GNU Linux-libre 4.9.309-gnu1
[releases.git] / arch / powerpc / kernel / nvram_64.c
1 /*
2  *  c 2001 PPC 64 Team, IBM Corp
3  *
4  *      This program is free software; you can redistribute it and/or
5  *      modify it under the terms of the GNU General Public License
6  *      as published by the Free Software Foundation; either version
7  *      2 of the License, or (at your option) any later version.
8  *
9  * /dev/nvram driver for PPC64
10  *
11  * This perhaps should live in drivers/char
12  *
13  * TODO: Split the /dev/nvram part (that one can use
14  *       drivers/char/generic_nvram.c) from the arch & partition
15  *       parsing code.
16  */
17
18 #include <linux/types.h>
19 #include <linux/errno.h>
20 #include <linux/fs.h>
21 #include <linux/miscdevice.h>
22 #include <linux/fcntl.h>
23 #include <linux/nvram.h>
24 #include <linux/init.h>
25 #include <linux/slab.h>
26 #include <linux/spinlock.h>
27 #include <linux/kmsg_dump.h>
28 #include <linux/pagemap.h>
29 #include <linux/pstore.h>
30 #include <linux/zlib.h>
31 #include <asm/uaccess.h>
32 #include <asm/nvram.h>
33 #include <asm/rtas.h>
34 #include <asm/prom.h>
35 #include <asm/machdep.h>
36
37 #undef DEBUG_NVRAM
38
39 #define NVRAM_HEADER_LEN        sizeof(struct nvram_header)
40 #define NVRAM_BLOCK_LEN         NVRAM_HEADER_LEN
41
42 /* If change this size, then change the size of NVNAME_LEN */
43 struct nvram_header {
44         unsigned char signature;
45         unsigned char checksum;
46         unsigned short length;
47         /* Terminating null required only for names < 12 chars. */
48         char name[12];
49 };
50
51 struct nvram_partition {
52         struct list_head partition;
53         struct nvram_header header;
54         unsigned int index;
55 };
56
57 static LIST_HEAD(nvram_partitions);
58
59 #ifdef CONFIG_PPC_PSERIES
60 struct nvram_os_partition rtas_log_partition = {
61         .name = "ibm,rtas-log",
62         .req_size = 2079,
63         .min_size = 1055,
64         .index = -1,
65         .os_partition = true
66 };
67 #endif
68
69 struct nvram_os_partition oops_log_partition = {
70         .name = "lnx,oops-log",
71         .req_size = 4000,
72         .min_size = 2000,
73         .index = -1,
74         .os_partition = true
75 };
76
77 static const char *nvram_os_partitions[] = {
78 #ifdef CONFIG_PPC_PSERIES
79         "ibm,rtas-log",
80 #endif
81         "lnx,oops-log",
82         NULL
83 };
84
85 static void oops_to_nvram(struct kmsg_dumper *dumper,
86                           enum kmsg_dump_reason reason);
87
88 static struct kmsg_dumper nvram_kmsg_dumper = {
89         .dump = oops_to_nvram
90 };
91
92 /*
93  * For capturing and compressing an oops or panic report...
94
95  * big_oops_buf[] holds the uncompressed text we're capturing.
96  *
97  * oops_buf[] holds the compressed text, preceded by a oops header.
98  * oops header has u16 holding the version of oops header (to differentiate
99  * between old and new format header) followed by u16 holding the length of
100  * the compressed* text (*Or uncompressed, if compression fails.) and u64
101  * holding the timestamp. oops_buf[] gets written to NVRAM.
102  *
103  * oops_log_info points to the header. oops_data points to the compressed text.
104  *
105  * +- oops_buf
106  * |                                   +- oops_data
107  * v                                   v
108  * +-----------+-----------+-----------+------------------------+
109  * | version   | length    | timestamp | text                   |
110  * | (2 bytes) | (2 bytes) | (8 bytes) | (oops_data_sz bytes)   |
111  * +-----------+-----------+-----------+------------------------+
112  * ^
113  * +- oops_log_info
114  *
115  * We preallocate these buffers during init to avoid kmalloc during oops/panic.
116  */
117 static size_t big_oops_buf_sz;
118 static char *big_oops_buf, *oops_buf;
119 static char *oops_data;
120 static size_t oops_data_sz;
121
122 /* Compression parameters */
123 #define COMPR_LEVEL 6
124 #define WINDOW_BITS 12
125 #define MEM_LEVEL 4
126 static struct z_stream_s stream;
127
128 #ifdef CONFIG_PSTORE
129 #ifdef CONFIG_PPC_POWERNV
130 static struct nvram_os_partition skiboot_partition = {
131         .name = "ibm,skiboot",
132         .index = -1,
133         .os_partition = false
134 };
135 #endif
136
137 #ifdef CONFIG_PPC_PSERIES
138 static struct nvram_os_partition of_config_partition = {
139         .name = "of-config",
140         .index = -1,
141         .os_partition = false
142 };
143 #endif
144
145 static struct nvram_os_partition common_partition = {
146         .name = "common",
147         .index = -1,
148         .os_partition = false
149 };
150
151 static enum pstore_type_id nvram_type_ids[] = {
152         PSTORE_TYPE_DMESG,
153         PSTORE_TYPE_PPC_COMMON,
154         -1,
155         -1,
156         -1
157 };
158 static int read_type;
159 #endif
160
161 /* nvram_write_os_partition
162  *
163  * We need to buffer the error logs into nvram to ensure that we have
164  * the failure information to decode.  If we have a severe error there
165  * is no way to guarantee that the OS or the machine is in a state to
166  * get back to user land and write the error to disk.  For example if
167  * the SCSI device driver causes a Machine Check by writing to a bad
168  * IO address, there is no way of guaranteeing that the device driver
169  * is in any state that is would also be able to write the error data
170  * captured to disk, thus we buffer it in NVRAM for analysis on the
171  * next boot.
