GNU Linux-libre 4.9.337-gnu1
[releases.git] / arch / mips / kernel / smp-bmips.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2011 by Kevin Cernekee (cernekee@gmail.com)
7  *
8  * SMP support for BMIPS
9  */
10
11 #include <linux/init.h>
12 #include <linux/sched.h>
13 #include <linux/mm.h>
14 #include <linux/delay.h>
15 #include <linux/smp.h>
16 #include <linux/interrupt.h>
17 #include <linux/spinlock.h>
18 #include <linux/cpu.h>
19 #include <linux/cpumask.h>
20 #include <linux/reboot.h>
21 #include <linux/io.h>
22 #include <linux/compiler.h>
23 #include <linux/linkage.h>
24 #include <linux/bug.h>
25 #include <linux/kernel.h>
26
27 #include <asm/time.h>
28 #include <asm/pgtable.h>
29 #include <asm/processor.h>
30 #include <asm/bootinfo.h>
31 #include <asm/pmon.h>
32 #include <asm/cacheflush.h>
33 #include <asm/tlbflush.h>
34 #include <asm/mipsregs.h>
35 #include <asm/bmips.h>
36 #include <asm/traps.h>
37 #include <asm/barrier.h>
38 #include <asm/cpu-features.h>
39
40 static int __maybe_unused max_cpus = 1;
41
42 /* these may be configured by the platform code */
43 int bmips_smp_enabled = 1;
44 int bmips_cpu_offset;
45 cpumask_t bmips_booted_mask;
46 unsigned long bmips_tp1_irqs = IE_IRQ1;
47
48 #define RESET_FROM_KSEG0                0x80080800
49 #define RESET_FROM_KSEG1                0xa0080800
50
51 static void bmips_set_reset_vec(int cpu, u32 val);
52
53 #ifdef CONFIG_SMP
54
55 /* initial $sp, $gp - used by arch/mips/kernel/bmips_vec.S */
56 unsigned long bmips_smp_boot_sp;
57 unsigned long bmips_smp_boot_gp;
58
59 static void bmips43xx_send_ipi_single(int cpu, unsigned int action);
60 static void bmips5000_send_ipi_single(int cpu, unsigned int action);
61 static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id);
62 static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id);
63
64 /* SW interrupts 0,1 are used for interprocessor signaling */
65 #define IPI0_IRQ                        (MIPS_CPU_IRQ_BASE + 0)
66 #define IPI1_IRQ                        (MIPS_CPU_IRQ_BASE + 1)
67
68 #define CPUNUM(cpu, shift)              (((cpu) + bmips_cpu_offset) << (shift))
69 #define ACTION_CLR_IPI(cpu, ipi)        (0x2000 | CPUNUM(cpu, 9) | ((ipi) << 8))
70 #define ACTION_SET_IPI(cpu, ipi)        (0x3000 | CPUNUM(cpu, 9) | ((ipi) << 8))
71 #define ACTION_BOOT_THREAD(cpu)         (0x08 | CPUNUM(cpu, 0))
72
73 static void __init bmips_smp_setup(void)
74 {
75         int i, cpu = 1, boot_cpu = 0;
76         int cpu_hw_intr;
77
78         switch (current_cpu_type()) {
79         case CPU_BMIPS4350:
80         case CPU_BMIPS4380:
81                 /* arbitration priority */
82                 clear_c0_brcm_cmt_ctrl(0x30);
83
84                 /* NBK and weak order flags */
85                 set_c0_brcm_config_0(0x30000);
86
87                 /* Find out if we are running on TP0 or TP1 */
88                 boot_cpu = !!(read_c0_brcm_cmt_local() & (1 << 31));
89
90                 /*
91                  * MIPS interrupts 0,1 (SW INT 0,1) cross over to the other
92                  * thread
93                  * MIPS interrupt 2 (HW INT 0) is the CPU0 L1 controller output
94                  * MIPS interrupt 3 (HW INT 1) is the CPU1 L1 controller output
95                  */
96                 if (boot_cpu == 0)
97                         cpu_hw_intr = 0x02;
98                 else
99                         cpu_hw_intr = 0x1d;
100
101                 change_c0_brcm_cmt_intr(0xf8018000,
102                                         (cpu_hw_intr << 27) | (0x03 << 15));
103
104                 /* single core, 2 threads (2 pipelines) */
