GNU Linux-libre 4.19.264-gnu1
[releases.git] / arch / powerpc / kernel / process.c
1 /*
2  *  Derived from "arch/i386/kernel/process.c"
3  *    Copyright (C) 1995  Linus Torvalds
4  *
5  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6  *  Paul Mackerras (paulus@cs.anu.edu.au)
7  *
8  *  PowerPC version
9  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10  *
11  *  This program is free software; you can redistribute it and/or
12  *  modify it under the terms of the GNU General Public License
13  *  as published by the Free Software Foundation; either version
14  *  2 of the License, or (at your option) any later version.
15  */
16
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/kernel.h>
23 #include <linux/mm.h>
24 #include <linux/smp.h>
25 #include <linux/stddef.h>
26 #include <linux/unistd.h>
27 #include <linux/ptrace.h>
28 #include <linux/slab.h>
29 #include <linux/user.h>
30 #include <linux/elf.h>
31 #include <linux/prctl.h>
32 #include <linux/init_task.h>
33 #include <linux/export.h>
34 #include <linux/kallsyms.h>
35 #include <linux/mqueue.h>
36 #include <linux/hardirq.h>
37 #include <linux/utsname.h>
38 #include <linux/ftrace.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/personality.h>
41 #include <linux/random.h>
42 #include <linux/hw_breakpoint.h>
43 #include <linux/uaccess.h>
44 #include <linux/elf-randomize.h>
45 #include <linux/pkeys.h>
46
47 #include <asm/pgtable.h>
48 #include <asm/io.h>
49 #include <asm/processor.h>
50 #include <asm/mmu.h>
51 #include <asm/prom.h>
52 #include <asm/machdep.h>
53 #include <asm/time.h>
54 #include <asm/runlatch.h>
55 #include <asm/syscalls.h>
56 #include <asm/switch_to.h>
57 #include <asm/tm.h>
58 #include <asm/debug.h>
59 #ifdef CONFIG_PPC64
60 #include <asm/firmware.h>
61 #include <asm/hw_irq.h>
62 #endif
63 #include <asm/code-patching.h>
64 #include <asm/exec.h>
65 #include <asm/livepatch.h>
66 #include <asm/cpu_has_feature.h>
67 #include <asm/asm-prototypes.h>
68
69 #include <linux/kprobes.h>
70 #include <linux/kdebug.h>
71
72 /* Transactional Memory debug */
73 #ifdef TM_DEBUG_SW
74 #define TM_DEBUG(x...) printk(KERN_INFO x)
75 #else
76 #define TM_DEBUG(x...) do { } while(0)
77 #endif
78
79 extern unsigned long _get_SP(void);
80
81 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
82 /*
83  * Are we running in "Suspend disabled" mode? If so we have to block any
84  * sigreturn that would get us into suspended state, and we also warn in some
85  * other paths that we should never reach with suspend disabled.
86  */
87 bool tm_suspend_disabled __ro_after_init = false;
88
89 static void check_if_tm_restore_required(struct task_struct *tsk)
90 {
91         /*
92          * If we are saving the current thread's registers, and the
93          * thread is in a transactional state, set the TIF_RESTORE_TM
94          * bit so that we know to restore the registers before
95          * returning to userspace.
96          */
97         if (tsk == current && tsk->thread.regs &&
98             MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
99             !test_thread_flag(TIF_RESTORE_TM)) {
100                 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
101                 set_thread_flag(TIF_RESTORE_TM);
102         }
103 }
104
105 #else
106 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
107 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
108
109 bool strict_msr_control;
110 EXPORT_SYMBOL(strict_msr_control);
111
112 static int __init enable_strict_msr_control(char *str)
113 {
114         strict_msr_control = true;
115         pr_info("Enabling strict facility control\n");
116
117         return 0;
118 }
119 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
120
121 unsigned long msr_check_and_set(unsigned long bits)
122 {
123         unsigned long oldmsr = mfmsr();
124         unsigned long newmsr;
125
126         newmsr = oldmsr | bits;
127
128 #ifdef CONFIG_VSX
129         if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
130                 newmsr |= MSR_VSX;
131 #endif
132
133         if (oldmsr != newmsr)
134                 mtmsr_isync(newmsr);
135
136         return newmsr;
137 }
138 EXPORT_SYMBOL_GPL(msr_check_and_set);
139
140 void __msr_check_and_clear(unsigned long bits)
141 {
142         unsigned long oldmsr = mfmsr();
143         unsigned long newmsr;
144
145         newmsr = oldmsr & ~bits;
146
147 #ifdef CONFIG_VSX
148         if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
149                 newmsr &= ~MSR_VSX;
150 #endif
151
152         if (oldmsr != newmsr)
153                 mtmsr_isync(newmsr);
154 }
155 EXPORT_SYMBOL(__msr_check_and_clear);
156
157 #ifdef CONFIG_PPC_FPU
158 static void __giveup_fpu(struct task_struct *tsk)
159 {
160         unsigned long msr;
161
162         save_fpu(tsk);
163         msr = tsk->thread.regs->msr;
164         msr &= ~(MSR_FP|MSR_FE0|MSR_FE1);
165 #ifdef CONFIG_VSX
166         if (cpu_has_feature(CPU_FTR_VSX))
167                 msr &= ~MSR_VSX;
168 #endif
169         tsk->thread.regs->msr = msr;
170 }
171
172 void giveup_fpu(struct task_struct *tsk)
173 {
174         check_if_tm_restore_required(tsk);
175
176         msr_check_and_set(MSR_FP);
177         __giveup_fpu(tsk);
178         msr_check_and_clear(MSR_FP);
179 }
180 EXPORT_SYMBOL(giveup_fpu);
181
182 /*
183  * Make sure the floating-point register state in the
184  * the thread_struct is up to date for task tsk.
185  */
186 void flush_fp_to_thread(struct task_struct *tsk)
187 {
188         if (tsk->thread.regs) {
189                 /*
190                  * We need to disable preemption here because if we didn't,
191                  * another process could get scheduled after the regs->msr
192                  * test but before we have finished saving the FP registers
193                  * to the thread_struct.  That process could take over the
194                  * FPU, and then when we get scheduled again we would store
195                  * bogus values for the remaining FP registers.
196                  */
197                 preempt_disable();
198                 if (tsk->thread.regs->msr & MSR_FP) {
199                         /*
200                          * This should only ever be called for current or
201                          * for a stopped child process.  Since we save away
202                          * the FP register state on context switch,
203                          * there is something wrong if a stopped child appears
204                          * to still have its FP state in the CPU registers.
205                          */
206                         BUG_ON(tsk != current);
207                         giveup_fpu(tsk);
208                 }
209                 preempt_enable();
210         }
211 }
212 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
213
214 void enable_kernel_fp(void)
215 {
216         unsigned long cpumsr;
217
218         WARN_ON(preemptible());
219
220         cpumsr = msr_check_and_set(MSR_FP);
221
222         if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
223                 check_if_tm_restore_required(current);
224                 /*
225                  * If a thread has already been reclaimed then the
226                  * checkpointed registers are on the CPU but have definitely
227                  * been saved by the reclaim code. Don't need to and *cannot*
228                  * giveup as this would save  to the 'live' structure not the
229                  * checkpointed structure.
230                  */
231                 if (!MSR_TM_ACTIVE(cpumsr) &&
232                      MSR_TM_ACTIVE(current->thread.regs->msr))
233                         return;
234                 __giveup_fpu(current);
235         }
236 }
237 EXPORT_SYMBOL(enable_kernel_fp);
238
239 static int restore_fp(struct task_struct *tsk)
240 {
241         if (tsk->thread.load_fp) {
242                 load_fp_state(&current->thread.fp_state);
243                 current->thread.load_fp++;
244                 return 1;
245         }
246         return 0;
247 }
248 #else
249 static int restore_fp(struct task_struct *tsk) { return 0; }
250 #endif /* CONFIG_PPC_FPU */
251
252 #ifdef CONFIG_ALTIVEC
253 #define loadvec(thr) ((thr).load_vec)
254
255 static void __giveup_altivec(struct task_struct *tsk)
256 {
257         unsigned long msr;
258
259         save_altivec(tsk);
260         msr = tsk->thread.regs->msr;
261         msr &= ~MSR_VEC;
262 #ifdef CONFIG_VSX
263         if (cpu_has_feature(CPU_FTR_VSX))
264                 msr &= ~MSR_VSX;
265 #endif
266         tsk->thread.regs->msr = msr;
267 }
268
269 void giveup_altivec(struct task_struct *tsk)
270 {
271         check_if_tm_restore_required(tsk);
272
273         msr_check_and_set(MSR_VEC);
274         __giveup_altivec(tsk);
275         msr_check_and_clear(MSR_VEC);
276 }
277 EXPORT_SYMBOL(giveup_altivec);
278
279 void enable_kernel_altivec(void)
280 {
281         unsigned long cpumsr;
282
283         WARN_ON(preemptible());
284
285         cpumsr = msr_check_and_set(MSR_VEC);
286
287         if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
288                 check_if_tm_restore_required(current);
289                 /*
290                  * If a thread has already been reclaimed then the
291                  * checkpointed registers are on the CPU but have definitely
292                  * been saved by the reclaim code. Don't need to and *cannot*
293                  * giveup as this would save  to the 'live' structure not the
294                  * checkpointed structure.
