GNU Linux-libre 4.14.266-gnu1
[releases.git] / arch / mips / kernel / setup.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1995 Linus Torvalds
7  * Copyright (C) 1995 Waldorf Electronics
8  * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03  Ralf Baechle
9  * Copyright (C) 1996 Stoned Elipot
10  * Copyright (C) 1999 Silicon Graphics, Inc.
11  * Copyright (C) 2000, 2001, 2002, 2007  Maciej W. Rozycki
12  */
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/export.h>
16 #include <linux/screen_info.h>
17 #include <linux/memblock.h>
18 #include <linux/bootmem.h>
19 #include <linux/initrd.h>
20 #include <linux/root_dev.h>
21 #include <linux/highmem.h>
22 #include <linux/console.h>
23 #include <linux/pfn.h>
24 #include <linux/debugfs.h>
25 #include <linux/kexec.h>
26 #include <linux/sizes.h>
27 #include <linux/device.h>
28 #include <linux/dma-contiguous.h>
29 #include <linux/decompress/generic.h>
30 #include <linux/of_fdt.h>
31
32 #include <asm/addrspace.h>
33 #include <asm/bootinfo.h>
34 #include <asm/bugs.h>
35 #include <asm/cache.h>
36 #include <asm/cdmm.h>
37 #include <asm/cpu.h>
38 #include <asm/debug.h>
39 #include <asm/sections.h>
40 #include <asm/setup.h>
41 #include <asm/smp-ops.h>
42 #include <asm/prom.h>
43
44 #ifdef CONFIG_MIPS_ELF_APPENDED_DTB
45 const char __section(.appended_dtb) __appended_dtb[0x100000];
46 #endif /* CONFIG_MIPS_ELF_APPENDED_DTB */
47
48 struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
49
50 EXPORT_SYMBOL(cpu_data);
51
52 #ifdef CONFIG_VT
53 struct screen_info screen_info;
54 #endif
55
56 /*
57  * Setup information
58  *
59  * These are initialized so they are in the .data section
60  */
61 unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
62
63 EXPORT_SYMBOL(mips_machtype);
64
65 struct boot_mem_map boot_mem_map;
66
67 static char __initdata command_line[COMMAND_LINE_SIZE];
68 char __initdata arcs_cmdline[COMMAND_LINE_SIZE];
69
70 #ifdef CONFIG_CMDLINE_BOOL
71 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
72 #endif
73
74 /*
75  * mips_io_port_base is the begin of the address space to which x86 style
76  * I/O ports are mapped.
77  */
78 unsigned long mips_io_port_base = -1;
79 EXPORT_SYMBOL(mips_io_port_base);
80
81 static struct resource code_resource = { .name = "Kernel code", };
82 static struct resource data_resource = { .name = "Kernel data", };
83
84 static void *detect_magic __initdata = detect_memory_region;
85
86 void __init add_memory_region(phys_addr_t start, phys_addr_t size, long type)
87 {
88         int x = boot_mem_map.nr_map;
89         int i;
90
91         /*
92          * If the region reaches the top of the physical address space, adjust
93          * the size slightly so that (start + size) doesn't overflow
94          */
95         if (start + size - 1 == (phys_addr_t)ULLONG_MAX)
96                 --size;
97
98         /* Sanity check */
99         if (start + size < start) {
100                 pr_warn("Trying to add an invalid memory region, skipped\n");
101                 return;
102         }
103
104         /*
105          * Try to merge with existing entry, if any.
