR_WCR_WVR(8),
1582         DBG_BCR_BVR_WCR_WVR(9),
1583         DBG_BCR_BVR_WCR_WVR(10),
1584         DBG_BCR_BVR_WCR_WVR(11),
1585         DBG_BCR_BVR_WCR_WVR(12),
1586         DBG_BCR_BVR_WCR_WVR(13),
1587         DBG_BCR_BVR_WCR_WVR(14),
1588         DBG_BCR_BVR_WCR_WVR(15),
1589
1590         /* DBGDRAR (32bit) */
1591         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
1592
1593         DBGBXVR(0),
1594         /* DBGOSLAR */
1595         { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
1596         DBGBXVR(1),
1597         /* DBGOSLSR */
1598         { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
1599         DBGBXVR(2),
1600         DBGBXVR(3),
1601         /* DBGOSDLR */
1602         { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
1603         DBGBXVR(4),
1604         /* DBGPRCR */
1605         { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
1606         DBGBXVR(5),
1607         DBGBXVR(6),
1608         DBGBXVR(7),
1609         DBGBXVR(8),
1610         DBGBXVR(9),
1611         DBGBXVR(10),
1612         DBGBXVR(11),
1613         DBGBXVR(12),
1614         DBGBXVR(13),
1615         DBGBXVR(14),
1616         DBGBXVR(15),
1617
1618         /* DBGDSAR (32bit) */
1619         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
1620
1621         /* DBGDEVID2 */
1622         { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
1623         /* DBGDEVID1 */
1624         { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
1625         /* DBGDEVID */
1626         { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
1627         /* DBGCLAIMSET */
1628         { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
1629         /* DBGCLAIMCLR */
1630         { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
1631         /* DBGAUTHSTATUS */
1632         { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
1633 };
1634
1635 /* Trapped cp14 64bit registers */
1636 static const struct sys_reg_desc cp14_64_regs[] = {
1637         /* DBGDRAR (64bit) */
1638         { Op1( 0), CRm( 1), .access = trap_raz_wi },
1639
1640         /* DBGDSAR (64bit) */
1641         { Op1( 0), CRm( 2), .access = trap_raz_wi },
1642 };
1643
1644 /* Macro to expand the PMEVCNTRn register */
1645 #define PMU_PMEVCNTR(n)                                                 \
1646         /* PMEVCNTRn */                                                 \
1647         { Op1(0), CRn(0b1110),                                          \
1648           CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),         \
1649           access_pmu_evcntr }
1650
1651 /* Macro to expand the PMEVTYPERn register */
1652 #define PMU_PMEVTYPER(n)                                                \
1653         /* PMEVTYPERn */                                                \
1654         { Op1(0), CRn(0b1110),                                          \
1655           CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),         \
1656           access_pmu_evtyper }
1657
1658 /*
1659  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
1660  * depending on the way they are accessed (as a 32bit or a 64bit
1661  * register).
