GNU Linux-libre 4.14.290-gnu1
[releases.git] / arch / mips / kvm / mmu.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * KVM/MIPS MMU handling in the KVM module.
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
9  * Authors: Sanjay Lal <sanjayl@kymasys.com>
10  */
11
12 #include <linux/highmem.h>
13 #include <linux/kvm_host.h>
14 #include <linux/uaccess.h>
15 #include <asm/mmu_context.h>
16 #include <asm/pgalloc.h>
17
18 /*
19  * KVM_MMU_CACHE_MIN_PAGES is the number of GPA page table translation levels
20  * for which pages need to be cached.
21  */
22 #if defined(__PAGETABLE_PMD_FOLDED)
23 #define KVM_MMU_CACHE_MIN_PAGES 1
24 #else
25 #define KVM_MMU_CACHE_MIN_PAGES 2
26 #endif
27
28 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
29                                   int min, int max)
30 {
31         void *page;
32
33         BUG_ON(max > KVM_NR_MEM_OBJS);
34         if (cache->nobjs >= min)
35                 return 0;
36         while (cache->nobjs < max) {
37                 page = (void *)__get_free_page(GFP_KERNEL);
38                 if (!page)
39                         return -ENOMEM;
40                 cache->objects[cache->nobjs++] = page;
41         }
42         return 0;
43 }
44
45 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
46 {
47         while (mc->nobjs)
48                 free_page((unsigned long)mc->objects[--mc->nobjs]);
49 }
50
51 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
52 {
53         void *p;
54
55         BUG_ON(!mc || !mc->nobjs);
56         p = mc->objects[--mc->nobjs];
57         return p;
58 }
59
60 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
61 {
62         mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
63 }
64
65 /**
66  * kvm_pgd_init() - Initialise KVM GPA page directory.
67  * @page:       Pointer to page directory (PGD) for KVM GPA.
68  *
69  * Initialise a KVM GPA page directory with pointers to the invalid table, i.e.
70  * representing no mappings. This is similar to pgd_init(), however it
71  * initialises all the page directory pointers, not just the ones corresponding
72  * to the userland address space (since it is for the guest physical address
73  * space rather than a virtual address space).
74  */
75 static void kvm_pgd_init(void *page)
76 {
77         unsigned long *p, *end;
78         unsigned long entry;
79
80 #ifdef __PAGETABLE_PMD_FOLDED
81         entry = (unsigned long)invalid_pte_table;
82 #else
83         entry = (unsigned long)invalid_pmd_table;
84 #endif
85
86         p = (unsigned long *)page;
87         end = p + PTRS_PER_PGD;
88
89         do {
90                 p[0] = entry;
91                 p[1] = entry;
92                 p[2] = entry;
93                 p[3] = entry;
94                 p[4] = entry;
95                 p += 8;
96                 p[-3] = entry;
97                 p[-2] = entry;
98                 p[-1] = entry;
99         } while (p != end);
100 }
101
102 /**
103  * kvm_pgd_alloc() - Allocate and initialise a KVM GPA page directory.
104  *
105  * Allocate a blank KVM GPA page directory (PGD) for representing guest physical
106  * to host physical page mappings.
107  *
108  * Returns:     Pointer to new KVM GPA page directory.
109  *              NULL on allocation failure.
110  */
111 pgd_t *kvm_pgd_alloc(void)
112 {
113         pgd_t *ret;
114
115         ret = (pgd_t *)__get_free_pages(GFP_KERNEL, PGD_ORDER);
116         if (ret)
117                 kvm_pgd_init(ret);
118
119         return ret;
120 }
121
122 /**
123  * kvm_mips_walk_pgd() - Walk page table with optional allocation.
124  * @pgd:        Page directory pointer.
125  * @addr:       Address to index page table using.
126  * @cache:      MMU page cache to allocate new page tables from, or NULL.
127  *
128  * Walk the page tables pointed to by @pgd to find the PTE corresponding to the
129  * address @addr. If page tables don't exist for @addr, they will be created
130  * from the MMU cache if @cache is not NULL.
131  *
132  * Returns:     Pointer to pte_t corresponding to @addr.
133  *              NULL if a page table doesn't exist for @addr and !@cache.
134  *              NULL if a page table allocation failed.
135  */
136 static pte_t *kvm_mips_walk_pgd(pgd_t *pgd, struct kvm_mmu_memory_cache *cache,
137                                 unsigned long addr)
138 {
139         pud_t *pud;
140         pmd_t *pmd;
141
142         pgd += pgd_index(addr);
143         if (pgd_none(*pgd)) {
144                 /* Not used on MIPS yet */
145                 BUG();
146                 return NULL;
147         }
148         pud = pud_offset(pgd, addr);
149         if (pud_none(*pud)) {
150                 pmd_t *new_pmd;
151
152                 if (!cache)
153                         return NULL;
154                 new_pmd = mmu_memory_cache_alloc(cache);
155                 pmd_init((unsigned long)new_pmd,
156                          (unsigned long)invalid_pte_table);
157                 pud_populate(NULL, pud, new_pmd);
158         }
159         pmd = pmd_offset(pud, addr);
160         if (pmd_none(*pmd)) {
161                 pte_t *new_pte;
162
163                 if (!cache)
164                         return NULL;
165                 new_pte = mmu_memory_cache_alloc(cache);
166                 clear_page(new_pte);
167                 pmd_populate_kernel(NULL, pmd, new_pte);
168         }
169         return pte_offset(pmd, addr);
170 }
171
172 /* Caller must hold kvm->mm_lock */
173 static pte_t *kvm_mips_pte_for_gpa(struct kvm *kvm,
174                                    struct kvm_mmu_memory_cache *cache,
175                                    unsigned long addr)
176 {
177         return kvm_mips_walk_pgd(kvm->arch.gpa_mm.pgd, cache, addr);
178 }
179
180 /*
181  * kvm_mips_flush_gpa_{pte,pmd,pud,pgd,pt}.
182  * Flush a range of guest physical address space from the VM's GPA page tables.