105                 max_cpus = 2;
106
107                 break;
108         case CPU_BMIPS5000:
109                 /* enable raceless SW interrupts */
110                 set_c0_brcm_config(0x03 << 22);
111
112                 /* route HW interrupt 0 to CPU0, HW interrupt 1 to CPU1 */
113                 change_c0_brcm_mode(0x1f << 27, 0x02 << 27);
114
115                 /* N cores, 2 threads per core */
116                 max_cpus = (((read_c0_brcm_config() >> 6) & 0x03) + 1) << 1;
117
118                 /* clear any pending SW interrupts */
119                 for (i = 0; i < max_cpus; i++) {
120                         write_c0_brcm_action(ACTION_CLR_IPI(i, 0));
121                         write_c0_brcm_action(ACTION_CLR_IPI(i, 1));
122                 }
123
124                 break;
125         default:
126                 max_cpus = 1;
127         }
128
129         if (!bmips_smp_enabled)
130                 max_cpus = 1;
131
132         /* this can be overridden by the BSP */
133         if (!board_ebase_setup)
134                 board_ebase_setup = &bmips_ebase_setup;
135
136         __cpu_number_map[boot_cpu] = 0;
137         __cpu_logical_map[0] = boot_cpu;
138
139         for (i = 0; i < max_cpus; i++) {
140                 if (i != boot_cpu) {
141                         __cpu_number_map[i] = cpu;
142                         __cpu_logical_map[cpu] = i;
143                         cpu++;
144                 }
145                 set_cpu_possible(i, 1);
146                 set_cpu_present(i, 1);
147         }
148 }
149
150 /*
151  * IPI IRQ setup - runs on CPU0
152  */
153 static void bmips_prepare_cpus(unsigned int max_cpus)
154 {
155         irqreturn_t (*bmips_ipi_interrupt)(int irq, void *dev_id);
156
157         switch (current_cpu_type()) {
158         case CPU_BMIPS4350:
159         case CPU_BMIPS4380:
160                 bmips_ipi_interrupt = bmips43xx_ipi_interrupt;
161                 break;
162         case CPU_BMIPS5000:
163                 bmips_ipi_interrupt = bmips5000_ipi_interrupt;
164                 break;
165         default:
166                 return;
167         }
168
169         if (request_irq(IPI0_IRQ, bmips_ipi_interrupt,
170                         IRQF_PERCPU | IRQF_NO_SUSPEND, "smp_ipi0", NULL))
171                 panic("Can't request IPI0 interrupt");
172         if (request_irq(IPI1_IRQ, bmips_ipi_interrupt,
173                         IRQF_PERCPU | IRQF_NO_SUSPEND, "smp_ipi1", NULL))
174                 panic("Can't request IPI1 interrupt");
175 }
176
177 /*
178  * Tell the hardware to boot CPUx - runs on CPU0
179  */
180 static void bmips_boot_secondary(int cpu, struct task_struct *idle)
181 {
182         bmips_smp_boot_sp = __KSTK_TOS(idle);
183         bmips_smp_boot_gp = (unsigned long)task_thread_info(idle);
184         mb();
185
186         /*
187          * Initial boot sequence for secondary CPU:
188          *   bmips_reset_nmi_vec @ a000_0000 ->
189          *   bmips_smp_entry ->
190          *   plat_wired_tlb_setup (cached function call; optional) ->
191          *   start_secondary (cached jump)
192          *
193          * Warm restart sequence:
194          *   play_dead WAIT loop ->
195          *   bmips_smp_int_vec @ BMIPS_WARM_RESTART_VEC ->
196          *   eret to play_dead ->
197          *   bmips_secondary_reentry ->
198          *   start_secondary
199          */
200
201         pr_info("SMP: Booting CPU%d...\n", cpu);
202
203         if (cpumask_test_cpu(cpu, &bmips_booted_mask)) {
204                 /* kseg1 might not exist if this CPU enabled XKS01 */
