GNU Linux-libre 4.14.266-gnu1
[releases.git] / arch / powerpc / kernel / eeh_cache.c
1 /*
2  * PCI address cache; allows the lookup of PCI devices based on I/O address
3  *
4  * Copyright IBM Corporation 2004
5  * Copyright Linas Vepstas <linas@austin.ibm.com> 2004
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  */
21
22 #include <linux/list.h>
23 #include <linux/pci.h>
24 #include <linux/rbtree.h>
25 #include <linux/slab.h>
26 #include <linux/spinlock.h>
27 #include <linux/atomic.h>
28 #include <asm/pci-bridge.h>
29 #include <asm/ppc-pci.h>
30
31
32 /**
33  * The pci address cache subsystem.  This subsystem places
34  * PCI device address resources into a red-black tree, sorted
35  * according to the address range, so that given only an i/o
36  * address, the corresponding PCI device can be **quickly**
37  * found. It is safe to perform an address lookup in an interrupt
38  * context; this ability is an important feature.
39  *
40  * Currently, the only customer of this code is the EEH subsystem;
41  * thus, this code has been somewhat tailored to suit EEH better.
42  * In particular, the cache does *not* hold the addresses of devices
43  * for which EEH is not enabled.
44  *
45  * (Implementation Note: The RB tree seems to be better/faster
46  * than any hash algo I could think of for this problem, even
47  * with the penalty of slow pointer chases for d-cache misses).
48  */
49 struct pci_io_addr_range {
50         struct rb_node rb_node;
51         resource_size_t addr_lo;
52         resource_size_t addr_hi;
53         struct eeh_dev *edev;
54         struct pci_dev *pcidev;
55         unsigned long flags;
56 };
57
58 static struct pci_io_addr_cache {
59         struct rb_root rb_root;
60         spinlock_t piar_lock;
61 } pci_io_addr_cache_root;
62
63 static inline struct eeh_dev *__eeh_addr_cache_get_device(unsigned long addr)
64 {
65         struct rb_node *n = pci_io_addr_cache_root.rb_root.rb_node;
66
67         while (n) {
68                 struct pci_io_addr_range *piar;
69                 piar = rb_entry(n, struct pci_io_addr_range, rb_node);
70
71                 if (addr < piar->addr_lo)
72                         n = n->rb_left;
73                 else if (addr > piar->addr_hi)
74                         n = n->rb_right;
75                 else
76                         return piar->edev;
77         }
78
79         return NULL;
80 }
81
82 /**
83  * eeh_addr_cache_get_dev - Get device, given only address
84  * @addr: mmio (PIO) phys address or i/o port number
85  *
86  * Given an mmio phys address, or a port number, find a pci device
87  * that implements this address.  Be sure to pci_dev_put the device
88  * when finished.  I/O port numbers are assumed to be offset
89  * from zero (that is, they do *not* have pci_io_addr added in).
90  * It is safe to call this function within an interrupt.
91  */
92 struct eeh_dev *eeh_addr_cache_get_dev(unsigned long addr)
93 {
94         struct eeh_dev *edev;
95         unsigned long flags;
96
97         spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
98         edev = __eeh_addr_cache_get_device(addr);
99         spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
100         return edev;
101 }
102
103 #ifdef DEBUG
104 /*
105  * Handy-dandy debug print routine, does nothing more
106  * than print out the contents of our addr cache.
107  */
108 static void eeh_addr_cache_print(struct pci_io_addr_cache *cache)
109 {
110         struct rb_node *n;
111         int cnt = 0;
112
113         n = rb_first(&cache->rb_root);
114         while (n) {
115                 struct pci_io_addr_range *piar;
116                 piar = rb_entry(n, struct pci_io_addr_range, rb_node);
117                 pr_debug("PCI: %s addr range %d [%pap-%pap]: %s\n",
118                        (piar->flags & IORESOURCE_IO) ? "i/o" : "mem", cnt,
119                        &piar->addr_lo, &piar->addr_hi, pci_name(piar->pcidev));
120                 cnt++;
121                 n = rb_next(n);
122         }
123 }
124 #endif
125
126 /* Insert address range into the rb tree. */
127 static struct pci_io_addr_range *
128 eeh_addr_cache_insert(struct pci_dev *dev, resource_size_t alo,
129                       resource_size_t ahi, unsigned long flags)
130 {
131         struct rb_node **p = &pci_io_addr_cache_root.rb_root.rb_node;
132         struct rb_node *parent = NULL;
133         struct pci_io_addr_range *piar;
134
135         /* Walk tree, find a place to insert into tree */
136         while (*p) {
137                 parent = *p;
138                 piar = rb_entry(parent, struct pci_io_addr_range, rb_node);
139                 if (ahi < piar->addr_lo) {
140                         p = &parent->rb_left;
141                 } else if (alo > piar->addr_hi) {
142                         p = &parent->rb_right;
143                 } else {
144                         if (dev != piar->pcidev ||
145                             alo != piar->addr_lo || ahi != piar->addr_hi) {
146                                 pr_warn("PIAR: overlapping address range\n");
147                         }
148                         return piar;
149                 }
150         }
151         piar = kzalloc(sizeof(struct pci_io_addr_range), GFP_ATOMIC);
152         if (!piar)
153                 return NULL;
154
155         piar->addr_lo = alo;