183  */
184
185 static bool kvm_mips_flush_gpa_pte(pte_t *pte, unsigned long start_gpa,
186                                    unsigned long end_gpa)
187 {
188         int i_min = __pte_offset(start_gpa);
189         int i_max = __pte_offset(end_gpa);
190         bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PTE - 1);
191         int i;
192
193         for (i = i_min; i <= i_max; ++i) {
194                 if (!pte_present(pte[i]))
195                         continue;
196
197                 set_pte(pte + i, __pte(0));
198         }
199         return safe_to_remove;
200 }
201
202 static bool kvm_mips_flush_gpa_pmd(pmd_t *pmd, unsigned long start_gpa,
203                                    unsigned long end_gpa)
204 {
205         pte_t *pte;
206         unsigned long end = ~0ul;
207         int i_min = __pmd_offset(start_gpa);
208         int i_max = __pmd_offset(end_gpa);
209         bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PMD - 1);
210         int i;
211
212         for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
213                 if (!pmd_present(pmd[i]))
214                         continue;
215
216                 pte = pte_offset(pmd + i, 0);
217                 if (i == i_max)
218                         end = end_gpa;
219
220                 if (kvm_mips_flush_gpa_pte(pte, start_gpa, end)) {
221                         pmd_clear(pmd + i);
222                         pte_free_kernel(NULL, pte);
223                 } else {
224                         safe_to_remove = false;
225                 }
226         }
227         return safe_to_remove;
228 }
229
230 static bool kvm_mips_flush_gpa_pud(pud_t *pud, unsigned long start_gpa,
231                                    unsigned long end_gpa)
232 {
233         pmd_t *pmd;
234         unsigned long end = ~0ul;
235         int i_min = __pud_offset(start_gpa);
236         int i_max = __pud_offset(end_gpa);
237         bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PUD - 1);
238         int i;
239
240         for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
241                 if (!pud_present(pud[i]))
242                         continue;
243
244                 pmd = pmd_offset(pud + i, 0);
245                 if (i == i_max)
246                         end = end_gpa;
247
248                 if (kvm_mips_flush_gpa_pmd(pmd, start_gpa, end)) {
249                         pud_clear(pud + i);
250                         pmd_free(NULL, pmd);
251                 } else {
252                         safe_to_remove = false;
253                 }
254         }
255         return safe_to_remove;
256 }
257
258 static bool kvm_mips_flush_gpa_pgd(pgd_t *pgd, unsigned long start_gpa,
259                                    unsigned long end_gpa)
260 {
261         pud_t *pud;
262         unsigned long end = ~0ul;
263         int i_min = pgd_index(start_gpa);
264         int i_max = pgd_index(end_gpa);
265         bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PGD - 1);
266         int i;
267
268         for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
269                 if (!pgd_present(pgd[i]))
270                         continue;
271
272                 pud = pud_offset(pgd + i, 0);
273                 if (i == i_max)
274                         end = end_gpa;
275
276                 if (kvm_mips_flush_gpa_pud(pud, start_gpa, end)) {
277                         pgd_clear(pgd + i);
278                         pud_free(NULL, pud);
279                 } else {
280                         safe_to_remove = false;
281                 }
282         }
283         return safe_to_remove;
284 }
285
286 /**
287  * kvm_mips_flush_gpa_pt() - Flush a range of guest physical addresses.
288  * @kvm:        KVM pointer.
289  * @start_gfn:  Guest frame number of first page in GPA range to flush.
290  * @end_gfn:    Guest frame number of last page in GPA range to flush.
291  *
292  * Flushes a range of GPA mappings from the GPA page tables.
293  *
294  * The caller must hold the @kvm->mmu_lock spinlock.
295  *
296  * Returns:     Whether its safe to remove the top level page directory because
297  *              all lower levels have been removed.
298  */
299 bool kvm_mips_flush_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn)
300 {
301         return kvm_mips_flush_gpa_pgd(kvm->arch.gpa_mm.pgd,
302                                       start_gfn << PAGE_SHIFT,
303                                       end_gfn << PAGE_SHIFT);
304 }
305
306 #define BUILD_PTE_RANGE_OP(name, op)                                    \
307 static int kvm_mips_##name##_pte(pte_t *pte, unsigned long start,       \
308                                  unsigned long end)                     \
309 {                                                                       \
310         int ret = 0;                                                    \
311         int i_min = __pte_offset(start);                                \
312         int i_max = __pte_offset(end);                                  \
313         int i;                                                          \
314         pte_t old, new;                                                 \
315                                                                         \
316         for (i = i_min; i <= i_max; ++i) {                              \
317                 if (!pte_present(pte[i]))                               \
318                         continue;                                       \
319                                                                         \
320                 old = pte[i];                                           \
321                 new = op(old);                                          \
322                 if (pte_val(new) == pte_val(old))                       \
323                         continue;                                       \
324                 set_pte(pte + i, new);                                  \
325                 ret = 1;                                                \
326         }                                                               \
327         return ret;                                                     \
328 }                                                                       \
329                                                                         \
330 /* returns true if anything was done */                                 \
331 static int kvm_mips_##name##_pmd(pmd_t *pmd, unsigned long start,       \
332                                  unsigned long end)                     \
333 {                                                                       \
334         int ret = 0;                                                    \
335         pte_t *pte;                                                     \
336         unsigned long cur_end = ~0ul;                                   \
337         int i_min = __pmd_offset(start);                                \
338         int i_max = __pmd_offset(end);                                  \
339         int i;                                                          \
340                                                                         \
341         for (i = i_min; i <= i_max; ++i, start = 0) {                   \
342                 if (!pmd_present(pmd[i]))                               \
343                         continue;                                       \
344                                                                         \
345                 pte = pte_offset(pmd + i, 0);                           \
346                 if (i == i_max)                                         \
347                         cur_end = end;                                  \
348                                                                         \
