GNU Linux-libre 4.14.290-gnu1
[releases.git] / arch / metag / kernel / smp.c
1 /*
2  *  Copyright (C) 2009,2010,2011 Imagination Technologies Ltd.
3  *
4  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/atomic.h>
11 #include <linux/completion.h>
12 #include <linux/delay.h>
13 #include <linux/init.h>
14 #include <linux/spinlock.h>
15 #include <linux/sched/mm.h>
16 #include <linux/sched/hotplug.h>
17 #include <linux/sched/task_stack.h>
18 #include <linux/interrupt.h>
19 #include <linux/cache.h>
20 #include <linux/profile.h>
21 #include <linux/errno.h>
22 #include <linux/mm.h>
23 #include <linux/err.h>
24 #include <linux/cpu.h>
25 #include <linux/smp.h>
26 #include <linux/seq_file.h>
27 #include <linux/irq.h>
28 #include <linux/bootmem.h>
29
30 #include <asm/cacheflush.h>
31 #include <asm/cachepart.h>
32 #include <asm/core_reg.h>
33 #include <asm/cpu.h>
34 #include <asm/global_lock.h>
35 #include <asm/metag_mem.h>
36 #include <asm/mmu_context.h>
37 #include <asm/pgtable.h>
38 #include <asm/pgalloc.h>
39 #include <asm/processor.h>
40 #include <asm/setup.h>
41 #include <asm/tlbflush.h>
42 #include <asm/hwthread.h>
43 #include <asm/traps.h>
44
45 #define SYSC_DCPART(n)  (SYSC_DCPART0 + SYSC_xCPARTn_STRIDE * (n))
46 #define SYSC_ICPART(n)  (SYSC_ICPART0 + SYSC_xCPARTn_STRIDE * (n))
47
48 DECLARE_PER_CPU(PTBI, pTBI);
49
50 void *secondary_data_stack;
51
52 /*
53  * structures for inter-processor calls
54  * - A collection of single bit ipi messages.
55  */
56 struct ipi_data {
57         spinlock_t lock;
58         unsigned long ipi_count;
59         unsigned long bits;
60 };
61
62 static DEFINE_PER_CPU(struct ipi_data, ipi_data) = {
63         .lock   = __SPIN_LOCK_UNLOCKED(ipi_data.lock),
64 };
65
66 static DEFINE_SPINLOCK(boot_lock);
67
68 static DECLARE_COMPLETION(cpu_running);
69
70 /*
71  * "thread" is assumed to be a valid Meta hardware thread ID.
72  */
73 static int boot_secondary(unsigned int thread, struct task_struct *idle)
74 {
75         u32 val;
76
77         /*
78          * set synchronisation state between this boot processor
79          * and the secondary one
80          */
81         spin_lock(&boot_lock);
82
83         core_reg_write(TXUPC_ID, 0, thread, (unsigned int)secondary_startup);
84         core_reg_write(TXUPC_ID, 1, thread, 0);
85
86         /*
87          * Give the thread privilege (PSTAT) and clear potentially problematic
88          * bits in the process (namely ISTAT, CBMarker, CBMarkerI, LSM_STEP).
89          */
90         core_reg_write(TXUCT_ID, TXSTATUS_REGNUM, thread, TXSTATUS_PSTAT_BIT);
91
92         /* Clear the minim enable bit. */
93         val = core_reg_read(TXUCT_ID, TXPRIVEXT_REGNUM, thread);
94         core_reg_write(TXUCT_ID, TXPRIVEXT_REGNUM, thread, val & ~0x80);
95
96         /*
97          * set the ThreadEnable bit (0x1) in the TXENABLE register
98          * for the specified thread - off it goes!
99          */
100         val = core_reg_read(TXUCT_ID, TXENABLE_REGNUM, thread);
101         core_reg_write(TXUCT_ID, TXENABLE_REGNUM, thread, val | 0x1);
102
103         /*
104          * now the secondary core is starting up let it run its
105          * calibrations, then wait for it to finish
106          */
107         spin_unlock(&boot_lock);
108
109         return 0;
110 }
111
112 /**
113  * describe_cachepart_change: describe a change to cache partitions.
114  * @thread:     Hardware thread number.
115  * @label:      Label of cache type, e.g. "dcache" or "icache".
116  * @sz:         Total size of the cache.
117  * @old:        Old cache partition configuration (*CPART* register).
118  * @new:        New cache partition configuration (*CPART* register).
119  *
120  * If the cache partition has changed, prints a message to the log describing
121  * those changes.