106          */
107         for (i = 0; i < boot_mem_map.nr_map; i++) {
108                 struct boot_mem_map_entry *entry = boot_mem_map.map + i;
109                 unsigned long top;
110
111                 if (entry->type != type)
112                         continue;
113
114                 if (start + size < entry->addr)
115                         continue;                       /* no overlap */
116
117                 if (entry->addr + entry->size < start)
118                         continue;                       /* no overlap */
119
120                 top = max(entry->addr + entry->size, start + size);
121                 entry->addr = min(entry->addr, start);
122                 entry->size = top - entry->addr;
123
124                 return;
125         }
126
127         if (boot_mem_map.nr_map == BOOT_MEM_MAP_MAX) {
128                 pr_err("Ooops! Too many entries in the memory map!\n");
129                 return;
130         }
131
132         boot_mem_map.map[x].addr = start;
133         boot_mem_map.map[x].size = size;
134         boot_mem_map.map[x].type = type;
135         boot_mem_map.nr_map++;
136 }
137
138 void __init detect_memory_region(phys_addr_t start, phys_addr_t sz_min, phys_addr_t sz_max)
139 {
140         void *dm = &detect_magic;
141         phys_addr_t size;
142
143         for (size = sz_min; size < sz_max; size <<= 1) {
144                 if (!memcmp(dm, dm + size, sizeof(detect_magic)))
145                         break;
146         }
147
148         pr_debug("Memory: %lluMB of RAM detected at 0x%llx (min: %lluMB, max: %lluMB)\n",
149                 ((unsigned long long) size) / SZ_1M,
150                 (unsigned long long) start,
151                 ((unsigned long long) sz_min) / SZ_1M,
152                 ((unsigned long long) sz_max) / SZ_1M);
153
154         add_memory_region(start, size, BOOT_MEM_RAM);
155 }
156
157 bool __init memory_region_available(phys_addr_t start, phys_addr_t size)
158 {
159         int i;
160         bool in_ram = false, free = true;
161
162         for (i = 0; i < boot_mem_map.nr_map; i++) {
163                 phys_addr_t start_, end_;
164
165                 start_ = boot_mem_map.map[i].addr;
166                 end_ = boot_mem_map.map[i].addr + boot_mem_map.map[i].size;
167
168                 switch (boot_mem_map.map[i].type) {
169                 case BOOT_MEM_RAM:
170                         if (start >= start_ && start + size <= end_)
171                                 in_ram = true;
172                         break;
173                 case BOOT_MEM_RESERVED:
174                         if ((start >= start_ && start < end_) ||
175                             (start < start_ && start + size >= start_))
176                                 free = false;
177                         break;
178                 default:
179                         continue;
180                 }
181         }
182
183         return in_ram && free;
184 }
185
186 static void __init print_memory_map(void)
187 {
188         int i;
189         const int field = 2 * sizeof(unsigned long);
190
191         for (i = 0; i < boot_mem_map.nr_map; i++) {
192                 printk(KERN_INFO " memory: %0*Lx @ %0*Lx ",
193                        field, (unsigned long long) boot_mem_map.map[i].size,
194                        field, (unsigned long long) boot_mem_map.map[i].addr);
195
196                 switch (boot_mem_map.map[i].type) {
197                 case BOOT_MEM_RAM:
198                         printk(KERN_CONT "(usable)\n");
199                         break;
200                 case BOOT_MEM_INIT_RAM:
201                         printk(KERN_CONT "(usable after init)\n");
202                         break;
203                 case BOOT_MEM_ROM_DATA:
204                         printk(KERN_CONT "(ROM data)\n");
205                         break;
206                 case BOOT_MEM_RESERVED:
207                         printk(KERN_CONT "(reserved)\n");
208                         break;
209                 default:
210                         printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type);
211                         break;
212                 }
213         }
214 }
215
216 /*
217  * Manage initrd
218  */
219 #ifdef CONFIG_BLK_DEV_INITRD
220
221 static int __init rd_start_early(char *p)
222 {
223         unsigned long start = memparse(p, &p);
224
225 #ifdef CONFIG_64BIT
226         /* Guess if the sign extension was forgotten by bootloader */
227         if (start < XKPHYS)
228                 start = (int)start;
229 #endif
230         initrd_start = start;
231         initrd_end += start;
232         return 0;
233 }
234 early_param("rd_start", rd_start_early);
235
236 static int __init rd_size_early(char *p)
237 {
238         initrd_end += memparse(p, &p);
239         return 0;
240 }
241 early_param("rd_size", rd_size_early);
242
243 /* it returns the next free pfn after initrd */
244 static unsigned long __init init_initrd(void)
245 {
246         unsigned long end;
247
248         /*
249          * Board specific code or command line parser should have
250          * already set up initrd_start and initrd_end. In these cases
251          * perfom sanity checks and use them if all looks good.
252          */
253         if (!initrd_start || initrd_end <= initrd_start)
254                 goto disable;
255
256         if (initrd_start & ~PAGE_MASK) {
257                 pr_err("initrd start must be page aligned\n");
258                 goto disable;
259         }
260         if (initrd_start < PAGE_OFFSET) {
261                 pr_err("initrd start < PAGE_OFFSET\n");
262                 goto disable;
263         }
264
265         /*
266          * Sanitize initrd addresses. For example firmware
267          * can't guess if they need to pass them through
268          * 64-bits values if the kernel has been built in pure
269          * 32-bit. We need also to switch from KSEG0 to XKPHYS
270          * addresses now, so the code can now safely use __pa().