349                 ret |= kvm_mips_##name##_pte(pte, start, cur_end);      \
350         }                                                               \
351         return ret;                                                     \
352 }                                                                       \
353                                                                         \
354 static int kvm_mips_##name##_pud(pud_t *pud, unsigned long start,       \
355                                  unsigned long end)                     \
356 {                                                                       \
357         int ret = 0;                                                    \
358         pmd_t *pmd;                                                     \
359         unsigned long cur_end = ~0ul;                                   \
360         int i_min = __pud_offset(start);                                \
361         int i_max = __pud_offset(end);                                  \
362         int i;                                                          \
363                                                                         \
364         for (i = i_min; i <= i_max; ++i, start = 0) {                   \
365                 if (!pud_present(pud[i]))                               \
366                         continue;                                       \
367                                                                         \
368                 pmd = pmd_offset(pud + i, 0);                           \
369                 if (i == i_max)                                         \
370                         cur_end = end;                                  \
371                                                                         \
372                 ret |= kvm_mips_##name##_pmd(pmd, start, cur_end);      \
373         }                                                               \
374         return ret;                                                     \
375 }                                                                       \
376                                                                         \
377 static int kvm_mips_##name##_pgd(pgd_t *pgd, unsigned long start,       \
378                                  unsigned long end)                     \
379 {                                                                       \
380         int ret = 0;                                                    \
381         pud_t *pud;                                                     \
382         unsigned long cur_end = ~0ul;                                   \
383         int i_min = pgd_index(start);                                   \
384         int i_max = pgd_index(end);                                     \
385         int i;                                                          \
386                                                                         \
387         for (i = i_min; i <= i_max; ++i, start = 0) {                   \
388                 if (!pgd_present(pgd[i]))                               \
389                         continue;                                       \
390                                                                         \
391                 pud = pud_offset(pgd + i, 0);                           \
392                 if (i == i_max)                                         \
393                         cur_end = end;                                  \
394                                                                         \
395                 ret |= kvm_mips_##name##_pud(pud, start, cur_end);      \
396         }                                                               \
397         return ret;                                                     \
398 }
399
400 /*
401  * kvm_mips_mkclean_gpa_pt.
402  * Mark a range of guest physical address space clean (writes fault) in the VM's
403  * GPA page table to allow dirty page tracking.
404  */
405
406 BUILD_PTE_RANGE_OP(mkclean, pte_mkclean)
407
408 /**
409  * kvm_mips_mkclean_gpa_pt() - Make a range of guest physical addresses clean.
410  * @kvm:        KVM pointer.
411  * @start_gfn:  Guest frame number of first page in GPA range to flush.
412  * @end_gfn:    Guest frame number of last page in GPA range to flush.
413  *
414  * Make a range of GPA mappings clean so that guest writes will fault and
415  * trigger dirty page logging.
416  *
417  * The caller must hold the @kvm->mmu_lock spinlock.
418  *
419  * Returns:     Whether any GPA mappings were modified, which would require
420  *              derived mappings (GVA page tables & TLB enties) to be
421  *              invalidated.
422  */
423 int kvm_mips_mkclean_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn)
424 {
425         return kvm_mips_mkclean_pgd(kvm->arch.gpa_mm.pgd,
426                                     start_gfn << PAGE_SHIFT,
427                                     end_gfn << PAGE_SHIFT);
428 }
429
430 /**
431  * kvm_arch_mmu_enable_log_dirty_pt_masked() - write protect dirty pages
432  * @kvm:        The KVM pointer
433  * @slot:       The memory slot associated with mask
434  * @gfn_offset: The gfn offset in memory slot
435  * @mask:       The mask of dirty pages at offset 'gfn_offset' in this memory
436  *              slot to be write protected
437  *
438  * Walks bits set in mask write protects the associated pte's. Caller must
439  * acquire @kvm->mmu_lock.
440  */
441 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
442                 struct kvm_memory_slot *slot,
443                 gfn_t gfn_offset, unsigned long mask)
444 {
445         gfn_t base_gfn = slot->base_gfn + gfn_offset;
446         gfn_t start = base_gfn +  __ffs(mask);
447         gfn_t end = base_gfn + __fls(mask);
448
449         kvm_mips_mkclean_gpa_pt(kvm, start, end);
450 }
451
452 /*
453  * kvm_mips_mkold_gpa_pt.
454  * Mark a range of guest physical address space old (all accesses fault) in the
455  * VM's GPA page table to allow detection of commonly used pages.
456  */
457
458 BUILD_PTE_RANGE_OP(mkold, pte_mkold)
459
460 static int kvm_mips_mkold_gpa_pt(struct kvm *kvm, gfn_t start_gfn,
461                                  gfn_t end_gfn)
462 {
463         return kvm_mips_mkold_pgd(kvm->arch.gpa_mm.pgd,
464                                   start_gfn << PAGE_SHIFT,
465                                   end_gfn << PAGE_SHIFT);
466 }
467
468 static int handle_hva_to_gpa(struct kvm *kvm,
469                              unsigned long start,
470                              unsigned long end,
471                              int (*handler)(struct kvm *kvm, gfn_t gfn,
472                                             gpa_t gfn_end,
473                                             struct kvm_memory_slot *memslot,
474                                             void *data),
475                              void *data)
476 {
477         struct kvm_memslots *slots;
478         struct kvm_memory_slot *memslot;
479         int ret = 0;
480
481         slots = kvm_memslots(kvm);
482
483         /* we only care about the pages that the guest sees */
484         kvm_for_each_memslot(memslot, slots) {
485                 unsigned long hva_start, hva_end;
486                 gfn_t gfn, gfn_end;
487
488                 hva_start = max(start, memslot->userspace_addr);
489                 hva_end = min(end, memslot->userspace_addr +
490                                         (memslot->npages << PAGE_SHIFT));
491                 if (hva_start >= hva_end)
492                         continue;
493
494                 /*
495                  * {gfn(page) | page intersects with [hva_start, hva_end)} =
496                  * {gfn_start, gfn_start+1, ..., gfn_end-1}.