172  *
173  * In NVRAM the partition containing the error log buffer will looks like:
174  * Header (in bytes):
175  * +-----------+----------+--------+------------+------------------+
176  * | signature | checksum | length | name       | data             |
177  * |0          |1         |2      3|4         15|16        length-1|
178  * +-----------+----------+--------+------------+------------------+
179  *
180  * The 'data' section would look like (in bytes):
181  * +--------------+------------+-----------------------------------+
182  * | event_logged | sequence # | error log                         |
183  * |0            3|4          7|8                  error_log_size-1|
184  * +--------------+------------+-----------------------------------+
185  *
186  * event_logged: 0 if event has not been logged to syslog, 1 if it has
187  * sequence #: The unique sequence # for each event. (until it wraps)
188  * error log: The error log from event_scan
189  */
190 int nvram_write_os_partition(struct nvram_os_partition *part,
191                              char *buff, int length,
192                              unsigned int err_type,
193                              unsigned int error_log_cnt)
194 {
195         int rc;
196         loff_t tmp_index;
197         struct err_log_info info;
198
199         if (part->index == -1)
200                 return -ESPIPE;
201
202         if (length > part->size)
203                 length = part->size;
204
205         info.error_type = cpu_to_be32(err_type);
206         info.seq_num = cpu_to_be32(error_log_cnt);
207
208         tmp_index = part->index;
209
210         rc = ppc_md.nvram_write((char *)&info, sizeof(struct err_log_info),
211                                 &tmp_index);
212         if (rc <= 0) {
213                 pr_err("%s: Failed nvram_write (%d)\n", __func__, rc);
214                 return rc;
215         }
216
217         rc = ppc_md.nvram_write(buff, length, &tmp_index);
218         if (rc <= 0) {
219                 pr_err("%s: Failed nvram_write (%d)\n", __func__, rc);
220                 return rc;
221         }
222
223         return 0;
224 }
225
226 /* nvram_read_partition
227  *
228  * Reads nvram partition for at most 'length'
229  */
230 int nvram_read_partition(struct nvram_os_partition *part, char *buff,
231                          int length, unsigned int *err_type,
232                          unsigned int *error_log_cnt)
233 {
234         int rc;
235         loff_t tmp_index;
236         struct err_log_info info;
237
238         if (part->index == -1)
239                 return -1;
240
241         if (length > part->size)
242                 length = part->size;
243
244         tmp_index = part->index;
245
246         if (part->os_partition) {
247                 rc = ppc_md.nvram_read((char *)&info,
248                                         sizeof(struct err_log_info),
249                                         &tmp_index);
250                 if (rc <= 0) {
251                         pr_err("%s: Failed nvram_read (%d)\n", __func__, rc);
252                         return rc;
253                 }
254         }
255
256         rc = ppc_md.nvram_read(buff, length, &tmp_index);
257         if (rc <= 0) {
258                 pr_err("%s: Failed nvram_read (%d)\n", __func__, rc);
259                 return rc;
260         }
261
262         if (part->os_partition) {
263                 *error_log_cnt = be32_to_cpu(info.seq_num);
264                 *err_type = be32_to_cpu(info.error_type);
265         }
266
267         return 0;
268 }
269
270 /* nvram_init_os_partition
271  *
272  * This sets up a partition with an "OS" signature.
273  *
274  * The general strategy is the following:
275  * 1.) If a partition with the indicated name already exists...
276  *      - If it's large enough, use it.
277  *      - Otherwise, recycle it and keep going.
278  * 2.) Search for a free partition that is large enough.
279  * 3.) If there's not a free partition large enough, recycle any obsolete
280  * OS partitions and try again.
281  * 4.) Will first try getting a chunk that will satisfy the requested size.
282  * 5.) If a chunk of the requested size cannot be allocated, then try finding
283  * a chunk that will satisfy the minum needed.
284  *
285  * Returns 0 on success, else -1.