1662  */
1663 static const struct sys_reg_desc cp15_regs[] = {
1664         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
1665         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1666         { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
1667         { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
1668         { Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, c2_TTBCR2 },
1669         { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
1670         { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
1671         { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
1672         { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
1673         { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
1674         { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
1675         { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
1676
1677         /*
1678          * DC{C,I,CI}SW operations:
1679          */
1680         { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
1681         { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
1682         { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
1683
1684         /* PMU */
1685         { Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
1686         { Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
1687         { Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
1688         { Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
1689         { Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
1690         { Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
1691         { Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
1692         { Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
1693         { Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
1694         { Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
1695         { Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
1696         { Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
1697         { Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
1698         { Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
1699         { Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
1700
1701         { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
1702         { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
1703         { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
1704         { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
1705
1706         /* ICC_SRE */
1707         { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
1708
1709         { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
1710
1711         /* CNTP_TVAL */
1712         { Op1( 0), CRn(14), CRm( 2), Op2( 0), access_cntp_tval },
1713         /* CNTP_CTL */
1714         { Op1( 0), CRn(14), CRm( 2), Op2( 1), access_cntp_ctl },
1715
1716         /* PMEVCNTRn */
1717         PMU_PMEVCNTR(0),
1718         PMU_PMEVCNTR(1),
1719         PMU_PMEVCNTR(2),
1720         PMU_PMEVCNTR(3),
1721         PMU_PMEVCNTR(4),
1722         PMU_PMEVCNTR(5),
1723         PMU_PMEVCNTR(6),
1724         PMU_PMEVCNTR(7),
1725         PMU_PMEVCNTR(8),
1726         PMU_PMEVCNTR(9),
1727         PMU_PMEVCNTR(10),
1728         PMU_PMEVCNTR(11),
1729         PMU_PMEVCNTR(12),
1730         PMU_PMEVCNTR(13),
1731         PMU_PMEVCNTR(14),
1732         PMU_PMEVCNTR(15),
1733         PMU_PMEVCNTR(16),
1734         PMU_PMEVCNTR(17),
1735         PMU_PMEVCNTR(18),
1736         PMU_PMEVCNTR(19),
1737         PMU_PMEVCNTR(20),
1738         PMU_PMEVCNTR(21),
1739         PMU_PMEVCNTR(22),
1740         PMU_PMEVCNTR(23),
1741         PMU_PMEVCNTR(24),
1742         PMU_PMEVCNTR(25),
1743         PMU_PMEVCNTR(26),
1744         PMU_PMEVCNTR(27),
1745         PMU_PMEVCNTR(28),
1746         PMU_PMEVCNTR(29),
1747         PMU_PMEVCNTR(30),
1748         /* PMEVTYPERn */
1749         PMU_PMEVTYPER(0),
1750         PMU_PMEVTYPER(1),
1751         PMU_PMEVTYPER(2),
1752         PMU_PMEVTYPER(3),
1753         PMU_PMEVTYPER(4),
1754         PMU_PMEVTYPER(5),
1755         PMU_PMEVTYPER(6),
1756         PMU_PMEVTYPER(7),
1757         PMU_PMEVTYPER(8),
1758         PMU_PMEVTYPER(9),
1759         PMU_PMEVTYPER(10),
1760         PMU_PMEVTYPER(11),
1761         PMU_PMEVTYPER(12),
1762         PMU_PMEVTYPER(13),
1763         PMU_PMEVTYPER(14),
1764         PMU_PMEVTYPER(15),
1765         PMU_PMEVTYPER(16),
1766         PMU_PMEVTYPER(17),
1767         PMU_PMEVTYPER(18),
1768         PMU_PMEVTYPER(19),
1769         PMU_PMEVTYPER(20),
1770         PMU_PMEVTYPER(21),
1771         PMU_PMEVTYPER(22),
1772         PMU_PMEVTYPER(23),
1773         PMU_PMEVTYPER(24),
1774         PMU_PMEVTYPER(25),
1775         PMU_PMEVTYPER(26),
1776         PMU_PMEVTYPER(27),
1777         PMU_PMEVTYPER(28),
1778         PMU_PMEVTYPER(29),
1779         PMU_PMEVTYPER(30),
1780         /* PMCCFILTR */
1781         { Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
1782 };
1783
1784 static const struct sys_reg_desc cp15_64_regs[] = {
1785         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1786         { Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
1787         { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
1788         { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
1789         { Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
1790         { Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
1791         { Op1( 2), CRn( 0), CRm(14), Op2( 0), access_cntp_cval },
1792 };
1793
1794 /* Target specific emulation tables */
1795 static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
1796
1797 void kvm_register_target_sys_reg_table(unsigned int target,
1798                                        struct kvm_sys_reg_target_table *table)
1799 {