271          */
272         end = __pa(initrd_end);
273         initrd_end = (unsigned long)__va(end);
274         initrd_start = (unsigned long)__va(__pa(initrd_start));
275
276         ROOT_DEV = Root_RAM0;
277         return PFN_UP(end);
278 disable:
279         initrd_start = 0;
280         initrd_end = 0;
281         return 0;
282 }
283
284 /* In some conditions (e.g. big endian bootloader with a little endian
285    kernel), the initrd might appear byte swapped.  Try to detect this and
286    byte swap it if needed.  */
287 static void __init maybe_bswap_initrd(void)
288 {
289 #if defined(CONFIG_CPU_CAVIUM_OCTEON)
290         u64 buf;
291
292         /* Check for CPIO signature */
293         if (!memcmp((void *)initrd_start, "070701", 6))
294                 return;
295
296         /* Check for compressed initrd */
297         if (decompress_method((unsigned char *)initrd_start, 8, NULL))
298                 return;
299
300         /* Try again with a byte swapped header */
301         buf = swab64p((u64 *)initrd_start);
302         if (!memcmp(&buf, "070701", 6) ||
303             decompress_method((unsigned char *)(&buf), 8, NULL)) {
304                 unsigned long i;
305
306                 pr_info("Byteswapped initrd detected\n");
307                 for (i = initrd_start; i < ALIGN(initrd_end, 8); i += 8)
308                         swab64s((u64 *)i);
309         }
310 #endif
311 }
312
313 static void __init finalize_initrd(void)
314 {
315         unsigned long size = initrd_end - initrd_start;
316
317         if (size == 0) {
318                 printk(KERN_INFO "Initrd not found or empty");
319                 goto disable;
320         }
321         if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
322                 printk(KERN_ERR "Initrd extends beyond end of memory");
323                 goto disable;
324         }
325
326         maybe_bswap_initrd();
327
328         reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT);
329         initrd_below_start_ok = 1;
330
331         pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n",
332                 initrd_start, size);
333         return;
334 disable:
335         printk(KERN_CONT " - disabling initrd\n");
336         initrd_start = 0;
337         initrd_end = 0;
338 }
339
340 #else  /* !CONFIG_BLK_DEV_INITRD */
341
342 static unsigned long __init init_initrd(void)
343 {
344         return 0;
345 }
346
347 #define finalize_initrd()       do {} while (0)
348
349 #endif
350
351 /*
352  * Initialize the bootmem allocator. It also setup initrd related data
353  * if needed.
354  */
355 #if defined(CONFIG_SGI_IP27) || (defined(CONFIG_CPU_LOONGSON3) && defined(CONFIG_NUMA))
356
357 static void __init bootmem_init(void)
358 {
359         init_initrd();
360         finalize_initrd();
361 }
362
363 #else  /* !CONFIG_SGI_IP27 */
364
365 static unsigned long __init bootmap_bytes(unsigned long pages)
366 {
367         unsigned long bytes = DIV_ROUND_UP(pages, 8);
368
369         return ALIGN(bytes, sizeof(long));
370 }
371
372 static void __init bootmem_init(void)
373 {
374         unsigned long reserved_end;
375         unsigned long mapstart = ~0UL;
376         unsigned long bootmap_size;
377         phys_addr_t ramstart = (phys_addr_t)ULLONG_MAX;
378         bool bootmap_valid = false;
379         int i;
380
381         /*
382          * Sanity check any INITRD first. We don't take it into account
383          * for bootmem setup initially, rely on the end-of-kernel-code
384          * as our memory range starting point. Once bootmem is inited we
385          * will reserve the area used for the initrd.
386          */
387         init_initrd();
388         reserved_end = (unsigned long) PFN_UP(__pa_symbol(&_end));
389
390         /*
391          * max_low_pfn is not a number of pages. The number of pages
392          * of the system is given by 'max_low_pfn - min_low_pfn'.
393          */
394         min_low_pfn = ~0UL;
395         max_low_pfn = 0;
396
397         /*
398          * Find the highest page frame number we have available
399          * and the lowest used RAM address
400          */
401         for (i = 0; i < boot_mem_map.nr_map; i++) {
402                 unsigned long start, end;
403
404                 if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
405                         continue;
406
407                 start = PFN_UP(boot_mem_map.map[i].addr);
408                 end = PFN_DOWN(boot_mem_map.map[i].addr
409                                 + boot_mem_map.map[i].size);
410
411                 ramstart = min(ramstart, boot_mem_map.map[i].addr);
412
413 #ifndef CONFIG_HIGHMEM
414                 /*
415                  * Skip highmem here so we get an accurate max_low_pfn if low
416                  * memory stops short of high memory.
