GNU Linux-libre 4.19.286-gnu1
[releases.git] / arch / nds32 / kernel / dma.c
1 // SPDX-License-Identifier: GPL-2.0
2 // Copyright (C) 2005-2017 Andes Technology Corporation
3
4 #include <linux/types.h>
5 #include <linux/mm.h>
6 #include <linux/string.h>
7 #include <linux/dma-noncoherent.h>
8 #include <linux/io.h>
9 #include <linux/cache.h>
10 #include <linux/highmem.h>
11 #include <linux/slab.h>
12 #include <asm/cacheflush.h>
13 #include <asm/tlbflush.h>
14 #include <asm/proc-fns.h>
15
16 /*
17  * This is the page table (2MB) covering uncached, DMA consistent allocations
18  */
19 static pte_t *consistent_pte;
20 static DEFINE_RAW_SPINLOCK(consistent_lock);
21
22 /*
23  * VM region handling support.
24  *
25  * This should become something generic, handling VM region allocations for
26  * vmalloc and similar (ioremap, module space, etc).
27  *
28  * I envisage vmalloc()'s supporting vm_struct becoming:
29  *
30  *  struct vm_struct {
31  *    struct vm_region  region;
32  *    unsigned long     flags;
33  *    struct page       **pages;
34  *    unsigned int      nr_pages;
35  *    unsigned long     phys_addr;
36  *  };
37  *
38  * get_vm_area() would then call vm_region_alloc with an appropriate
39  * struct vm_region head (eg):
40  *
41  *  struct vm_region vmalloc_head = {
42  *      .vm_list        = LIST_HEAD_INIT(vmalloc_head.vm_list),
43  *      .vm_start       = VMALLOC_START,
44  *      .vm_end         = VMALLOC_END,
45  *  };
46  *
47  * However, vmalloc_head.vm_start is variable (typically, it is dependent on
48  * the amount of RAM found at boot time.)  I would imagine that get_vm_area()
49  * would have to initialise this each time prior to calling vm_region_alloc().
50  */
51 struct arch_vm_region {
52         struct list_head vm_list;
53         unsigned long vm_start;
54         unsigned long vm_end;
55         struct page *vm_pages;
56 };
57
58 static struct arch_vm_region consistent_head = {
59         .vm_list = LIST_HEAD_INIT(consistent_head.vm_list),
60         .vm_start = CONSISTENT_BASE,
61         .vm_end = CONSISTENT_END,
62 };
63
64 static struct arch_vm_region *vm_region_alloc(struct arch_vm_region *head,
65                                               size_t size, int gfp)
66 {
67         unsigned long addr = head->vm_start, end = head->vm_end - size;
68         unsigned long flags;
69         struct arch_vm_region *c, *new;
70
71         new = kmalloc(sizeof(struct arch_vm_region), gfp);
72         if (!new)
73                 goto out;
74
75         raw_spin_lock_irqsave(&consistent_lock, flags);
76
77         list_for_each_entry(c, &head->vm_list, vm_list) {
78                 if ((addr + size) < addr)
79                         goto nospc;
80                 if ((addr + size) <= c->vm_start)
81                         goto found;
82                 addr = c->vm_end;
83                 if (addr > end)
84                         goto nospc;
85         }
86
87 found:
88         /*
89          * Insert this entry _before_ the one we found.
90          */
91         list_add_tail(&new->vm_list, &c->vm_list);
92         new->vm_start = addr;
93         new->vm_end = addr + size;
94
95         raw_spin_unlock_irqrestore(&consistent_lock, flags);
96         return new;
97
98 nospc:
99         raw_spin_unlock_irqrestore(&consistent_lock, flags);
100         kfree(new);
101 out:
102         return NULL;
103 }
104
105 static struct arch_vm_region *vm_region_find(struct arch_vm_region *head,
106                                              unsigned long addr)
107 {
108         struct arch_vm_region *c;
109
110         list_for_each_entry(c, &head->vm_list, vm_list) {
111                 if (c->vm_start == addr)
112                         goto out;
113         }
114         c = NULL;
115 out:
116         return c;
117 }
118
119 void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
120                 gfp_t gfp, unsigned long attrs)
121 {
122         struct page *page;
123         struct arch_vm_region *c;
124         unsigned long order;
125         u64 mask = ~0ULL, limit;
126         pgprot_t prot = pgprot_noncached(PAGE_KERNEL);
127
128         if (!consistent_pte) {
129                 pr_err("%s: not initialized\n", __func__);
130                 dump_stack();
131                 return NULL;
132         }
133
134         if (dev) {
135                 mask = dev->coherent_dma_mask;
136
137                 /*
138                  * Sanity check the DMA mask - it must be non-zero, and
139                  * must be able to be satisfied by a DMA allocation.