122  */
123 static void describe_cachepart_change(unsigned int thread, const char *label,
124                                       unsigned int sz, unsigned int old,
125                                       unsigned int new)
126 {
127         unsigned int lor1, land1, gor1, gand1;
128         unsigned int lor2, land2, gor2, gand2;
129         unsigned int diff = old ^ new;
130
131         if (!diff)
132                 return;
133
134         pr_info("Thread %d: %s partition changed:", thread, label);
135         if (diff & (SYSC_xCPARTL_OR_BITS | SYSC_xCPARTL_AND_BITS)) {
136                 lor1   = (old & SYSC_xCPARTL_OR_BITS)  >> SYSC_xCPARTL_OR_S;
137                 lor2   = (new & SYSC_xCPARTL_OR_BITS)  >> SYSC_xCPARTL_OR_S;
138                 land1  = (old & SYSC_xCPARTL_AND_BITS) >> SYSC_xCPARTL_AND_S;
139                 land2  = (new & SYSC_xCPARTL_AND_BITS) >> SYSC_xCPARTL_AND_S;
140                 pr_cont(" L:%#x+%#x->%#x+%#x",
141                         (lor1 * sz) >> 4,
142                         ((land1 + 1) * sz) >> 4,
143                         (lor2 * sz) >> 4,
144                         ((land2 + 1) * sz) >> 4);
145         }
146         if (diff & (SYSC_xCPARTG_OR_BITS | SYSC_xCPARTG_AND_BITS)) {
147                 gor1   = (old & SYSC_xCPARTG_OR_BITS)  >> SYSC_xCPARTG_OR_S;
148                 gor2   = (new & SYSC_xCPARTG_OR_BITS)  >> SYSC_xCPARTG_OR_S;
149                 gand1  = (old & SYSC_xCPARTG_AND_BITS) >> SYSC_xCPARTG_AND_S;
150                 gand2  = (new & SYSC_xCPARTG_AND_BITS) >> SYSC_xCPARTG_AND_S;
151                 pr_cont(" G:%#x+%#x->%#x+%#x",
152                         (gor1 * sz) >> 4,
153                         ((gand1 + 1) * sz) >> 4,
154                         (gor2 * sz) >> 4,
155                         ((gand2 + 1) * sz) >> 4);
156         }
157         if (diff & SYSC_CWRMODE_BIT)
158                 pr_cont(" %sWR",
159                         (new & SYSC_CWRMODE_BIT) ? "+" : "-");
160         if (diff & SYSC_DCPART_GCON_BIT)
161                 pr_cont(" %sGCOn",
162                         (new & SYSC_DCPART_GCON_BIT) ? "+" : "-");
163         pr_cont("\n");
164 }
165
166 /**
167  * setup_smp_cache: ensure cache coherency for new SMP thread.
168  * @thread:     New hardware thread number.
169  *
170  * Ensures that coherency is enabled and that the threads share the same cache
171  * partitions.
172  */
173 static void setup_smp_cache(unsigned int thread)
174 {
175         unsigned int this_thread, lflags;
176         unsigned int dcsz, dcpart_this, dcpart_old, dcpart_new;
177         unsigned int icsz, icpart_old, icpart_new;
178
179         /*
180          * Copy over the current thread's cache partition configuration to the
181          * new thread so that they share cache partitions.
182          */
183         __global_lock2(lflags);
184         this_thread = hard_processor_id();
185         /* Share dcache partition */
186         dcpart_this = metag_in32(SYSC_DCPART(this_thread));
187         dcpart_old = metag_in32(SYSC_DCPART(thread));
188         dcpart_new = dcpart_this;
189 #if PAGE_OFFSET < LINGLOBAL_BASE
190         /*
191          * For the local data cache to be coherent the threads must also have
192          * GCOn enabled.
193          */
194         dcpart_new |= SYSC_DCPART_GCON_BIT;
195         metag_out32(dcpart_new, SYSC_DCPART(this_thread));
196 #endif
197         metag_out32(dcpart_new, SYSC_DCPART(thread));
198         /* Share icache partition too */
199         icpart_new = metag_in32(SYSC_ICPART(this_thread));
200         icpart_old = metag_in32(SYSC_ICPART(thread));
201         metag_out32(icpart_new, SYSC_ICPART(thread));
202         __global_unlock2(lflags);
203
204         /*
205          * Log if the cache partitions were altered so the user is aware of any
206          * potential unintentional cache wastage.