417                  * If the region overlaps HIGHMEM_START, end is clipped so
418                  * max_pfn excludes the highmem portion.
419                  */
420                 if (start >= PFN_DOWN(HIGHMEM_START))
421                         continue;
422                 if (end > PFN_DOWN(HIGHMEM_START))
423                         end = PFN_DOWN(HIGHMEM_START);
424 #endif
425
426                 if (end > max_low_pfn)
427                         max_low_pfn = end;
428                 if (start < min_low_pfn)
429                         min_low_pfn = start;
430                 if (end <= reserved_end)
431                         continue;
432 #ifdef CONFIG_BLK_DEV_INITRD
433                 /* Skip zones before initrd and initrd itself */
434                 if (initrd_end && end <= (unsigned long)PFN_UP(__pa(initrd_end)))
435                         continue;
436 #endif
437                 if (start >= mapstart)
438                         continue;
439                 mapstart = max(reserved_end, start);
440         }
441
442         /*
443          * Reserve any memory between the start of RAM and PHYS_OFFSET
444          */
445         if (ramstart > PHYS_OFFSET)
446                 add_memory_region(PHYS_OFFSET, ramstart - PHYS_OFFSET,
447                                   BOOT_MEM_RESERVED);
448
449         if (min_low_pfn >= max_low_pfn)
450                 panic("Incorrect memory mapping !!!");
451         if (min_low_pfn > ARCH_PFN_OFFSET) {
452                 pr_info("Wasting %lu bytes for tracking %lu unused pages\n",
453                         (min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page),
454                         min_low_pfn - ARCH_PFN_OFFSET);
455         } else if (min_low_pfn < ARCH_PFN_OFFSET) {
456                 pr_info("%lu free pages won't be used\n",
457                         ARCH_PFN_OFFSET - min_low_pfn);
458         }
459         min_low_pfn = ARCH_PFN_OFFSET;
460
461         /*
462          * Determine low and high memory ranges
463          */
464         max_pfn = max_low_pfn;
465         if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) {
466 #ifdef CONFIG_HIGHMEM
467                 highstart_pfn = PFN_DOWN(HIGHMEM_START);
468                 highend_pfn = max_low_pfn;
469 #endif
470                 max_low_pfn = PFN_DOWN(HIGHMEM_START);
471         }
472
473 #ifdef CONFIG_BLK_DEV_INITRD
474         /*
475          * mapstart should be after initrd_end
476          */
477         if (initrd_end)
478                 mapstart = max(mapstart, (unsigned long)PFN_UP(__pa(initrd_end)));
479 #endif
480
481         /*
482          * check that mapstart doesn't overlap with any of
483          * memory regions that have been reserved through eg. DTB
484          */
485         bootmap_size = bootmap_bytes(max_low_pfn - min_low_pfn);
486
487         bootmap_valid = memory_region_available(PFN_PHYS(mapstart),
488                                                 bootmap_size);
489         for (i = 0; i < boot_mem_map.nr_map && !bootmap_valid; i++) {
490                 unsigned long mapstart_addr;
491
492                 switch (boot_mem_map.map[i].type) {
493                 case BOOT_MEM_RESERVED:
494                         mapstart_addr = PFN_ALIGN(boot_mem_map.map[i].addr +
495                                                 boot_mem_map.map[i].size);
496                         if (PHYS_PFN(mapstart_addr) < mapstart)
497                                 break;
498
499                         bootmap_valid = memory_region_available(mapstart_addr,
500                                                                 bootmap_size);
501                         if (bootmap_valid)
502                                 mapstart = PHYS_PFN(mapstart_addr);
503                         break;
504                 default:
505                         break;
506                 }
507         }
508
509         if (!bootmap_valid)
510                 panic("No memory area to place a bootmap bitmap");
511
512         /*
513          * Initialize the boot-time allocator with low memory only.
514          */
515         if (bootmap_size != init_bootmem_node(NODE_DATA(0), mapstart,
516                                          min_low_pfn, max_low_pfn))
517                 panic("Unexpected memory size required for bootmap");
518
519         for (i = 0; i < boot_mem_map.nr_map; i++) {
520                 unsigned long start, end;
521
522                 start = PFN_UP(boot_mem_map.map[i].addr);
523                 end = PFN_DOWN(boot_mem_map.map[i].addr
524                                 + boot_mem_map.map[i].size);
525
526                 if (start <= min_low_pfn)
527                         start = min_low_pfn;
528                 if (start >= end)
529                         continue;
530
531 #ifndef CONFIG_HIGHMEM
532                 if (end > max_low_pfn)
533                         end = max_low_pfn;
534
535                 /*
536                  * ... finally, is the area going away?