497                  */
498                 gfn = hva_to_gfn_memslot(hva_start, memslot);
499                 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
500
501                 ret |= handler(kvm, gfn, gfn_end, memslot, data);
502         }
503
504         return ret;
505 }
506
507
508 static int kvm_unmap_hva_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end,
509                                  struct kvm_memory_slot *memslot, void *data)
510 {
511         kvm_mips_flush_gpa_pt(kvm, gfn, gfn_end);
512         return 1;
513 }
514
515 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
516 {
517         unsigned long end = hva + PAGE_SIZE;
518
519         handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
520
521         kvm_mips_callbacks->flush_shadow_all(kvm);
522         return 0;
523 }
524
525 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
526 {
527         handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
528
529         kvm_mips_callbacks->flush_shadow_all(kvm);
530         return 0;
531 }
532
533 static int kvm_set_spte_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end,
534                                 struct kvm_memory_slot *memslot, void *data)
535 {
536         gpa_t gpa = gfn << PAGE_SHIFT;
537         pte_t hva_pte = *(pte_t *)data;
538         pte_t *gpa_pte = kvm_mips_pte_for_gpa(kvm, NULL, gpa);
539         pte_t old_pte;
540
541         if (!gpa_pte)
542                 return 0;
543
544         /* Mapping may need adjusting depending on memslot flags */
545         old_pte = *gpa_pte;
546         if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES && !pte_dirty(old_pte))
547                 hva_pte = pte_mkclean(hva_pte);
548         else if (memslot->flags & KVM_MEM_READONLY)
549                 hva_pte = pte_wrprotect(hva_pte);
550
551         set_pte(gpa_pte, hva_pte);
552
553         /* Replacing an absent or old page doesn't need flushes */
554         if (!pte_present(old_pte) || !pte_young(old_pte))
555                 return 0;
556
557         /* Pages swapped, aged, moved, or cleaned require flushes */
558         return !pte_present(hva_pte) ||
559                !pte_young(hva_pte) ||
560                pte_pfn(old_pte) != pte_pfn(hva_pte) ||
561                (pte_dirty(old_pte) && !pte_dirty(hva_pte));
562 }
563
564 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
565 {
566         unsigned long end = hva + PAGE_SIZE;
567         int ret;
568
569         ret = handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &pte);
570         if (ret)
571                 kvm_mips_callbacks->flush_shadow_all(kvm);
572 }
573
574 static int kvm_age_hva_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end,
575                                struct kvm_memory_slot *memslot, void *data)
576 {
577         return kvm_mips_mkold_gpa_pt(kvm, gfn, gfn_end);
578 }
579
580 static int kvm_test_age_hva_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end,
581                                     struct kvm_memory_slot *memslot, void *data)
582 {
583         gpa_t gpa = gfn << PAGE_SHIFT;
584         pte_t *gpa_pte = kvm_mips_pte_for_gpa(kvm, NULL, gpa);
585
586         if (!gpa_pte)
587                 return 0;
588         return pte_young(*gpa_pte);
589 }
590
591 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
592 {
593         return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
594 }
595
596 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
597 {
598         return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL);
599 }
600
601 /**
602  * _kvm_mips_map_page_fast() - Fast path GPA fault handler.
603  * @vcpu:               VCPU pointer.
604  * @gpa:                Guest physical address of fault.
605  * @write_fault:        Whether the fault was due to a write.
606  * @out_entry:          New PTE for @gpa (written on success unless NULL).
607  * @out_buddy:          New PTE for @gpa's buddy (written on success unless
608  *                      NULL).
609  *
610  * Perform fast path GPA fault handling, doing all that can be done without
611  * calling into KVM. This handles marking old pages young (for idle page
612  * tracking), and dirtying of clean pages (for dirty page logging).
613  *
614  * Returns:     0 on success, in which case we can update derived mappings and
615  *              resume guest execution.
616  *              -EFAULT on failure due to absent GPA mapping or write to
617  *              read-only page, in which case KVM must be consulted.
618  */
619 static int _kvm_mips_map_page_fast(struct kvm_vcpu *vcpu, unsigned long gpa,
620                                    bool write_fault,
621                                    pte_t *out_entry, pte_t *out_buddy)
622 {
623         struct kvm *kvm = vcpu->kvm;
624         gfn_t gfn = gpa >> PAGE_SHIFT;
625         pte_t *ptep;
626         kvm_pfn_t pfn = 0;      /* silence bogus GCC warning */
627         bool pfn_valid = false;
628         int ret = 0;
629
630         spin_lock(&kvm->mmu_lock);
631
632         /* Fast path - just check GPA page table for an existing entry */
633         ptep = kvm_mips_pte_for_gpa(kvm, NULL, gpa);
634         if (!ptep || !pte_present(*ptep)) {
635                 ret = -EFAULT;
636                 goto out;
637         }
638
639         /* Track access to pages marked old */
640         if (!pte_young(*ptep)) {
641                 set_pte(ptep, pte_mkyoung(*ptep));
642                 pfn = pte_pfn(*ptep);
643                 pfn_valid = true;
644                 /* call kvm_set_pfn_accessed() after unlock */
645         }
646         if (write_fault && !pte_dirty(*ptep)) {
647                 if (!pte_write(*ptep)) {
648                         ret = -EFAULT;
649                         goto out;
650                 }
651
652                 /* Track dirtying of writeable pages */
653                 set_pte(ptep, pte_mkdirty(*ptep));
654                 pfn = pte_pfn(*ptep);
655                 mark_page_dirty(kvm, gfn);
656                 kvm_set_pfn_dirty(pfn);
657         }
658
659         if (out_entry)
660                 *out_entry = *ptep;
661         if (out_buddy)
662                 *out_buddy = *ptep_buddy(ptep);
663
664 out:
665         spin_unlock(&kvm->mmu_lock);
666         if (pfn_valid)
667                 kvm_set_pfn_accessed(pfn);
668         return ret;
669 }
670
671 /**
672  * kvm_mips_map_page() - Map a guest physical page.
673  * @vcpu:               VCPU pointer.
674  * @gpa:                Guest physical address of fault.
675  * @write_fault:        Whether the fault was due to a write.
676  * @out_entry:          New PTE for @gpa (written on success unless NULL).
677  * @out_buddy:          New PTE for @gpa's buddy (written on success unless
678  *                      NULL).
679  *
680  * Handle GPA faults by creating a new GPA mapping (or updating an existing
681  * one).