207          */
208         dcsz = get_dcache_size();
209         icsz = get_dcache_size();
210         describe_cachepart_change(this_thread, "dcache", dcsz,
211                                   dcpart_this, dcpart_new);
212         describe_cachepart_change(thread, "dcache", dcsz,
213                                   dcpart_old, dcpart_new);
214         describe_cachepart_change(thread, "icache", icsz,
215                                   icpart_old, icpart_new);
216 }
217
218 int __cpu_up(unsigned int cpu, struct task_struct *idle)
219 {
220         unsigned int thread = cpu_2_hwthread_id[cpu];
221         int ret;
222
223         load_pgd(swapper_pg_dir, thread);
224
225         flush_tlb_all();
226
227         setup_smp_cache(thread);
228
229         /*
230          * Tell the secondary CPU where to find its idle thread's stack.
231          */
232         secondary_data_stack = task_stack_page(idle);
233
234         wmb();
235
236         /*
237          * Now bring the CPU into our world.
238          */
239         ret = boot_secondary(thread, idle);
240         if (ret == 0) {
241                 /*
242                  * CPU was successfully started, wait for it
243                  * to come online or time out.
244                  */
245                 wait_for_completion_timeout(&cpu_running,
246                                             msecs_to_jiffies(1000));
247
248                 if (!cpu_online(cpu))
249                         ret = -EIO;
250         }
251
252         secondary_data_stack = NULL;
253
254         if (ret) {
255                 pr_crit("CPU%u: processor failed to boot\n", cpu);
256
257                 /*
258                  * FIXME: We need to clean up the new idle thread. --rmk
259                  */
260         }
261
262         return ret;
263 }
264
265 #ifdef CONFIG_HOTPLUG_CPU
266
267 /*
268  * __cpu_disable runs on the processor to be shutdown.
269  */
270 int __cpu_disable(void)
271 {
272         unsigned int cpu = smp_processor_id();
273
274         /*
275          * Take this CPU offline.  Once we clear this, we can't return,
276          * and we must not schedule until we're ready to give up the cpu.
277          */
278         set_cpu_online(cpu, false);
279
280         /*
281          * OK - migrate IRQs away from this CPU
282          */
283         migrate_irqs();
284
285         /*
286          * Flush user cache and TLB mappings, and then remove this CPU
287          * from the vm mask set of all processes.
288          */
289         flush_cache_all();
290         local_flush_tlb_all();
291
292         clear_tasks_mm_cpumask(cpu);
293
294         return 0;
295 }
296
297 /*
298  * called on the thread which is asking for a CPU to be shutdown -
299  * waits until shutdown has completed, or it is timed out.
300  */
301 void __cpu_die(unsigned int cpu)
302 {
303         if (!cpu_wait_death(cpu, 1))
304                 pr_err("CPU%u: unable to kill\n", cpu);
305 }
306
307 /*
308  * Called from the idle thread for the CPU which has been shutdown.
309  *
310  * Note that we do not return from this function. If this cpu is
311  * brought online again it will need to run secondary_startup().
312  */
313 void cpu_die(void)
314 {
315         local_irq_disable();
316         idle_task_exit();
317         irq_ctx_exit(smp_processor_id());
318
319         (void)cpu_report_death();
320
321         asm ("XOR       TXENABLE, D0Re0,D0Re0\n");
322 }
323 #endif /* CONFIG_HOTPLUG_CPU */
324
325 /*
326  * Called by both boot and secondaries to move global data into
327  * per-processor storage.
328  */
329 void smp_store_cpu_info(unsigned int cpuid)
330 {
331         struct cpuinfo_metag *cpu_info = &per_cpu(cpu_data, cpuid);
332
333         cpu_info->loops_per_jiffy = loops_per_jiffy;
334 }
335
336 /*
337  * This is the secondary CPU boot entry.  We're using this CPUs
338  * idle thread stack and the global page tables.
339  */
340 asmlinkage void secondary_start_kernel(void)
341 {
342         struct mm_struct *mm = &init_mm;
343         unsigned int cpu = smp_processor_id();
344
345         /*
346          * All kernel threads share the same mm context; grab a
347          * reference and switch to it.
348          */
349         mmget(mm);
350         mmgrab(mm);
351         current->active_mm = mm;
352         cpumask_set_cpu(cpu, mm_cpumask(mm));
353         enter_lazy_tlb(mm, current);
354         local_flush_tlb_all();
355
356         /*
357          * TODO: Some day it might be useful for each Linux CPU to
358          * have its own TBI structure. That would allow each Linux CPU
359          * to run different interrupt handlers for the same IRQ
360          * number.
361          *
362          * For now, simply copying the pointer to the boot CPU's TBI
363          * structure is sufficient because we always want to run the
364          * same interrupt handler whatever CPU takes the interrupt.