156         piar->addr_hi = ahi;
157         piar->edev = pci_dev_to_eeh_dev(dev);
158         piar->pcidev = dev;
159         piar->flags = flags;
160
161 #ifdef DEBUG
162         pr_debug("PIAR: insert range=[%pap:%pap] dev=%s\n",
163                  &alo, &ahi, pci_name(dev));
164 #endif
165
166         rb_link_node(&piar->rb_node, parent, p);
167         rb_insert_color(&piar->rb_node, &pci_io_addr_cache_root.rb_root);
168
169         return piar;
170 }
171
172 static void __eeh_addr_cache_insert_dev(struct pci_dev *dev)
173 {
174         struct pci_dn *pdn;
175         struct eeh_dev *edev;
176         int i;
177
178         pdn = pci_get_pdn_by_devfn(dev->bus, dev->devfn);
179         if (!pdn) {
180                 pr_warn("PCI: no pci dn found for dev=%s\n",
181                         pci_name(dev));
182                 return;
183         }
184
185         edev = pdn_to_eeh_dev(pdn);
186         if (!edev) {
187                 pr_warn("PCI: no EEH dev found for %s\n",
188                         pci_name(dev));
189                 return;
190         }
191
192         /* Skip any devices for which EEH is not enabled. */
193         if (!edev->pe) {
194                 dev_dbg(&dev->dev, "EEH: Skip building address cache\n");
195                 return;
196         }
197
198         /*
199          * Walk resources on this device, poke the first 7 (6 normal BAR and 1
200          * ROM BAR) into the tree.
201          */
202         for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
203                 resource_size_t start = pci_resource_start(dev,i);
204                 resource_size_t end = pci_resource_end(dev,i);
205                 unsigned long flags = pci_resource_flags(dev,i);
206
207                 /* We are interested only bus addresses, not dma or other stuff */
208                 if (0 == (flags & (IORESOURCE_IO | IORESOURCE_MEM)))
209                         continue;
210                 if (start == 0 || ~start == 0 || end == 0 || ~end == 0)
211                          continue;
212                 eeh_addr_cache_insert(dev, start, end, flags);
213         }
214 }
215
216 /**
217  * eeh_addr_cache_insert_dev - Add a device to the address cache
218  * @dev: PCI device whose I/O addresses we are interested in.
219  *
220  * In order to support the fast lookup of devices based on addresses,
221  * we maintain a cache of devices that can be quickly searched.
222  * This routine adds a device to that cache.
223  */
224 void eeh_addr_cache_insert_dev(struct pci_dev *dev)
225 {
226         unsigned long flags;
227
228         spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
229         __eeh_addr_cache_insert_dev(dev);
230         spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
231 }
232
233 static inline void __eeh_addr_cache_rmv_dev(struct pci_dev *dev)
234 {
235         struct rb_node *n;
236
237 restart:
238         n = rb_first(&pci_io_addr_cache_root.rb_root);
239         while (n) {
240                 struct pci_io_addr_range *piar;
241                 piar = rb_entry(n, struct pci_io_addr_range, rb_node);
242
243                 if (piar->pcidev == dev) {
244                         rb_erase(n, &pci_io_addr_cache_root.rb_root);
245                         kfree(piar);
246                         goto restart;
247                 }
248                 n = rb_next(n);
249         }
250 }
251
252 /**
253  * eeh_addr_cache_rmv_dev - remove pci device from addr cache
254  * @dev: device to remove
255  *
256  * Remove a device from the addr-cache tree.
257  * This is potentially expensive, since it will walk
258  * the tree multiple times (once per resource).
259  * But so what; device removal doesn't need to be that fast.
260  */
261 void eeh_addr_cache_rmv_dev(struct pci_dev *dev)
262 {
263         unsigned long flags;
264
265         spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
266         __eeh_addr_cache_rmv_dev(dev);
267         spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
268 }
269
270 /**
271  * eeh_addr_cache_build - Build a cache of I/O addresses
272  *
273  * Build a cache of pci i/o addresses.  This cache will be used to
274  * find the pci device that corresponds to a given address.
275  * This routine scans all pci busses to build the cache.
276  * Must be run late in boot process, after the pci controllers
277  * have been scanned for devices (after all device resources are known).
278  */
279 void eeh_addr_cache_build(void)
280 {
281         struct pci_dn *pdn;
282         struct eeh_dev *edev;
283         struct pci_dev *dev = NULL;
284
285         spin_lock_init(&pci_io_addr_cache_root.piar_lock);
286
287         for_each_pci_dev(dev) {
288                 pdn = pci_get_pdn_by_devfn(dev->bus, dev->devfn);
289                 if (!pdn)
290                         continue;
291
292                 edev = pdn_to_eeh_dev(pdn);
293                 if (!edev)
294                         continue;
295
296                 dev->dev.archdata.edev = edev;
297                 edev->pdev = dev;
298
299                 eeh_addr_cache_insert_dev(dev);
300                 eeh_sysfs_add_device(dev);
301         }
302
303 #ifdef DEBUG
304         /* Verify tree built up above, echo back the list of addrs. */
305         eeh_addr_cache_print(&pci_io_addr_cache_root);
306 #endif
307 }