286  */
287 int __init nvram_init_os_partition(struct nvram_os_partition *part)
288 {
289         loff_t p;
290         int size;
291
292         /* Look for ours */
293         p = nvram_find_partition(part->name, NVRAM_SIG_OS, &size);
294
295         /* Found one but too small, remove it */
296         if (p && size < part->min_size) {
297                 pr_info("nvram: Found too small %s partition,"
298                                         " removing it...\n", part->name);
299                 nvram_remove_partition(part->name, NVRAM_SIG_OS, NULL);
300                 p = 0;
301         }
302
303         /* Create one if we didn't find */
304         if (!p) {
305                 p = nvram_create_partition(part->name, NVRAM_SIG_OS,
306                                         part->req_size, part->min_size);
307                 if (p == -ENOSPC) {
308                         pr_info("nvram: No room to create %s partition, "
309                                 "deleting any obsolete OS partitions...\n",
310                                 part->name);
311                         nvram_remove_partition(NULL, NVRAM_SIG_OS,
312                                         nvram_os_partitions);
313                         p = nvram_create_partition(part->name, NVRAM_SIG_OS,
314                                         part->req_size, part->min_size);
315                 }
316         }
317
318         if (p <= 0) {
319                 pr_err("nvram: Failed to find or create %s"
320                        " partition, err %d\n", part->name, (int)p);
321                 return -1;
322         }
323
324         part->index = p;
325         part->size = nvram_get_partition_size(p) - sizeof(struct err_log_info);
326
327         return 0;
328 }
329
330 /* Derived from logfs_compress() */
331 static int nvram_compress(const void *in, void *out, size_t inlen,
332                                                         size_t outlen)
333 {
334         int err, ret;
335
336         ret = -EIO;
337         err = zlib_deflateInit2(&stream, COMPR_LEVEL, Z_DEFLATED, WINDOW_BITS,
338                                                 MEM_LEVEL, Z_DEFAULT_STRATEGY);
339         if (err != Z_OK)
340                 goto error;
341
342         stream.next_in = in;
343         stream.avail_in = inlen;
344         stream.total_in = 0;
345         stream.next_out = out;
346         stream.avail_out = outlen;
347         stream.total_out = 0;
348
349         err = zlib_deflate(&stream, Z_FINISH);
350         if (err != Z_STREAM_END)
351                 goto error;
352
353         err = zlib_deflateEnd(&stream);
354         if (err != Z_OK)
355                 goto error;
356
357         if (stream.total_out >= stream.total_in)
358                 goto error;
359
360         ret = stream.total_out;
361 error:
362         return ret;
363 }
364
365 /* Compress the text from big_oops_buf into oops_buf. */
366 static int zip_oops(size_t text_len)
367 {
368         struct oops_log_info *oops_hdr = (struct oops_log_info *)oops_buf;
369         int zipped_len = nvram_compress(big_oops_buf, oops_data, text_len,
370                                                                 oops_data_sz);
371         if (zipped_len < 0) {
372                 pr_err("nvram: compression failed; returned %d\n", zipped_len);
373                 pr_err("nvram: logging uncompressed oops/panic report\n");
374                 return -1;
375         }
376         oops_hdr->version = cpu_to_be16(OOPS_HDR_VERSION);
377         oops_hdr->report_length = cpu_to_be16(zipped_len);
378         oops_hdr->timestamp = cpu_to_be64(ktime_get_real_seconds());
379         return 0;
380 }
381
382 #ifdef CONFIG_PSTORE
383 static int nvram_pstore_open(struct pstore_info *psi)
384 {
385         /* Reset the iterator to start reading partitions again */
386         read_type = -1;
387         return 0;
388 }
389
390 /**
391  * nvram_pstore_write - pstore write callback for nvram
392  * @type:               Type of message logged
393  * @reason:             reason behind dump (oops/panic)
394  * @id:                 identifier to indicate the write performed
395  * @part:               pstore writes data to registered buffer in parts,
396  *                      part number will indicate the same.
397  * @count:              Indicates oops count
398  * @compressed:         Flag to indicate the log is compressed
399  * @size:               number of bytes written to the registered buffer
400  * @psi:                registered pstore_info structure
401  *
402  * Called by pstore_dump() when an oops or panic report is logged in the
403  * printk buffer.
404  * Returns 0 on successful write.
405  */
406 static int nvram_pstore_write(enum pstore_type_id type,
407                                 enum kmsg_dump_reason reason,
408                                 u64 *id, unsigned int part, int count,
409                                 bool compressed, size_t size,
410                                 struct pstore_info *psi)
411 {
412         int rc;
413         unsigned int err_type = ERR_TYPE_KERNEL_PANIC;
414         struct oops_log_info *oops_hdr = (struct oops_log_info *) oops_buf;
415
416         /* part 1 has the recent messages from printk buffer */
417         if (part > 1 || (type != PSTORE_TYPE_DMESG))
418                 return -1;
419
420         if (clobbering_unread_rtas_event())
421                 return -1;
422
423         oops_hdr->version = cpu_to_be16(OOPS_HDR_VERSION);
424         oops_hdr->report_length = cpu_to_be16(size);
425         oops_hdr->timestamp = cpu_to_be64(ktime_get_real_seconds());
426
427         if (compressed)
428                 err_type = ERR_TYPE_KERNEL_PANIC_GZ;
429
430         rc = nvram_write_os_partition(&oops_log_partition, oops_buf,
431                 (int) (sizeof(*oops_hdr) + size), err_type, count);
432
433         if (rc != 0)
434                 return rc;
435
436         *id = part;
437         return 0;
438 }
439
440 /*
441  * Reads the oops/panic report, rtas, of-config and common partition.
442  * Returns the length of the data we read from each partition.
443  * Returns 0 if we've been called before.
