GNU Linux-libre 4.14.290-gnu1
[releases.git] / arch / m68k / sun3 / mmu_emu.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 ** Tablewalk MMU emulator
4 **
5 ** by Toshiyasu Morita
6 **
7 ** Started 1/16/98 @ 2:22 am
8 */
9
10 #include <linux/init.h>
11 #include <linux/mman.h>
12 #include <linux/mm.h>
13 #include <linux/kernel.h>
14 #include <linux/ptrace.h>
15 #include <linux/delay.h>
16 #include <linux/bootmem.h>
17 #include <linux/bitops.h>
18 #include <linux/module.h>
19 #include <linux/sched/mm.h>
20
21 #include <asm/setup.h>
22 #include <asm/traps.h>
23 #include <linux/uaccess.h>
24 #include <asm/page.h>
25 #include <asm/pgtable.h>
26 #include <asm/sun3mmu.h>
27 #include <asm/segment.h>
28 #include <asm/oplib.h>
29 #include <asm/mmu_context.h>
30 #include <asm/dvma.h>
31
32
33 #undef DEBUG_MMU_EMU
34 #define DEBUG_PROM_MAPS
35
36 /*
37 ** Defines
38 */
39
40 #define CONTEXTS_NUM            8
41 #define SEGMAPS_PER_CONTEXT_NUM 2048
42 #define PAGES_PER_SEGMENT       16
43 #define PMEGS_NUM               256
44 #define PMEG_MASK               0xFF
45
46 /*
47 ** Globals
48 */
49
50 unsigned long m68k_vmalloc_end;
51 EXPORT_SYMBOL(m68k_vmalloc_end);
52
53 unsigned long pmeg_vaddr[PMEGS_NUM];
54 unsigned char pmeg_alloc[PMEGS_NUM];
55 unsigned char pmeg_ctx[PMEGS_NUM];
56
57 /* pointers to the mm structs for each task in each
58    context. 0xffffffff is a marker for kernel context */
59 static struct mm_struct *ctx_alloc[CONTEXTS_NUM] = {
60     [0] = (struct mm_struct *)0xffffffff
61 };
62
63 /* has this context been mmdrop'd? */
64 static unsigned char ctx_avail = CONTEXTS_NUM-1;
65
66 /* array of pages to be marked off for the rom when we do mem_init later */
67 /* 256 pages lets the rom take up to 2mb of physical ram..  I really
68    hope it never wants mote than that. */
69 unsigned long rom_pages[256];
70
71 /* Print a PTE value in symbolic form. For debugging. */
72 void print_pte (pte_t pte)
73 {
74 #if 0
75         /* Verbose version. */
76         unsigned long val = pte_val (pte);
77         pr_cont(" pte=%lx [addr=%lx",
78                 val, (val & SUN3_PAGE_PGNUM_MASK) << PAGE_SHIFT);
79         if (val & SUN3_PAGE_VALID)      pr_cont(" valid");
80         if (val & SUN3_PAGE_WRITEABLE)  pr_cont(" write");
81         if (val & SUN3_PAGE_SYSTEM)     pr_cont(" sys");
82         if (val & SUN3_PAGE_NOCACHE)    pr_cont(" nocache");
83         if (val & SUN3_PAGE_ACCESSED)   pr_cont(" accessed");
84         if (val & SUN3_PAGE_MODIFIED)   pr_cont(" modified");
85         switch (val & SUN3_PAGE_TYPE_MASK) {
86                 case SUN3_PAGE_TYPE_MEMORY: pr_cont(" memory"); break;
87                 case SUN3_PAGE_TYPE_IO:     pr_cont(" io");     break;
88                 case SUN3_PAGE_TYPE_VME16:  pr_cont(" vme16");  break;
89                 case SUN3_PAGE_TYPE_VME32:  pr_cont(" vme32");  break;
90         }
91         pr_cont("]\n");
92 #else
93         /* Terse version. More likely to fit on a line. */
94         unsigned long val = pte_val (pte);
95         char flags[7], *type;
96
97         flags[0] = (val & SUN3_PAGE_VALID)     ? 'v' : '-';
98         flags[1] = (val & SUN3_PAGE_WRITEABLE) ? 'w' : '-';
99         flags[2] = (val & SUN3_PAGE_SYSTEM)    ? 's' : '-';
100         flags[3] = (val & SUN3_PAGE_NOCACHE)   ? 'x' : '-';
101         flags[4] = (val & SUN3_PAGE_ACCESSED)  ? 'a' : '-';
102         flags[5] = (val & SUN3_PAGE_MODIFIED)  ? 'm' : '-';
103         flags[6] = '\0';
104
105         switch (val & SUN3_PAGE_TYPE_MASK) {
106                 case SUN3_PAGE_TYPE_MEMORY: type = "memory"; break;
107                 case SUN3_PAGE_TYPE_IO:     type = "io"    ; break;
108                 case SUN3_PAGE_TYPE_VME16:  type = "vme16" ; break;
109                 case SUN3_PAGE_TYPE_VME32:  type = "vme32" ; break;
110                 default: type = "unknown?"; break;
111         }
112
113         pr_cont(" pte=%08lx [%07lx %s %s]\n",
114                 val, (val & SUN3_PAGE_PGNUM_MASK) << PAGE_SHIFT, flags, type);
115 #endif
116 }
117
118 /* Print the PTE value for a given virtual address. For debugging. */
119 void print_pte_vaddr (unsigned long vaddr)
120 {
121         pr_cont(" vaddr=%lx [%02lx]", vaddr, sun3_get_segmap (vaddr));
122         print_pte (__pte (sun3_get_pte (vaddr)));
123 }
124
125 /*
126  * Initialise the MMU emulator.