205                 bmips_set_reset_vec(cpu, RESET_FROM_KSEG0);
206
207                 switch (current_cpu_type()) {
208                 case CPU_BMIPS4350:
209                 case CPU_BMIPS4380:
210                         bmips43xx_send_ipi_single(cpu, 0);
211                         break;
212                 case CPU_BMIPS5000:
213                         bmips5000_send_ipi_single(cpu, 0);
214                         break;
215                 }
216         } else {
217                 bmips_set_reset_vec(cpu, RESET_FROM_KSEG1);
218
219                 switch (current_cpu_type()) {
220                 case CPU_BMIPS4350:
221                 case CPU_BMIPS4380:
222                         /* Reset slave TP1 if booting from TP0 */
223                         if (cpu_logical_map(cpu) == 1)
224                                 set_c0_brcm_cmt_ctrl(0x01);
225                         break;
226                 case CPU_BMIPS5000:
227                         write_c0_brcm_action(ACTION_BOOT_THREAD(cpu));
228                         break;
229                 }
230                 cpumask_set_cpu(cpu, &bmips_booted_mask);
231         }
232 }
233
234 /*
235  * Early setup - runs on secondary CPU after cache probe
236  */
237 static void bmips_init_secondary(void)
238 {
239         bmips_cpu_setup();
240
241         switch (current_cpu_type()) {
242         case CPU_BMIPS4350:
243         case CPU_BMIPS4380:
244                 clear_c0_cause(smp_processor_id() ? C_SW1 : C_SW0);
245                 break;
246         case CPU_BMIPS5000:
247                 write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), 0));
248                 current_cpu_data.core = (read_c0_brcm_config() >> 25) & 3;
249                 break;
250         }
251 }
252
253 /*
254  * Late setup - runs on secondary CPU before entering the idle loop
255  */
256 static void bmips_smp_finish(void)
257 {
258         pr_info("SMP: CPU%d is running\n", smp_processor_id());
259
260         /* make sure there won't be a timer interrupt for a little while */
261         write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ);
262
263         irq_enable_hazard();
264         set_c0_status(IE_SW0 | IE_SW1 | bmips_tp1_irqs | IE_IRQ5 | ST0_IE);
265         irq_enable_hazard();
266 }
267
268 /*
269  * BMIPS5000 raceless IPIs
270  *
271  * Each CPU has two inbound SW IRQs which are independent of all other CPUs.
272  * IPI0 is used for SMP_RESCHEDULE_YOURSELF
273  * IPI1 is used for SMP_CALL_FUNCTION
274  */
275
276 static void bmips5000_send_ipi_single(int cpu, unsigned int action)
277 {
278         write_c0_brcm_action(ACTION_SET_IPI(cpu, action == SMP_CALL_FUNCTION));
279 }
280
281 static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id)
282 {
283         int action = irq - IPI0_IRQ;
284
285         write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), action));
286
287         if (action == 0)
288                 scheduler_ipi();
289         else
290                 generic_smp_call_function_interrupt();
291
292         return IRQ_HANDLED;
293 }
294
295 static void bmips5000_send_ipi_mask(const struct cpumask *mask,
296         unsigned int action)
297 {
298         unsigned int i;
299
300         for_each_cpu(i, mask)
301                 bmips5000_send_ipi_single(i, action);
302 }
303
304 /*
305  * BMIPS43xx racey IPIs
306  *
307  * We use one inbound SW IRQ for each CPU.
308  *
309  * A spinlock must be held in order to keep CPUx from accidentally clearing
310  * an incoming IPI when it writes CP0 CAUSE to raise an IPI on CPUy.  The
311  * same spinlock is used to protect the action masks.