682  *
683  * This takes care of marking pages young or dirty (idle/dirty page tracking),
684  * asking KVM for the corresponding PFN, and creating a mapping in the GPA page
685  * tables. Derived mappings (GVA page tables and TLBs) must be handled by the
686  * caller.
687  *
688  * Returns:     0 on success, in which case the caller may use the @out_entry
689  *              and @out_buddy PTEs to update derived mappings and resume guest
690  *              execution.
691  *              -EFAULT if there is no memory region at @gpa or a write was
692  *              attempted to a read-only memory region. This is usually handled
693  *              as an MMIO access.
694  */
695 static int kvm_mips_map_page(struct kvm_vcpu *vcpu, unsigned long gpa,
696                              bool write_fault,
697                              pte_t *out_entry, pte_t *out_buddy)
698 {
699         struct kvm *kvm = vcpu->kvm;
700         struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
701         gfn_t gfn = gpa >> PAGE_SHIFT;
702         int srcu_idx, err;
703         kvm_pfn_t pfn;
704         pte_t *ptep, entry, old_pte;
705         bool writeable;
706         unsigned long prot_bits;
707         unsigned long mmu_seq;
708
709         /* Try the fast path to handle old / clean pages */
710         srcu_idx = srcu_read_lock(&kvm->srcu);
711         err = _kvm_mips_map_page_fast(vcpu, gpa, write_fault, out_entry,
712                                       out_buddy);
713         if (!err)
714                 goto out;
715
716         /* We need a minimum of cached pages ready for page table creation */
717         err = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
718                                      KVM_NR_MEM_OBJS);
719         if (err)
720                 goto out;
721
722 retry:
723         /*
724          * Used to check for invalidations in progress, of the pfn that is
725          * returned by pfn_to_pfn_prot below.
726          */
727         mmu_seq = kvm->mmu_notifier_seq;
728         /*
729          * Ensure the read of mmu_notifier_seq isn't reordered with PTE reads in
730          * gfn_to_pfn_prot() (which calls get_user_pages()), so that we don't
731          * risk the page we get a reference to getting unmapped before we have a
732          * chance to grab the mmu_lock without mmu_notifier_retry() noticing.
733          *
734          * This smp_rmb() pairs with the effective smp_wmb() of the combination
735          * of the pte_unmap_unlock() after the PTE is zapped, and the
736          * spin_lock() in kvm_mmu_notifier_invalidate_<page|range_end>() before
737          * mmu_notifier_seq is incremented.
738          */
739         smp_rmb();
740
741         /* Slow path - ask KVM core whether we can access this GPA */
742         pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writeable);
743         if (is_error_noslot_pfn(pfn)) {
744                 err = -EFAULT;
745                 goto out;
746         }
747
748         spin_lock(&kvm->mmu_lock);
749         /* Check if an invalidation has taken place since we got pfn */
750         if (mmu_notifier_retry(kvm, mmu_seq)) {
751                 /*
752                  * This can happen when mappings are changed asynchronously, but
753                  * also synchronously if a COW is triggered by
754                  * gfn_to_pfn_prot().
755                  */
756                 spin_unlock(&kvm->mmu_lock);
757                 kvm_release_pfn_clean(pfn);
758                 goto retry;
759         }
760
761         /* Ensure page tables are allocated */
762         ptep = kvm_mips_pte_for_gpa(kvm, memcache, gpa);
763
764         /* Set up the PTE */
765         prot_bits = _PAGE_PRESENT | __READABLE | _page_cachable_default;
766         if (writeable) {
767                 prot_bits |= _PAGE_WRITE;
768                 if (write_fault) {
769                         prot_bits |= __WRITEABLE;
770                         mark_page_dirty(kvm, gfn);
771                         kvm_set_pfn_dirty(pfn);
772                 }
773         }
774         entry = pfn_pte(pfn, __pgprot(prot_bits));
775
776         /* Write the PTE */
777         old_pte = *ptep;
778         set_pte(ptep, entry);
779
780         err = 0;
781         if (out_entry)
782                 *out_entry = *ptep;
783         if (out_buddy)
784                 *out_buddy = *ptep_buddy(ptep);
785
786         spin_unlock(&kvm->mmu_lock);
787         kvm_release_pfn_clean(pfn);
788         kvm_set_pfn_accessed(pfn);
789 out:
790         srcu_read_unlock(&kvm->srcu, srcu_idx);
791         return err;
792 }
793
794 static pte_t *kvm_trap_emul_pte_for_gva(struct kvm_vcpu *vcpu,
795                                         unsigned long addr)
796 {
797         struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
798         pgd_t *pgdp;
799         int ret;
800
801         /* We need a minimum of cached pages ready for page table creation */
802         ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
803                                      KVM_NR_MEM_OBJS);
804         if (ret)
805                 return NULL;
806
807         if (KVM_GUEST_KERNEL_MODE(vcpu))
808                 pgdp = vcpu->arch.guest_kernel_mm.pgd;
809         else
810                 pgdp = vcpu->arch.guest_user_mm.pgd;
811
812         return kvm_mips_walk_pgd(pgdp, memcache, addr);
813 }
814
815 void kvm_trap_emul_invalidate_gva(struct kvm_vcpu *vcpu, unsigned long addr,
816                                   bool user)
817 {
818         pgd_t *pgdp;
819         pte_t *ptep;
820
821         addr &= PAGE_MASK << 1;
822
823         pgdp = vcpu->arch.guest_kernel_mm.pgd;
824         ptep = kvm_mips_walk_pgd(pgdp, NULL, addr);
825         if (ptep) {
826                 ptep[0] = pfn_pte(0, __pgprot(0));
827                 ptep[1] = pfn_pte(0, __pgprot(0));
828         }
829
830         if (user) {
831                 pgdp = vcpu->arch.guest_user_mm.pgd;
832                 ptep = kvm_mips_walk_pgd(pgdp, NULL, addr);
833                 if (ptep) {
834                         ptep[0] = pfn_pte(0, __pgprot(0));
835                         ptep[1] = pfn_pte(0, __pgprot(0));
836                 }
837         }
838 }
839
840 /*
841  * kvm_mips_flush_gva_{pte,pmd,pud,pgd,pt}.
