GNU Linux-libre 4.14.290-gnu1
[releases.git] / arch / mips / kernel / smp-bmips.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2011 by Kevin Cernekee (cernekee@gmail.com)
7  *
8  * SMP support for BMIPS
9  */
10
11 #include <linux/init.h>
12 #include <linux/sched.h>
13 #include <linux/sched/hotplug.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/mm.h>
16 #include <linux/delay.h>
17 #include <linux/smp.h>
18 #include <linux/interrupt.h>
19 #include <linux/spinlock.h>
20 #include <linux/cpu.h>
21 #include <linux/cpumask.h>
22 #include <linux/reboot.h>
23 #include <linux/io.h>
24 #include <linux/compiler.h>
25 #include <linux/linkage.h>
26 #include <linux/bug.h>
27 #include <linux/kernel.h>
28
29 #include <asm/time.h>
30 #include <asm/pgtable.h>
31 #include <asm/processor.h>
32 #include <asm/bootinfo.h>
33 #include <asm/pmon.h>
34 #include <asm/cacheflush.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mipsregs.h>
37 #include <asm/bmips.h>
38 #include <asm/traps.h>
39 #include <asm/barrier.h>
40 #include <asm/cpu-features.h>
41
42 static int __maybe_unused max_cpus = 1;
43
44 /* these may be configured by the platform code */
45 int bmips_smp_enabled = 1;
46 int bmips_cpu_offset;
47 cpumask_t bmips_booted_mask;
48 unsigned long bmips_tp1_irqs = IE_IRQ1;
49
50 #define RESET_FROM_KSEG0                0x80080800
51 #define RESET_FROM_KSEG1                0xa0080800
52
53 static void bmips_set_reset_vec(int cpu, u32 val);
54
55 #ifdef CONFIG_SMP
56
57 /* initial $sp, $gp - used by arch/mips/kernel/bmips_vec.S */
58 unsigned long bmips_smp_boot_sp;
59 unsigned long bmips_smp_boot_gp;
60
61 static void bmips43xx_send_ipi_single(int cpu, unsigned int action);
62 static void bmips5000_send_ipi_single(int cpu, unsigned int action);
63 static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id);
64 static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id);
65
66 /* SW interrupts 0,1 are used for interprocessor signaling */
67 #define IPI0_IRQ                        (MIPS_CPU_IRQ_BASE + 0)
68 #define IPI1_IRQ                        (MIPS_CPU_IRQ_BASE + 1)
69
70 #define CPUNUM(cpu, shift)              (((cpu) + bmips_cpu_offset) << (shift))
71 #define ACTION_CLR_IPI(cpu, ipi)        (0x2000 | CPUNUM(cpu, 9) | ((ipi) << 8))
72 #define ACTION_SET_IPI(cpu, ipi)        (0x3000 | CPUNUM(cpu, 9) | ((ipi) << 8))
73 #define ACTION_BOOT_THREAD(cpu)         (0x08 | CPUNUM(cpu, 0))
74
75 static void __init bmips_smp_setup(void)
76 {
77         int i, cpu = 1, boot_cpu = 0;
78         int cpu_hw_intr;
79
80         switch (current_cpu_type()) {
81         case CPU_BMIPS4350:
82         case CPU_BMIPS4380:
83                 /* arbitration priority */
84                 clear_c0_brcm_cmt_ctrl(0x30);
85
86                 /* NBK and weak order flags */
87                 set_c0_brcm_config_0(0x30000);
88
89                 /* Find out if we are running on TP0 or TP1 */
90                 boot_cpu = !!(read_c0_brcm_cmt_local() & (1 << 31));
91
92                 /*
93                  * MIPS interrupts 0,1 (SW INT 0,1) cross over to the other
94                  * thread
95                  * MIPS interrupt 2 (HW INT 0) is the CPU0 L1 controller output
96                  * MIPS interrupt 3 (HW INT 1) is the CPU1 L1 controller output
97                  */
98                 if (boot_cpu == 0)
99                         cpu_hw_intr = 0x02;
100                 else
101                         cpu_hw_intr = 0x1d;
102
103                 change_c0_brcm_cmt_intr(0xf8018000,
104                                         (cpu_hw_intr << 27) | (0x03 << 15));
105
106                 /* single core, 2 threads (2 pipelines) */