365          */
366         per_cpu(pTBI, cpu) = __TBI(TBID_ISTAT_BIT);
367
368         if (!per_cpu(pTBI, cpu))
369                 panic("No TBI found!");
370
371         per_cpu_trap_init(cpu);
372         irq_ctx_init(cpu);
373
374         preempt_disable();
375
376         setup_priv();
377
378         notify_cpu_starting(cpu);
379
380         pr_info("CPU%u (thread %u): Booted secondary processor\n",
381                 cpu, cpu_2_hwthread_id[cpu]);
382
383         calibrate_delay();
384         smp_store_cpu_info(cpu);
385
386         /*
387          * OK, now it's safe to let the boot CPU continue
388          */
389         set_cpu_online(cpu, true);
390         complete(&cpu_running);
391
392         /*
393          * Enable local interrupts.
394          */
395         tbi_startup_interrupt(TBID_SIGNUM_TRT);
396         local_irq_enable();
397
398         /*
399          * OK, it's off to the idle thread for us
400          */
401         cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
402 }
403
404 void __init smp_cpus_done(unsigned int max_cpus)
405 {
406         int cpu;
407         unsigned long bogosum = 0;
408
409         for_each_online_cpu(cpu)
410                 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
411
412         pr_info("SMP: Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
413                 num_online_cpus(),
414                 bogosum / (500000/HZ),
415                 (bogosum / (5000/HZ)) % 100);
416 }
417
418 void __init smp_prepare_cpus(unsigned int max_cpus)
419 {
420         unsigned int cpu = smp_processor_id();
421
422         init_new_context(current, &init_mm);
423         current_thread_info()->cpu = cpu;
424
425         smp_store_cpu_info(cpu);
426         init_cpu_present(cpu_possible_mask);
427 }
428
429 void __init smp_prepare_boot_cpu(void)
430 {
431         unsigned int cpu = smp_processor_id();
432
433         per_cpu(pTBI, cpu) = __TBI(TBID_ISTAT_BIT);
434
435         if (!per_cpu(pTBI, cpu))
436                 panic("No TBI found!");
437 }
438
439 static void smp_cross_call(cpumask_t callmap, enum ipi_msg_type msg);
440
441 static void send_ipi_message(const struct cpumask *mask, enum ipi_msg_type msg)
442 {
443         unsigned long flags;
444         unsigned int cpu;
445         cpumask_t map;
446
447         cpumask_clear(&map);
448         local_irq_save(flags);
449
450         for_each_cpu(cpu, mask) {
451                 struct ipi_data *ipi = &per_cpu(ipi_data, cpu);
452
453                 spin_lock(&ipi->lock);
454
455                 /*
456                  * KICK interrupts are queued in hardware so we'll get
457                  * multiple interrupts if we call smp_cross_call()
458                  * multiple times for one msg. The problem is that we
459                  * only have one bit for each message - we can't queue
460                  * them in software.
461                  *
462                  * The first time through ipi_handler() we'll clear
463                  * the msg bit, having done all the work. But when we
464                  * return we'll get _another_ interrupt (and another,
465                  * and another until we've handled all the queued
466                  * KICKs). Running ipi_handler() when there's no work
467                  * to do is bad because that's how kick handler
468                  * chaining detects who the KICK was intended for.
469                  * See arch/metag/kernel/kick.c for more details.
470                  *
471                  * So only add 'cpu' to 'map' if we haven't already
472                  * queued a KICK interrupt for 'msg'.
473                  */
474                 if (!(ipi->bits & (1 << msg))) {
475                         ipi->bits |= 1 << msg;
476                         cpumask_set_cpu(cpu, &map);
477                 }
478
479                 spin_unlock(&ipi->lock);
480         }
481
482         /*
483          * Call the platform specific cross-CPU call function.