1800         target_tables[target] = table;
1801 }
1802
1803 /* Get specific register table for this target. */
1804 static const struct sys_reg_desc *get_target_table(unsigned target,
1805                                                    bool mode_is_64,
1806                                                    size_t *num)
1807 {
1808         struct kvm_sys_reg_target_table *table;
1809
1810         table = target_tables[target];
1811         if (mode_is_64) {
1812                 *num = table->table64.num;
1813                 return table->table64.table;
1814         } else {
1815                 *num = table->table32.num;
1816                 return table->table32.table;
1817         }
1818 }
1819
1820 #define reg_to_match_value(x)                                           \
1821         ({                                                              \
1822                 unsigned long val;                                      \
1823                 val  = (x)->Op0 << 14;                                  \
1824                 val |= (x)->Op1 << 11;                                  \
1825                 val |= (x)->CRn << 7;                                   \
1826                 val |= (x)->CRm << 3;                                   \
1827                 val |= (x)->Op2;                                        \
1828                 val;                                                    \
1829          })
1830
1831 static int match_sys_reg(const void *key, const void *elt)
1832 {
1833         const unsigned long pval = (unsigned long)key;
1834         const struct sys_reg_desc *r = elt;
1835
1836         return pval - reg_to_match_value(r);
1837 }
1838
1839 static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
1840                                          const struct sys_reg_desc table[],
1841                                          unsigned int num)
1842 {
1843         unsigned long pval = reg_to_match_value(params);
1844
1845         return bsearch((void *)pval, table, num, sizeof(table[0]), match_sys_reg);
1846 }
1847
1848 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
1849 {
1850         kvm_inject_undefined(vcpu);
1851         return 1;
1852 }
1853
1854 static void perform_access(struct kvm_vcpu *vcpu,
1855                            struct sys_reg_params *params,
1856                            const struct sys_reg_desc *r)
1857 {
1858         /*
1859          * Not having an accessor means that we have configured a trap
1860          * that we don't know how to handle. This certainly qualifies
1861          * as a gross bug that should be fixed right away.
1862          */
1863         BUG_ON(!r->access);
1864
1865         /* Skip instruction if instructed so */
1866         if (likely(r->access(vcpu, params, r)))
1867                 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1868 }
1869
1870 /*
1871  * emulate_cp --  tries to match a sys_reg access in a handling table, and
1872  *                call the corresponding trap handler.
1873  *
1874  * @params: pointer to the descriptor of the access
1875  * @table: array of trap descriptors
1876  * @num: size of the trap descriptor array
1877  *
1878  * Return 0 if the access has been handled, and -1 if not.
1879  */
1880 static int emulate_cp(struct kvm_vcpu *vcpu,
1881                       struct sys_reg_params *params,
1882                       const struct sys_reg_desc *table,
1883                       size_t num)
1884 {
1885         const struct sys_reg_desc *r;
1886
1887         if (!table)
1888                 return -1;      /* Not handled */
1889
1890         r = find_reg(params, table, num);
1891
1892         if (r) {
1893                 perform_access(vcpu, params, r);
1894                 return 0;
1895         }
1896
1897         /* Not handled */
1898         return -1;
1899 }
1900
1901 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
1902                                 struct sys_reg_params *params)
1903 {
1904         u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
1905         int cp = -1;
1906
1907         switch(hsr_ec) {
1908         case ESR_ELx_EC_CP15_32:
1909         case ESR_ELx_EC_CP15_64:
1910                 cp = 15;
1911                 break;
1912         case ESR_ELx_EC_CP14_MR:
1913         case ESR_ELx_EC_CP14_64:
1914                 cp = 14;
1915                 break;
1916         default:
1917                 WARN_ON(1);
1918         }
1919
1920         kvm_err("Unsupported guest CP%d access at: %08lx\n",
1921                 cp, *vcpu_pc(vcpu));
1922         print_sys_reg_instr(params);
1923         kvm_inject_undefined(vcpu);
1924 }
1925
1926 /**
1927  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
1928  * @vcpu: The VCPU pointer
1929  * @run:  The kvm_run struct
1930  */
1931 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
1932                             const struct sys_reg_desc *global,
1933                             size_t nr_global,
1934                             const struct sys_reg_desc *target_specific,
1935                             size_t nr_specific)
1936 {
1937         struct sys_reg_params params;
1938         u32 hsr = kvm_vcpu_get_hsr(vcpu);
1939         int Rt = kvm_vcpu_sys_get_rt(vcpu);
1940         int Rt2 = (hsr >> 10) & 0x1f;
1941
1942         params.is_aarch32 = true;
1943         params.is_32bit = false;
1944         params.CRm = (hsr >> 1) & 0xf;
1945         params.is_write = ((hsr & 1) == 0);
1946
1947         params.Op0 = 0;
1948         params.Op1 = (hsr >> 16) & 0xf;
1949         params.Op2 = 0;
1950         params.CRn = 0;
1951
1952         /*
1953          * Make a 64-bit value out of Rt and Rt2. As we use the same trap
1954          * backends between AArch32 and AArch64, we get away with it.
