GNU Linux-libre 4.19.264-gnu1
[releases.git] / arch / powerpc / kernel / watchdog.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Watchdog support on powerpc systems.
4  *
5  * Copyright 2017, IBM Corporation.
6  *
7  * This uses code from arch/sparc/kernel/nmi.c and kernel/watchdog.c
8  */
9
10 #define pr_fmt(fmt) "watchdog: " fmt
11
12 #include <linux/kernel.h>
13 #include <linux/param.h>
14 #include <linux/init.h>
15 #include <linux/percpu.h>
16 #include <linux/cpu.h>
17 #include <linux/nmi.h>
18 #include <linux/module.h>
19 #include <linux/export.h>
20 #include <linux/kprobes.h>
21 #include <linux/hardirq.h>
22 #include <linux/reboot.h>
23 #include <linux/slab.h>
24 #include <linux/kdebug.h>
25 #include <linux/sched/debug.h>
26 #include <linux/delay.h>
27 #include <linux/smp.h>
28
29 #include <asm/paca.h>
30
31 /*
32  * The powerpc watchdog ensures that each CPU is able to service timers.
33  * The watchdog sets up a simple timer on each CPU to run once per timer
34  * period, and updates a per-cpu timestamp and a "pending" cpumask. This is
35  * the heartbeat.
36  *
37  * Then there are two systems to check that the heartbeat is still running.
38  * The local soft-NMI, and the SMP checker.
39  *
40  * The soft-NMI checker can detect lockups on the local CPU. When interrupts
41  * are disabled with local_irq_disable(), platforms that use soft-masking
42  * can leave hardware interrupts enabled and handle them with a masked
43  * interrupt handler. The masked handler can send the timer interrupt to the
44  * watchdog's soft_nmi_interrupt(), which appears to Linux as an NMI
45  * interrupt, and can be used to detect CPUs stuck with IRQs disabled.
46  *
47  * The soft-NMI checker will compare the heartbeat timestamp for this CPU
48  * with the current time, and take action if the difference exceeds the
49  * watchdog threshold.
50  *
51  * The limitation of the soft-NMI watchdog is that it does not work when
52  * interrupts are hard disabled or otherwise not being serviced. This is
53  * solved by also having a SMP watchdog where all CPUs check all other
54  * CPUs heartbeat.
55  *
56  * The SMP checker can detect lockups on other CPUs. A gobal "pending"
57  * cpumask is kept, containing all CPUs which enable the watchdog. Each
58  * CPU clears their pending bit in their heartbeat timer. When the bitmask
59  * becomes empty, the last CPU to clear its pending bit updates a global
60  * timestamp and refills the pending bitmask.
61  *
62  * In the heartbeat timer, if any CPU notices that the global timestamp has
63  * not been updated for a period exceeding the watchdog threshold, then it
64  * means the CPU(s) with their bit still set in the pending mask have had
65  * their heartbeat stop, and action is taken.
66  *
67  * Some platforms implement true NMI IPIs, which can be used by the SMP
68  * watchdog to detect an unresponsive CPU and pull it out of its stuck
69  * state with the NMI IPI, to get crash/debug data from it. This way the
70  * SMP watchdog can detect hardware interrupts off lockups.
71  */
72
73 static cpumask_t wd_cpus_enabled __read_mostly;
74
75 static u64 wd_panic_timeout_tb __read_mostly; /* timebase ticks until panic */
76 static u64 wd_smp_panic_timeout_tb __read_mostly; /* panic other CPUs */
77
78 static u64 wd_timer_period_ms __read_mostly;  /* interval between heartbeat */
79
80 static DEFINE_PER_CPU(struct hrtimer, wd_hrtimer);
81 static DEFINE_PER_CPU(u64, wd_timer_tb);
82
83 /* SMP checker bits */
84 static unsigned long __wd_smp_lock;
85 static cpumask_t wd_smp_cpus_pending;
86 static cpumask_t wd_smp_cpus_stuck;
87 static u64 wd_smp_last_reset_tb;
88
89 static inline void wd_smp_lock(unsigned long *flags)
90 {
91         /*
92          * Avoid locking layers if possible.
93          * This may be called from low level interrupt handlers at some
94          * point in future.