127  */
128 void __init mmu_emu_init(unsigned long bootmem_end)
129 {
130         unsigned long seg, num;
131         int i,j;
132
133         memset(rom_pages, 0, sizeof(rom_pages));
134         memset(pmeg_vaddr, 0, sizeof(pmeg_vaddr));
135         memset(pmeg_alloc, 0, sizeof(pmeg_alloc));
136         memset(pmeg_ctx, 0, sizeof(pmeg_ctx));
137
138         /* pmeg align the end of bootmem, adding another pmeg,
139          * later bootmem allocations will likely need it */
140         bootmem_end = (bootmem_end + (2 * SUN3_PMEG_SIZE)) & ~SUN3_PMEG_MASK;
141
142         /* mark all of the pmegs used thus far as reserved */
143         for (i=0; i < __pa(bootmem_end) / SUN3_PMEG_SIZE ; ++i)
144                 pmeg_alloc[i] = 2;
145
146
147         /* I'm thinking that most of the top pmeg's are going to be
148            used for something, and we probably shouldn't risk it */
149         for(num = 0xf0; num <= 0xff; num++)
150                 pmeg_alloc[num] = 2;
151
152         /* liberate all existing mappings in the rest of kernel space */
153         for(seg = bootmem_end; seg < 0x0f800000; seg += SUN3_PMEG_SIZE) {
154                 i = sun3_get_segmap(seg);
155
156                 if(!pmeg_alloc[i]) {
157 #ifdef DEBUG_MMU_EMU
158                         pr_info("freed:");
159                         print_pte_vaddr (seg);
160 #endif
161                         sun3_put_segmap(seg, SUN3_INVALID_PMEG);
162                 }
163         }
164
165         j = 0;
166         for (num=0, seg=0x0F800000; seg<0x10000000; seg+=16*PAGE_SIZE) {
167                 if (sun3_get_segmap (seg) != SUN3_INVALID_PMEG) {
168 #ifdef DEBUG_PROM_MAPS
169                         for(i = 0; i < 16; i++) {
170                                 pr_info("mapped:");
171                                 print_pte_vaddr (seg + (i*PAGE_SIZE));
172                                 break;
173                         }
174 #endif
175                         // the lowest mapping here is the end of our
176                         // vmalloc region
177                         if (!m68k_vmalloc_end)
178                                 m68k_vmalloc_end = seg;
179
180                         // mark the segmap alloc'd, and reserve any
181                         // of the first 0xbff pages the hardware is
182                         // already using...  does any sun3 support > 24mb?