1955          */
1956         if (params.is_write) {
1957                 params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
1958                 params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
1959         }
1960
1961         /*
1962          * Try to emulate the coprocessor access using the target
1963          * specific table first, and using the global table afterwards.
1964          * If either of the tables contains a handler, handle the
1965          * potential register operation in the case of a read and return
1966          * with success.
1967          */
1968         if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
1969             !emulate_cp(vcpu, &params, global, nr_global)) {
1970                 /* Split up the value between registers for the read side */
1971                 if (!params.is_write) {
1972                         vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
1973                         vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
1974                 }
1975
1976                 return 1;
1977         }
1978
1979         unhandled_cp_access(vcpu, &params);
1980         return 1;
1981 }
1982
1983 /**
1984  * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
1985  * @vcpu: The VCPU pointer
1986  * @run:  The kvm_run struct
1987  */
1988 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
1989                             const struct sys_reg_desc *global,
1990                             size_t nr_global,
1991                             const struct sys_reg_desc *target_specific,
1992                             size_t nr_specific)
1993 {
1994         struct sys_reg_params params;
1995         u32 hsr = kvm_vcpu_get_hsr(vcpu);
1996         int Rt  = kvm_vcpu_sys_get_rt(vcpu);
1997
1998         params.is_aarch32 = true;
1999         params.is_32bit = true;
2000         params.CRm = (hsr >> 1) & 0xf;
2001         params.regval = vcpu_get_reg(vcpu, Rt);
2002         params.is_write = ((hsr & 1) == 0);
2003         params.CRn = (hsr >> 10) & 0xf;
2004         params.Op0 = 0;
2005         params.Op1 = (hsr >> 14) & 0x7;
2006         params.Op2 = (hsr >> 17) & 0x7;
2007
2008         if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
2009             !emulate_cp(vcpu, &params, global, nr_global)) {
2010                 if (!params.is_write)
2011                         vcpu_set_reg(vcpu, Rt, params.regval);
2012                 return 1;
2013         }
2014
2015         unhandled_cp_access(vcpu, &params);
2016         return 1;
2017 }
2018
2019 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
2020 {
2021         const struct sys_reg_desc *target_specific;
2022         size_t num;
2023
2024         target_specific = get_target_table(vcpu->arch.target, false, &num);
2025         return kvm_handle_cp_64(vcpu,
2026                                 cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
2027                                 target_specific, num);
2028 }
2029
2030 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
2031 {
2032         const struct sys_reg_desc *target_specific;
2033         size_t num;
2034
2035         target_specific = get_target_table(vcpu->arch.target, false, &num);
2036         return kvm_handle_cp_32(vcpu,
2037                                 cp15_regs, ARRAY_SIZE(cp15_regs),
2038                                 target_specific, num);
2039 }
2040
2041 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
2042 {
2043         return kvm_handle_cp_64(vcpu,
2044                                 cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
2045                                 NULL, 0);
2046 }
2047
2048 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
2049 {
2050         return kvm_handle_cp_32(vcpu,
2051                                 cp14_regs, ARRAY_SIZE(cp14_regs),
2052                                 NULL, 0);
2053 }
2054
2055 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
2056                            struct sys_reg_params *params)
2057 {
2058         size_t num;
2059         const struct sys_reg_desc *table, *r;
2060
2061         table = get_target_table(vcpu->arch.target, true, &num);
2062
2063         /* Search target-specific then generic table. */
2064         r = find_reg(params, table, num);
2065         if (!r)
2066                 r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2067
2068         if (likely(r)) {
2069                 perform_access(vcpu, params, r);
2070         } else {
2071                 kvm_err("Unsupported guest sys_reg access at: %lx\n",
2072                         *vcpu_pc(vcpu));
2073                 print_sys_reg_instr(params);
2074                 kvm_inject_undefined(vcpu);
2075         }
2076         return 1;
2077 }
2078
2079 static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
2080                                 const struct sys_reg_desc *table, size_t num,