312  */
313
314 static DEFINE_SPINLOCK(ipi_lock);
315 static DEFINE_PER_CPU(int, ipi_action_mask);
316
317 static void bmips43xx_send_ipi_single(int cpu, unsigned int action)
318 {
319         unsigned long flags;
320
321         spin_lock_irqsave(&ipi_lock, flags);
322         set_c0_cause(cpu ? C_SW1 : C_SW0);
323         per_cpu(ipi_action_mask, cpu) |= action;
324         irq_enable_hazard();
325         spin_unlock_irqrestore(&ipi_lock, flags);
326 }
327
328 static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id)
329 {
330         unsigned long flags;
331         int action, cpu = irq - IPI0_IRQ;
332
333         spin_lock_irqsave(&ipi_lock, flags);
334         action = __this_cpu_read(ipi_action_mask);
335         per_cpu(ipi_action_mask, cpu) = 0;
336         clear_c0_cause(cpu ? C_SW1 : C_SW0);
337         spin_unlock_irqrestore(&ipi_lock, flags);
338
339         if (action & SMP_RESCHEDULE_YOURSELF)
340                 scheduler_ipi();
341         if (action & SMP_CALL_FUNCTION)
342                 generic_smp_call_function_interrupt();
343
344         return IRQ_HANDLED;
345 }
346
347 static void bmips43xx_send_ipi_mask(const struct cpumask *mask,
348         unsigned int action)
349 {
350         unsigned int i;
351
352         for_each_cpu(i, mask)
353                 bmips43xx_send_ipi_single(i, action);
354 }
355
356 #ifdef CONFIG_HOTPLUG_CPU
357
358 static int bmips_cpu_disable(void)
359 {
360         unsigned int cpu = smp_processor_id();
361
362         if (cpu == 0)
363                 return -EBUSY;
364
365         pr_info("SMP: CPU%d is offline\n", cpu);
366
367         set_cpu_online(cpu, false);
368         calculate_cpu_foreign_map();
369         cpumask_clear_cpu(cpu, &cpu_callin_map);
370         clear_c0_status(IE_IRQ5);
371
372         local_flush_tlb_all();
373         local_flush_icache_range(0, ~0);
374
375         return 0;
376 }
377
378 static void bmips_cpu_die(unsigned int cpu)
379 {
380 }
381
382 void __ref play_dead(void)
383 {
384         idle_task_exit();
385
386         /* flush data cache */
387         _dma_cache_wback_inv(0, ~0);
388
389         /*
390          * Wakeup is on SW0 or SW1; disable everything else
391          * Use BEV !IV (BMIPS_WARM_RESTART_VEC) to avoid the regular Linux
392          * IRQ handlers; this clears ST0_IE and returns immediately.
393          */
394         clear_c0_cause(CAUSEF_IV | C_SW0 | C_SW1);
395         change_c0_status(
396                 IE_IRQ5 | bmips_tp1_irqs | IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV,
397                 IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV);
398         irq_disable_hazard();
399
400         /*
401          * wait for SW interrupt from bmips_boot_secondary(), then jump
402          * back to start_secondary()
403          */
404         __asm__ __volatile__(
405         "       wait\n"
406         "       j       bmips_secondary_reentry\n"
407         : : : "memory");
408 }
409
410 #endif /* CONFIG_HOTPLUG_CPU */
411
412 struct plat_smp_ops bmips43xx_smp_ops = {
413         .smp_setup              = bmips_smp_setup,
414         .prepare_cpus           = bmips_prepare_cpus,
415         .boot_secondary         = bmips_boot_secondary,
416         .smp_finish             = bmips_smp_finish,
417         .init_secondary         = bmips_init_secondary,
418         .send_ipi_single        = bmips43xx_send_ipi_single,
419         .send_ipi_mask          = bmips43xx_send_ipi_mask,
420 #ifdef CONFIG_HOTPLUG_CPU
421         .cpu_disable            = bmips_cpu_disable,
422         .cpu_die                = bmips_cpu_die,
423 #endif
424 };
425
426 struct plat_smp_ops bmips5000_smp_ops = {
427         .smp_setup              = bmips_smp_setup,
428         .prepare_cpus           = bmips_prepare_cpus,
429         .boot_secondary         = bmips_boot_secondary,
430         .smp_finish             = bmips_smp_finish,
431         .init_secondary         = bmips_init_secondary,
432         .send_ipi_single        = bmips5000_send_ipi_single,
433         .send_ipi_mask          = bmips5000_send_ipi_mask,
434 #ifdef CONFIG_HOTPLUG_CPU
435         .cpu_disable            = bmips_cpu_disable,
436         .cpu_die                = bmips_cpu_die,
437 #endif
438 };
439
440 #endif /* CONFIG_SMP */
441
442 /***********************************************************************
443  * BMIPS vector relocation
444  * This is primarily used for SMP boot, but it is applicable to some
445  * UP BMIPS systems as well.