444  */
445 static ssize_t nvram_pstore_read(u64 *id, enum pstore_type_id *type,
446                                 int *count, struct timespec *time, char **buf,
447                                 bool *compressed, ssize_t *ecc_notice_size,
448                                 struct pstore_info *psi)
449 {
450         struct oops_log_info *oops_hdr;
451         unsigned int err_type, id_no, size = 0;
452         struct nvram_os_partition *part = NULL;
453         char *buff = NULL;
454         int sig = 0;
455         loff_t p;
456
457         read_type++;
458
459         switch (nvram_type_ids[read_type]) {
460         case PSTORE_TYPE_DMESG:
461                 part = &oops_log_partition;
462                 *type = PSTORE_TYPE_DMESG;
463                 break;
464         case PSTORE_TYPE_PPC_COMMON:
465                 sig = NVRAM_SIG_SYS;
466                 part = &common_partition;
467                 *type = PSTORE_TYPE_PPC_COMMON;
468                 *id = PSTORE_TYPE_PPC_COMMON;
469                 time->tv_sec = 0;
470                 time->tv_nsec = 0;
471                 break;
472 #ifdef CONFIG_PPC_PSERIES
473         case PSTORE_TYPE_PPC_RTAS:
474                 part = &rtas_log_partition;
475                 *type = PSTORE_TYPE_PPC_RTAS;
476                 time->tv_sec = last_rtas_event;
477                 time->tv_nsec = 0;
478                 break;
479         case PSTORE_TYPE_PPC_OF:
480                 sig = NVRAM_SIG_OF;
481                 part = &of_config_partition;
482                 *type = PSTORE_TYPE_PPC_OF;
483                 *id = PSTORE_TYPE_PPC_OF;
484                 time->tv_sec = 0;
485                 time->tv_nsec = 0;
486                 break;
487 #endif
488 #ifdef CONFIG_PPC_POWERNV
489         case PSTORE_TYPE_PPC_OPAL:
490                 sig = NVRAM_SIG_FW;
491                 part = &skiboot_partition;
492                 *type = PSTORE_TYPE_PPC_OPAL;
493                 *id = PSTORE_TYPE_PPC_OPAL;
494                 time->tv_sec = 0;
495                 time->tv_nsec = 0;
496                 break;
497 #endif
498         default:
499                 return 0;
500         }
501
502         if (!part->os_partition) {
503                 p = nvram_find_partition(part->name, sig, &size);
504                 if (p <= 0) {
505                         pr_err("nvram: Failed to find partition %s, "
506                                 "err %d\n", part->name, (int)p);
507                         return 0;
508                 }
509                 part->index = p;
510                 part->size = size;
511         }
512
513         buff = kmalloc(part->size, GFP_KERNEL);
514
515         if (!buff)
516                 return -ENOMEM;
517
518         if (nvram_read_partition(part, buff, part->size, &err_type, &id_no)) {
519                 kfree(buff);
520                 return 0;
521         }
522
523         *count = 0;
524
525         if (part->os_partition)
526                 *id = id_no;
527
528         if (nvram_type_ids[read_type] == PSTORE_TYPE_DMESG) {
529                 size_t length, hdr_size;
530
531                 oops_hdr = (struct oops_log_info *)buff;
532                 if (be16_to_cpu(oops_hdr->version) < OOPS_HDR_VERSION) {
533                         /* Old format oops header had 2-byte record size */
534                         hdr_size = sizeof(u16);
535                         length = be16_to_cpu(oops_hdr->version);
536                         time->tv_sec = 0;
537                         time->tv_nsec = 0;
538                 } else {
539                         hdr_size = sizeof(*oops_hdr);
540                         length = be16_to_cpu(oops_hdr->report_length);
541                         time->tv_sec = be64_to_cpu(oops_hdr->timestamp);
542                         time->tv_nsec = 0;
543                 }
544                 *buf = kmemdup(buff + hdr_size, length, GFP_KERNEL);
545                 kfree(buff);
546                 if (*buf == NULL)
547                         return -ENOMEM;
548
549                 *ecc_notice_size = 0;
550                 if (err_type == ERR_TYPE_KERNEL_PANIC_GZ)
551                         *compressed = true;
552                 else
553                         *compressed = false;
554                 return length;
555         }
556
557         *buf = buff;
558         return part->size;
559 }
560
561 static struct pstore_info nvram_pstore_info = {
562         .owner = THIS_MODULE,
563         .name = "nvram",
564         .flags = PSTORE_FLAGS_DMESG,
565         .open = nvram_pstore_open,
566         .read = nvram_pstore_read,
567         .write = nvram_pstore_write,
568 };
569
570 static int nvram_pstore_init(void)
571 {
572         int rc = 0;
573
574         if (machine_is(pseries)) {
575                 nvram_type_ids[2] = PSTORE_TYPE_PPC_RTAS;
576                 nvram_type_ids[3] = PSTORE_TYPE_PPC_OF;
577         } else
578                 nvram_type_ids[2] = PSTORE_TYPE_PPC_OPAL;
579
580         nvram_pstore_info.buf = oops_data;
581         nvram_pstore_info.bufsize = oops_data_sz;
582
583         spin_lock_init(&nvram_pstore_info.buf_lock);
584
585         rc = pstore_register(&nvram_pstore_info);
586         if (rc && (rc != -EPERM))
587                 /* Print error only when pstore.backend == nvram */
588                 pr_err("nvram: pstore_register() failed, returned %d. "
589                                 "Defaults to kmsg_dump\n", rc);
590
591         return rc;
592 }
593 #else
594 static int nvram_pstore_init(void)
595 {
596         return -1;
597 }
598 #endif
599
600 void __init nvram_init_oops_partition(int rtas_partition_exists)
601 {
602         int rc;
603
604         rc = nvram_init_os_partition(&oops_log_partition);
605         if (rc != 0) {
606 #ifdef CONFIG_PPC_PSERIES
607                 if (!rtas_partition_exists) {
608                         pr_err("nvram: Failed to initialize oops partition!");
609                         return;
610                 }
611                 pr_notice("nvram: Using %s partition to log both"
612                         " RTAS errors and oops/panic reports\n",
613                         rtas_log_partition.name);
614                 memcpy(&oops_log_partition, &rtas_log_partition,
615                                                 sizeof(rtas_log_partition));
616 #else
617                 pr_err("nvram: Failed to initialize oops partition!");
618                 return;
619 #endif
620         }
621         oops_buf = kmalloc(oops_log_partition.size, GFP_KERNEL);
622         if (!oops_buf) {
623                 pr_err("nvram: No memory for %s partition\n",
624                                                 oops_log_partition.name);
625                 return;
626         }
627         oops_data = oops_buf + sizeof(struct oops_log_info);
628         oops_data_sz = oops_log_partition.size - sizeof(struct oops_log_info);
629
630         rc = nvram_pstore_init();
631
632         if (!rc)
633                 return;
634
635         /*
636          * Figure compression (preceded by elimination of each line's <n>
637          * severity prefix) will reduce the oops/panic report to at most
638          * 45% of its original size.