2081                                 unsigned long *bmap)
2082 {
2083         unsigned long i;
2084
2085         for (i = 0; i < num; i++)
2086                 if (table[i].reset) {
2087                         int reg = table[i].reg;
2088
2089                         table[i].reset(vcpu, &table[i]);
2090                         if (reg > 0 && reg < NR_SYS_REGS)
2091                                 set_bit(reg, bmap);
2092                 }
2093 }
2094
2095 /**
2096  * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
2097  * @vcpu: The VCPU pointer
2098  * @run:  The kvm_run struct
2099  */
2100 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
2101 {
2102         struct sys_reg_params params;
2103         unsigned long esr = kvm_vcpu_get_hsr(vcpu);
2104         int Rt = kvm_vcpu_sys_get_rt(vcpu);
2105         int ret;
2106
2107         trace_kvm_handle_sys_reg(esr);
2108
2109         params.is_aarch32 = false;
2110         params.is_32bit = false;
2111         params.Op0 = (esr >> 20) & 3;
2112         params.Op1 = (esr >> 14) & 0x7;
2113         params.CRn = (esr >> 10) & 0xf;
2114         params.CRm = (esr >> 1) & 0xf;
2115         params.Op2 = (esr >> 17) & 0x7;
2116         params.regval = vcpu_get_reg(vcpu, Rt);
2117         params.is_write = !(esr & 1);
2118
2119         ret = emulate_sys_reg(vcpu, &params);
2120
2121         if (!params.is_write)
2122                 vcpu_set_reg(vcpu, Rt, params.regval);
2123         return ret;
2124 }
2125
2126 /******************************************************************************
2127  * Userspace API
2128  *****************************************************************************/
2129
2130 static bool index_to_params(u64 id, struct sys_reg_params *params)
2131 {
2132         switch (id & KVM_REG_SIZE_MASK) {
2133         case KVM_REG_SIZE_U64:
2134                 /* Any unused index bits means it's not valid. */
2135                 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
2136                               | KVM_REG_ARM_COPROC_MASK
2137                               | KVM_REG_ARM64_SYSREG_OP0_MASK
2138                               | KVM_REG_ARM64_SYSREG_OP1_MASK
2139                               | KVM_REG_ARM64_SYSREG_CRN_MASK
2140                               | KVM_REG_ARM64_SYSREG_CRM_MASK
2141                               | KVM_REG_ARM64_SYSREG_OP2_MASK))
2142                         return false;
2143                 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
2144                                >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
2145                 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
2146                                >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
2147                 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
2148                                >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
2149                 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
2150                                >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
2151                 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
2152                                >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
2153                 return true;
2154         default:
2155                 return false;
2156         }
2157 }
2158
2159 const struct sys_reg_desc *find_reg_by_id(u64 id,
2160                                           struct sys_reg_params *params,
2161                                           const struct sys_reg_desc table[],
2162                                           unsigned int num)
2163 {
2164         if (!index_to_params(id, params))
2165                 return NULL;
2166
2167         return find_reg(params, table, num);
2168 }
2169
2170 /* Decode an index value, and find the sys_reg_desc entry. */
2171 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
2172                                                     u64 id)
2173 {
2174         size_t num;
2175         const struct sys_reg_desc *table, *r;
2176         struct sys_reg_params params;
2177
2178         /* We only do sys_reg for now. */
2179         if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
2180                 return NULL;
2181
2182         if (!index_to_params(id, &params))
2183                 return NULL;
2184
2185         table = get_target_table(vcpu->arch.target, true, &num);
2186         r = find_reg(&params, table, num);
2187         if (!r)
2188                 r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2189
2190         /* Not saved in the sys_reg array and not otherwise accessible? */
2191         if (r && !(r->reg || r->get_user))
2192                 r = NULL;
2193
2194         return r;
2195 }
2196
2197 /*
2198  * These are the invariant sys_reg registers: we let the guest see the
2199  * host versions of these, so they're part of the guest state.