140                  */
141                 if (mask == 0) {
142                         dev_warn(dev, "coherent DMA mask is unset\n");
143                         goto no_page;
144                 }
145
146         }
147
148         /*
149          * Sanity check the allocation size.
150          */
151         size = PAGE_ALIGN(size);
152         limit = (mask + 1) & ~mask;
153         if ((limit && size >= limit) ||
154             size >= (CONSISTENT_END - CONSISTENT_BASE)) {
155                 pr_warn("coherent allocation too big "
156                         "(requested %#x mask %#llx)\n", size, mask);
157                 goto no_page;
158         }
159
160         order = get_order(size);
161
162         if (mask != 0xffffffff)
163                 gfp |= GFP_DMA;
164
165         page = alloc_pages(gfp, order);
166         if (!page)
167                 goto no_page;
168
169         /*
170          * Invalidate any data that might be lurking in the
171          * kernel direct-mapped region for device DMA.
172          */
173         {
174                 unsigned long kaddr = (unsigned long)page_address(page);
175                 memset(page_address(page), 0, size);
176                 cpu_dma_wbinval_range(kaddr, kaddr + size);
177         }
178
179         /*
180          * Allocate a virtual address in the consistent mapping region.
181          */
182         c = vm_region_alloc(&consistent_head, size,
183                             gfp & ~(__GFP_DMA | __GFP_HIGHMEM));
184         if (c) {
185                 pte_t *pte = consistent_pte + CONSISTENT_OFFSET(c->vm_start);
186                 struct page *end = page + (1 << order);
187
188                 c->vm_pages = page;
189
190                 /*
191                  * Set the "dma handle"
192                  */
193                 *handle = page_to_phys(page);
194
195                 do {
196                         BUG_ON(!pte_none(*pte));
197
198                         /*
199                          * x86 does not mark the pages reserved...
200                          */
201                         SetPageReserved(page);
202                         set_pte(pte, mk_pte(page, prot));
203                         page++;
204                         pte++;
205                 } while (size -= PAGE_SIZE);
206
207                 /*
208                  * Free the otherwise unused pages.
209                  */
210                 while (page < end) {
211                         __free_page(page);
212                         page++;
213                 }
214
215                 return (void *)c->vm_start;
216         }
217
218         if (page)
219                 __free_pages(page, order);
220 no_page:
221         *handle = ~0;
222         return NULL;
223 }
224
225 void arch_dma_free(struct device *dev, size_t size, void *cpu_addr,
226                 dma_addr_t handle, unsigned long attrs)
227 {
228         struct arch_vm_region *c;
229         unsigned long flags, addr;
230         pte_t *ptep;
231
232         size = PAGE_ALIGN(size);
233
234         raw_spin_lock_irqsave(&consistent_lock, flags);
235
236         c = vm_region_find(&consistent_head, (unsigned long)cpu_addr);
237         if (!c)
238                 goto no_area;
239
240         if ((c->vm_end - c->vm_start) != size) {
241                 pr_err("%s: freeing wrong coherent size (%ld != %d)\n",
242                        __func__, c->vm_end - c->vm_start, size);
243                 dump_stack();
244                 size = c->vm_end - c->vm_start;
245         }
246
247         ptep = consistent_pte + CONSISTENT_OFFSET(c->vm_start);
248         addr = c->vm_start;
249         do {
250                 pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep);
251                 unsigned long pfn;
252
253                 ptep++;
254                 addr += PAGE_SIZE;
255
256                 if (!pte_none(pte) && pte_present(pte)) {
257                         pfn = pte_pfn(pte);
258
259                         if (pfn_valid(pfn)) {
260                                 struct page *page = pfn_to_page(pfn);
261
262                                 /*
263                                  * x86 does not mark the pages reserved...