295                  */
296                 if (!MSR_TM_ACTIVE(cpumsr) &&
297                      MSR_TM_ACTIVE(current->thread.regs->msr))
298                         return;
299                 __giveup_altivec(current);
300         }
301 }
302 EXPORT_SYMBOL(enable_kernel_altivec);
303
304 /*
305  * Make sure the VMX/Altivec register state in the
306  * the thread_struct is up to date for task tsk.
307  */
308 void flush_altivec_to_thread(struct task_struct *tsk)
309 {
310         if (tsk->thread.regs) {
311                 preempt_disable();
312                 if (tsk->thread.regs->msr & MSR_VEC) {
313                         BUG_ON(tsk != current);
314                         giveup_altivec(tsk);
315                 }
316                 preempt_enable();
317         }
318 }
319 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
320
321 static int restore_altivec(struct task_struct *tsk)
322 {
323         if (cpu_has_feature(CPU_FTR_ALTIVEC) && (tsk->thread.load_vec)) {
324                 load_vr_state(&tsk->thread.vr_state);
325                 tsk->thread.used_vr = 1;
326                 tsk->thread.load_vec++;
327
328                 return 1;
329         }
330         return 0;
331 }
332 #else
333 #define loadvec(thr) 0
334 static inline int restore_altivec(struct task_struct *tsk) { return 0; }
335 #endif /* CONFIG_ALTIVEC */
336
337 #ifdef CONFIG_VSX
338 static void __giveup_vsx(struct task_struct *tsk)
339 {
340         unsigned long msr = tsk->thread.regs->msr;
341
342         /*
343          * We should never be ssetting MSR_VSX without also setting
344          * MSR_FP and MSR_VEC
345          */
346         WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));
347
348         /* __giveup_fpu will clear MSR_VSX */
349         if (msr & MSR_FP)
350                 __giveup_fpu(tsk);
351         if (msr & MSR_VEC)
352                 __giveup_altivec(tsk);
353 }
354
355 static void giveup_vsx(struct task_struct *tsk)
356 {
357         check_if_tm_restore_required(tsk);
358
359         msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
360         __giveup_vsx(tsk);
361         msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
362 }
363
364 void enable_kernel_vsx(void)
365 {
366         unsigned long cpumsr;
367
368         WARN_ON(preemptible());
369
370         cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
371
372         if (current->thread.regs &&
373             (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
374                 check_if_tm_restore_required(current);
375                 /*
376                  * If a thread has already been reclaimed then the
377                  * checkpointed registers are on the CPU but have definitely
378                  * been saved by the reclaim code. Don't need to and *cannot*
379                  * giveup as this would save  to the 'live' structure not the
380                  * checkpointed structure.
381                  */
382                 if (!MSR_TM_ACTIVE(cpumsr) &&
383                      MSR_TM_ACTIVE(current->thread.regs->msr))
384                         return;
385                 __giveup_vsx(current);
386         }
387 }
388 EXPORT_SYMBOL(enable_kernel_vsx);
389
390 void flush_vsx_to_thread(struct task_struct *tsk)
391 {
392         if (tsk->thread.regs) {
393                 preempt_disable();
394                 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
395                         BUG_ON(tsk != current);
396                         giveup_vsx(tsk);
397                 }
398                 preempt_enable();
399         }
400 }
401 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
402
403 static int restore_vsx(struct task_struct *tsk)
404 {
405         if (cpu_has_feature(CPU_FTR_VSX)) {
406                 tsk->thread.used_vsr = 1;
407                 return 1;
408         }
409
410         return 0;
411 }
412 #else
413 static inline int restore_vsx(struct task_struct *tsk) { return 0; }
414 #endif /* CONFIG_VSX */
415
416 #ifdef CONFIG_SPE
417 void giveup_spe(struct task_struct *tsk)
418 {
419         check_if_tm_restore_required(tsk);
420
421         msr_check_and_set(MSR_SPE);
422         __giveup_spe(tsk);
423         msr_check_and_clear(MSR_SPE);
424 }
425 EXPORT_SYMBOL(giveup_spe);
426
427 void enable_kernel_spe(void)
428 {
429         WARN_ON(preemptible());
430
431         msr_check_and_set(MSR_SPE);
432
433         if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
434                 check_if_tm_restore_required(current);
435                 __giveup_spe(current);
436         }
437 }
438 EXPORT_SYMBOL(enable_kernel_spe);
439
440 void flush_spe_to_thread(struct task_struct *tsk)
441 {
442         if (tsk->thread.regs) {
443                 preempt_disable();
444                 if (tsk->thread.regs->msr & MSR_SPE) {
445                         BUG_ON(tsk != current);
446                         tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
447                         giveup_spe(tsk);
448                 }
449                 preempt_enable();
450         }
451 }
452 #endif /* CONFIG_SPE */
453
454 static unsigned long msr_all_available;
455
456 static int __init init_msr_all_available(void)
457 {
458 #ifdef CONFIG_PPC_FPU
459         msr_all_available |= MSR_FP;
460 #endif
461 #ifdef CONFIG_ALTIVEC
462         if (cpu_has_feature(CPU_FTR_ALTIVEC))
463                 msr_all_available |= MSR_VEC;
464 #endif
465 #ifdef CONFIG_VSX
466         if (cpu_has_feature(CPU_FTR_VSX))
467                 msr_all_available |= MSR_VSX;
468 #endif
469 #ifdef CONFIG_SPE
470         if (cpu_has_feature(CPU_FTR_SPE))
471                 msr_all_available |= MSR_SPE;
472 #endif
473
474         return 0;
475 }
476 early_initcall(init_msr_all_available);
477
478 void giveup_all(struct task_struct *tsk)
479 {
480         unsigned long usermsr;
481
482         if (!tsk->thread.regs)
483                 return;
484
485         check_if_tm_restore_required(tsk);
486
487         usermsr = tsk->thread.regs->msr;
488
489         if ((usermsr & msr_all_available) == 0)
490                 return;
491
492         msr_check_and_set(msr_all_available);
493
494         WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
495
496 #ifdef CONFIG_PPC_FPU
497         if (usermsr & MSR_FP)
498                 __giveup_fpu(tsk);
499 #endif
500 #ifdef CONFIG_ALTIVEC
501         if (usermsr & MSR_VEC)
502                 __giveup_altivec(tsk);
503 #endif
504 #ifdef CONFIG_SPE
505         if (usermsr & MSR_SPE)
506                 __giveup_spe(tsk);
507 #endif
508
509         msr_check_and_clear(msr_all_available);
510 }
511 EXPORT_SYMBOL(giveup_all);
512
513 void restore_math(struct pt_regs *regs)
514 {
515         unsigned long msr;
516
517         if (!MSR_TM_ACTIVE(regs->msr) &&
518                 !current->thread.load_fp && !loadvec(current->thread))
519                 return;
520
521         msr = regs->msr;
522         msr_check_and_set(msr_all_available);
523
524         /*
525          * Only reload if the bit is not set in the user MSR, the bit BEING set
526          * indicates that the registers are hot
527          */
528         if ((!(msr & MSR_FP)) && restore_fp(current))
529                 msr |= MSR_FP | current->thread.fpexc_mode;
530
531         if ((!(msr & MSR_VEC)) && restore_altivec(current))
532                 msr |= MSR_VEC;
533
534         if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
535                         restore_vsx(current)) {
536                 msr |= MSR_VSX;
537         }
538
539         msr_check_and_clear(msr_all_available);
540
541         regs->msr = msr;
542 }
543
544 static void save_all(struct task_struct *tsk)
545 {
546         unsigned long usermsr;
547
548         if (!tsk->thread.regs)
549                 return;
550
551         usermsr = tsk->thread.regs->msr;
552
553         if ((usermsr & msr_all_available) == 0)
554                 return;
555
556         msr_check_and_set(msr_all_available);
557
558         WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
559
560         if (usermsr & MSR_FP)
561                 save_fpu(tsk);
562
563         if (usermsr & MSR_VEC)
564                 save_altivec(tsk);
565
566         if (usermsr & MSR_SPE)
567                 __giveup_spe(tsk);
568
569         msr_check_and_clear(msr_all_available);
570         thread_pkey_regs_save(&tsk->thread);
571 }
572
573 void flush_all_to_thread(struct task_struct *tsk)
574 {
575         if (tsk->thread.regs) {
576                 preempt_disable();
577                 BUG_ON(tsk != current);
578 #ifdef CONFIG_SPE
579                 if (tsk->thread.regs->msr & MSR_SPE)
580                         tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
581 #endif
582                 save_all(tsk);
583
584                 preempt_enable();
585         }
586 }
587 EXPORT_SYMBOL(flush_all_to_thread);
588
589 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
590 void do_send_trap(struct pt_regs *regs, unsigned long address,
591                   unsigned long error_code, int breakpt)
592 {
593         current->thread.trap_nr = TRAP_HWBKPT;
594         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
595                         11, SIGSEGV) == NOTIFY_STOP)
596                 return;
597
598         /* Deliver the signal to userspace */
599         force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */
600                                     (void __user *)address);
601 }
602 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
603 void do_break (struct pt_regs *regs, unsigned long address,
604                     unsigned long error_code)
605 {
606         siginfo_t info;
607
608         current->thread.trap_nr = TRAP_HWBKPT;
609         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
610                         11, SIGSEGV) == NOTIFY_STOP)
611                 return;
612
613         if (debugger_break_match(regs))
614                 return;
615
616         /* Clear the breakpoint */
617         hw_breakpoint_disable();
618
619         /* Deliver the signal to userspace */
620         clear_siginfo(&info);
621         info.si_signo = SIGTRAP;
622         info.si_errno = 0;
623         info.si_code = TRAP_HWBKPT;
624         info.si_addr = (void __user *)address;
625         force_sig_info(SIGTRAP, &info, current);
626 }
627 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
628
629 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
630
631 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
632 /*
633  * Set the debug registers back to their default "safe" values.