2200  *
2201  * A future CPU may provide a mechanism to present different values to
2202  * the guest, or a future kvm may trap them.
2203  */
2204
2205 #define FUNCTION_INVARIANT(reg)                                         \
2206         static void get_##reg(struct kvm_vcpu *v,                       \
2207                               const struct sys_reg_desc *r)             \
2208         {                                                               \
2209                 ((struct sys_reg_desc *)r)->val = read_sysreg(reg);     \
2210         }
2211
2212 FUNCTION_INVARIANT(midr_el1)
2213 FUNCTION_INVARIANT(ctr_el0)
2214 FUNCTION_INVARIANT(revidr_el1)
2215 FUNCTION_INVARIANT(clidr_el1)
2216 FUNCTION_INVARIANT(aidr_el1)
2217
2218 /* ->val is filled in by kvm_sys_reg_table_init() */
2219 static struct sys_reg_desc invariant_sys_regs[] = {
2220         { SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
2221         { SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
2222         { SYS_DESC(SYS_CLIDR_EL1), NULL, get_clidr_el1 },
2223         { SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
2224         { SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
2225 };
2226
2227 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
2228 {
2229         if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
2230                 return -EFAULT;
2231         return 0;
2232 }
2233
2234 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
2235 {
2236         if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
2237                 return -EFAULT;
2238         return 0;
2239 }
2240
2241 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
2242 {
2243         struct sys_reg_params params;
2244         const struct sys_reg_desc *r;
2245
2246         r = find_reg_by_id(id, &params, invariant_sys_regs,
2247                            ARRAY_SIZE(invariant_sys_regs));
2248         if (!r)
2249                 return -ENOENT;
2250
2251         return reg_to_user(uaddr, &r->val, id);
2252 }
2253
2254 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
2255 {
2256         struct sys_reg_params params;
2257         const struct sys_reg_desc *r;
2258         int err;
2259         u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
2260
2261         r = find_reg_by_id(id, &params, invariant_sys_regs,
2262                            ARRAY_SIZE(invariant_sys_regs));
2263         if (!r)
2264                 return -ENOENT;
2265
2266         err = reg_from_user(&val, uaddr, id);
2267         if (err)
2268                 return err;
2269
2270         /* This is what we mean by invariant: you can't change it. */
2271         if (r->val != val)
2272                 return -EINVAL;
2273
2274         return 0;
2275 }
2276
2277 static bool is_valid_cache(u32 val)
2278 {
2279         u32 level, ctype;
2280
2281         if (val >= CSSELR_MAX)
2282                 return false;
2283
2284         /* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
2285         level = (val >> 1);
2286         ctype = (cache_levels >> (level * 3)) & 7;
2287
2288         switch (ctype) {
2289         case 0: /* No cache */
2290                 return false;
2291         case 1: /* Instruction cache only */
2292                 return (val & 1);
2293         case 2: /* Data cache only */
2294         case 4: /* Unified cache */
2295                 return !(val & 1);
2296         case 3: /* Separate instruction and data caches */
2297                 return true;
2298         default: /* Reserved: we can't know instruction or data. */
2299                 return false;
2300         }
2301 }
2302
2303 static int demux_c15_get(u64 id, void __user *uaddr)
2304 {
2305         u32 val;
2306         u32 __user *uval = uaddr;
2307
2308         /* Fail if we have unknown bits set. */
2309         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2310                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2311                 return -ENOENT;
2312
2313         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2314         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2315                 if (KVM_REG_SIZE(id) != 4)
2316                         return -ENOENT;
2317                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2318                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2319                 if (!is_valid_cache(val))
2320                         return -ENOENT;
2321
2322                 return put_user(get_ccsidr(val), uval);
2323         default:
2324                 return -ENOENT;
2325         }
2326 }
2327
2328 static int demux_c15_set(u64 id, void __user *uaddr)