537                  */
538                 if (end <= start)
539                         continue;
540 #endif
541
542                 memblock_add_node(PFN_PHYS(start), PFN_PHYS(end - start), 0);
543         }
544
545         /*
546          * Register fully available low RAM pages with the bootmem allocator.
547          */
548         for (i = 0; i < boot_mem_map.nr_map; i++) {
549                 unsigned long start, end, size;
550
551                 start = PFN_UP(boot_mem_map.map[i].addr);
552                 end   = PFN_DOWN(boot_mem_map.map[i].addr
553                                     + boot_mem_map.map[i].size);
554
555                 /*
556                  * Reserve usable memory.
557                  */
558                 switch (boot_mem_map.map[i].type) {
559                 case BOOT_MEM_RAM:
560                         break;
561                 case BOOT_MEM_INIT_RAM:
562                         memory_present(0, start, end);
563                         continue;
564                 default:
565                         /* Not usable memory */
566                         if (start > min_low_pfn && end < max_low_pfn)
567                                 reserve_bootmem(boot_mem_map.map[i].addr,
568                                                 boot_mem_map.map[i].size,
569                                                 BOOTMEM_DEFAULT);
570                         continue;
571                 }
572
573                 /*
574                  * We are rounding up the start address of usable memory
575                  * and at the end of the usable range downwards.
576                  */
577                 if (start >= max_low_pfn)
578                         continue;
579                 if (start < reserved_end)
580                         start = reserved_end;
581                 if (end > max_low_pfn)
582                         end = max_low_pfn;
583
584                 /*
585                  * ... finally, is the area going away?
586                  */
587                 if (end <= start)
588                         continue;
589                 size = end - start;
590
591                 /* Register lowmem ranges */
592                 free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT);
593                 memory_present(0, start, end);
594         }
595
596         /*
597          * Reserve the bootmap memory.
598          */
599         reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT);
600
601 #ifdef CONFIG_RELOCATABLE
602         /*
603          * The kernel reserves all memory below its _end symbol as bootmem,
604          * but the kernel may now be at a much higher address. The memory
605          * between the original and new locations may be returned to the system.
606          */
607         if (__pa_symbol(_text) > __pa_symbol(VMLINUX_LOAD_ADDRESS)) {
608                 unsigned long offset;
609                 extern void show_kernel_relocation(const char *level);
610
611                 offset = __pa_symbol(_text) - __pa_symbol(VMLINUX_LOAD_ADDRESS);
612                 free_bootmem(__pa_symbol(VMLINUX_LOAD_ADDRESS), offset);
613
614 #if defined(CONFIG_DEBUG_KERNEL) && defined(CONFIG_DEBUG_INFO)
615                 /*
616                  * This information is necessary when debugging the kernel
617                  * But is a security vulnerability otherwise!
618                  */
619                 show_kernel_relocation(KERN_INFO);
620 #endif
621         }
622 #endif
623
624         /*
625          * Reserve initrd memory if needed.
626          */
627         finalize_initrd();
628 }
629
630 #endif  /* CONFIG_SGI_IP27 */
631
632 /*
633  * arch_mem_init - initialize memory management subsystem
634  *
635  *  o plat_mem_setup() detects the memory configuration and will record detected
636  *    memory areas using add_memory_region.
637  *
638  * At this stage the memory configuration of the system is known to the
639  * kernel but generic memory management system is still entirely uninitialized.
640  *
641  *  o bootmem_init()
642  *  o sparse_init()
643  *  o paging_init()
644  *  o dma_contiguous_reserve()
645  *
646  * At this stage the bootmem allocator is ready to use.
647  *
648  * NOTE: historically plat_mem_setup did the entire platform initialization.
649  *       This was rather impractical because it meant plat_mem_setup had to
650  * get away without any kind of memory allocator.  To keep old code from
651  * breaking plat_setup was just renamed to plat_mem_setup and a second platform
652  * initialization hook for anything else was introduced.
653  */
654
655 static int usermem __initdata;
656
657 static int __init early_parse_mem(char *p)
658 {
659         phys_addr_t start, size;
660
661         /*
662          * If a user specifies memory size, we
663          * blow away any automatically generated
664          * size.