484          */
485         smp_cross_call(map, msg);
486
487         local_irq_restore(flags);
488 }
489
490 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
491 {
492         send_ipi_message(mask, IPI_CALL_FUNC);
493 }
494
495 void arch_send_call_function_single_ipi(int cpu)
496 {
497         send_ipi_message(cpumask_of(cpu), IPI_CALL_FUNC);
498 }
499
500 void show_ipi_list(struct seq_file *p)
501 {
502         unsigned int cpu;
503
504         seq_puts(p, "IPI:");
505
506         for_each_present_cpu(cpu)
507                 seq_printf(p, " %10lu", per_cpu(ipi_data, cpu).ipi_count);
508
509         seq_putc(p, '\n');
510 }
511
512 static DEFINE_SPINLOCK(stop_lock);
513
514 /*
515  * Main handler for inter-processor interrupts
516  *
517  * For Meta, the ipimask now only identifies a single
518  * category of IPI (Bit 1 IPIs have been replaced by a
519  * different mechanism):
520  *
521  *  Bit 0 - Inter-processor function call
522  */
523 static int do_IPI(void)
524 {
525         unsigned int cpu = smp_processor_id();
526         struct ipi_data *ipi = &per_cpu(ipi_data, cpu);
527         unsigned long msgs, nextmsg;
528         int handled = 0;
529
530         ipi->ipi_count++;
531
532         spin_lock(&ipi->lock);
533         msgs = ipi->bits;
534         nextmsg = msgs & -msgs;
535         ipi->bits &= ~nextmsg;
536         spin_unlock(&ipi->lock);
537
538         if (nextmsg) {
539                 handled = 1;
540
541                 nextmsg = ffz(~nextmsg);
542                 switch (nextmsg) {
543                 case IPI_RESCHEDULE:
544                         scheduler_ipi();
545                         break;
546
547                 case IPI_CALL_FUNC:
548                         generic_smp_call_function_interrupt();
549                         break;
550
551                 default:
552                         pr_crit("CPU%u: Unknown IPI message 0x%lx\n",
553                                 cpu, nextmsg);
554                         break;
555                 }
556         }
557
558         return handled;
559 }
560
561 void smp_send_reschedule(int cpu)
562 {
563         send_ipi_message(cpumask_of(cpu), IPI_RESCHEDULE);
564 }
565
566 static void stop_this_cpu(void *data)
567 {
568         unsigned int cpu = smp_processor_id();
569
570         if (system_state <= SYSTEM_RUNNING) {
571                 spin_lock(&stop_lock);
572                 pr_crit("CPU%u: stopping\n", cpu);
573                 dump_stack();
574                 spin_unlock(&stop_lock);
575         }
576
577         set_cpu_online(cpu, false);
578
579         local_irq_disable();
580
581         hard_processor_halt(HALT_OK);
582 }
583
584 void smp_send_stop(void)
585 {
586         smp_call_function(stop_this_cpu, NULL, 0);
587 }
588
589 /*
590  * not supported here
591  */
592 int setup_profiling_timer(unsigned int multiplier)
593 {
594         return -EINVAL;
595 }
596
597 /*
598  * We use KICKs for inter-processor interrupts.
599  *
600  * For every CPU in "callmap" the IPI data must already have been
601  * stored in that CPU's "ipi_data" member prior to calling this
602  * function.
603  */
604 static void kick_raise_softirq(cpumask_t callmap, unsigned int irq)
605 {
606         int cpu;
607
608         for_each_cpu(cpu, &callmap) {
609                 unsigned int thread;
610
611                 thread = cpu_2_hwthread_id[cpu];
612
613                 BUG_ON(thread == BAD_HWTHREAD_ID);
614
615                 metag_out32(1, T0KICKI + (thread * TnXKICK_STRIDE));
616         }
617 }
618
619 static TBIRES ipi_handler(TBIRES State, int SigNum, int Triggers,
620                    int Inst, PTBI pTBI, int *handled)
621 {
622         *handled = do_IPI();
623
624         return State;
625 }
626
627 static struct kick_irq_handler ipi_irq = {
628         .func = ipi_handler,
629 };
630
631 static void smp_cross_call(cpumask_t callmap, enum ipi_msg_type msg)
632 {
633         kick_raise_softirq(callmap, 1);
634 }
635
636 static inline unsigned int get_core_count(void)
637 {
638         int i;
639         unsigned int ret = 0;
640
641         for (i = 0; i < CONFIG_NR_CPUS; i++) {
642                 if (core_reg_read(TXUCT_ID, TXENABLE_REGNUM, i))
643                         ret++;
644         }
645
646         return ret;
647 }
648
649 /*
650  * Initialise the CPU possible map early - this describes the CPUs
651  * which may be present or become present in the system.
652  */
653 void __init smp_init_cpus(void)
654 {
655         unsigned int i, ncores = get_core_count();
656
657         /* If no hwthread_map early param was set use default mapping */
658         for (i = 0; i < NR_CPUS; i++)
659                 if (cpu_2_hwthread_id[i] == BAD_HWTHREAD_ID) {
660                         cpu_2_hwthread_id[i] = i;
661                         hwthread_id_2_cpu[i] = i;
662                 }
663
664         for (i = 0; i < ncores; i++)
665                 set_cpu_possible(i, true);
666
667         kick_register_func(&ipi_irq);
668 }