2329 {
2330         u32 val, newval;
2331         u32 __user *uval = uaddr;
2332
2333         /* Fail if we have unknown bits set. */
2334         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2335                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2336                 return -ENOENT;
2337
2338         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2339         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2340                 if (KVM_REG_SIZE(id) != 4)
2341                         return -ENOENT;
2342                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2343                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2344                 if (!is_valid_cache(val))
2345                         return -ENOENT;
2346
2347                 if (get_user(newval, uval))
2348                         return -EFAULT;
2349
2350                 /* This is also invariant: you can't change it. */
2351                 if (newval != get_ccsidr(val))
2352                         return -EINVAL;
2353                 return 0;
2354         default:
2355                 return -ENOENT;
2356         }
2357 }
2358
2359 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2360 {
2361         const struct sys_reg_desc *r;
2362         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2363
2364         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2365                 return demux_c15_get(reg->id, uaddr);
2366
2367         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2368                 return -ENOENT;
2369
2370         r = index_to_sys_reg_desc(vcpu, reg->id);
2371         if (!r)
2372                 return get_invariant_sys_reg(reg->id, uaddr);
2373
2374         if (r->get_user)
2375                 return (r->get_user)(vcpu, r, reg, uaddr);
2376
2377         return reg_to_user(uaddr, &__vcpu_sys_reg(vcpu, r->reg), reg->id);
2378 }
2379
2380 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2381 {
2382         const struct sys_reg_desc *r;
2383         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2384
2385         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2386                 return demux_c15_set(reg->id, uaddr);
2387
2388         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2389                 return -ENOENT;
2390
2391         r = index_to_sys_reg_desc(vcpu, reg->id);
2392         if (!r)
2393                 return set_invariant_sys_reg(reg->id, uaddr);
2394
2395         if (r->set_user)
2396                 return (r->set_user)(vcpu, r, reg, uaddr);
2397
2398         return reg_from_user(&__vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
2399 }
2400
2401 static unsigned int num_demux_regs(void)
2402 {
2403         unsigned int i, count = 0;
2404
2405         for (i = 0; i < CSSELR_MAX; i++)
2406                 if (is_valid_cache(i))
2407                         count++;
2408
2409         return count;
2410 }
2411
2412 static int write_demux_regids(u64 __user *uindices)
2413 {
2414         u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
2415         unsigned int i;
2416
2417         val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
2418         for (i = 0; i < CSSELR_MAX; i++) {
2419                 if (!is_valid_cache(i))
2420                         continue;
2421                 if (put_user(val | i, uindices))
2422                         return -EFAULT;
2423                 uindices++;
2424         }
2425         return 0;
2426 }
2427
2428 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
2429 {
2430         return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
2431                 KVM_REG_ARM64_SYSREG |
2432                 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
2433                 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
2434                 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
2435                 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
2436                 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
2437 }
2438
2439 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
2440 {
2441         if (!*uind)
2442                 return true;
2443
2444         if (put_user(sys_reg_to_index(reg), *uind))
2445                 return false;
2446
2447         (*uind)++;
2448         return true;
2449 }
2450
2451 static int walk_one_sys_reg(const struct sys_reg_desc *rd,
2452                             u64 __user **uind,
2453                             unsigned int *total)
2454 {
2455         /*
2456          * Ignore registers we trap but don't save,
2457          * and for which no custom user accessor is provided.