665          */
666         if (usermem == 0) {
667                 boot_mem_map.nr_map = 0;
668                 usermem = 1;
669         }
670         start = 0;
671         size = memparse(p, &p);
672         if (*p == '@')
673                 start = memparse(p + 1, &p);
674
675         add_memory_region(start, size, BOOT_MEM_RAM);
676
677         return 0;
678 }
679 early_param("mem", early_parse_mem);
680
681 static int __init early_parse_memmap(char *p)
682 {
683         char *oldp;
684         u64 start_at, mem_size;
685
686         if (!p)
687                 return -EINVAL;
688
689         if (!strncmp(p, "exactmap", 8)) {
690                 pr_err("\"memmap=exactmap\" invalid on MIPS\n");
691                 return 0;
692         }
693
694         oldp = p;
695         mem_size = memparse(p, &p);
696         if (p == oldp)
697                 return -EINVAL;
698
699         if (*p == '@') {
700                 start_at = memparse(p+1, &p);
701                 add_memory_region(start_at, mem_size, BOOT_MEM_RAM);
702         } else if (*p == '#') {
703                 pr_err("\"memmap=nn#ss\" (force ACPI data) invalid on MIPS\n");
704                 return -EINVAL;
705         } else if (*p == '$') {
706                 start_at = memparse(p+1, &p);
707                 add_memory_region(start_at, mem_size, BOOT_MEM_RESERVED);
708         } else {
709                 pr_err("\"memmap\" invalid format!\n");
710                 return -EINVAL;
711         }
712
713         if (*p == '\0') {
714                 usermem = 1;
715                 return 0;
716         } else
717                 return -EINVAL;
718 }
719 early_param("memmap", early_parse_memmap);
720
721 #ifdef CONFIG_PROC_VMCORE
722 unsigned long setup_elfcorehdr, setup_elfcorehdr_size;
723 static int __init early_parse_elfcorehdr(char *p)
724 {
725         int i;
726
727         setup_elfcorehdr = memparse(p, &p);
728
729         for (i = 0; i < boot_mem_map.nr_map; i++) {
730                 unsigned long start = boot_mem_map.map[i].addr;
731                 unsigned long end = (boot_mem_map.map[i].addr +
732                                      boot_mem_map.map[i].size);
733                 if (setup_elfcorehdr >= start && setup_elfcorehdr < end) {
734                         /*
735                          * Reserve from the elf core header to the end of
736                          * the memory segment, that should all be kdump
737                          * reserved memory.
738                          */
739                         setup_elfcorehdr_size = end - setup_elfcorehdr;
740                         break;
741                 }
742         }
743         /*
744          * If we don't find it in the memory map, then we shouldn't
745          * have to worry about it, as the new kernel won't use it.
746          */
747         return 0;
748 }
749 early_param("elfcorehdr", early_parse_elfcorehdr);
750 #endif
751
752 static void __init arch_mem_addpart(phys_addr_t mem, phys_addr_t end, int type)
753 {
754         phys_addr_t size;
755         int i;
756
757         size = end - mem;
758         if (!size)
759                 return;
760
761         /* Make sure it is in the boot_mem_map */
762         for (i = 0; i < boot_mem_map.nr_map; i++) {
763                 if (mem >= boot_mem_map.map[i].addr &&
764                     mem < (boot_mem_map.map[i].addr +
765                            boot_mem_map.map[i].size))
766                         return;
767         }
768         add_memory_region(mem, size, type);
769 }
770
771 #ifdef CONFIG_KEXEC
772 static inline unsigned long long get_total_mem(void)
773 {
774         unsigned long long total;
775
776         total = max_pfn - min_low_pfn;
777         return total << PAGE_SHIFT;
778 }
779
780 static void __init mips_parse_crashkernel(void)
781 {
782         unsigned long long total_mem;
783         unsigned long long crash_size, crash_base;
784         int ret;
785
786         total_mem = get_total_mem();
787         ret = parse_crashkernel(boot_command_line, total_mem,
788                                 &crash_size, &crash_base);
789         if (ret != 0 || crash_size <= 0)
790                 return;
791
792         if (!memory_region_available(crash_base, crash_size)) {
793                 pr_warn("Invalid memory region reserved for crash kernel\n");
794                 return;
795         }
796
797         crashk_res.start = crash_base;
798         crashk_res.end   = crash_base + crash_size - 1;
799 }
800
801 static void __init request_crashkernel(struct resource *res)
802 {
803         int ret;
804
805         if (crashk_res.start == crashk_res.end)
806                 return;
807