107                 max_cpus = 2;
108
109                 break;
110         case CPU_BMIPS5000:
111                 /* enable raceless SW interrupts */
112                 set_c0_brcm_config(0x03 << 22);
113
114                 /* route HW interrupt 0 to CPU0, HW interrupt 1 to CPU1 */
115                 change_c0_brcm_mode(0x1f << 27, 0x02 << 27);
116
117                 /* N cores, 2 threads per core */
118                 max_cpus = (((read_c0_brcm_config() >> 6) & 0x03) + 1) << 1;
119
120                 /* clear any pending SW interrupts */
121                 for (i = 0; i < max_cpus; i++) {
122                         write_c0_brcm_action(ACTION_CLR_IPI(i, 0));
123                         write_c0_brcm_action(ACTION_CLR_IPI(i, 1));
124                 }
125
126                 break;
127         default:
128                 max_cpus = 1;
129         }
130
131         if (!bmips_smp_enabled)
132                 max_cpus = 1;
133
134         /* this can be overridden by the BSP */
135         if (!board_ebase_setup)
136                 board_ebase_setup = &bmips_ebase_setup;
137
138         __cpu_number_map[boot_cpu] = 0;
139         __cpu_logical_map[0] = boot_cpu;
140
141         for (i = 0; i < max_cpus; i++) {
142                 if (i != boot_cpu) {
143                         __cpu_number_map[i] = cpu;
144                         __cpu_logical_map[cpu] = i;
145                         cpu++;
146                 }
147                 set_cpu_possible(i, 1);
148                 set_cpu_present(i, 1);
149         }
150 }
151
152 /*
153  * IPI IRQ setup - runs on CPU0
154  */
155 static void bmips_prepare_cpus(unsigned int max_cpus)
156 {
157         irqreturn_t (*bmips_ipi_interrupt)(int irq, void *dev_id);
158
159         switch (current_cpu_type()) {
160         case CPU_BMIPS4350:
161         case CPU_BMIPS4380:
162                 bmips_ipi_interrupt = bmips43xx_ipi_interrupt;
163                 break;
164         case CPU_BMIPS5000:
165                 bmips_ipi_interrupt = bmips5000_ipi_interrupt;
166                 break;
167         default:
168                 return;
169         }
170
171         if (request_irq(IPI0_IRQ, bmips_ipi_interrupt,
172                         IRQF_PERCPU | IRQF_NO_SUSPEND, "smp_ipi0", NULL))
173                 panic("Can't request IPI0 interrupt");
174         if (request_irq(IPI1_IRQ, bmips_ipi_interrupt,
175                         IRQF_PERCPU | IRQF_NO_SUSPEND, "smp_ipi1", NULL))
176                 panic("Can't request IPI1 interrupt");
177 }
178
179 /*
180  * Tell the hardware to boot CPUx - runs on CPU0
181  */
182 static int bmips_boot_secondary(int cpu, struct task_struct *idle)
183 {
184         bmips_smp_boot_sp = __KSTK_TOS(idle);
185         bmips_smp_boot_gp = (unsigned long)task_thread_info(idle);
186         mb();
187
188         /*
189          * Initial boot sequence for secondary CPU:
190          *   bmips_reset_nmi_vec @ a000_0000 ->
191          *   bmips_smp_entry ->
192          *   plat_wired_tlb_setup (cached function call; optional) ->
193          *   start_secondary (cached jump)
194          *
195          * Warm restart sequence:
196          *   play_dead WAIT loop ->
197          *   bmips_smp_int_vec @ BMIPS_WARM_RESTART_VEC ->
198          *   eret to play_dead ->
199          *   bmips_secondary_reentry ->
200          *   start_secondary
201          */
202
203         pr_info("SMP: Booting CPU%d...\n", cpu);
204
205         if (cpumask_test_cpu(cpu, &bmips_booted_mask)) {
206                 /* kseg1 might not exist if this CPU enabled XKS01 */