95          */
96         raw_local_irq_save(*flags);
97         hard_irq_disable(); /* Make it soft-NMI safe */
98         while (unlikely(test_and_set_bit_lock(0, &__wd_smp_lock))) {
99                 raw_local_irq_restore(*flags);
100                 spin_until_cond(!test_bit(0, &__wd_smp_lock));
101                 raw_local_irq_save(*flags);
102                 hard_irq_disable();
103         }
104 }
105
106 static inline void wd_smp_unlock(unsigned long *flags)
107 {
108         clear_bit_unlock(0, &__wd_smp_lock);
109         raw_local_irq_restore(*flags);
110 }
111
112 static void wd_lockup_ipi(struct pt_regs *regs)
113 {
114         int cpu = raw_smp_processor_id();
115         u64 tb = get_tb();
116
117         pr_emerg("CPU %d Hard LOCKUP\n", cpu);
118         pr_emerg("CPU %d TB:%lld, last heartbeat TB:%lld (%lldms ago)\n",
119                  cpu, tb, per_cpu(wd_timer_tb, cpu),
120                  tb_to_ns(tb - per_cpu(wd_timer_tb, cpu)) / 1000000);
121         print_modules();
122         print_irqtrace_events(current);
123         if (regs)
124                 show_regs(regs);
125         else
126                 dump_stack();
127
128         /* Do not panic from here because that can recurse into NMI IPI layer */
129 }
130
131 static void set_cpumask_stuck(const struct cpumask *cpumask, u64 tb)
132 {
133         cpumask_or(&wd_smp_cpus_stuck, &wd_smp_cpus_stuck, cpumask);
134         cpumask_andnot(&wd_smp_cpus_pending, &wd_smp_cpus_pending, cpumask);
135         /*
136          * See wd_smp_clear_cpu_pending()
137          */
138         smp_mb();
139         if (cpumask_empty(&wd_smp_cpus_pending)) {
140                 wd_smp_last_reset_tb = tb;
141                 cpumask_andnot(&wd_smp_cpus_pending,
142                                 &wd_cpus_enabled,
143                                 &wd_smp_cpus_stuck);
144         }
145 }
146 static void set_cpu_stuck(int cpu, u64 tb)
147 {
148         set_cpumask_stuck(cpumask_of(cpu), tb);
149 }
150
151 static void watchdog_smp_panic(int cpu, u64 tb)
152 {
153         unsigned long flags;
154         int c;
155
156         wd_smp_lock(&flags);
157         /* Double check some things under lock */
158         if ((s64)(tb - wd_smp_last_reset_tb) < (s64)wd_smp_panic_timeout_tb)
159                 goto out;
160         if (cpumask_test_cpu(cpu, &wd_smp_cpus_pending))
161                 goto out;
162         if (cpumask_weight(&wd_smp_cpus_pending) == 0)
163                 goto out;
164
165         pr_emerg("CPU %d detected hard LOCKUP on other CPUs %*pbl\n",
166                  cpu, cpumask_pr_args(&wd_smp_cpus_pending));
167         pr_emerg("CPU %d TB:%lld, last SMP heartbeat TB:%lld (%lldms ago)\n",
168                  cpu, tb, wd_smp_last_reset_tb,
169                  tb_to_ns(tb - wd_smp_last_reset_tb) / 1000000);
170
171         if (!sysctl_hardlockup_all_cpu_backtrace) {
172                 /*
173                  * Try to trigger the stuck CPUs, unless we are going to
174                  * get a backtrace on all of them anyway.
175                  */
176                 for_each_cpu(c, &wd_smp_cpus_pending) {
177                         if (c == cpu)
178                                 continue;
179                         smp_send_nmi_ipi(c, wd_lockup_ipi, 1000000);
180                 }
181         }
182
183         /* Take the stuck CPUs out of the watch group */
184         set_cpumask_stuck(&wd_smp_cpus_pending, tb);
185
186         wd_smp_unlock(&flags);
187
188         printk_safe_flush();
189         /*
190          * printk_safe_flush() seems to require another print
191          * before anything actually goes out to console.
192          */
193         if (sysctl_hardlockup_all_cpu_backtrace)
194                 trigger_allbutself_cpu_backtrace();
195
196         if (hardlockup_panic)
197                 nmi_panic(NULL, "Hard LOCKUP");
198
199         return;
200
201 out:
202         wd_smp_unlock(&flags);
203 }
204
205 static void wd_smp_clear_cpu_pending(int cpu, u64 tb)
206 {
207         if (!cpumask_test_cpu(cpu, &wd_smp_cpus_pending)) {
208                 if (unlikely(cpumask_test_cpu(cpu, &wd_smp_cpus_stuck))) {
209                         struct pt_regs *regs = get_irq_regs();
210                         unsigned long flags;
211
212                         wd_smp_lock(&flags);
213
214                         pr_emerg("CPU %d became unstuck TB:%lld\n",
215                                  cpu, tb);
216                         print_irqtrace_events(current);
217                         if (regs)
218                                 show_regs(regs);
219                         else
220                                 dump_stack();
221
222                         cpumask_clear_cpu(cpu, &wd_smp_cpus_stuck);
223                         wd_smp_unlock(&flags);
224                 } else {
225                         /*
226                          * The last CPU to clear pending should have reset the
227                          * watchdog so we generally should not find it empty
228                          * here if our CPU was clear. However it could happen
229                          * due to a rare race with another CPU taking the
230                          * last CPU out of the mask concurrently.