446  ***********************************************************************/
447
448 static void bmips_wr_vec(unsigned long dst, char *start, char *end)
449 {
450         memcpy((void *)dst, start, end - start);
451         dma_cache_wback(dst, end - start);
452         local_flush_icache_range(dst, dst + (end - start));
453         instruction_hazard();
454 }
455
456 static inline void bmips_nmi_handler_setup(void)
457 {
458         bmips_wr_vec(BMIPS_NMI_RESET_VEC, bmips_reset_nmi_vec,
459                 bmips_reset_nmi_vec_end);
460         bmips_wr_vec(BMIPS_WARM_RESTART_VEC, bmips_smp_int_vec,
461                 bmips_smp_int_vec_end);
462 }
463
464 struct reset_vec_info {
465         int cpu;
466         u32 val;
467 };
468
469 static void bmips_set_reset_vec_remote(void *vinfo)
470 {
471         struct reset_vec_info *info = vinfo;
472         int shift = info->cpu & 0x01 ? 16 : 0;
473         u32 mask = ~(0xffff << shift), val = info->val >> 16;
474
475         preempt_disable();
476         if (smp_processor_id() > 0) {
477                 smp_call_function_single(0, &bmips_set_reset_vec_remote,
478                                          info, 1);
479         } else {
480                 if (info->cpu & 0x02) {
481                         /* BMIPS5200 "should" use mask/shift, but it's buggy */
482                         bmips_write_zscm_reg(0xa0, (val << 16) | val);
483                         bmips_read_zscm_reg(0xa0);
484                 } else {
485                         write_c0_brcm_bootvec((read_c0_brcm_bootvec() & mask) |
486                                               (val << shift));
487                 }
488         }
489         preempt_enable();
490 }
491
492 static void bmips_set_reset_vec(int cpu, u32 val)
493 {
494         struct reset_vec_info info;
495
496         if (current_cpu_type() == CPU_BMIPS5000) {
497                 /* this needs to run from CPU0 (which is always online) */
498                 info.cpu = cpu;
499                 info.val = val;
500                 bmips_set_reset_vec_remote(&info);
501         } else {
502                 void __iomem *cbr = BMIPS_GET_CBR();
503
504                 if (cpu == 0)
505                         __raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_0);
506                 else {
507                         if (current_cpu_type() != CPU_BMIPS4380)
508                                 return;
509                         __raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
510                 }
511         }
512         __sync();
513         back_to_back_c0_hazard();
514 }
515
516 void bmips_ebase_setup(void)
517 {
518         unsigned long new_ebase = ebase;
519
520         BUG_ON(ebase != CKSEG0);
521
522         switch (current_cpu_type()) {
523         case CPU_BMIPS4350:
524                 /*
525                  * BMIPS4350 cannot relocate the normal vectors, but it
526                  * can relocate the BEV=1 vectors.  So CPU1 starts up at
527                  * the relocated BEV=1, IV=0 general exception vector @
528                  * 0xa000_0380.
529                  *
530                  * set_uncached_handler() is used here because:
531                  *  - CPU1 will run this from uncached space
532                  *  - None of the cacheflush functions are set up yet
533                  */
534                 set_uncached_handler(BMIPS_WARM_RESTART_VEC - CKSEG0,
535                         &bmips_smp_int_vec, 0x80);
536                 __sync();
537                 return;
538         case CPU_BMIPS3300:
539         case CPU_BMIPS4380:
540                 /*
541                  * 0x8000_0000: reset/NMI (initially in kseg1)
542                  * 0x8000_0400: normal vectors
543                  */
544                 new_ebase = 0x80000400;
545                 bmips_set_reset_vec(0, RESET_FROM_KSEG0);
546                 break;
547         case CPU_BMIPS5000:
548                 /*
549                  * 0x8000_0000: reset/NMI (initially in kseg1)
550                  * 0x8000_1000: normal vectors
551                  */
552                 new_ebase = 0x80001000;
553                 bmips_set_reset_vec(0, RESET_FROM_KSEG0);
554                 write_c0_ebase(new_ebase);
555                 break;
556         default:
557                 return;
558         }
559
560         board_nmi_handler_setup = &bmips_nmi_handler_setup;
561         ebase = new_ebase;
562 }
563
564 asmlinkage void __weak plat_wired_tlb_setup(void)
565 {
566         /*
567          * Called when starting/restarting a secondary CPU.