207                 bmips_set_reset_vec(cpu, RESET_FROM_KSEG0);
208
209                 switch (current_cpu_type()) {
210                 case CPU_BMIPS4350:
211                 case CPU_BMIPS4380:
212                         bmips43xx_send_ipi_single(cpu, 0);
213                         break;
214                 case CPU_BMIPS5000:
215                         bmips5000_send_ipi_single(cpu, 0);
216                         break;
217                 }
218         } else {
219                 bmips_set_reset_vec(cpu, RESET_FROM_KSEG1);
220
221                 switch (current_cpu_type()) {
222                 case CPU_BMIPS4350:
223                 case CPU_BMIPS4380:
224                         /* Reset slave TP1 if booting from TP0 */
225                         if (cpu_logical_map(cpu) == 1)
226                                 set_c0_brcm_cmt_ctrl(0x01);
227                         break;
228                 case CPU_BMIPS5000:
229                         write_c0_brcm_action(ACTION_BOOT_THREAD(cpu));
230                         break;
231                 }
232                 cpumask_set_cpu(cpu, &bmips_booted_mask);
233         }
234
235         return 0;
236 }
237
238 /*
239  * Early setup - runs on secondary CPU after cache probe
240  */
241 static void bmips_init_secondary(void)
242 {
243         bmips_cpu_setup();
244
245         switch (current_cpu_type()) {
246         case CPU_BMIPS4350:
247         case CPU_BMIPS4380:
248                 clear_c0_cause(smp_processor_id() ? C_SW1 : C_SW0);
249                 break;
250         case CPU_BMIPS5000:
251                 write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), 0));
252                 cpu_set_core(&current_cpu_data, (read_c0_brcm_config() >> 25) & 3);
253                 break;
254         }
255 }
256
257 /*
258  * Late setup - runs on secondary CPU before entering the idle loop
259  */
260 static void bmips_smp_finish(void)
261 {
262         pr_info("SMP: CPU%d is running\n", smp_processor_id());
263
264         /* make sure there won't be a timer interrupt for a little while */
265         write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ);
266
267         irq_enable_hazard();
268         set_c0_status(IE_SW0 | IE_SW1 | bmips_tp1_irqs | IE_IRQ5 | ST0_IE);
269         irq_enable_hazard();
270 }
271
272 /*
273  * BMIPS5000 raceless IPIs
274  *
275  * Each CPU has two inbound SW IRQs which are independent of all other CPUs.
276  * IPI0 is used for SMP_RESCHEDULE_YOURSELF
277  * IPI1 is used for SMP_CALL_FUNCTION
278  */
279
280 static void bmips5000_send_ipi_single(int cpu, unsigned int action)
281 {
282         write_c0_brcm_action(ACTION_SET_IPI(cpu, action == SMP_CALL_FUNCTION));
283 }
284
285 static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id)
286 {
287         int action = irq - IPI0_IRQ;
288
289         write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), action));
290
291         if (action == 0)
292                 scheduler_ipi();
293         else
294                 generic_smp_call_function_interrupt();
295
296         return IRQ_HANDLED;
297 }
298
299 static void bmips5000_send_ipi_mask(const struct cpumask *mask,
300         unsigned int action)
301 {
302         unsigned int i;
303
304         for_each_cpu(i, mask)
305                 bmips5000_send_ipi_single(i, action);
306 }
307
308 /*
309  * BMIPS43xx racey IPIs
310  *
311  * We use one inbound SW IRQ for each CPU.
312  *
313  * A spinlock must be held in order to keep CPUx from accidentally clearing
314  * an incoming IPI when it writes CP0 CAUSE to raise an IPI on CPUy.  The
315  * same spinlock is used to protect the action masks.