231                          *
232                          * We can't add a warning for it. But just in case
233                          * there is a problem with the watchdog that is causing
234                          * the mask to not be reset, try to kick it along here.
235                          */
236                         if (unlikely(cpumask_empty(&wd_smp_cpus_pending)))
237                                 goto none_pending;
238                 }
239                 return;
240         }
241
242         cpumask_clear_cpu(cpu, &wd_smp_cpus_pending);
243
244         /*
245          * Order the store to clear pending with the load(s) to check all
246          * words in the pending mask to check they are all empty. This orders
247          * with the same barrier on another CPU. This prevents two CPUs
248          * clearing the last 2 pending bits, but neither seeing the other's
249          * store when checking if the mask is empty, and missing an empty
250          * mask, which ends with a false positive.
251          */
252         smp_mb();
253         if (cpumask_empty(&wd_smp_cpus_pending)) {
254                 unsigned long flags;
255
256 none_pending:
257                 /*
258                  * Double check under lock because more than one CPU could see
259                  * a clear mask with the lockless check after clearing their
260                  * pending bits.
261                  */
262                 wd_smp_lock(&flags);
263                 if (cpumask_empty(&wd_smp_cpus_pending)) {
264                         wd_smp_last_reset_tb = tb;
265                         cpumask_andnot(&wd_smp_cpus_pending,
266                                         &wd_cpus_enabled,
267                                         &wd_smp_cpus_stuck);
268                 }
269                 wd_smp_unlock(&flags);
270         }
271 }
272
273 static void watchdog_timer_interrupt(int cpu)
274 {
275         u64 tb = get_tb();
276
277         per_cpu(wd_timer_tb, cpu) = tb;
278
279         wd_smp_clear_cpu_pending(cpu, tb);
280
281         if ((s64)(tb - wd_smp_last_reset_tb) >= (s64)wd_smp_panic_timeout_tb)
282                 watchdog_smp_panic(cpu, tb);
283 }
284
285 void soft_nmi_interrupt(struct pt_regs *regs)
286 {
287         unsigned long flags;
288         int cpu = raw_smp_processor_id();
289         u64 tb;
290
291         if (!cpumask_test_cpu(cpu, &wd_cpus_enabled))
292                 return;
293
294         nmi_enter();
295
296         __this_cpu_inc(irq_stat.soft_nmi_irqs);
297
298         tb = get_tb();
299         if (tb - per_cpu(wd_timer_tb, cpu) >= wd_panic_timeout_tb) {
300                 wd_smp_lock(&flags);
301                 if (cpumask_test_cpu(cpu, &wd_smp_cpus_stuck)) {
302                         wd_smp_unlock(&flags);
303                         goto out;
304                 }
305                 set_cpu_stuck(cpu, tb);
306
307                 pr_emerg("CPU %d self-detected hard LOCKUP @ %pS\n",
308                          cpu, (void *)regs->nip);
309                 pr_emerg("CPU %d TB:%lld, last heartbeat TB:%lld (%lldms ago)\n",
310                          cpu, tb, per_cpu(wd_timer_tb, cpu),
311                          tb_to_ns(tb - per_cpu(wd_timer_tb, cpu)) / 1000000);
312                 print_modules();
313                 print_irqtrace_events(current);
314                 show_regs(regs);
315
316                 wd_smp_unlock(&flags);
317
318                 if (sysctl_hardlockup_all_cpu_backtrace)
319                         trigger_allbutself_cpu_backtrace();
320
321                 if (hardlockup_panic)
322                         nmi_panic(regs, "Hard LOCKUP");
323         }
324         if (wd_panic_timeout_tb < 0x7fffffff)
325                 mtspr(SPRN_DEC, wd_panic_timeout_tb);
326
327 out:
328         nmi_exit();
329 }
330
331 static enum hrtimer_restart watchdog_timer_fn(struct hrtimer *hrtimer)
332 {
333         int cpu = smp_processor_id();
334
335         if (!(watchdog_enabled & NMI_WATCHDOG_ENABLED))
336                 return HRTIMER_NORESTART;
337
338         if (!cpumask_test_cpu(cpu, &watchdog_cpumask))