634  */
635 static void set_debug_reg_defaults(struct thread_struct *thread)
636 {
637         thread->debug.iac1 = thread->debug.iac2 = 0;
638 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
639         thread->debug.iac3 = thread->debug.iac4 = 0;
640 #endif
641         thread->debug.dac1 = thread->debug.dac2 = 0;
642 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
643         thread->debug.dvc1 = thread->debug.dvc2 = 0;
644 #endif
645         thread->debug.dbcr0 = 0;
646 #ifdef CONFIG_BOOKE
647         /*
648          * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
649          */
650         thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
651                         DBCR1_IAC3US | DBCR1_IAC4US;
652         /*
653          * Force Data Address Compare User/Supervisor bits to be User-only
654          * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
655          */
656         thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
657 #else
658         thread->debug.dbcr1 = 0;
659 #endif
660 }
661
662 static void prime_debug_regs(struct debug_reg *debug)
663 {
664         /*
665          * We could have inherited MSR_DE from userspace, since
666          * it doesn't get cleared on exception entry.  Make sure
667          * MSR_DE is clear before we enable any debug events.
668          */
669         mtmsr(mfmsr() & ~MSR_DE);
670
671         mtspr(SPRN_IAC1, debug->iac1);
672         mtspr(SPRN_IAC2, debug->iac2);
673 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
674         mtspr(SPRN_IAC3, debug->iac3);
675         mtspr(SPRN_IAC4, debug->iac4);
676 #endif
677         mtspr(SPRN_DAC1, debug->dac1);
678         mtspr(SPRN_DAC2, debug->dac2);
679 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
680         mtspr(SPRN_DVC1, debug->dvc1);
681         mtspr(SPRN_DVC2, debug->dvc2);
682 #endif
683         mtspr(SPRN_DBCR0, debug->dbcr0);
684         mtspr(SPRN_DBCR1, debug->dbcr1);
685 #ifdef CONFIG_BOOKE
686         mtspr(SPRN_DBCR2, debug->dbcr2);
687 #endif
688 }
689 /*
690  * Unless neither the old or new thread are making use of the
691  * debug registers, set the debug registers from the values
692  * stored in the new thread.
693  */
694 void switch_booke_debug_regs(struct debug_reg *new_debug)
695 {
696         if ((current->thread.debug.dbcr0 & DBCR0_IDM)
697                 || (new_debug->dbcr0 & DBCR0_IDM))
698                         prime_debug_regs(new_debug);
699 }
700 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
701 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
702 #ifndef CONFIG_HAVE_HW_BREAKPOINT
703 static void set_breakpoint(struct arch_hw_breakpoint *brk)
704 {
705         preempt_disable();
706         __set_breakpoint(brk);
707         preempt_enable();
708 }
709
710 static void set_debug_reg_defaults(struct thread_struct *thread)
711 {
712         thread->hw_brk.address = 0;
713         thread->hw_brk.type = 0;
714         if (ppc_breakpoint_available())
715                 set_breakpoint(&thread->hw_brk);
716 }
717 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
718 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
719
720 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
721 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
722 {
723         mtspr(SPRN_DAC1, dabr);
724 #ifdef CONFIG_PPC_47x
725         isync();
726 #endif
727         return 0;
728 }
729 #elif defined(CONFIG_PPC_BOOK3S)
730 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
731 {
732         mtspr(SPRN_DABR, dabr);
733         if (cpu_has_feature(CPU_FTR_DABRX))
734                 mtspr(SPRN_DABRX, dabrx);
735         return 0;
736 }
737 #elif defined(CONFIG_PPC_8xx)
738 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
739 {
740         unsigned long addr = dabr & ~HW_BRK_TYPE_DABR;
741         unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */
742         unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */
743
744         if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
745                 lctrl1 |= 0xa0000;
746         else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
747                 lctrl1 |= 0xf0000;
748         else if ((dabr & HW_BRK_TYPE_RDWR) == 0)
749                 lctrl2 = 0;
750
751         mtspr(SPRN_LCTRL2, 0);
752         mtspr(SPRN_CMPE, addr);
753         mtspr(SPRN_CMPF, addr + 4);
754         mtspr(SPRN_LCTRL1, lctrl1);
755         mtspr(SPRN_LCTRL2, lctrl2);
756
757         return 0;
758 }
759 #else
760 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
761 {
762         return -EINVAL;
763 }
764 #endif
765
766 static inline int set_dabr(struct arch_hw_breakpoint *brk)
767 {
768         unsigned long dabr, dabrx;
769
770         dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
771         dabrx = ((brk->type >> 3) & 0x7);
772
773         if (ppc_md.set_dabr)
774                 return ppc_md.set_dabr(dabr, dabrx);
775
776         return __set_dabr(dabr, dabrx);
777 }
778
779 static inline int set_dawr(struct arch_hw_breakpoint *brk)
780 {
781         unsigned long dawr, dawrx, mrd;
782
783         dawr = brk->address;
784
785         dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
786                                    << (63 - 58); //* read/write bits */
787         dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
788                                    << (63 - 59); //* translate */
789         dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
790                                    >> 3; //* PRIM bits */
791         /* dawr length is stored in field MDR bits 48:53.  Matches range in
792            doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
793            0b111111=64DW.
794            brk->len is in bytes.
795            This aligns up to double word size, shifts and does the bias.
796         */
797         mrd = ((brk->len + 7) >> 3) - 1;
798         dawrx |= (mrd & 0x3f) << (63 - 53);
799
800         if (ppc_md.set_dawr)
801                 return ppc_md.set_dawr(dawr, dawrx);
802         mtspr(SPRN_DAWR, dawr);
803         mtspr(SPRN_DAWRX, dawrx);
804         return 0;
805 }
806
807 void __set_breakpoint(struct arch_hw_breakpoint *brk)
808 {
809         memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
810
811         if (cpu_has_feature(CPU_FTR_DAWR))
812                 // Power8 or later
813                 set_dawr(brk);
814         else if (!cpu_has_feature(CPU_FTR_ARCH_207S))
815                 // Power7 or earlier
816                 set_dabr(brk);
817         else
818                 // Shouldn't happen due to higher level checks
819                 WARN_ON_ONCE(1);
820 }
821
822 /* Check if we have DAWR or DABR hardware */
823 bool ppc_breakpoint_available(void)
824 {
825         if (cpu_has_feature(CPU_FTR_DAWR))
826                 return true; /* POWER8 DAWR */
827         if (cpu_has_feature(CPU_FTR_ARCH_207S))
828                 return false; /* POWER9 with DAWR disabled */
829         /* DABR: Everything but POWER8 and POWER9 */
830         return true;
831 }
832 EXPORT_SYMBOL_GPL(ppc_breakpoint_available);
833
834 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
835                               struct arch_hw_breakpoint *b)
836 {
837         if (a->address != b->address)
838                 return false;
839         if (a->type != b->type)
840                 return false;
841         if (a->len != b->len)
842                 return false;
843         return true;
844 }
845
846 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
847
848 static inline bool tm_enabled(struct task_struct *tsk)
849 {
850         return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
851 }
852
853 static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause)
854 {
855         /*
856          * Use the current MSR TM suspended bit to track if we have
857          * checkpointed state outstanding.
858          * On signal delivery, we'd normally reclaim the checkpointed
859          * state to obtain stack pointer (see:get_tm_stackpointer()).
860          * This will then directly return to userspace without going
861          * through __switch_to(). However, if the stack frame is bad,
862          * we need to exit this thread which calls __switch_to() which
863          * will again attempt to reclaim the already saved tm state.
864          * Hence we need to check that we've not already reclaimed
865          * this state.
866          * We do this using the current MSR, rather tracking it in
867          * some specific thread_struct bit, as it has the additional
868          * benefit of checking for a potential TM bad thing exception.