842  * Flush a range of guest physical address space from the VM's GPA page tables.
843  */
844
845 static bool kvm_mips_flush_gva_pte(pte_t *pte, unsigned long start_gva,
846                                    unsigned long end_gva)
847 {
848         int i_min = __pte_offset(start_gva);
849         int i_max = __pte_offset(end_gva);
850         bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PTE - 1);
851         int i;
852
853         /*
854          * There's no freeing to do, so there's no point clearing individual
855          * entries unless only part of the last level page table needs flushing.
856          */
857         if (safe_to_remove)
858                 return true;
859
860         for (i = i_min; i <= i_max; ++i) {
861                 if (!pte_present(pte[i]))
862                         continue;
863
864                 set_pte(pte + i, __pte(0));
865         }
866         return false;
867 }
868
869 static bool kvm_mips_flush_gva_pmd(pmd_t *pmd, unsigned long start_gva,
870                                    unsigned long end_gva)
871 {
872         pte_t *pte;
873         unsigned long end = ~0ul;
874         int i_min = __pmd_offset(start_gva);
875         int i_max = __pmd_offset(end_gva);
876         bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PMD - 1);
877         int i;
878
879         for (i = i_min; i <= i_max; ++i, start_gva = 0) {
880                 if (!pmd_present(pmd[i]))
881                         continue;
882
883                 pte = pte_offset(pmd + i, 0);
884                 if (i == i_max)
885                         end = end_gva;
886
887                 if (kvm_mips_flush_gva_pte(pte, start_gva, end)) {
888                         pmd_clear(pmd + i);
889                         pte_free_kernel(NULL, pte);
890                 } else {
891                         safe_to_remove = false;
892                 }
893         }
894         return safe_to_remove;
895 }
896
897 static bool kvm_mips_flush_gva_pud(pud_t *pud, unsigned long start_gva,
898                                    unsigned long end_gva)
899 {
900         pmd_t *pmd;
901         unsigned long end = ~0ul;
902         int i_min = __pud_offset(start_gva);
903         int i_max = __pud_offset(end_gva);
904         bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PUD - 1);
905         int i;
906
907         for (i = i_min; i <= i_max; ++i, start_gva = 0) {
908                 if (!pud_present(pud[i]))
909                         continue;
910
911                 pmd = pmd_offset(pud + i, 0);
912                 if (i == i_max)
913                         end = end_gva;
914
915                 if (kvm_mips_flush_gva_pmd(pmd, start_gva, end)) {
916                         pud_clear(pud + i);
917                         pmd_free(NULL, pmd);
918                 } else {
919                         safe_to_remove = false;
920                 }
921         }
922         return safe_to_remove;
923 }
924
925 static bool kvm_mips_flush_gva_pgd(pgd_t *pgd, unsigned long start_gva,
926                                    unsigned long end_gva)
927 {
928         pud_t *pud;
929         unsigned long end = ~0ul;
930         int i_min = pgd_index(start_gva);
931         int i_max = pgd_index(end_gva);
932         bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PGD - 1);
933         int i;
934
935         for (i = i_min; i <= i_max; ++i, start_gva = 0) {
936                 if (!pgd_present(pgd[i]))
937                         continue;
938
939                 pud = pud_offset(pgd + i, 0);
940                 if (i == i_max)
941                         end = end_gva;
942
943                 if (kvm_mips_flush_gva_pud(pud, start_gva, end)) {
944                         pgd_clear(pgd + i);
945                         pud_free(NULL, pud);
946                 } else {
947                         safe_to_remove = false;
948                 }
949         }
950         return safe_to_remove;
951 }
952
953 void kvm_mips_flush_gva_pt(pgd_t *pgd, enum kvm_mips_flush flags)
954 {
955         if (flags & KMF_GPA) {
956                 /* all of guest virtual address space could be affected */
957                 if (flags & KMF_KERN)
958                         /* useg, kseg0, seg2/3 */
959                         kvm_mips_flush_gva_pgd(pgd, 0, 0x7fffffff);
960                 else
961                         /* useg */
962                         kvm_mips_flush_gva_pgd(pgd, 0, 0x3fffffff);
963         } else {
964                 /* useg */
965                 kvm_mips_flush_gva_pgd(pgd, 0, 0x3fffffff);
966
967                 /* kseg2/3 */
968                 if (flags & KMF_KERN)
969                         kvm_mips_flush_gva_pgd(pgd, 0x60000000, 0x7fffffff);
970         }
971 }
972
973 static pte_t kvm_mips_gpa_pte_to_gva_unmapped(pte_t pte)
974 {
975         /*
976          * Don't leak writeable but clean entries from GPA page tables. We don't
977          * want the normal Linux tlbmod handler to handle dirtying when KVM
978          * accesses guest memory.