264                                  */
265                                 ClearPageReserved(page);
266
267                                 __free_page(page);
268                                 continue;
269                         }
270                 }
271
272                 pr_crit("%s: bad page in kernel page table\n", __func__);
273         } while (size -= PAGE_SIZE);
274
275         flush_tlb_kernel_range(c->vm_start, c->vm_end);
276
277         list_del(&c->vm_list);
278
279         raw_spin_unlock_irqrestore(&consistent_lock, flags);
280
281         kfree(c);
282         return;
283
284 no_area:
285         raw_spin_unlock_irqrestore(&consistent_lock, flags);
286         pr_err("%s: trying to free invalid coherent area: %p\n",
287                __func__, cpu_addr);
288         dump_stack();
289 }
290
291 /*
292  * Initialise the consistent memory allocation.
293  */
294 static int __init consistent_init(void)
295 {
296         pgd_t *pgd;
297         pmd_t *pmd;
298         pte_t *pte;
299         int ret = 0;
300
301         do {
302                 pgd = pgd_offset(&init_mm, CONSISTENT_BASE);
303                 pmd = pmd_alloc(&init_mm, pgd, CONSISTENT_BASE);
304                 if (!pmd) {
305                         pr_err("%s: no pmd tables\n", __func__);
306                         ret = -ENOMEM;
307                         break;
308                 }
309                 /* The first level mapping may be created in somewhere.
310                  * It's not necessary to warn here. */
311                 /* WARN_ON(!pmd_none(*pmd)); */
312
313                 pte = pte_alloc_kernel(pmd, CONSISTENT_BASE);
314                 if (!pte) {
315                         ret = -ENOMEM;
316                         break;
317                 }
318
319                 consistent_pte = pte;
320         } while (0);
321
322         return ret;
323 }
324
325 core_initcall(consistent_init);
326
327 static inline void cache_op(phys_addr_t paddr, size_t size,
328                 void (*fn)(unsigned long start, unsigned long end))
329 {
330         struct page *page = pfn_to_page(paddr >> PAGE_SHIFT);
331         unsigned offset = paddr & ~PAGE_MASK;
332         size_t left = size;
333         unsigned long start;
334
335         do {
336                 size_t len = left;
337
338                 if (PageHighMem(page)) {
339                         void *addr;
340
341                         if (offset + len > PAGE_SIZE) {
342                                 if (offset >= PAGE_SIZE) {
343                                         page += offset >> PAGE_SHIFT;
344                                         offset &= ~PAGE_MASK;
345                                 }
346                                 len = PAGE_SIZE - offset;
347                         }
348
349                         addr = kmap_atomic(page);
350                         start = (unsigned long)(addr + offset);
351                         fn(start, start + len);
352                         kunmap_atomic(addr);
353                 } else {
354                         start = (unsigned long)phys_to_virt(paddr);
355                         fn(start, start + size);
356                 }
357                 offset = 0;
358                 page++;
359                 left -= len;
360         } while (left);
361 }
362
363 void arch_sync_dma_for_device(struct device *dev, phys_addr_t paddr,
364                 size_t size, enum dma_data_direction dir)
365 {
366         switch (dir) {
367         case DMA_FROM_DEVICE:
368                 break;
369         case DMA_TO_DEVICE:
370         case DMA_BIDIRECTIONAL:
371                 cache_op(paddr, size, cpu_dma_wb_range);
372                 break;
373         default:
374                 BUG();
375         }
376 }
377
378 void arch_sync_dma_for_cpu(struct device *dev, phys_addr_t paddr,
379                 size_t size, enum dma_data_direction dir)
380 {
381         switch (dir) {
382         case DMA_TO_DEVICE:
383                 break;
384         case DMA_FROM_DEVICE:
385         case DMA_BIDIRECTIONAL:
386                 cache_op(paddr, size, cpu_dma_inval_range);
387                 break;
388         default:
389                 BUG();
390         }
391 }