869          */
870         if (!MSR_TM_SUSPENDED(mfmsr()))
871                 return;
872
873         giveup_all(container_of(thr, struct task_struct, thread));
874
875         tm_reclaim(thr, cause);
876
877         /*
878          * If we are in a transaction and FP is off then we can't have
879          * used FP inside that transaction. Hence the checkpointed
880          * state is the same as the live state. We need to copy the
881          * live state to the checkpointed state so that when the
882          * transaction is restored, the checkpointed state is correct
883          * and the aborted transaction sees the correct state. We use
884          * ckpt_regs.msr here as that's what tm_reclaim will use to
885          * determine if it's going to write the checkpointed state or
886          * not. So either this will write the checkpointed registers,
887          * or reclaim will. Similarly for VMX.
888          */
889         if ((thr->ckpt_regs.msr & MSR_FP) == 0)
890                 memcpy(&thr->ckfp_state, &thr->fp_state,
891                        sizeof(struct thread_fp_state));
892         if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
893                 memcpy(&thr->ckvr_state, &thr->vr_state,
894                        sizeof(struct thread_vr_state));
895 }
896
897 void tm_reclaim_current(uint8_t cause)
898 {
899         tm_enable();
900         tm_reclaim_thread(&current->thread, cause);
901 }
902
903 static inline void tm_reclaim_task(struct task_struct *tsk)
904 {
905         /* We have to work out if we're switching from/to a task that's in the
906          * middle of a transaction.
907          *
908          * In switching we need to maintain a 2nd register state as
909          * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
910          * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
911          * ckvr_state
912          *
913          * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
914          */
915         struct thread_struct *thr = &tsk->thread;
916
917         if (!thr->regs)
918                 return;
919
920         if (!MSR_TM_ACTIVE(thr->regs->msr))
921                 goto out_and_saveregs;
922
923         WARN_ON(tm_suspend_disabled);
924
925         TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
926                  "ccr=%lx, msr=%lx, trap=%lx)\n",
927                  tsk->pid, thr->regs->nip,
928                  thr->regs->ccr, thr->regs->msr,
929                  thr->regs->trap);
930
931         tm_reclaim_thread(thr, TM_CAUSE_RESCHED);
932
933         TM_DEBUG("--- tm_reclaim on pid %d complete\n",
934                  tsk->pid);
935
936 out_and_saveregs:
937         /* Always save the regs here, even if a transaction's not active.
938          * This context-switches a thread's TM info SPRs.  We do it here to
939          * be consistent with the restore path (in recheckpoint) which
940          * cannot happen later in _switch().
941          */
942         tm_save_sprs(thr);
943 }
944
945 extern void __tm_recheckpoint(struct thread_struct *thread);
946
947 void tm_recheckpoint(struct thread_struct *thread)
948 {
949         unsigned long flags;
950
951         if (!(thread->regs->msr & MSR_TM))
952                 return;
953
954         /* We really can't be interrupted here as the TEXASR registers can't
955          * change and later in the trecheckpoint code, we have a userspace R1.
956          * So let's hard disable over this region.
957          */
958         local_irq_save(flags);
959         hard_irq_disable();
960
961         /* The TM SPRs are restored here, so that TEXASR.FS can be set
962          * before the trecheckpoint and no explosion occurs.
963          */
964         tm_restore_sprs(thread);
965
966         __tm_recheckpoint(thread);
967
968         local_irq_restore(flags);
969 }
970
971 static inline void tm_recheckpoint_new_task(struct task_struct *new)
972 {
973         if (!cpu_has_feature(CPU_FTR_TM))
974                 return;
975
976         /* Recheckpoint the registers of the thread we're about to switch to.
977          *
978          * If the task was using FP, we non-lazily reload both the original and
979          * the speculative FP register states.  This is because the kernel
980          * doesn't see if/when a TM rollback occurs, so if we take an FP
981          * unavailable later, we are unable to determine which set of FP regs
982          * need to be restored.
983          */
984         if (!tm_enabled(new))
985                 return;
986
987         if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
988                 tm_restore_sprs(&new->thread);
989                 return;
990         }
991         /* Recheckpoint to restore original checkpointed register state. */
992         TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
993                  new->pid, new->thread.regs->msr);
994
995         tm_recheckpoint(&new->thread);
996
997         /*
998          * The checkpointed state has been restored but the live state has
999          * not, ensure all the math functionality is turned off to trigger
1000          * restore_math() to reload.
1001          */
1002         new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
1003
1004         TM_DEBUG("*** tm_recheckpoint of pid %d complete "
1005                  "(kernel msr 0x%lx)\n",
1006                  new->pid, mfmsr());
1007 }
1008
1009 static inline void __switch_to_tm(struct task_struct *prev,
1010                 struct task_struct *new)
1011 {
1012         if (cpu_has_feature(CPU_FTR_TM)) {
1013                 if (tm_enabled(prev) || tm_enabled(new))
1014                         tm_enable();
1015
1016                 if (tm_enabled(prev)) {
1017                         prev->thread.load_tm++;
1018                         tm_reclaim_task(prev);
1019                         if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1020                                 prev->thread.regs->msr &= ~MSR_TM;
1021                 }
1022
1023                 tm_recheckpoint_new_task(new);
1024         }
1025 }
1026
1027 /*
1028  * This is called if we are on the way out to userspace and the
1029  * TIF_RESTORE_TM flag is set.  It checks if we need to reload
1030  * FP and/or vector state and does so if necessary.
1031  * If userspace is inside a transaction (whether active or
1032  * suspended) and FP/VMX/VSX instructions have ever been enabled
1033  * inside that transaction, then we have to keep them enabled
1034  * and keep the FP/VMX/VSX state loaded while ever the transaction
1035  * continues.  The reason is that if we didn't, and subsequently
1036  * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1037  * we don't know whether it's the same transaction, and thus we
1038  * don't know which of the checkpointed state and the transactional
1039  * state to use.
1040  */
1041 void restore_tm_state(struct pt_regs *regs)
1042 {
1043         unsigned long msr_diff;
1044
1045         /*
1046          * This is the only moment we should clear TIF_RESTORE_TM as
1047          * it is here that ckpt_regs.msr and pt_regs.msr become the same
1048          * again, anything else could lead to an incorrect ckpt_msr being
1049          * saved and therefore incorrect signal contexts.
1050          */
1051         clear_thread_flag(TIF_RESTORE_TM);
1052         if (!MSR_TM_ACTIVE(regs->msr))
1053                 return;
1054
1055         msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1056         msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1057
1058         /* Ensure that restore_math() will restore */
1059         if (msr_diff & MSR_FP)
1060                 current->thread.load_fp = 1;
1061 #ifdef CONFIG_ALTIVEC
1062         if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1063                 current->thread.load_vec = 1;
1064 #endif
1065         restore_math(regs);
1066
1067         regs->msr |= msr_diff;
1068 }
1069
1070 #else
1071 #define tm_recheckpoint_new_task(new)
1072 #define __switch_to_tm(prev, new)
1073 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1074
1075 static inline void save_sprs(struct thread_struct *t)
1076 {
1077 #ifdef CONFIG_ALTIVEC
1078         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1079                 t->vrsave = mfspr(SPRN_VRSAVE);
1080 #endif
1081 #ifdef CONFIG_PPC_BOOK3S_64
1082         if (cpu_has_feature(CPU_FTR_DSCR))
1083                 t->dscr = mfspr(SPRN_DSCR);
1084
1085         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1086                 t->bescr = mfspr(SPRN_BESCR);
1087                 t->ebbhr = mfspr(SPRN_EBBHR);
1088                 t->ebbrr = mfspr(SPRN_EBBRR);
1089
1090                 t->fscr = mfspr(SPRN_FSCR);
1091
1092                 /*
1093                  * Note that the TAR is not available for use in the kernel.
1094                  * (To provide this, the TAR should be backed up/restored on
1095                  * exception entry/exit instead, and be in pt_regs.  FIXME,
1096                  * this should be in pt_regs anyway (for debug).)