316  */
317
318 static DEFINE_SPINLOCK(ipi_lock);
319 static DEFINE_PER_CPU(int, ipi_action_mask);
320
321 static void bmips43xx_send_ipi_single(int cpu, unsigned int action)
322 {
323         unsigned long flags;
324
325         spin_lock_irqsave(&ipi_lock, flags);
326         set_c0_cause(cpu ? C_SW1 : C_SW0);
327         per_cpu(ipi_action_mask, cpu) |= action;
328         irq_enable_hazard();
329         spin_unlock_irqrestore(&ipi_lock, flags);
330 }
331
332 static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id)
333 {
334         unsigned long flags;
335         int action, cpu = irq - IPI0_IRQ;
336
337         spin_lock_irqsave(&ipi_lock, flags);
338         action = __this_cpu_read(ipi_action_mask);
339         per_cpu(ipi_action_mask, cpu) = 0;
340         clear_c0_cause(cpu ? C_SW1 : C_SW0);
341         spin_unlock_irqrestore(&ipi_lock, flags);
342
343         if (action & SMP_RESCHEDULE_YOURSELF)
344                 scheduler_ipi();
345         if (action & SMP_CALL_FUNCTION)
346                 generic_smp_call_function_interrupt();
347
348         return IRQ_HANDLED;
349 }
350
351 static void bmips43xx_send_ipi_mask(const struct cpumask *mask,
352         unsigned int action)
353 {
354         unsigned int i;
355
356         for_each_cpu(i, mask)
357                 bmips43xx_send_ipi_single(i, action);
358 }
359
360 #ifdef CONFIG_HOTPLUG_CPU
361
362 static int bmips_cpu_disable(void)
363 {
364         unsigned int cpu = smp_processor_id();
365
366         if (cpu == 0)
367                 return -EBUSY;
368
369         pr_info("SMP: CPU%d is offline\n", cpu);
370
371         set_cpu_online(cpu, false);
372         calculate_cpu_foreign_map();
373         irq_cpu_offline();
374         clear_c0_status(IE_IRQ5);
375
376         local_flush_tlb_all();
377         local_flush_icache_range(0, ~0);
378
379         return 0;
380 }
381
382 static void bmips_cpu_die(unsigned int cpu)
383 {
384 }
385
386 void __ref play_dead(void)
387 {
388         idle_task_exit();
389
390         /* flush data cache */
391         _dma_cache_wback_inv(0, ~0);
392
393         /*
394          * Wakeup is on SW0 or SW1; disable everything else
395          * Use BEV !IV (BMIPS_WARM_RESTART_VEC) to avoid the regular Linux
396          * IRQ handlers; this clears ST0_IE and returns immediately.
397          */
398         clear_c0_cause(CAUSEF_IV | C_SW0 | C_SW1);
399         change_c0_status(
400                 IE_IRQ5 | bmips_tp1_irqs | IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV,
401                 IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV);
402         irq_disable_hazard();
403
404         /*
405          * wait for SW interrupt from bmips_boot_secondary(), then jump
406          * back to start_secondary()
407          */
408         __asm__ __volatile__(
409         "       wait\n"
410         "       j       bmips_secondary_reentry\n"
411         : : : "memory");
412 }
413
414 #endif /* CONFIG_HOTPLUG_CPU */
415
416 const struct plat_smp_ops bmips43xx_smp_ops = {
417         .smp_setup              = bmips_smp_setup,
418         .prepare_cpus           = bmips_prepare_cpus,
419         .boot_secondary         = bmips_boot_secondary,
420         .smp_finish             = bmips_smp_finish,
421         .init_secondary         = bmips_init_secondary,
422         .send_ipi_single        = bmips43xx_send_ipi_single,
423         .send_ipi_mask          = bmips43xx_send_ipi_mask,
424 #ifdef CONFIG_HOTPLUG_CPU
425         .cpu_disable            = bmips_cpu_disable,
426         .cpu_die                = bmips_cpu_die,
427 #endif
428 };
429
430 const struct plat_smp_ops bmips5000_smp_ops = {
431         .smp_setup              = bmips_smp_setup,
432         .prepare_cpus           = bmips_prepare_cpus,
433         .boot_secondary         = bmips_boot_secondary,
434         .smp_finish             = bmips_smp_finish,
435         .init_secondary         = bmips_init_secondary,
436         .send_ipi_single        = bmips5000_send_ipi_single,
437         .send_ipi_mask          = bmips5000_send_ipi_mask,
438 #ifdef CONFIG_HOTPLUG_CPU
439         .cpu_disable            = bmips_cpu_disable,
440         .cpu_die                = bmips_cpu_die,
441 #endif
442 };
443
444 #endif /* CONFIG_SMP */
445
446 /***********************************************************************
447  * BMIPS vector relocation
448  * This is primarily used for SMP boot, but it is applicable to some
449  * UP BMIPS systems as well.