2458          */
2459         if (!(rd->reg || rd->get_user))
2460                 return 0;
2461
2462         if (!copy_reg_to_user(rd, uind))
2463                 return -EFAULT;
2464
2465         (*total)++;
2466         return 0;
2467 }
2468
2469 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
2470 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
2471 {
2472         const struct sys_reg_desc *i1, *i2, *end1, *end2;
2473         unsigned int total = 0;
2474         size_t num;
2475         int err;
2476
2477         /* We check for duplicates here, to allow arch-specific overrides. */
2478         i1 = get_target_table(vcpu->arch.target, true, &num);
2479         end1 = i1 + num;
2480         i2 = sys_reg_descs;
2481         end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
2482
2483         BUG_ON(i1 == end1 || i2 == end2);
2484
2485         /* Walk carefully, as both tables may refer to the same register. */
2486         while (i1 || i2) {
2487                 int cmp = cmp_sys_reg(i1, i2);
2488                 /* target-specific overrides generic entry. */
2489                 if (cmp <= 0)
2490                         err = walk_one_sys_reg(i1, &uind, &total);
2491                 else
2492                         err = walk_one_sys_reg(i2, &uind, &total);
2493
2494                 if (err)
2495                         return err;
2496
2497                 if (cmp <= 0 && ++i1 == end1)
2498                         i1 = NULL;
2499                 if (cmp >= 0 && ++i2 == end2)
2500                         i2 = NULL;
2501         }
2502         return total;
2503 }
2504
2505 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
2506 {
2507         return ARRAY_SIZE(invariant_sys_regs)
2508                 + num_demux_regs()
2509                 + walk_sys_regs(vcpu, (u64 __user *)NULL);
2510 }
2511
2512 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
2513 {
2514         unsigned int i;
2515         int err;
2516
2517         /* Then give them all the invariant registers' indices. */
2518         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
2519                 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
2520                         return -EFAULT;
2521                 uindices++;
2522         }
2523
2524         err = walk_sys_regs(vcpu, uindices);
2525         if (err < 0)
2526                 return err;
2527         uindices += err;
2528
2529         return write_demux_regids(uindices);
2530 }
2531
2532 static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
2533 {
2534         unsigned int i;
2535
2536         for (i = 1; i < n; i++) {
2537                 if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2538                         kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
2539                         return 1;
2540                 }
2541         }
2542
2543         return 0;
2544 }
2545
2546 void kvm_sys_reg_table_init(void)
2547 {
2548         unsigned int i;
2549         struct sys_reg_desc clidr;
2550
2551         /* Make sure tables are unique and in order. */
2552         BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
2553         BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
2554         BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
2555         BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
2556         BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
2557         BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
2558
2559         /* We abuse the reset function to overwrite the table itself. */
2560         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
2561                 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
2562
2563         /*
2564          * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
2565          *
2566          *   If software reads the Cache Type fields from Ctype1
2567          *   upwards, once it has seen a value of 0b000, no caches
2568          *   exist at further-out levels of the hierarchy. So, for
2569          *   example, if Ctype3 is the first Cache Type field with a
2570          *   value of 0b000, the values of Ctype4 to Ctype7 must be
2571          *   ignored.
2572          */
2573         get_clidr_el1(NULL, &clidr); /* Ugly... */
2574         cache_levels = clidr.val;
2575         for (i = 0; i < 7; i++)
2576                 if (((cache_levels >> (i*3)) & 7) == 0)
2577                         break;
2578         /* Clear all higher bits. */
2579         cache_levels &= (1 << (i*3))-1;
2580 }
2581
2582 /**
2583  * kvm_reset_sys_regs - sets system registers to reset value
2584  * @vcpu: The VCPU pointer
2585  *
2586  * This function finds the right table above and sets the registers on the
2587  * virtual CPU struct to their architecturally defined reset values.
2588  */
2589 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
2590 {
2591         size_t num;
2592         const struct sys_reg_desc *table;
2593         DECLARE_BITMAP(bmap, NR_SYS_REGS) = { 0, };
2594
2595         /* Generic chip reset first (so target could override). */
2596         reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs), bmap);
2597
2598         table = get_target_table(vcpu->arch.target, true, &num);
2599         reset_sys_reg_descs(vcpu, table, num, bmap);
2600
2601         for (num = 1; num < NR_SYS_REGS; num++) {
2602                 if (WARN(!test_bit(num, bmap),
2603                          "Didn't reset __vcpu_sys_reg(%zi)\n", num))
2604                         break;
2605         }
2606 }