1097                  */
1098                 t->tar = mfspr(SPRN_TAR);
1099         }
1100 #endif
1101
1102         thread_pkey_regs_save(t);
1103 }
1104
1105 static inline void restore_sprs(struct thread_struct *old_thread,
1106                                 struct thread_struct *new_thread)
1107 {
1108 #ifdef CONFIG_ALTIVEC
1109         if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1110             old_thread->vrsave != new_thread->vrsave)
1111                 mtspr(SPRN_VRSAVE, new_thread->vrsave);
1112 #endif
1113 #ifdef CONFIG_PPC_BOOK3S_64
1114         if (cpu_has_feature(CPU_FTR_DSCR)) {
1115                 u64 dscr = get_paca()->dscr_default;
1116                 if (new_thread->dscr_inherit)
1117                         dscr = new_thread->dscr;
1118
1119                 if (old_thread->dscr != dscr)
1120                         mtspr(SPRN_DSCR, dscr);
1121         }
1122
1123         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1124                 if (old_thread->bescr != new_thread->bescr)
1125                         mtspr(SPRN_BESCR, new_thread->bescr);
1126                 if (old_thread->ebbhr != new_thread->ebbhr)
1127                         mtspr(SPRN_EBBHR, new_thread->ebbhr);
1128                 if (old_thread->ebbrr != new_thread->ebbrr)
1129                         mtspr(SPRN_EBBRR, new_thread->ebbrr);
1130
1131                 if (old_thread->fscr != new_thread->fscr)
1132                         mtspr(SPRN_FSCR, new_thread->fscr);
1133
1134                 if (old_thread->tar != new_thread->tar)
1135                         mtspr(SPRN_TAR, new_thread->tar);
1136         }
1137
1138         if (cpu_has_feature(CPU_FTR_P9_TIDR) &&
1139             old_thread->tidr != new_thread->tidr)
1140                 mtspr(SPRN_TIDR, new_thread->tidr);
1141 #endif
1142
1143         thread_pkey_regs_restore(new_thread, old_thread);
1144 }
1145
1146 #ifdef CONFIG_PPC_BOOK3S_64
1147 #define CP_SIZE 128
1148 static const u8 dummy_copy_buffer[CP_SIZE] __attribute__((aligned(CP_SIZE)));
1149 #endif
1150
1151 struct task_struct *__switch_to(struct task_struct *prev,
1152         struct task_struct *new)
1153 {
1154         struct thread_struct *new_thread, *old_thread;
1155         struct task_struct *last;
1156 #ifdef CONFIG_PPC_BOOK3S_64
1157         struct ppc64_tlb_batch *batch;
1158 #endif
1159
1160         new_thread = &new->thread;
1161         old_thread = &current->thread;
1162
1163         WARN_ON(!irqs_disabled());
1164
1165 #ifdef CONFIG_PPC_BOOK3S_64
1166         batch = this_cpu_ptr(&ppc64_tlb_batch);
1167         if (batch->active) {
1168                 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1169                 if (batch->index)
1170                         __flush_tlb_pending(batch);
1171                 batch->active = 0;
1172         }
1173 #endif /* CONFIG_PPC_BOOK3S_64 */
1174
1175 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1176         switch_booke_debug_regs(&new->thread.debug);
1177 #else
1178 /*
1179  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1180  * schedule DABR
1181  */
1182 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1183         if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
1184                 __set_breakpoint(&new->thread.hw_brk);
1185 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1186 #endif
1187
1188         /*
1189          * We need to save SPRs before treclaim/trecheckpoint as these will
1190          * change a number of them.
1191          */
1192         save_sprs(&prev->thread);
1193
1194         /* Save FPU, Altivec, VSX and SPE state */
1195         giveup_all(prev);
1196
1197         __switch_to_tm(prev, new);
1198
1199         if (!radix_enabled()) {
1200                 /*
1201                  * We can't take a PMU exception inside _switch() since there
1202                  * is a window where the kernel stack SLB and the kernel stack
1203                  * are out of sync. Hard disable here.
1204                  */
1205                 hard_irq_disable();
1206         }
1207
1208         /*
1209          * Call restore_sprs() before calling _switch(). If we move it after
1210          * _switch() then we miss out on calling it for new tasks. The reason
1211          * for this is we manually create a stack frame for new tasks that
1212          * directly returns through ret_from_fork() or
1213          * ret_from_kernel_thread(). See copy_thread() for details.
1214          */
1215         restore_sprs(old_thread, new_thread);
1216
1217         last = _switch(old_thread, new_thread);
1218
1219 #ifdef CONFIG_PPC_BOOK3S_64
1220         if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1221                 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1222                 batch = this_cpu_ptr(&ppc64_tlb_batch);
1223                 batch->active = 1;
1224         }
1225
1226         if (current_thread_info()->task->thread.regs) {
1227                 restore_math(current_thread_info()->task->thread.regs);
1228
1229                 /*
1230                  * The copy-paste buffer can only store into foreign real
1231                  * addresses, so unprivileged processes can not see the
1232                  * data or use it in any way unless they have foreign real
1233                  * mappings. If the new process has the foreign real address
1234                  * mappings, we must issue a cp_abort to clear any state and
1235                  * prevent snooping, corruption or a covert channel.
1236                  */
1237                 if (current_thread_info()->task->thread.used_vas)
1238                         asm volatile(PPC_CP_ABORT);
1239         }
1240 #endif /* CONFIG_PPC_BOOK3S_64 */
1241
1242         return last;
1243 }
1244
1245 static int instructions_to_print = 16;
1246
1247 static void show_instructions(struct pt_regs *regs)
1248 {
1249         int i;
1250         unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
1251                         sizeof(int));
1252
1253         printk("Instruction dump:");
1254
1255         for (i = 0; i < instructions_to_print; i++) {
1256                 int instr;
1257
1258                 if (!(i % 8))
1259                         pr_cont("\n");
1260
1261 #if !defined(CONFIG_BOOKE)
1262                 /* If executing with the IMMU off, adjust pc rather
1263                  * than print XXXXXXXX.
1264                  */
1265                 if (!(regs->msr & MSR_IR))
1266                         pc = (unsigned long)phys_to_virt(pc);
1267 #endif
1268
1269                 if (!__kernel_text_address(pc) ||
1270                      probe_kernel_address((unsigned int __user *)pc, instr)) {
1271                         pr_cont("XXXXXXXX ");
1272                 } else {
1273                         if (regs->nip == pc)
1274                                 pr_cont("<%08x> ", instr);
1275                         else
1276                                 pr_cont("%08x ", instr);
1277                 }
1278
1279                 pc += sizeof(int);
1280         }
1281
1282         pr_cont("\n");
1283 }
1284
1285 void show_user_instructions(struct pt_regs *regs)
1286 {
1287         unsigned long pc;
1288         int i;
1289
1290         pc = regs->nip - (instructions_to_print * 3 / 4 * sizeof(int));
1291
1292         /*
1293          * Make sure the NIP points at userspace, not kernel text/data or
1294          * elsewhere.
1295          */
1296         if (!__access_ok(pc, instructions_to_print * sizeof(int), USER_DS)) {
1297                 pr_info("%s[%d]: Bad NIP, not dumping instructions.\n",
1298                         current->comm, current->pid);
1299                 return;
1300         }
1301
1302         pr_info("%s[%d]: code: ", current->comm, current->pid);
1303
1304         for (i = 0; i < instructions_to_print; i++) {
1305                 int instr;
1306
1307                 if (!(i % 8) && (i > 0)) {
1308                         pr_cont("\n");
1309                         pr_info("%s[%d]: code: ", current->comm, current->pid);
1310                 }
1311
1312                 if (probe_kernel_address((unsigned int __user *)pc, instr)) {
1313                         pr_cont("XXXXXXXX ");
1314                 } else {
1315                         if (regs->nip == pc)
1316                                 pr_cont("<%08x> ", instr);
1317                         else
1318                                 pr_cont("%08x ", instr);
1319                 }
1320
1321                 pc += sizeof(int);
1322         }
1323
1324         pr_cont("\n");
1325 }
1326
1327 struct regbit {
1328         unsigned long bit;
1329         const char *name;
1330 };
1331
1332 static struct regbit msr_bits[] = {
1333 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1334         {MSR_SF,        "SF"},
1335         {MSR_HV,        "HV"},
1336 #endif
1337         {MSR_VEC,       "VEC"},
1338         {MSR_VSX,       "VSX"},
1339 #ifdef CONFIG_BOOKE
1340         {MSR_CE,        "CE"},
1341 #endif
1342         {MSR_EE,        "EE"},
1343         {MSR_PR,        "PR"},
1344         {MSR_FP,        "FP"},
1345         {MSR_ME,        "ME"},
1346 #ifdef CONFIG_BOOKE
1347         {MSR_DE,        "DE"},
1348 #else
1349         {MSR_SE,        "SE"},
1350         {MSR_BE,        "BE"},
1351 #endif
1352         {MSR_IR,        "IR"},
1353         {MSR_DR,        "DR"},
1354         {MSR_PMM,       "PMM"},
1355 #ifndef CONFIG_BOOKE
1356         {MSR_RI,        "RI"},
1357         {MSR_LE,        "LE"},
1358 #endif
1359         {0,             NULL}
1360 };
1361
1362 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1363 {
1364         const char *s = "";
1365
1366         for (; bits->bit; ++bits)
1367                 if (val & bits->bit) {
1368                         pr_cont("%s%s", s, bits->name);
1369                         s = sep;
1370                 }
1371 }
1372
1373 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1374 static struct regbit msr_tm_bits[] = {
1375         {MSR_TS_T,      "T"},
1376         {MSR_TS_S,      "S"},
1377         {MSR_TM,        "E"},
1378         {0,             NULL}
1379 };
1380
1381 static void print_tm_bits(unsigned long val)
1382 {
1383 /*
1384  * This only prints something if at least one of the TM bit is set.