639          */
640         big_oops_buf_sz = (oops_data_sz * 100) / 45;
641         big_oops_buf = kmalloc(big_oops_buf_sz, GFP_KERNEL);
642         if (big_oops_buf) {
643                 stream.workspace =  kmalloc(zlib_deflate_workspacesize(
644                                         WINDOW_BITS, MEM_LEVEL), GFP_KERNEL);
645                 if (!stream.workspace) {
646                         pr_err("nvram: No memory for compression workspace; "
647                                 "skipping compression of %s partition data\n",
648                                 oops_log_partition.name);
649                         kfree(big_oops_buf);
650                         big_oops_buf = NULL;
651                 }
652         } else {
653                 pr_err("No memory for uncompressed %s data; "
654                         "skipping compression\n", oops_log_partition.name);
655                 stream.workspace = NULL;
656         }
657
658         rc = kmsg_dump_register(&nvram_kmsg_dumper);
659         if (rc != 0) {
660                 pr_err("nvram: kmsg_dump_register() failed; returned %d\n", rc);
661                 kfree(oops_buf);
662                 kfree(big_oops_buf);
663                 kfree(stream.workspace);
664         }
665 }
666
667 /*
668  * This is our kmsg_dump callback, called after an oops or panic report
669  * has been written to the printk buffer.  We want to capture as much
670  * of the printk buffer as possible.  First, capture as much as we can
671  * that we think will compress sufficiently to fit in the lnx,oops-log
672  * partition.  If that's too much, go back and capture uncompressed text.
673  */
674 static void oops_to_nvram(struct kmsg_dumper *dumper,
675                           enum kmsg_dump_reason reason)
676 {
677         struct oops_log_info *oops_hdr = (struct oops_log_info *)oops_buf;
678         static unsigned int oops_count = 0;
679         static bool panicking = false;
680         static DEFINE_SPINLOCK(lock);
681         unsigned long flags;
682         size_t text_len;
683         unsigned int err_type = ERR_TYPE_KERNEL_PANIC_GZ;
684         int rc = -1;
685
686         switch (reason) {
687         case KMSG_DUMP_RESTART:
688         case KMSG_DUMP_HALT:
689         case KMSG_DUMP_POWEROFF:
690                 /* These are almost always orderly shutdowns. */
691                 return;
692         case KMSG_DUMP_OOPS:
693                 break;
694         case KMSG_DUMP_PANIC:
695                 panicking = true;
696                 break;
697         case KMSG_DUMP_EMERG:
698                 if (panicking)
699                         /* Panic report already captured. */
700                         return;
701                 break;
702         default:
703                 pr_err("%s: ignoring unrecognized KMSG_DUMP_* reason %d\n",
704                        __func__, (int) reason);
705                 return;
706         }
707
708         if (clobbering_unread_rtas_event())
709                 return;
710
711         if (!spin_trylock_irqsave(&lock, flags))
712                 return;
713
714         if (big_oops_buf) {
715                 kmsg_dump_get_buffer(dumper, false,
716                                      big_oops_buf, big_oops_buf_sz, &text_len);
717                 rc = zip_oops(text_len);
718         }
719         if (rc != 0) {
720                 kmsg_dump_rewind(dumper);
721                 kmsg_dump_get_buffer(dumper, false,
722                                      oops_data, oops_data_sz, &text_len);
723                 err_type = ERR_TYPE_KERNEL_PANIC;
724                 oops_hdr->version = cpu_to_be16(OOPS_HDR_VERSION);
725                 oops_hdr->report_length = cpu_to_be16(text_len);
726                 oops_hdr->timestamp = cpu_to_be64(ktime_get_real_seconds());
727         }
728
729         (void) nvram_write_os_partition(&oops_log_partition, oops_buf,
730                 (int) (sizeof(*oops_hdr) + text_len), err_type,
731                 ++oops_count);
732
733         spin_unlock_irqrestore(&lock, flags);
734 }
735
736 static loff_t dev_nvram_llseek(struct file *file, loff_t offset, int origin)
737 {
738         if (ppc_md.nvram_size == NULL)
739                 return -ENODEV;
740         return generic_file_llseek_size(file, offset, origin, MAX_LFS_FILESIZE,
741                                         ppc_md.nvram_size());
742 }
743
744
745 static ssize_t dev_nvram_read(struct file *file, char __user *buf,
746                           size_t count, loff_t *ppos)
747 {
748         ssize_t ret;
749         char *tmp = NULL;
750         ssize_t size;
751
752         if (!ppc_md.nvram_size) {
753                 ret = -ENODEV;
754                 goto out;
755         }
756
757         size = ppc_md.nvram_size();
758         if (size < 0) {
759                 ret = size;
760                 goto out;
761         }
762
763         if (*ppos >= size) {
764                 ret = 0;
765                 goto out;
766         }
767
768         count = min_t(size_t, count, size - *ppos);
769         count = min(count, PAGE_SIZE);
770
771         tmp = kmalloc(count, GFP_KERNEL);
772         if (!tmp) {
773                 ret = -ENOMEM;
774                 goto out;
775         }
776
777         ret = ppc_md.nvram_read(tmp, count, ppos);
778         if (ret <= 0)
779                 goto out;
780
781         if (copy_to_user(buf, tmp, ret))
782                 ret = -EFAULT;
783
784 out:
785         kfree(tmp);