450  ***********************************************************************/
451
452 static void bmips_wr_vec(unsigned long dst, char *start, char *end)
453 {
454         memcpy((void *)dst, start, end - start);
455         dma_cache_wback(dst, end - start);
456         local_flush_icache_range(dst, dst + (end - start));
457         instruction_hazard();
458 }
459
460 static inline void bmips_nmi_handler_setup(void)
461 {
462         bmips_wr_vec(BMIPS_NMI_RESET_VEC, bmips_reset_nmi_vec,
463                 bmips_reset_nmi_vec_end);
464         bmips_wr_vec(BMIPS_WARM_RESTART_VEC, bmips_smp_int_vec,
465                 bmips_smp_int_vec_end);
466 }
467
468 struct reset_vec_info {
469         int cpu;
470         u32 val;
471 };
472
473 static void bmips_set_reset_vec_remote(void *vinfo)
474 {
475         struct reset_vec_info *info = vinfo;
476         int shift = info->cpu & 0x01 ? 16 : 0;
477         u32 mask = ~(0xffff << shift), val = info->val >> 16;
478
479         preempt_disable();
480         if (smp_processor_id() > 0) {
481                 smp_call_function_single(0, &bmips_set_reset_vec_remote,
482                                          info, 1);
483         } else {
484                 if (info->cpu & 0x02) {
485                         /* BMIPS5200 "should" use mask/shift, but it's buggy */
486                         bmips_write_zscm_reg(0xa0, (val << 16) | val);
487                         bmips_read_zscm_reg(0xa0);
488                 } else {
489                         write_c0_brcm_bootvec((read_c0_brcm_bootvec() & mask) |
490                                               (val << shift));
491                 }
492         }
493         preempt_enable();
494 }
495
496 static void bmips_set_reset_vec(int cpu, u32 val)
497 {
498         struct reset_vec_info info;
499
500         if (current_cpu_type() == CPU_BMIPS5000) {
501                 /* this needs to run from CPU0 (which is always online) */
502                 info.cpu = cpu;
503                 info.val = val;
504                 bmips_set_reset_vec_remote(&info);
505         } else {
506                 void __iomem *cbr = BMIPS_GET_CBR();
507
508                 if (cpu == 0)
509                         __raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_0);
510                 else {
511                         if (current_cpu_type() != CPU_BMIPS4380)
512                                 return;
513                         __raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
514                 }
515         }
516         __sync();
517         back_to_back_c0_hazard();
518 }
519
520 void bmips_ebase_setup(void)
521 {
522         unsigned long new_ebase = ebase;
523
524         BUG_ON(ebase != CKSEG0);
525
526         switch (current_cpu_type()) {
527         case CPU_BMIPS4350:
528                 /*
529                  * BMIPS4350 cannot relocate the normal vectors, but it
530                  * can relocate the BEV=1 vectors.  So CPU1 starts up at
531                  * the relocated BEV=1, IV=0 general exception vector @
532                  * 0xa000_0380.
533                  *
534                  * set_uncached_handler() is used here because:
535                  *  - CPU1 will run this from uncached space
536                  *  - None of the cacheflush functions are set up yet
537                  */
538                 set_uncached_handler(BMIPS_WARM_RESTART_VEC - CKSEG0,
539                         &bmips_smp_int_vec, 0x80);
540                 __sync();
541                 return;
542         case CPU_BMIPS3300:
543         case CPU_BMIPS4380:
544                 /*
545                  * 0x8000_0000: reset/NMI (initially in kseg1)
546                  * 0x8000_0400: normal vectors
547                  */
548                 new_ebase = 0x80000400;
549                 bmips_set_reset_vec(0, RESET_FROM_KSEG0);
550                 break;
551         case CPU_BMIPS5000:
552                 /*
553                  * 0x8000_0000: reset/NMI (initially in kseg1)
554                  * 0x8000_1000: normal vectors
555                  */
556                 new_ebase = 0x80001000;
557                 bmips_set_reset_vec(0, RESET_FROM_KSEG0);
558                 write_c0_ebase(new_ebase);
559                 break;
560         default:
561                 return;
562         }
563
564         board_nmi_handler_setup = &bmips_nmi_handler_setup;
565         ebase = new_ebase;
566 }
567
568 asmlinkage void __weak plat_wired_tlb_setup(void)
569 {
570         /*
571          * Called when starting/restarting a secondary CPU.