1385  * Inside the TM[], the output means:
1386  *   E: Enabled         (bit 32)
1387  *   S: Suspended       (bit 33)
1388  *   T: Transactional   (bit 34)
1389  */
1390         if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1391                 pr_cont(",TM[");
1392                 print_bits(val, msr_tm_bits, "");
1393                 pr_cont("]");
1394         }
1395 }
1396 #else
1397 static void print_tm_bits(unsigned long val) {}
1398 #endif
1399
1400 static void print_msr_bits(unsigned long val)
1401 {
1402         pr_cont("<");
1403         print_bits(val, msr_bits, ",");
1404         print_tm_bits(val);
1405         pr_cont(">");
1406 }
1407
1408 #ifdef CONFIG_PPC64
1409 #define REG             "%016lx"
1410 #define REGS_PER_LINE   4
1411 #define LAST_VOLATILE   13
1412 #else
1413 #define REG             "%08lx"
1414 #define REGS_PER_LINE   8
1415 #define LAST_VOLATILE   12
1416 #endif
1417
1418 void show_regs(struct pt_regs * regs)
1419 {
1420         int i, trap;
1421
1422         show_regs_print_info(KERN_DEFAULT);
1423
1424         printk("NIP:  "REG" LR: "REG" CTR: "REG"\n",
1425                regs->nip, regs->link, regs->ctr);
1426         printk("REGS: %px TRAP: %04lx   %s  (%s)\n",
1427                regs, regs->trap, print_tainted(), init_utsname()->release);
1428         printk("MSR:  "REG" ", regs->msr);
1429         print_msr_bits(regs->msr);
1430         pr_cont("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1431         trap = TRAP(regs);
1432         if ((TRAP(regs) != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1433                 pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1434         if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1435 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1436                 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1437 #else
1438                 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1439 #endif
1440 #ifdef CONFIG_PPC64
1441         pr_cont("IRQMASK: %lx ", regs->softe);
1442 #endif
1443 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1444         if (MSR_TM_ACTIVE(regs->msr))
1445                 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1446 #endif
1447
1448         for (i = 0;  i < 32;  i++) {
1449                 if ((i % REGS_PER_LINE) == 0)
1450                         pr_cont("\nGPR%02d: ", i);
1451                 pr_cont(REG " ", regs->gpr[i]);
1452                 if (i == LAST_VOLATILE && !FULL_REGS(regs))
1453                         break;
1454         }
1455         pr_cont("\n");
1456 #ifdef CONFIG_KALLSYMS
1457         /*
1458          * Lookup NIP late so we have the best change of getting the
1459          * above info out without failing
1460          */
1461         printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1462         printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1463 #endif
1464         show_stack(current, (unsigned long *) regs->gpr[1]);
1465         if (!user_mode(regs))
1466                 show_instructions(regs);
1467 }
1468
1469 void flush_thread(void)
1470 {
1471 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1472         flush_ptrace_hw_breakpoint(current);
1473 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1474         set_debug_reg_defaults(&current->thread);
1475 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1476 }
1477
1478 int set_thread_uses_vas(void)
1479 {
1480 #ifdef CONFIG_PPC_BOOK3S_64
1481         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1482                 return -EINVAL;
1483
1484         current->thread.used_vas = 1;
1485
1486         /*
1487          * Even a process that has no foreign real address mapping can use
1488          * an unpaired COPY instruction (to no real effect). Issue CP_ABORT
1489          * to clear any pending COPY and prevent a covert channel.
1490          *
1491          * __switch_to() will issue CP_ABORT on future context switches.
1492          */
1493         asm volatile(PPC_CP_ABORT);
1494
1495 #endif /* CONFIG_PPC_BOOK3S_64 */
1496         return 0;
1497 }
1498
1499 #ifdef CONFIG_PPC64
1500 /**
1501  * Assign a TIDR (thread ID) for task @t and set it in the thread
1502  * structure. For now, we only support setting TIDR for 'current' task.
1503  *
1504  * Since the TID value is a truncated form of it PID, it is possible
1505  * (but unlikely) for 2 threads to have the same TID. In the unlikely event
1506  * that 2 threads share the same TID and are waiting, one of the following
1507  * cases will happen:
1508  *
1509  * 1. The correct thread is running, the wrong thread is not
1510  * In this situation, the correct thread is woken and proceeds to pass it's
1511  * condition check.
1512  *
1513  * 2. Neither threads are running
1514  * In this situation, neither thread will be woken. When scheduled, the waiting
1515  * threads will execute either a wait, which will return immediately, followed
1516  * by a condition check, which will pass for the correct thread and fail
1517  * for the wrong thread, or they will execute the condition check immediately.
1518  *
1519  * 3. The wrong thread is running, the correct thread is not
1520  * The wrong thread will be woken, but will fail it's condition check and
1521  * re-execute wait. The correct thread, when scheduled, will execute either
1522  * it's condition check (which will pass), or wait, which returns immediately
1523  * when called the first time after the thread is scheduled, followed by it's
1524  * condition check (which will pass).
1525  *
1526  * 4. Both threads are running
1527  * Both threads will be woken. The wrong thread will fail it's condition check
1528  * and execute another wait, while the correct thread will pass it's condition
1529  * check.
1530  *
1531  * @t: the task to set the thread ID for
1532  */
1533 int set_thread_tidr(struct task_struct *t)
1534 {
1535         if (!cpu_has_feature(CPU_FTR_P9_TIDR))
1536                 return -EINVAL;
1537
1538         if (t != current)
1539                 return -EINVAL;
1540
1541         if (t->thread.tidr)
1542                 return 0;
1543
1544         t->thread.tidr = (u16)task_pid_nr(t);
1545         mtspr(SPRN_TIDR, t->thread.tidr);
1546
1547         return 0;
1548 }
1549 EXPORT_SYMBOL_GPL(set_thread_tidr);
1550
1551 #endif /* CONFIG_PPC64 */
1552
1553 void
1554 release_thread(struct task_struct *t)
1555 {
1556 }
1557
1558 /*
1559  * this gets called so that we can store coprocessor state into memory and
1560  * copy the current task into the new thread.
1561  */
1562 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1563 {
1564         flush_all_to_thread(src);
1565         /*
1566          * Flush TM state out so we can copy it.  __switch_to_tm() does this
1567          * flush but it removes the checkpointed state from the current CPU and
1568          * transitions the CPU out of TM mode.  Hence we need to call
1569          * tm_recheckpoint_new_task() (on the same task) to restore the
1570          * checkpointed state back and the TM mode.
1571          *
1572          * Can't pass dst because it isn't ready. Doesn't matter, passing
1573          * dst is only important for __switch_to()
1574          */
1575         __switch_to_tm(src, src);
1576
1577         *dst = *src;
1578
1579         clear_task_ebb(dst);
1580
1581         return 0;
1582 }
1583
1584 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1585 {
1586 #ifdef CONFIG_PPC_BOOK3S_64
1587         unsigned long sp_vsid;
1588         unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1589
1590         if (radix_enabled())
1591                 return;
1592
1593         if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1594                 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1595                         << SLB_VSID_SHIFT_1T;
1596         else
1597                 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1598                         << SLB_VSID_SHIFT;
1599         sp_vsid |= SLB_VSID_KERNEL | llp;
1600         p->thread.ksp_vsid = sp_vsid;
1601 #endif
1602 }
1603
1604 /*
1605  * Copy a thread..
1606  */
1607
1608 /*
1609  * Copy architecture-specific thread state
1610  */
1611 int copy_thread(unsigned long clone_flags, unsigned long usp,
1612                 unsigned long kthread_arg, struct task_struct *p)
1613 {
1614         struct pt_regs *childregs, *kregs;
1615         extern void ret_from_fork(void);
1616         extern void ret_from_kernel_thread(void);
1617         void (*f)(void);
1618         unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1619         struct thread_info *ti = task_thread_info(p);
1620
1621         klp_init_thread_info(ti);
1622
1623         /* Copy registers */
1624         sp -= sizeof(struct pt_regs);
1625         childregs = (struct pt_regs *) sp;
1626         if (unlikely(p->flags & PF_KTHREAD)) {
1627                 /* kernel thread */
1628                 memset(childregs, 0, sizeof(struct pt_regs));
1629                 childregs->gpr[1] = sp + sizeof(struct pt_regs);
1630                 /* function */
1631                 if (usp)
1632                         childregs->gpr[14] = ppc_function_entry((void *)usp);
1633 #ifdef CONFIG_PPC64
1634                 clear_tsk_thread_flag(p, TIF_32BIT);
1635                 childregs->softe = IRQS_ENABLED;
1636 #endif
1637                 childregs->gpr[15] = kthread_arg;
1638                 p->thread.regs = NULL;  /* no user register state */
1639                 ti->flags |= _TIF_RESTOREALL;
1640                 f = ret_from_kernel_thread;
1641         } else {
1642                 /* user thread */
1643                 struct pt_regs *regs = current_pt_regs();
1644                 CHECK_FULL_REGS(regs);
1645                 *childregs = *regs;
1646                 if (usp)
1647                         childregs->gpr[1] = usp;
1648                 p->thread.regs = childregs;
1649                 childregs->gpr[3] = 0;  /* Result from fork() */
1650                 if (clone_flags & CLONE_SETTLS) {
1651 #ifdef CONFIG_PPC64
1652                         if (!is_32bit_task())
1653                                 childregs->gpr[13] = childregs->gpr[6];
1654                         else
1655 #endif
1656                                 childregs->gpr[2] = childregs->gpr[6];
1657                 }
1658
1659                 f = ret_from_fork;
1660         }
1661         childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1662         sp -= STACK_FRAME_OVERHEAD;
1663
1664         /*
1665          * The way this works is that at some point in the future
1666          * some task will call _switch to switch to the new task.