786         return ret;
787
788 }
789
790 static ssize_t dev_nvram_write(struct file *file, const char __user *buf,
791                           size_t count, loff_t *ppos)
792 {
793         ssize_t ret;
794         char *tmp = NULL;
795         ssize_t size;
796
797         ret = -ENODEV;
798         if (!ppc_md.nvram_size)
799                 goto out;
800
801         ret = 0;
802         size = ppc_md.nvram_size();
803         if (*ppos >= size || size < 0)
804                 goto out;
805
806         count = min_t(size_t, count, size - *ppos);
807         count = min(count, PAGE_SIZE);
808
809         ret = -ENOMEM;
810         tmp = kmalloc(count, GFP_KERNEL);
811         if (!tmp)
812                 goto out;
813
814         ret = -EFAULT;
815         if (copy_from_user(tmp, buf, count))
816                 goto out;
817
818         ret = ppc_md.nvram_write(tmp, count, ppos);
819
820 out:
821         kfree(tmp);
822         return ret;
823
824 }
825
826 static long dev_nvram_ioctl(struct file *file, unsigned int cmd,
827                             unsigned long arg)
828 {
829         switch(cmd) {
830 #ifdef CONFIG_PPC_PMAC
831         case OBSOLETE_PMAC_NVRAM_GET_OFFSET:
832                 printk(KERN_WARNING "nvram: Using obsolete PMAC_NVRAM_GET_OFFSET ioctl\n");
833         case IOC_NVRAM_GET_OFFSET: {
834                 int part, offset;
835
836                 if (!machine_is(powermac))
837                         return -EINVAL;
838                 if (copy_from_user(&part, (void __user*)arg, sizeof(part)) != 0)
839                         return -EFAULT;
840                 if (part < pmac_nvram_OF || part > pmac_nvram_NR)
841                         return -EINVAL;
842                 offset = pmac_get_partition(part);
843                 if (offset < 0)
844                         return offset;
845                 if (copy_to_user((void __user*)arg, &offset, sizeof(offset)) != 0)
846                         return -EFAULT;
847                 return 0;
848         }
849 #endif /* CONFIG_PPC_PMAC */
850         default:
851                 return -EINVAL;
852         }
853 }
854
855 static const struct file_operations nvram_fops = {
856         .owner          = THIS_MODULE,
857         .llseek         = dev_nvram_llseek,
858         .read           = dev_nvram_read,
859         .write          = dev_nvram_write,
860         .unlocked_ioctl = dev_nvram_ioctl,
861 };
862
863 static struct miscdevice nvram_dev = {
864         NVRAM_MINOR,
865         "nvram",
866         &nvram_fops
867 };
868
869
870 #ifdef DEBUG_NVRAM
871 static void __init nvram_print_partitions(char * label)
872 {
873         struct nvram_partition * tmp_part;
874         
875         printk(KERN_WARNING "--------%s---------\n", label);
876         printk(KERN_WARNING "indx\t\tsig\tchks\tlen\tname\n");
877         list_for_each_entry(tmp_part, &nvram_partitions, partition) {
878                 printk(KERN_WARNING "%4d    \t%02x\t%02x\t%d\t%12.12s\n",
879                        tmp_part->index, tmp_part->header.signature,
880                        tmp_part->header.checksum, tmp_part->header.length,
881                        tmp_part->header.name);
882         }
883 }
884 #endif
885
886
887 static int __init nvram_write_header(struct nvram_partition * part)
888 {
889         loff_t tmp_index;
890         int rc;
891         struct nvram_header phead;
892
893         memcpy(&phead, &part->header, NVRAM_HEADER_LEN);
894         phead.length = cpu_to_be16(phead.length);
895
896         tmp_index = part->index;
897         rc = ppc_md.nvram_write((char *)&phead, NVRAM_HEADER_LEN, &tmp_index);
898
899         return rc;
900 }
901
902
903 static unsigned char __init nvram_checksum(struct nvram_header *p)
904 {
905         unsigned int c_sum, c_sum2;
906         unsigned short *sp = (unsigned short *)p->name; /* assume 6 shorts */
907         c_sum = p->signature + p->length + sp[0] + sp[1] + sp[2] + sp[3] + sp[4] + sp[5];
908
909         /* The sum may have spilled into the 3rd byte.  Fold it back. */
910         c_sum = ((c_sum & 0xffff) + (c_sum >> 16)) & 0xffff;
911         /* The sum cannot exceed 2 bytes.  Fold it into a checksum */
912         c_sum2 = (c_sum >> 8) + (c_sum << 8);
913         c_sum = ((c_sum + c_sum2) >> 8) & 0xff;
914         return c_sum;
915 }
916
917 /*
918  * Per the criteria passed via nvram_remove_partition(), should this
919  * partition be removed?  1=remove, 0=keep
920  */
921 static int nvram_can_remove_partition(struct nvram_partition *part,
922                 const char *name, int sig, const char *exceptions[])
923 {
924         if (part->header.signature != sig)
925                 return 0;
926         if (name) {
927                 if (strncmp(name, part->header.name, 12))
928                         return 0;
929         } else if (exceptions) {
930                 const char **except;
931                 for (except = exceptions; *except; except++) {
932                         if (!strncmp(*except, part->header.name, 12))
933                                 return 0;
934                 }
935         }
936         return 1;
937 }
938
939 /**
940  * nvram_remove_partition - Remove one or more partitions in nvram
941  * @name: name of the partition to remove, or NULL for a
942  *        signature only match
943  * @sig: signature of the partition(s) to remove
944  * @exceptions: When removing all partitions with a matching signature,
945  *        leave these alone.