979          */
980         if (!pte_dirty(pte))
981                 pte = pte_wrprotect(pte);
982
983         return pte;
984 }
985
986 static pte_t kvm_mips_gpa_pte_to_gva_mapped(pte_t pte, long entrylo)
987 {
988         /* Guest EntryLo overrides host EntryLo */
989         if (!(entrylo & ENTRYLO_D))
990                 pte = pte_mkclean(pte);
991
992         return kvm_mips_gpa_pte_to_gva_unmapped(pte);
993 }
994
995 #ifdef CONFIG_KVM_MIPS_VZ
996 int kvm_mips_handle_vz_root_tlb_fault(unsigned long badvaddr,
997                                       struct kvm_vcpu *vcpu,
998                                       bool write_fault)
999 {
1000         int ret;
1001
1002         ret = kvm_mips_map_page(vcpu, badvaddr, write_fault, NULL, NULL);
1003         if (ret)
1004                 return ret;
1005
1006         /* Invalidate this entry in the TLB */
1007         return kvm_vz_host_tlb_inv(vcpu, badvaddr);
1008 }
1009 #endif
1010
1011 /* XXXKYMA: Must be called with interrupts disabled */
1012 int kvm_mips_handle_kseg0_tlb_fault(unsigned long badvaddr,
1013                                     struct kvm_vcpu *vcpu,
1014                                     bool write_fault)
1015 {
1016         unsigned long gpa;
1017         pte_t pte_gpa[2], *ptep_gva;
1018         int idx;
1019
1020         if (KVM_GUEST_KSEGX(badvaddr) != KVM_GUEST_KSEG0) {
1021                 kvm_err("%s: Invalid BadVaddr: %#lx\n", __func__, badvaddr);
1022                 kvm_mips_dump_host_tlbs();
1023                 return -1;
1024         }
1025
1026         /* Get the GPA page table entry */
1027         gpa = KVM_GUEST_CPHYSADDR(badvaddr);
1028         idx = (badvaddr >> PAGE_SHIFT) & 1;
1029         if (kvm_mips_map_page(vcpu, gpa, write_fault, &pte_gpa[idx],
1030                               &pte_gpa[!idx]) < 0)
1031                 return -1;
1032
1033         /* Get the GVA page table entry */
1034         ptep_gva = kvm_trap_emul_pte_for_gva(vcpu, badvaddr & ~PAGE_SIZE);
1035         if (!ptep_gva) {
1036                 kvm_err("No ptep for gva %lx\n", badvaddr);
1037                 return -1;
1038         }
1039
1040         /* Copy a pair of entries from GPA page table to GVA page table */
1041         ptep_gva[0] = kvm_mips_gpa_pte_to_gva_unmapped(pte_gpa[0]);
1042         ptep_gva[1] = kvm_mips_gpa_pte_to_gva_unmapped(pte_gpa[1]);
1043
1044         /* Invalidate this entry in the TLB, guest kernel ASID only */
1045         kvm_mips_host_tlb_inv(vcpu, badvaddr, false, true);
1046         return 0;
1047 }
1048
1049 int kvm_mips_handle_mapped_seg_tlb_fault(struct kvm_vcpu *vcpu,
1050                                          struct kvm_mips_tlb *tlb,
1051                                          unsigned long gva,
1052                                          bool write_fault)
1053 {
1054         struct kvm *kvm = vcpu->kvm;
1055         long tlb_lo[2];
1056         pte_t pte_gpa[2], *ptep_buddy, *ptep_gva;
1057         unsigned int idx = TLB_LO_IDX(*tlb, gva);
1058         bool kernel = KVM_GUEST_KERNEL_MODE(vcpu);
1059
1060         tlb_lo[0] = tlb->tlb_lo[0];
1061         tlb_lo[1] = tlb->tlb_lo[1];
1062
1063         /*
1064          * The commpage address must not be mapped to anything else if the guest
1065          * TLB contains entries nearby, or commpage accesses will break.
1066          */
1067         if (!((gva ^ KVM_GUEST_COMMPAGE_ADDR) & VPN2_MASK & (PAGE_MASK << 1)))
1068                 tlb_lo[TLB_LO_IDX(*tlb, KVM_GUEST_COMMPAGE_ADDR)] = 0;
1069
1070         /* Get the GPA page table entry */
1071         if (kvm_mips_map_page(vcpu, mips3_tlbpfn_to_paddr(tlb_lo[idx]),
1072                               write_fault, &pte_gpa[idx], NULL) < 0)
1073                 return -1;
1074
1075         /* And its GVA buddy's GPA page table entry if it also exists */
1076         pte_gpa[!idx] = pfn_pte(0, __pgprot(0));
1077         if (tlb_lo[!idx] & ENTRYLO_V) {
1078                 spin_lock(&kvm->mmu_lock);
1079                 ptep_buddy = kvm_mips_pte_for_gpa(kvm, NULL,
1080                                         mips3_tlbpfn_to_paddr(tlb_lo[!idx]));
1081                 if (ptep_buddy)
1082                         pte_gpa[!idx] = *ptep_buddy;
1083                 spin_unlock(&kvm->mmu_lock);
1084         }
1085
1086         /* Get the GVA page table entry pair */
1087         ptep_gva = kvm_trap_emul_pte_for_gva(vcpu, gva & ~PAGE_SIZE);
1088         if (!ptep_gva) {
1089                 kvm_err("No ptep for gva %lx\n", gva);
1090                 return -1;
1091         }
1092
1093         /* Copy a pair of entries from GPA page table to GVA page table */
1094         ptep_gva[0] = kvm_mips_gpa_pte_to_gva_mapped(pte_gpa[0], tlb_lo[0]);
1095         ptep_gva[1] = kvm_mips_gpa_pte_to_gva_mapped(pte_gpa[1], tlb_lo[1]);
1096
1097         /* Invalidate this entry in the TLB, current guest mode ASID only */
1098         kvm_mips_host_tlb_inv(vcpu, gva, !kernel, kernel);
1099
1100         kvm_debug("@ %#lx tlb_lo0: 0x%08lx tlb_lo1: 0x%08lx\n", vcpu->arch.pc,
1101                   tlb->tlb_lo[0], tlb->tlb_lo[1]);
1102
1103         return 0;
1104 }
1105
1106 int kvm_mips_handle_commpage_tlb_fault(unsigned long badvaddr,
1107                                        struct kvm_vcpu *vcpu)
1108 {
1109         kvm_pfn_t pfn;
1110         pte_t *ptep;
1111
1112         ptep = kvm_trap_emul_pte_for_gva(vcpu, badvaddr);
1113         if (!ptep) {
1114                 kvm_err("No ptep for commpage %lx\n", badvaddr);
1115                 return -1;
1116         }
1117
1118         pfn = PFN_DOWN(virt_to_phys(vcpu->arch.kseg0_commpage));
1119         /* Also set valid and dirty, so refill handler doesn't have to */
1120         *ptep = pte_mkyoung(pte_mkdirty(pfn_pte(pfn, PAGE_SHARED)));
1121
1122         /* Invalidate this entry in the TLB, guest kernel ASID only */
1123         kvm_mips_host_tlb_inv(vcpu, badvaddr, false, true);
1124         return 0;
1125 }
1126
1127 /**
1128  * kvm_mips_migrate_count() - Migrate timer.