183                         pmeg_alloc[sun3_get_segmap(seg)] = 2;
184                 }
185         }
186
187         dvma_init();
188
189
190         /* blank everything below the kernel, and we've got the base
191            mapping to start all the contexts off with... */
192         for(seg = 0; seg < PAGE_OFFSET; seg += SUN3_PMEG_SIZE)
193                 sun3_put_segmap(seg, SUN3_INVALID_PMEG);
194
195         set_fs(MAKE_MM_SEG(3));
196         for(seg = 0; seg < 0x10000000; seg += SUN3_PMEG_SIZE) {
197                 i = sun3_get_segmap(seg);
198                 for(j = 1; j < CONTEXTS_NUM; j++)
199                         (*(romvec->pv_setctxt))(j, (void *)seg, i);
200         }
201         set_fs(KERNEL_DS);
202
203 }
204
205 /* erase the mappings for a dead context.  Uses the pg_dir for hints
206    as the pmeg tables proved somewhat unreliable, and unmapping all of
207    TASK_SIZE was much slower and no more stable. */
208 /* todo: find a better way to keep track of the pmegs used by a
209    context for when they're cleared */
210 void clear_context(unsigned long context)
211 {
212      unsigned char oldctx;
213      unsigned long i;
214
215      if(context) {
216              if(!ctx_alloc[context])
217                      panic("clear_context: context not allocated\n");
218
219              ctx_alloc[context]->context = SUN3_INVALID_CONTEXT;
220              ctx_alloc[context] = (struct mm_struct *)0;
221              ctx_avail++;
222      }
223
224      oldctx = sun3_get_context();
225
226      sun3_put_context(context);
227
228      for(i = 0; i < SUN3_INVALID_PMEG; i++) {
229              if((pmeg_ctx[i] == context) && (pmeg_alloc[i] == 1)) {
230                      sun3_put_segmap(pmeg_vaddr[i], SUN3_INVALID_PMEG);
231                      pmeg_ctx[i] = 0;
232                      pmeg_alloc[i] = 0;
233                      pmeg_vaddr[i] = 0;
234              }
235      }
236
237      sun3_put_context(oldctx);
238 }
239
240 /* gets an empty context.  if full, kills the next context listed to
241    die first */
242 /* This context invalidation scheme is, well, totally arbitrary, I'm
243    sure it could be much more intelligent...  but it gets the job done
244    for now without much overhead in making it's decision. */
245 /* todo: come up with optimized scheme for flushing contexts */
246 unsigned long get_free_context(struct mm_struct *mm)
247 {
248         unsigned long new = 1;
249         static unsigned char next_to_die = 1;
250
251         if(!ctx_avail) {
252                 /* kill someone to get our context */
253                 new = next_to_die;
254                 clear_context(new);
255                 next_to_die = (next_to_die + 1) & 0x7;
256                 if(!next_to_die)
257                         next_to_die++;
258         } else {
259                 while(new < CONTEXTS_NUM) {
260                         if(ctx_alloc[new])
261                                 new++;
262                         else
263                                 break;
264                 }
265                 // check to make sure one was really free...
266                 if(new == CONTEXTS_NUM)
267                         panic("get_free_context: failed to find free context");
268         }
269
270         ctx_alloc[new] = mm;
271         ctx_avail--;
272
273         return new;
274 }
275
276 /*
277  * Dynamically select a `spare' PMEG and use it to map virtual `vaddr' in
278  * `context'. Maintain internal PMEG management structures. This doesn't
279  * actually map the physical address, but does clear the old mappings.
280  */
281 //todo: better allocation scheme? but is extra complexity worthwhile?
282 //todo: only clear old entries if necessary? how to tell?
283
284 inline void mmu_emu_map_pmeg (int context, int vaddr)
285 {
286         static unsigned char curr_pmeg = 128;
287         int i;
288
289         /* Round address to PMEG boundary. */
290         vaddr &= ~SUN3_PMEG_MASK;
291
292         /* Find a spare one. */
293         while (pmeg_alloc[curr_pmeg] == 2)
294                 ++curr_pmeg;
295
296
297 #ifdef DEBUG_MMU_EMU
298         pr_info("mmu_emu_map_pmeg: pmeg %x to context %d vaddr %x\n",
299                 curr_pmeg, context, vaddr);
300 #endif
301
302         /* Invalidate old mapping for the pmeg, if any */
303         if (pmeg_alloc[curr_pmeg] == 1) {
304                 sun3_put_context(pmeg_ctx[curr_pmeg]);
305                 sun3_put_segmap (pmeg_vaddr[curr_pmeg], SUN3_INVALID_PMEG);
306                 sun3_put_context(context);
307         }
308
309         /* Update PMEG management structures. */
310         // don't take pmeg's away from the kernel...