946  */
947
948 int __init nvram_remove_partition(const char *name, int sig,
949                                                 const char *exceptions[])
950 {
951         struct nvram_partition *part, *prev, *tmp;
952         int rc;
953
954         list_for_each_entry(part, &nvram_partitions, partition) {
955                 if (!nvram_can_remove_partition(part, name, sig, exceptions))
956                         continue;
957
958                 /* Make partition a free partition */
959                 part->header.signature = NVRAM_SIG_FREE;
960                 memset(part->header.name, 'w', 12);
961                 part->header.checksum = nvram_checksum(&part->header);
962                 rc = nvram_write_header(part);
963                 if (rc <= 0) {
964                         printk(KERN_ERR "nvram_remove_partition: nvram_write failed (%d)\n", rc);
965                         return rc;
966                 }
967         }
968
969         /* Merge contiguous ones */
970         prev = NULL;
971         list_for_each_entry_safe(part, tmp, &nvram_partitions, partition) {
972                 if (part->header.signature != NVRAM_SIG_FREE) {
973                         prev = NULL;
974                         continue;
975                 }
976                 if (prev) {
977                         prev->header.length += part->header.length;
978                         prev->header.checksum = nvram_checksum(&prev->header);
979                         rc = nvram_write_header(prev);
980                         if (rc <= 0) {
981                                 printk(KERN_ERR "nvram_remove_partition: nvram_write failed (%d)\n", rc);
982                                 return rc;
983                         }
984                         list_del(&part->partition);
985                         kfree(part);
986                 } else
987                         prev = part;
988         }
989         
990         return 0;
991 }
992
993 /**
994  * nvram_create_partition - Create a partition in nvram
995  * @name: name of the partition to create
996  * @sig: signature of the partition to create
997  * @req_size: size of data to allocate in bytes
998  * @min_size: minimum acceptable size (0 means req_size)
999  *
1000  * Returns a negative error code or a positive nvram index
1001  * of the beginning of the data area of the newly created
1002  * partition. If you provided a min_size smaller than req_size
1003  * you need to query for the actual size yourself after the
1004  * call using nvram_partition_get_size().
1005  */
1006 loff_t __init nvram_create_partition(const char *name, int sig,
1007                                      int req_size, int min_size)
1008 {
1009         struct nvram_partition *part;
1010         struct nvram_partition *new_part;
1011         struct nvram_partition *free_part = NULL;
1012         static char nv_init_vals[16];
1013         loff_t tmp_index;
1014         long size = 0;
1015         int rc;
1016
1017         /* Convert sizes from bytes to blocks */
1018         req_size = _ALIGN_UP(req_size, NVRAM_BLOCK_LEN) / NVRAM_BLOCK_LEN;
1019         min_size = _ALIGN_UP(min_size, NVRAM_BLOCK_LEN) / NVRAM_BLOCK_LEN;
1020
1021         /* If no minimum size specified, make it the same as the
1022          * requested size
1023          */
1024         if (min_size == 0)
1025                 min_size = req_size;
1026         if (min_size > req_size)
1027                 return -EINVAL;
1028
1029         /* Now add one block to each for the header */
1030         req_size += 1;
1031         min_size += 1;
1032
1033         /* Find a free partition that will give us the maximum needed size 
1034            If can't find one that will give us the minimum size needed */
1035         list_for_each_entry(part, &nvram_partitions, partition) {
1036                 if (part->header.signature != NVRAM_SIG_FREE)
1037                         continue;
1038
1039                 if (part->header.length >= req_size) {
1040                         size = req_size;
1041                         free_part = part;
1042                         break;
1043                 }
1044                 if (part->header.length > size &&
1045                     part->header.length >= min_size) {
1046                         size = part->header.length;
1047                         free_part = part;
1048                 }
1049         }
1050         if (!size)
1051                 return -ENOSPC;
1052         
1053         /* Create our OS partition */
1054         new_part = kmalloc(sizeof(*new_part), GFP_KERNEL);
1055         if (!new_part) {
1056                 pr_err("%s: kmalloc failed\n", __func__);
1057                 return -ENOMEM;
1058         }
1059
1060         new_part->index = free_part->index;
1061         new_part->header.signature = sig;
1062         new_part->header.length = size;
1063         strncpy(new_part->header.name, name, 12);
1064         new_part->header.checksum = nvram_checksum(&new_part->header);
1065
1066         rc = nvram_write_header(new_part);
1067         if (rc <= 0) {
1068                 pr_err("%s: nvram_write_header failed (%d)\n", __func__, rc);
1069                 kfree(new_part);
1070                 return rc;
1071         }
1072         list_add_tail(&new_part->partition, &free_part->partition);
1073
1074         /* Adjust or remove the partition we stole the space from */
1075         if (free_part->header.length > size) {
1076                 free_part->index += size * NVRAM_BLOCK_LEN;
1077                 free_part->header.length -= size;
1078                 free_part->header.checksum = nvram_checksum(&free_part->header);
1079                 rc = nvram_write_header(free_part);
1080                 if (rc <= 0) {
1081                         pr_err("%s: nvram_write_header failed (%d)\n",
1082                                __func__, rc);
1083                         return rc;
1084                 }
1085         } else {
1086                 list_del(&free_part->partition);
1087                 kfree(free_part);
1088         } 
1089
1090         /* Clear the new partition */
1091         for (tmp_index = new_part->index + NVRAM_HEADER_LEN;
1092              tmp_index <  ((size - 1) * NVRAM_BLOCK_LEN);
1093              tmp_index += NVRAM_BLOCK_LEN) {
1094                 rc = ppc_md.nvram_write(nv_init_vals, NVRAM_BLOCK_LEN, &tmp_index);
1095                 if (rc <= 0) {
1096                         pr_err("%s: nvram_write failed (%d)\n",
1097                                __func__, rc);
1098                         return rc;
1099                 }
1100         }
1101
1102         return new_part->index + NVRAM_HEADER_LEN;
1103 }
1104
1105 /**
1106  * nvram_get_partition_size - Get the data size of an nvram partition
1107  * @data_index: This is the offset of the start of the data of
1108  *              the partition. The same value that is returned by
1109  *              nvram_create_partition().