808         ret = request_resource(res, &crashk_res);
809         if (!ret)
810                 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel\n",
811                         (unsigned long)((crashk_res.end -
812                                          crashk_res.start + 1) >> 20),
813                         (unsigned long)(crashk_res.start  >> 20));
814 }
815 #else /* !defined(CONFIG_KEXEC)         */
816 static void __init mips_parse_crashkernel(void)
817 {
818 }
819
820 static void __init request_crashkernel(struct resource *res)
821 {
822 }
823 #endif /* !defined(CONFIG_KEXEC)  */
824
825 #define USE_PROM_CMDLINE        IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_BOOTLOADER)
826 #define USE_DTB_CMDLINE         IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_DTB)
827 #define EXTEND_WITH_PROM        IS_ENABLED(CONFIG_MIPS_CMDLINE_DTB_EXTEND)
828 #define BUILTIN_EXTEND_WITH_PROM        \
829         IS_ENABLED(CONFIG_MIPS_CMDLINE_BUILTIN_EXTEND)
830
831 static void __init arch_mem_init(char **cmdline_p)
832 {
833         struct memblock_region *reg;
834         extern void plat_mem_setup(void);
835
836         /* call board setup routine */
837         plat_mem_setup();
838
839         /*
840          * Make sure all kernel memory is in the maps.  The "UP" and
841          * "DOWN" are opposite for initdata since if it crosses over
842          * into another memory section you don't want that to be
843          * freed when the initdata is freed.
844          */
845         arch_mem_addpart(PFN_DOWN(__pa_symbol(&_text)) << PAGE_SHIFT,
846                          PFN_UP(__pa_symbol(&_edata)) << PAGE_SHIFT,
847                          BOOT_MEM_RAM);
848         arch_mem_addpart(PFN_UP(__pa_symbol(&__init_begin)) << PAGE_SHIFT,
849                          PFN_DOWN(__pa_symbol(&__init_end)) << PAGE_SHIFT,
850                          BOOT_MEM_INIT_RAM);
851
852         pr_info("Determined physical RAM map:\n");
853         print_memory_map();
854
855 #if defined(CONFIG_CMDLINE_BOOL) && defined(CONFIG_CMDLINE_OVERRIDE)
856         strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
857 #else
858         if ((USE_PROM_CMDLINE && arcs_cmdline[0]) ||
859             (USE_DTB_CMDLINE && !boot_command_line[0]))
860                 strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
861
862         if (EXTEND_WITH_PROM && arcs_cmdline[0]) {
863                 if (boot_command_line[0])
864                         strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
865                 strlcat(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
866         }
867
868 #if defined(CONFIG_CMDLINE_BOOL)
869         if (builtin_cmdline[0]) {
870                 if (boot_command_line[0])
871                         strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
872                 strlcat(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
873         }
874
875         if (BUILTIN_EXTEND_WITH_PROM && arcs_cmdline[0]) {
876                 if (boot_command_line[0])
877                         strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
878                 strlcat(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
879         }
880 #endif
881 #endif
882         strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
883
884         *cmdline_p = command_line;
885
886         parse_early_param();
887
888         if (usermem) {
889                 pr_info("User-defined physical RAM map:\n");
890                 print_memory_map();
891         }
892
893         early_init_fdt_reserve_self();
894         early_init_fdt_scan_reserved_mem();
895
896         bootmem_init();
897 #ifdef CONFIG_PROC_VMCORE
898         if (setup_elfcorehdr && setup_elfcorehdr_size) {
899                 printk(KERN_INFO "kdump reserved memory at %lx-%lx\n",
900                        setup_elfcorehdr, setup_elfcorehdr_size);
901                 reserve_bootmem(setup_elfcorehdr, setup_elfcorehdr_size,
902                                 BOOTMEM_DEFAULT);
903         }
904 #endif
905
906         mips_parse_crashkernel();
907 #ifdef CONFIG_KEXEC
908         if (crashk_res.start != crashk_res.end)
909                 reserve_bootmem(crashk_res.start,
910                                 crashk_res.end - crashk_res.start + 1,
911                                 BOOTMEM_DEFAULT);
912 #endif
913         device_tree_init();
914
915         /*
916          * In order to reduce the possibility of kernel panic when failed to
917          * get IO TLB memory under CONFIG_SWIOTLB, it is better to allocate
918          * low memory as small as possible before plat_swiotlb_setup(), so
919          * make sparse_init() using top-down allocation.