1667          * That will pop off the stack frame created below and start
1668          * the new task running at ret_from_fork.  The new task will
1669          * do some house keeping and then return from the fork or clone
1670          * system call, using the stack frame created above.
1671          */
1672         ((unsigned long *)sp)[0] = 0;
1673         sp -= sizeof(struct pt_regs);
1674         kregs = (struct pt_regs *) sp;
1675         sp -= STACK_FRAME_OVERHEAD;
1676         p->thread.ksp = sp;
1677 #ifdef CONFIG_PPC32
1678         p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1679                                 _ALIGN_UP(sizeof(struct thread_info), 16);
1680 #endif
1681 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1682         p->thread.ptrace_bps[0] = NULL;
1683 #endif
1684
1685         p->thread.fp_save_area = NULL;
1686 #ifdef CONFIG_ALTIVEC
1687         p->thread.vr_save_area = NULL;
1688 #endif
1689
1690         setup_ksp_vsid(p, sp);
1691
1692 #ifdef CONFIG_PPC64 
1693         if (cpu_has_feature(CPU_FTR_DSCR)) {
1694                 p->thread.dscr_inherit = current->thread.dscr_inherit;
1695                 p->thread.dscr = mfspr(SPRN_DSCR);
1696         }
1697         if (cpu_has_feature(CPU_FTR_HAS_PPR))
1698                 p->thread.ppr = INIT_PPR;
1699
1700         p->thread.tidr = 0;
1701 #endif
1702         kregs->nip = ppc_function_entry(f);
1703         return 0;
1704 }
1705
1706 /*
1707  * Set up a thread for executing a new program
1708  */
1709 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1710 {
1711 #ifdef CONFIG_PPC64
1712         unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1713 #endif
1714
1715         /*
1716          * If we exec out of a kernel thread then thread.regs will not be
1717          * set.  Do it now.
1718          */
1719         if (!current->thread.regs) {
1720                 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1721                 current->thread.regs = regs - 1;
1722         }
1723
1724 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1725         /*
1726          * Clear any transactional state, we're exec()ing. The cause is
1727          * not important as there will never be a recheckpoint so it's not
1728          * user visible.
1729          */
1730         if (MSR_TM_SUSPENDED(mfmsr()))
1731                 tm_reclaim_current(0);
1732 #endif
1733
1734         memset(&regs->gpr[1], 0, sizeof(regs->gpr) - sizeof(regs->gpr[0]));
1735         regs->ctr = 0;
1736         regs->link = 0;
1737         regs->xer = 0;
1738         regs->ccr = 0;
1739         regs->gpr[1] = sp;
1740
1741         /*
1742          * We have just cleared all the nonvolatile GPRs, so make
1743          * FULL_REGS(regs) return true.  This is necessary to allow
1744          * ptrace to examine the thread immediately after exec.
1745          */
1746         regs->trap &= ~1UL;
1747
1748 #ifdef CONFIG_PPC32
1749         regs->mq = 0;
1750         regs->nip = start;
1751         regs->msr = MSR_USER;
1752 #else
1753         if (!is_32bit_task()) {
1754                 unsigned long entry;
1755
1756                 if (is_elf2_task()) {
1757                         /* Look ma, no function descriptors! */
1758                         entry = start;
1759
1760                         /*
1761                          * Ulrich says:
1762                          *   The latest iteration of the ABI requires that when
1763                          *   calling a function (at its global entry point),
1764                          *   the caller must ensure r12 holds the entry point
1765                          *   address (so that the function can quickly
1766                          *   establish addressability).
1767                          */
1768                         regs->gpr[12] = start;
1769                         /* Make sure that's restored on entry to userspace. */
1770                         set_thread_flag(TIF_RESTOREALL);
1771                 } else {
1772                         unsigned long toc;
1773
1774                         /* start is a relocated pointer to the function
1775                          * descriptor for the elf _start routine.  The first
1776                          * entry in the function descriptor is the entry
1777                          * address of _start and the second entry is the TOC
1778                          * value we need to use.
1779                          */
1780                         __get_user(entry, (unsigned long __user *)start);
1781                         __get_user(toc, (unsigned long __user *)start+1);
1782
1783                         /* Check whether the e_entry function descriptor entries
1784                          * need to be relocated before we can use them.
1785                          */
1786                         if (load_addr != 0) {
1787                                 entry += load_addr;
1788                                 toc   += load_addr;
1789                         }
1790                         regs->gpr[2] = toc;
1791                 }
1792                 regs->nip = entry;
1793                 regs->msr = MSR_USER64;
1794         } else {
1795                 regs->nip = start;
1796                 regs->gpr[2] = 0;
1797                 regs->msr = MSR_USER32;
1798         }
1799 #endif
1800 #ifdef CONFIG_VSX
1801         current->thread.used_vsr = 0;
1802 #endif
1803         current->thread.load_fp = 0;
1804         memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1805         current->thread.fp_save_area = NULL;
1806 #ifdef CONFIG_ALTIVEC
1807         memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1808         current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1809         current->thread.vr_save_area = NULL;
1810         current->thread.vrsave = 0;
1811         current->thread.used_vr = 0;
1812         current->thread.load_vec = 0;
1813 #endif /* CONFIG_ALTIVEC */
1814 #ifdef CONFIG_SPE
1815         memset(current->thread.evr, 0, sizeof(current->thread.evr));
1816         current->thread.acc = 0;
1817         current->thread.spefscr = 0;
1818         current->thread.used_spe = 0;
1819 #endif /* CONFIG_SPE */
1820 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1821         current->thread.tm_tfhar = 0;
1822         current->thread.tm_texasr = 0;
1823         current->thread.tm_tfiar = 0;
1824         current->thread.load_tm = 0;
1825 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1826
1827         thread_pkey_regs_init(&current->thread);
1828 }
1829 EXPORT_SYMBOL(start_thread);
1830
1831 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1832                 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1833
1834 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1835 {
1836         struct pt_regs *regs = tsk->thread.regs;
1837
1838         /* This is a bit hairy.  If we are an SPE enabled  processor
1839          * (have embedded fp) we store the IEEE exception enable flags in
1840          * fpexc_mode.  fpexc_mode is also used for setting FP exception
1841          * mode (asyn, precise, disabled) for 'Classic' FP. */
1842         if (val & PR_FP_EXC_SW_ENABLE) {
1843 #ifdef CONFIG_SPE
1844                 if (cpu_has_feature(CPU_FTR_SPE)) {
1845                         /*
1846                          * When the sticky exception bits are set
1847                          * directly by userspace, it must call prctl
1848                          * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1849                          * in the existing prctl settings) or
1850                          * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1851                          * the bits being set).  <fenv.h> functions
1852                          * saving and restoring the whole
1853                          * floating-point environment need to do so
1854                          * anyway to restore the prctl settings from
1855                          * the saved environment.
1856                          */
1857                         tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1858                         tsk->thread.fpexc_mode = val &
1859                                 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1860                         return 0;
1861                 } else {
1862                         return -EINVAL;
1863                 }
1864 #else
1865                 return -EINVAL;
1866 #endif
1867         }
1868
1869         /* on a CONFIG_SPE this does not hurt us.  The bits that
1870          * __pack_fe01 use do not overlap with bits used for
1871          * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1872          * on CONFIG_SPE implementations are reserved so writing to
1873          * them does not change anything */
1874         if (val > PR_FP_EXC_PRECISE)
1875                 return -EINVAL;
1876         tsk->thread.fpexc_mode = __pack_fe01(val);
1877         if (regs != NULL && (regs->msr & MSR_FP) != 0)
1878                 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1879                         | tsk->thread.fpexc_mode;
1880         return 0;
1881 }
1882
1883 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1884 {
1885         unsigned int val;
1886
1887         if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1888 #ifdef CONFIG_SPE
1889                 if (cpu_has_feature(CPU_FTR_SPE)) {
1890                         /*
1891                          * When the sticky exception bits are set
1892                          * directly by userspace, it must call prctl
1893                          * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1894                          * in the existing prctl settings) or
1895                          * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1896                          * the bits being set).  <fenv.h> functions
1897                          * saving and restoring the whole
1898                          * floating-point environment need to do so
1899                          * anyway to restore the prctl settings from
1900                          * the saved environment.