1110  */
1111 int nvram_get_partition_size(loff_t data_index)
1112 {
1113         struct nvram_partition *part;
1114         
1115         list_for_each_entry(part, &nvram_partitions, partition) {
1116                 if (part->index + NVRAM_HEADER_LEN == data_index)
1117                         return (part->header.length - 1) * NVRAM_BLOCK_LEN;
1118         }
1119         return -1;
1120 }
1121
1122
1123 /**
1124  * nvram_find_partition - Find an nvram partition by signature and name
1125  * @name: Name of the partition or NULL for any name
1126  * @sig: Signature to test against
1127  * @out_size: if non-NULL, returns the size of the data part of the partition
1128  */
1129 loff_t nvram_find_partition(const char *name, int sig, int *out_size)
1130 {
1131         struct nvram_partition *p;
1132
1133         list_for_each_entry(p, &nvram_partitions, partition) {
1134                 if (p->header.signature == sig &&
1135                     (!name || !strncmp(p->header.name, name, 12))) {
1136                         if (out_size)
1137                                 *out_size = (p->header.length - 1) *
1138                                         NVRAM_BLOCK_LEN;
1139                         return p->index + NVRAM_HEADER_LEN;
1140                 }
1141         }
1142         return 0;
1143 }
1144
1145 int __init nvram_scan_partitions(void)
1146 {
1147         loff_t cur_index = 0;
1148         struct nvram_header phead;
1149         struct nvram_partition * tmp_part;
1150         unsigned char c_sum;
1151         char * header;
1152         int total_size;
1153         int err;
1154
1155         if (ppc_md.nvram_size == NULL || ppc_md.nvram_size() <= 0)
1156                 return -ENODEV;
1157         total_size = ppc_md.nvram_size();
1158         
1159         header = kmalloc(NVRAM_HEADER_LEN, GFP_KERNEL);
1160         if (!header) {
1161                 printk(KERN_ERR "nvram_scan_partitions: Failed kmalloc\n");
1162                 return -ENOMEM;
1163         }
1164
1165         while (cur_index < total_size) {
1166
1167                 err = ppc_md.nvram_read(header, NVRAM_HEADER_LEN, &cur_index);
1168                 if (err != NVRAM_HEADER_LEN) {
1169                         printk(KERN_ERR "nvram_scan_partitions: Error parsing "
1170                                "nvram partitions\n");
1171                         goto out;
1172                 }
1173
1174                 cur_index -= NVRAM_HEADER_LEN; /* nvram_read will advance us */
1175
1176                 memcpy(&phead, header, NVRAM_HEADER_LEN);
1177
1178                 phead.length = be16_to_cpu(phead.length);
1179
1180                 err = 0;
1181                 c_sum = nvram_checksum(&phead);
1182                 if (c_sum != phead.checksum) {
1183                         printk(KERN_WARNING "WARNING: nvram partition checksum"
1184                                " was %02x, should be %02x!\n",
1185                                phead.checksum, c_sum);
1186                         printk(KERN_WARNING "Terminating nvram partition scan\n");
1187                         goto out;
1188                 }
1189                 if (!phead.length) {
1190                         printk(KERN_WARNING "WARNING: nvram corruption "
1191                                "detected: 0-length partition\n");
1192                         goto out;
1193                 }
1194                 tmp_part = kmalloc(sizeof(struct nvram_partition), GFP_KERNEL);
1195                 err = -ENOMEM;
1196                 if (!tmp_part) {
1197                         printk(KERN_ERR "nvram_scan_partitions: kmalloc failed\n");
1198                         goto out;
1199                 }
1200                 
1201                 memcpy(&tmp_part->header, &phead, NVRAM_HEADER_LEN);
1202                 tmp_part->index = cur_index;
1203                 list_add_tail(&tmp_part->partition, &nvram_partitions);
1204                 
1205                 cur_index += phead.length * NVRAM_BLOCK_LEN;
1206         }
1207         err = 0;
1208
1209 #ifdef DEBUG_NVRAM
1210         nvram_print_partitions("NVRAM Partitions");
1211 #endif
1212
1213  out:
1214         kfree(header);
1215         return err;
1216 }
1217
1218 static int __init nvram_init(void)
1219 {
1220         int rc;
1221         
1222         BUILD_BUG_ON(NVRAM_BLOCK_LEN != 16);
1223
1224         if (ppc_md.nvram_size == NULL || ppc_md.nvram_size() <= 0)
1225                 return  -ENODEV;
1226
1227         rc = misc_register(&nvram_dev);
1228         if (rc != 0) {
1229                 printk(KERN_ERR "nvram_init: failed to register device\n");
1230                 return rc;
1231         }
1232         
1233         return rc;
1234 }
1235 device_initcall(nvram_init);