920          */
921         memblock_set_bottom_up(false);
922         sparse_init();
923         memblock_set_bottom_up(true);
924
925         plat_swiotlb_setup();
926
927         dma_contiguous_reserve(PFN_PHYS(max_low_pfn));
928         /* Tell bootmem about cma reserved memblock section */
929         for_each_memblock(reserved, reg)
930                 if (reg->size != 0)
931                         reserve_bootmem(reg->base, reg->size, BOOTMEM_DEFAULT);
932
933         reserve_bootmem_region(__pa_symbol(&__nosave_begin),
934                         __pa_symbol(&__nosave_end)); /* Reserve for hibernation */
935 }
936
937 static void __init resource_init(void)
938 {
939         int i;
940
941         if (UNCAC_BASE != IO_BASE)
942                 return;
943
944         code_resource.start = __pa_symbol(&_text);
945         code_resource.end = __pa_symbol(&_etext) - 1;
946         data_resource.start = __pa_symbol(&_etext);
947         data_resource.end = __pa_symbol(&_edata) - 1;
948
949         for (i = 0; i < boot_mem_map.nr_map; i++) {
950                 struct resource *res;
951                 unsigned long start, end;
952
953                 start = boot_mem_map.map[i].addr;
954                 end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1;
955                 if (start >= HIGHMEM_START)
956                         continue;
957                 if (end >= HIGHMEM_START)
958                         end = HIGHMEM_START - 1;
959
960                 res = alloc_bootmem(sizeof(struct resource));
961
962                 res->start = start;
963                 res->end = end;
964                 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
965
966                 switch (boot_mem_map.map[i].type) {
967                 case BOOT_MEM_RAM:
968                 case BOOT_MEM_INIT_RAM:
969                 case BOOT_MEM_ROM_DATA:
970                         res->name = "System RAM";
971                         res->flags |= IORESOURCE_SYSRAM;
972                         break;
973                 case BOOT_MEM_RESERVED:
974                 default:
975                         res->name = "reserved";
976                 }
977
978                 request_resource(&iomem_resource, res);
979
980                 /*
981                  *  We don't know which RAM region contains kernel data,
982                  *  so we try it repeatedly and let the resource manager
983                  *  test it.
984                  */
985                 request_resource(res, &code_resource);
986                 request_resource(res, &data_resource);
987                 request_crashkernel(res);
988         }
989 }
990
991 #ifdef CONFIG_SMP
992 static void __init prefill_possible_map(void)
993 {
994         int i, possible = num_possible_cpus();
995
996         if (possible > nr_cpu_ids)
997                 possible = nr_cpu_ids;
998
999         for (i = 0; i < possible; i++)
1000                 set_cpu_possible(i, true);
1001         for (; i < NR_CPUS; i++)
1002                 set_cpu_possible(i, false);
1003
1004         nr_cpu_ids = possible;
1005 }
1006 #else
1007 static inline void prefill_possible_map(void) {}
1008 #endif
1009
1010 void __init setup_arch(char **cmdline_p)
1011 {
1012         cpu_probe();
1013         mips_cm_probe();
1014         prom_init();
1015
1016         setup_early_fdc_console();
1017 #ifdef CONFIG_EARLY_PRINTK
1018         setup_early_printk();
1019 #endif
1020         cpu_report();
1021         check_bugs_early();
1022
1023 #if defined(CONFIG_VT)
1024 #if defined(CONFIG_VGA_CONSOLE)
1025         conswitchp = &vga_con;
1026 #elif defined(CONFIG_DUMMY_CONSOLE)
1027         conswitchp = &dummy_con;
1028 #endif
1029 #endif
1030
1031         arch_mem_init(cmdline_p);
1032
1033         resource_init();
1034         plat_smp_setup();
1035         prefill_possible_map();
1036
1037         cpu_cache_init();
1038         paging_init();
1039 }
1040
1041 unsigned long kernelsp[NR_CPUS];
1042 unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;
1043
1044 #ifdef CONFIG_USE_OF
1045 unsigned long fw_passed_dtb;
1046 #endif
1047
1048 #ifdef CONFIG_DEBUG_FS
1049 struct dentry *mips_debugfs_dir;
1050 static int __init debugfs_mips(void)
1051 {
1052         struct dentry *d;
1053
1054         d = debugfs_create_dir("mips", NULL);
1055         if (!d)
1056                 return -ENOMEM;
1057         mips_debugfs_dir = d;
1058         return 0;
1059 }
1060 arch_initcall(debugfs_mips);
1061 #endif