572          * Kernel stacks and other important data might only be accessible
573          * once the wired entries are present.
574          */
575 }
576
577 void bmips_cpu_setup(void)
578 {
579         void __iomem __maybe_unused *cbr = BMIPS_GET_CBR();
580         u32 __maybe_unused cfg;
581
582         switch (current_cpu_type()) {
583         case CPU_BMIPS3300:
584                 /* Set BIU to async mode */
585                 set_c0_brcm_bus_pll(BIT(22));
586                 __sync();
587
588                 /* put the BIU back in sync mode */
589                 clear_c0_brcm_bus_pll(BIT(22));
590
591                 /* clear BHTD to enable branch history table */
592                 clear_c0_brcm_reset(BIT(16));
593
594                 /* Flush and enable RAC */
595                 cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
596                 __raw_writel(cfg | 0x100, cbr + BMIPS_RAC_CONFIG);
597                 __raw_readl(cbr + BMIPS_RAC_CONFIG);
598
599                 cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
600                 __raw_writel(cfg | 0xf, cbr + BMIPS_RAC_CONFIG);
601                 __raw_readl(cbr + BMIPS_RAC_CONFIG);
602
603                 cfg = __raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
604                 __raw_writel(cfg | 0x0fff0000, cbr + BMIPS_RAC_ADDRESS_RANGE);
605                 __raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
606                 break;
607
608         case CPU_BMIPS4380:
609                 /* CBG workaround for early BMIPS4380 CPUs */
610                 switch (read_c0_prid()) {
611                 case 0x2a040:
612                 case 0x2a042:
613                 case 0x2a044:
614                 case 0x2a060:
615                         cfg = __raw_readl(cbr + BMIPS_L2_CONFIG);
616                         __raw_writel(cfg & ~0x07000000, cbr + BMIPS_L2_CONFIG);
617                         __raw_readl(cbr + BMIPS_L2_CONFIG);
618                 }
619
620                 /* clear BHTD to enable branch history table */
621                 clear_c0_brcm_config_0(BIT(21));
622
623                 /* XI/ROTR enable */
624                 set_c0_brcm_config_0(BIT(23));
625                 set_c0_brcm_cmt_ctrl(BIT(15));
626                 break;
627
628         case CPU_BMIPS5000:
629                 /* enable RDHWR, BRDHWR */
630                 set_c0_brcm_config(BIT(17) | BIT(21));
631
632                 /* Disable JTB */
633                 __asm__ __volatile__(
634                 "       .set    noreorder\n"
635                 "       li      $8, 0x5a455048\n"
636                 "       .word   0x4088b00f\n"   /* mtc0 t0, $22, 15 */
637                 "       .word   0x4008b008\n"   /* mfc0 t0, $22, 8 */
638                 "       li      $9, 0x00008000\n"
639                 "       or      $8, $8, $9\n"
640                 "       .word   0x4088b008\n"   /* mtc0 t0, $22, 8 */
641                 "       sync\n"
642                 "       li      $8, 0x0\n"
643                 "       .word   0x4088b00f\n"   /* mtc0 t0, $22, 15 */
644                 "       .set    reorder\n"
645                 : : : "$8", "$9");
646
647                 /* XI enable */
648                 set_c0_brcm_config(BIT(27));
649
650                 /* enable MIPS32R2 ROR instruction for XI TLB handlers */
651                 __asm__ __volatile__(
652                 "       li      $8, 0x5a455048\n"
653                 "       .word   0x4088b00f\n"   /* mtc0 $8, $22, 15 */
654                 "       nop; nop; nop\n"
655                 "       .word   0x4008b008\n"   /* mfc0 $8, $22, 8 */
656                 "       lui     $9, 0x0100\n"
657                 "       or      $8, $9\n"
658                 "       .word   0x4088b008\n"   /* mtc0 $8, $22, 8 */
659                 : : : "$8", "$9");
660                 break;
661         }
662 }