568          * Kernel stacks and other important data might only be accessible
569          * once the wired entries are present.
570          */
571 }
572
573 void __init bmips_cpu_setup(void)
574 {
575         void __iomem __maybe_unused *cbr = BMIPS_GET_CBR();
576         u32 __maybe_unused cfg;
577
578         switch (current_cpu_type()) {
579         case CPU_BMIPS3300:
580                 /* Set BIU to async mode */
581                 set_c0_brcm_bus_pll(BIT(22));
582                 __sync();
583
584                 /* put the BIU back in sync mode */
585                 clear_c0_brcm_bus_pll(BIT(22));
586
587                 /* clear BHTD to enable branch history table */
588                 clear_c0_brcm_reset(BIT(16));
589
590                 /* Flush and enable RAC */
591                 cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
592                 __raw_writel(cfg | 0x100, cbr + BMIPS_RAC_CONFIG);
593                 __raw_readl(cbr + BMIPS_RAC_CONFIG);
594
595                 cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
596                 __raw_writel(cfg | 0xf, cbr + BMIPS_RAC_CONFIG);
597                 __raw_readl(cbr + BMIPS_RAC_CONFIG);
598
599                 cfg = __raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
600                 __raw_writel(cfg | 0x0fff0000, cbr + BMIPS_RAC_ADDRESS_RANGE);
601                 __raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
602                 break;
603
604         case CPU_BMIPS4380:
605                 /* CBG workaround for early BMIPS4380 CPUs */
606                 switch (read_c0_prid()) {
607                 case 0x2a040:
608                 case 0x2a042:
609                 case 0x2a044:
610                 case 0x2a060:
611                         cfg = __raw_readl(cbr + BMIPS_L2_CONFIG);
612                         __raw_writel(cfg & ~0x07000000, cbr + BMIPS_L2_CONFIG);
613                         __raw_readl(cbr + BMIPS_L2_CONFIG);
614                 }
615
616                 /* clear BHTD to enable branch history table */
617                 clear_c0_brcm_config_0(BIT(21));
618
619                 /* XI/ROTR enable */
620                 set_c0_brcm_config_0(BIT(23));
621                 set_c0_brcm_cmt_ctrl(BIT(15));
622                 break;
623
624         case CPU_BMIPS5000:
625                 /* enable RDHWR, BRDHWR */
626                 set_c0_brcm_config(BIT(17) | BIT(21));
627
628                 /* Disable JTB */
629                 __asm__ __volatile__(
630                 "       .set    noreorder\n"
631                 "       li      $8, 0x5a455048\n"
632                 "       .word   0x4088b00f\n"   /* mtc0 t0, $22, 15 */
633                 "       .word   0x4008b008\n"   /* mfc0 t0, $22, 8 */
634                 "       li      $9, 0x00008000\n"
635                 "       or      $8, $8, $9\n"
636                 "       .word   0x4088b008\n"   /* mtc0 t0, $22, 8 */
637                 "       sync\n"
638                 "       li      $8, 0x0\n"
639                 "       .word   0x4088b00f\n"   /* mtc0 t0, $22, 15 */
640                 "       .set    reorder\n"
641                 : : : "$8", "$9");
642
643                 /* XI enable */
644                 set_c0_brcm_config(BIT(27));
645
646                 /* enable MIPS32R2 ROR instruction for XI TLB handlers */
647                 __asm__ __volatile__(
648                 "       li      $8, 0x5a455048\n"
649                 "       .word   0x4088b00f\n"   /* mtc0 $8, $22, 15 */
650                 "       nop; nop; nop\n"
651                 "       .word   0x4008b008\n"   /* mfc0 $8, $22, 8 */
652                 "       lui     $9, 0x0100\n"
653                 "       or      $8, $9\n"
654                 "       .word   0x4088b008\n"   /* mtc0 $8, $22, 8 */
655                 : : : "$8", "$9");
656                 break;
657         }
658 }