311         if(vaddr >= PAGE_OFFSET) {
312                 /* map kernel pmegs into all contexts */
313                 unsigned char i;
314
315                 for(i = 0; i < CONTEXTS_NUM; i++) {
316                         sun3_put_context(i);
317                         sun3_put_segmap (vaddr, curr_pmeg);
318                 }
319                 sun3_put_context(context);
320                 pmeg_alloc[curr_pmeg] = 2;
321                 pmeg_ctx[curr_pmeg] = 0;
322
323         }
324         else {
325                 pmeg_alloc[curr_pmeg] = 1;
326                 pmeg_ctx[curr_pmeg] = context;
327                 sun3_put_segmap (vaddr, curr_pmeg);
328
329         }
330         pmeg_vaddr[curr_pmeg] = vaddr;
331
332         /* Set hardware mapping and clear the old PTE entries. */
333         for (i=0; i<SUN3_PMEG_SIZE; i+=SUN3_PTE_SIZE)
334                 sun3_put_pte (vaddr + i, SUN3_PAGE_SYSTEM);
335
336         /* Consider a different one next time. */
337         ++curr_pmeg;
338 }
339
340 /*
341  * Handle a pagefault at virtual address `vaddr'; check if there should be a
342  * page there (specifically, whether the software pagetables indicate that
343  * there is). This is necessary due to the limited size of the second-level
344  * Sun3 hardware pagetables (256 groups of 16 pages). If there should be a
345  * mapping present, we select a `spare' PMEG and use it to create a mapping.
346  * `read_flag' is nonzero for a read fault; zero for a write. Returns nonzero
347  * if we successfully handled the fault.
348  */
349 //todo: should we bump minor pagefault counter? if so, here or in caller?
350 //todo: possibly inline this into bus_error030 in <asm/buserror.h> ?
351
352 // kernel_fault is set when a kernel page couldn't be demand mapped,
353 // and forces another try using the kernel page table.  basically a
354 // hack so that vmalloc would work correctly.
355
356 int mmu_emu_handle_fault (unsigned long vaddr, int read_flag, int kernel_fault)
357 {
358         unsigned long segment, offset;
359         unsigned char context;
360         pte_t *pte;
361         pgd_t * crp;
362
363         if(current->mm == NULL) {
364                 crp = swapper_pg_dir;
365                 context = 0;
366         } else {
367                 context = current->mm->context;
368                 if(kernel_fault)
369                         crp = swapper_pg_dir;
370                 else
371                         crp = current->mm->pgd;
372         }
373
374 #ifdef DEBUG_MMU_EMU
375         pr_info("mmu_emu_handle_fault: vaddr=%lx type=%s crp=%p\n",
376                 vaddr, read_flag ? "read" : "write", crp);
377 #endif
378
379         segment = (vaddr >> SUN3_PMEG_SIZE_BITS) & 0x7FF;
380         offset  = (vaddr >> SUN3_PTE_SIZE_BITS) & 0xF;
381
382 #ifdef DEBUG_MMU_EMU
383         pr_info("mmu_emu_handle_fault: segment=%lx offset=%lx\n", segment,
384                 offset);
385 #endif
386
387         pte = (pte_t *) pgd_val (*(crp + segment));
388
389 //todo: next line should check for valid pmd properly.
390         if (!pte) {
391 //                pr_info("mmu_emu_handle_fault: invalid pmd\n");
392                 return 0;
393         }
394
395         pte = (pte_t *) __va ((unsigned long)(pte + offset));
396
397         /* Make sure this is a valid page */
398         if (!(pte_val (*pte) & SUN3_PAGE_VALID))
399                 return 0;
400
401         /* Make sure there's a pmeg allocated for the page */
402         if (sun3_get_segmap (vaddr&~SUN3_PMEG_MASK) == SUN3_INVALID_PMEG)
403                 mmu_emu_map_pmeg (context, vaddr);
404
405         /* Write the pte value to hardware MMU */
406         sun3_put_pte (vaddr&PAGE_MASK, pte_val (*pte));
407
408         /* Update software copy of the pte value */
409 // I'm not sure this is necessary. If this is required, we ought to simply
410 // copy this out when we reuse the PMEG or at some other convenient time.
411 // Doing it here is fairly meaningless, anyway, as we only know about the
412 // first access to a given page. --m
413         if (!read_flag) {
414                 if (pte_val (*pte) & SUN3_PAGE_WRITEABLE)
415                         pte_val (*pte) |= (SUN3_PAGE_ACCESSED
416                                            | SUN3_PAGE_MODIFIED);
417                 else
418                         return 0;       /* Write-protect error. */
419         } else
420                 pte_val (*pte) |= SUN3_PAGE_ACCESSED;
421
422 #ifdef DEBUG_MMU_EMU
423         pr_info("seg:%ld crp:%p ->", get_fs().seg, crp);
424         print_pte_vaddr (vaddr);
425         pr_cont("\n");
426 #endif
427
428         return 1;
429 }