1129  * @vcpu:       Virtual CPU.
1130  *
1131  * Migrate CP0_Count hrtimer to the current CPU by cancelling and restarting it
1132  * if it was running prior to being cancelled.
1133  *
1134  * Must be called when the VCPU is migrated to a different CPU to ensure that
1135  * timer expiry during guest execution interrupts the guest and causes the
1136  * interrupt to be delivered in a timely manner.
1137  */
1138 static void kvm_mips_migrate_count(struct kvm_vcpu *vcpu)
1139 {
1140         if (hrtimer_cancel(&vcpu->arch.comparecount_timer))
1141                 hrtimer_restart(&vcpu->arch.comparecount_timer);
1142 }
1143
1144 /* Restore ASID once we are scheduled back after preemption */
1145 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1146 {
1147         unsigned long flags;
1148
1149         kvm_debug("%s: vcpu %p, cpu: %d\n", __func__, vcpu, cpu);
1150
1151         local_irq_save(flags);
1152
1153         vcpu->cpu = cpu;
1154         if (vcpu->arch.last_sched_cpu != cpu) {
1155                 kvm_debug("[%d->%d]KVM VCPU[%d] switch\n",
1156                           vcpu->arch.last_sched_cpu, cpu, vcpu->vcpu_id);
1157                 /*
1158                  * Migrate the timer interrupt to the current CPU so that it
1159                  * always interrupts the guest and synchronously triggers a
1160                  * guest timer interrupt.
1161                  */
1162                 kvm_mips_migrate_count(vcpu);
1163         }
1164
1165         /* restore guest state to registers */
1166         kvm_mips_callbacks->vcpu_load(vcpu, cpu);
1167
1168         local_irq_restore(flags);
1169 }
1170
1171 /* ASID can change if another task is scheduled during preemption */
1172 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1173 {
1174         unsigned long flags;
1175         int cpu;
1176
1177         local_irq_save(flags);
1178
1179         cpu = smp_processor_id();
1180         vcpu->arch.last_sched_cpu = cpu;
1181         vcpu->cpu = -1;
1182
1183         /* save guest state in registers */
1184         kvm_mips_callbacks->vcpu_put(vcpu, cpu);
1185
1186         local_irq_restore(flags);
1187 }
1188
1189 /**
1190  * kvm_trap_emul_gva_fault() - Safely attempt to handle a GVA access fault.
1191  * @vcpu:       Virtual CPU.
1192  * @gva:        Guest virtual address to be accessed.
1193  * @write:      True if write attempted (must be dirtied and made writable).
1194  *
1195  * Safely attempt to handle a GVA fault, mapping GVA pages if necessary, and
1196  * dirtying the page if @write so that guest instructions can be modified.
1197  *
1198  * Returns:     KVM_MIPS_MAPPED on success.
1199  *              KVM_MIPS_GVA if bad guest virtual address.
1200  *              KVM_MIPS_GPA if bad guest physical address.
1201  *              KVM_MIPS_TLB if guest TLB not present.
1202  *              KVM_MIPS_TLBINV if guest TLB present but not valid.
1203  *              KVM_MIPS_TLBMOD if guest TLB read only.
1204  */
1205 enum kvm_mips_fault_result kvm_trap_emul_gva_fault(struct kvm_vcpu *vcpu,
1206                                                    unsigned long gva,
1207                                                    bool write)
1208 {
1209         struct mips_coproc *cop0 = vcpu->arch.cop0;
1210         struct kvm_mips_tlb *tlb;
1211         int index;
1212
1213         if (KVM_GUEST_KSEGX(gva) == KVM_GUEST_KSEG0) {
1214                 if (kvm_mips_handle_kseg0_tlb_fault(gva, vcpu, write) < 0)
1215                         return KVM_MIPS_GPA;
1216         } else if ((KVM_GUEST_KSEGX(gva) < KVM_GUEST_KSEG0) ||
1217                    KVM_GUEST_KSEGX(gva) == KVM_GUEST_KSEG23) {
1218                 /* Address should be in the guest TLB */
1219                 index = kvm_mips_guest_tlb_lookup(vcpu, (gva & VPN2_MASK) |
1220                           (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID));
1221                 if (index < 0)
1222                         return KVM_MIPS_TLB;
1223                 tlb = &vcpu->arch.guest_tlb[index];
1224
1225                 /* Entry should be valid, and dirty for writes */
1226                 if (!TLB_IS_VALID(*tlb, gva))
1227                         return KVM_MIPS_TLBINV;
1228                 if (write && !TLB_IS_DIRTY(*tlb, gva))
1229                         return KVM_MIPS_TLBMOD;
1230
1231                 if (kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb, gva, write))
1232                         return KVM_MIPS_GPA;
1233         } else {
1234                 return KVM_MIPS_GVA;
1235         }
1236
1237         return KVM_MIPS_MAPPED;
1238 }
1239
1240 int kvm_get_inst(u32 *opc, struct kvm_vcpu *vcpu, u32 *out)
1241 {
1242         int err;
1243
1244         if (WARN(IS_ENABLED(CONFIG_KVM_MIPS_VZ),
1245                  "Expect BadInstr/BadInstrP registers to be used with VZ\n"))
1246                 return -EINVAL;
1247
1248 retry:
1249         kvm_trap_emul_gva_lockless_begin(vcpu);
1250         err = get_user(*out, opc);
1251         kvm_trap_emul_gva_lockless_end(vcpu);
1252
1253         if (unlikely(err)) {
1254                 /*
1255                  * Try to handle the fault, maybe we just raced with a GVA
1256                  * invalidation.
1257                  */
1258                 err = kvm_trap_emul_gva_fault(vcpu, (unsigned long)opc,
1259                                               false);
1260                 if (unlikely(err)) {
1261                         kvm_err("%s: illegal address: %p\n",
1262                                 __func__, opc);
1263                         return -EFAULT;
1264                 }
1265
1266                 /* Hopefully it'll work now */
1267                 goto retry;
1268         }
1269         return 0;
1270 }