1901                          */
1902                         tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1903                         val = tsk->thread.fpexc_mode;
1904                 } else
1905                         return -EINVAL;
1906 #else
1907                 return -EINVAL;
1908 #endif
1909         else
1910                 val = __unpack_fe01(tsk->thread.fpexc_mode);
1911         return put_user(val, (unsigned int __user *) adr);
1912 }
1913
1914 int set_endian(struct task_struct *tsk, unsigned int val)
1915 {
1916         struct pt_regs *regs = tsk->thread.regs;
1917
1918         if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1919             (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1920                 return -EINVAL;
1921
1922         if (regs == NULL)
1923                 return -EINVAL;
1924
1925         if (val == PR_ENDIAN_BIG)
1926                 regs->msr &= ~MSR_LE;
1927         else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1928                 regs->msr |= MSR_LE;
1929         else
1930                 return -EINVAL;
1931
1932         return 0;
1933 }
1934
1935 int get_endian(struct task_struct *tsk, unsigned long adr)
1936 {
1937         struct pt_regs *regs = tsk->thread.regs;
1938         unsigned int val;
1939
1940         if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1941             !cpu_has_feature(CPU_FTR_REAL_LE))
1942                 return -EINVAL;
1943
1944         if (regs == NULL)
1945                 return -EINVAL;
1946
1947         if (regs->msr & MSR_LE) {
1948                 if (cpu_has_feature(CPU_FTR_REAL_LE))
1949                         val = PR_ENDIAN_LITTLE;
1950                 else
1951                         val = PR_ENDIAN_PPC_LITTLE;
1952         } else
1953                 val = PR_ENDIAN_BIG;
1954
1955         return put_user(val, (unsigned int __user *)adr);
1956 }
1957
1958 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1959 {
1960         tsk->thread.align_ctl = val;
1961         return 0;
1962 }
1963
1964 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1965 {
1966         return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1967 }
1968
1969 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1970                                   unsigned long nbytes)
1971 {
1972         unsigned long stack_page;
1973         unsigned long cpu = task_cpu(p);
1974
1975         /*
1976          * Avoid crashing if the stack has overflowed and corrupted
1977          * task_cpu(p), which is in the thread_info struct.
1978          */
1979         if (cpu < NR_CPUS && cpu_possible(cpu)) {
1980                 stack_page = (unsigned long) hardirq_ctx[cpu];
1981                 if (sp >= stack_page + sizeof(struct thread_struct)
1982                     && sp <= stack_page + THREAD_SIZE - nbytes)
1983                         return 1;
1984
1985                 stack_page = (unsigned long) softirq_ctx[cpu];
1986                 if (sp >= stack_page + sizeof(struct thread_struct)
1987                     && sp <= stack_page + THREAD_SIZE - nbytes)
1988                         return 1;
1989         }
1990         return 0;
1991 }
1992
1993 int validate_sp(unsigned long sp, struct task_struct *p,
1994                        unsigned long nbytes)
1995 {
1996         unsigned long stack_page = (unsigned long)task_stack_page(p);
1997
1998         if (sp >= stack_page + sizeof(struct thread_struct)
1999             && sp <= stack_page + THREAD_SIZE - nbytes)
2000                 return 1;
2001
2002         return valid_irq_stack(sp, p, nbytes);
2003 }
2004
2005 EXPORT_SYMBOL(validate_sp);
2006
2007 unsigned long get_wchan(struct task_struct *p)
2008 {
2009         unsigned long ip, sp;
2010         int count = 0;
2011
2012         if (!p || p == current || p->state == TASK_RUNNING)
2013                 return 0;
2014
2015         sp = p->thread.ksp;
2016         if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
2017                 return 0;
2018
2019         do {
2020                 sp = READ_ONCE_NOCHECK(*(unsigned long *)sp);
2021                 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) ||
2022                     p->state == TASK_RUNNING)
2023                         return 0;
2024                 if (count > 0) {
2025                         ip = READ_ONCE_NOCHECK(((unsigned long *)sp)[STACK_FRAME_LR_SAVE]);
2026                         if (!in_sched_functions(ip))
2027                                 return ip;
2028                 }
2029         } while (count++ < 16);
2030         return 0;
2031 }
2032
2033 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
2034
2035 void show_stack(struct task_struct *tsk, unsigned long *stack)
2036 {
2037         unsigned long sp, ip, lr, newsp;
2038         int count = 0;
2039         int firstframe = 1;
2040 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2041         int curr_frame = current->curr_ret_stack;
2042         extern void return_to_handler(void);
2043         unsigned long rth = (unsigned long)return_to_handler;
2044 #endif
2045
2046         sp = (unsigned long) stack;
2047         if (tsk == NULL)
2048                 tsk = current;
2049         if (sp == 0) {
2050                 if (tsk == current)
2051                         sp = current_stack_pointer();
2052                 else
2053                         sp = tsk->thread.ksp;
2054         }
2055
2056         lr = 0;
2057         printk("Call Trace:\n");
2058         do {
2059                 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
2060                         return;
2061
2062                 stack = (unsigned long *) sp;
2063                 newsp = stack[0];
2064                 ip = stack[STACK_FRAME_LR_SAVE];
2065                 if (!firstframe || ip != lr) {
2066                         printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
2067 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2068                         if ((ip == rth) && curr_frame >= 0) {
2069                                 pr_cont(" (%pS)",
2070                                        (void *)current->ret_stack[curr_frame].ret);
2071                                 curr_frame--;
2072                         }
2073 #endif
2074                         if (firstframe)
2075                                 pr_cont(" (unreliable)");
2076                         pr_cont("\n");
2077                 }
2078                 firstframe = 0;
2079
2080                 /*
2081                  * See if this is an exception frame.
2082                  * We look for the "regshere" marker in the current frame.
2083                  */
2084                 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
2085                     && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
2086                         struct pt_regs *regs = (struct pt_regs *)
2087                                 (sp + STACK_FRAME_OVERHEAD);
2088                         lr = regs->link;
2089                         printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
2090                                regs->trap, (void *)regs->nip, (void *)lr);
2091                         firstframe = 1;
2092                 }
2093
2094                 sp = newsp;
2095         } while (count++ < kstack_depth_to_print);
2096 }
2097
2098 #ifdef CONFIG_PPC64
2099 /* Called with hard IRQs off */
2100 void notrace __ppc64_runlatch_on(void)
2101 {
2102         struct thread_info *ti = current_thread_info();
2103
2104         if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2105                 /*
2106                  * Least significant bit (RUN) is the only writable bit of
2107                  * the CTRL register, so we can avoid mfspr. 2.06 is not the
2108                  * earliest ISA where this is the case, but it's convenient.
2109                  */
2110                 mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
2111         } else {
2112                 unsigned long ctrl;
2113
2114                 /*
2115                  * Some architectures (e.g., Cell) have writable fields other
2116                  * than RUN, so do the read-modify-write.
2117                  */
2118                 ctrl = mfspr(SPRN_CTRLF);
2119                 ctrl |= CTRL_RUNLATCH;
2120                 mtspr(SPRN_CTRLT, ctrl);
2121         }
2122
2123         ti->local_flags |= _TLF_RUNLATCH;
2124 }
2125
2126 /* Called with hard IRQs off */
2127 void notrace __ppc64_runlatch_off(void)
2128 {
2129         struct thread_info *ti = current_thread_info();
2130
2131         ti->local_flags &= ~_TLF_RUNLATCH;
2132
2133         if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2134                 mtspr(SPRN_CTRLT, 0);
2135         } else {
2136                 unsigned long ctrl;
2137
2138                 ctrl = mfspr(SPRN_CTRLF);
2139                 ctrl &= ~CTRL_RUNLATCH;
2140                 mtspr(SPRN_CTRLT, ctrl);
2141         }
2142 }
2143 #endif /* CONFIG_PPC64 */
2144
2145 unsigned long arch_align_stack(unsigned long sp)
2146 {
2147         if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2148                 sp -= get_random_int() & ~PAGE_MASK;
2149         return sp & ~0xf;
2150 }
2151
2152 static inline unsigned long brk_rnd(void)
2153 {
2154         unsigned long rnd = 0;
2155
2156         /* 8MB for 32bit, 1GB for 64bit */
2157         if (is_32bit_task())
2158                 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
2159         else
2160                 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
2161
2162         return rnd << PAGE_SHIFT;
2163 }
2164
2165 unsigned long arch_randomize_brk(struct mm_struct *mm)
2166 {
2167         unsigned long base = mm->brk;
2168         unsigned long ret;
2169
2170 #ifdef CONFIG_PPC_BOOK3S_64
2171         /*
2172          * If we are using 1TB segments and we are allowed to randomise
2173          * the heap, we can put it above 1TB so it is backed by a 1TB
2174          * segment. Otherwise the heap will be in the bottom 1TB
2175          * which always uses 256MB segments and this may result in a
2176          * performance penalty. We don't need to worry about radix. For
2177          * radix, mmu_highuser_ssize remains unchanged from 256MB.
2178          */
2179         if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
2180                 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
2181 #endif
2182
2183         ret = PAGE_ALIGN(base + brk_rnd());
2184
2185         if (ret < mm->brk)
2186                 return mm->brk;
2187
2188         return ret;
2189 }
2190