339                 return HRTIMER_NORESTART;
340
341         watchdog_timer_interrupt(cpu);
342
343         hrtimer_forward_now(hrtimer, ms_to_ktime(wd_timer_period_ms));
344
345         return HRTIMER_RESTART;
346 }
347
348 void arch_touch_nmi_watchdog(void)
349 {
350         unsigned long ticks = tb_ticks_per_usec * wd_timer_period_ms * 1000;
351         int cpu = smp_processor_id();
352         u64 tb;
353
354         if (!cpumask_test_cpu(cpu, &watchdog_cpumask))
355                 return;
356
357         tb = get_tb();
358         if (tb - per_cpu(wd_timer_tb, cpu) >= ticks) {
359                 per_cpu(wd_timer_tb, cpu) = tb;
360                 wd_smp_clear_cpu_pending(cpu, tb);
361         }
362 }
363 EXPORT_SYMBOL(arch_touch_nmi_watchdog);
364
365 static void start_watchdog(void *arg)
366 {
367         struct hrtimer *hrtimer = this_cpu_ptr(&wd_hrtimer);
368         int cpu = smp_processor_id();
369         unsigned long flags;
370
371         if (cpumask_test_cpu(cpu, &wd_cpus_enabled)) {
372                 WARN_ON(1);
373                 return;
374         }
375
376         if (!(watchdog_enabled & NMI_WATCHDOG_ENABLED))
377                 return;
378
379         if (!cpumask_test_cpu(cpu, &watchdog_cpumask))
380                 return;
381
382         wd_smp_lock(&flags);
383         cpumask_set_cpu(cpu, &wd_cpus_enabled);
384         if (cpumask_weight(&wd_cpus_enabled) == 1) {
385                 cpumask_set_cpu(cpu, &wd_smp_cpus_pending);
386                 wd_smp_last_reset_tb = get_tb();
387         }
388         wd_smp_unlock(&flags);
389
390         *this_cpu_ptr(&wd_timer_tb) = get_tb();
391
392         hrtimer_init(hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
393         hrtimer->function = watchdog_timer_fn;
394         hrtimer_start(hrtimer, ms_to_ktime(wd_timer_period_ms),
395                       HRTIMER_MODE_REL_PINNED);
396 }
397
398 static int start_watchdog_on_cpu(unsigned int cpu)
399 {
400         return smp_call_function_single(cpu, start_watchdog, NULL, true);
401 }
402
403 static void stop_watchdog(void *arg)
404 {
405         struct hrtimer *hrtimer = this_cpu_ptr(&wd_hrtimer);
406         int cpu = smp_processor_id();
407         unsigned long flags;
408
409         if (!cpumask_test_cpu(cpu, &wd_cpus_enabled))
410                 return; /* Can happen in CPU unplug case */
411
412         hrtimer_cancel(hrtimer);
413
414         wd_smp_lock(&flags);
415         cpumask_clear_cpu(cpu, &wd_cpus_enabled);
416         wd_smp_unlock(&flags);
417
418         wd_smp_clear_cpu_pending(cpu, get_tb());
419 }
420
421 static int stop_watchdog_on_cpu(unsigned int cpu)
422 {
423         return smp_call_function_single(cpu, stop_watchdog, NULL, true);
424 }
425
426 static void watchdog_calc_timeouts(void)
427 {
428         wd_panic_timeout_tb = watchdog_thresh * ppc_tb_freq;
429
430         /* Have the SMP detector trigger a bit later */
431         wd_smp_panic_timeout_tb = wd_panic_timeout_tb * 3 / 2;
432
433         /* 2/5 is the factor that the perf based detector uses */
434         wd_timer_period_ms = watchdog_thresh * 1000 * 2 / 5;
435 }
436
437 void watchdog_nmi_stop(void)
438 {
439         int cpu;
440
441         for_each_cpu(cpu, &wd_cpus_enabled)
442                 stop_watchdog_on_cpu(cpu);
443 }
444
445 void watchdog_nmi_start(void)
446 {
447         int cpu;
448
449         watchdog_calc_timeouts();
450         for_each_cpu_and(cpu, cpu_online_mask, &watchdog_cpumask)
451                 start_watchdog_on_cpu(cpu);
452 }
453
454 /*
455  * Invoked from core watchdog init.
456  */
457 int __init watchdog_nmi_probe(void)
458 {
459         int err;
460
461         err = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
462                                         "powerpc/watchdog:online",
463                                         start_watchdog_on_cpu,
464                                         stop_watchdog_on_cpu);
465         if (err < 0) {
466                 pr_warn("could not be initialized");
467                 return err;
468         }
469         return 0;
470 }