GNU Linux-libre 4.14.290-gnu1
[releases.git] / arch / s390 / mm / hugetlbpage.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  IBM System z Huge TLB Page Support for Kernel.
4  *
5  *    Copyright IBM Corp. 2007,2020
6  *    Author(s): Gerald Schaefer <gerald.schaefer@de.ibm.com>
7  */
8
9 #define KMSG_COMPONENT "hugetlb"
10 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
11
12 #include <linux/mm.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mman.h>
15 #include <linux/sched/mm.h>
16 #include <linux/security.h>
17
18 /*
19  * If the bit selected by single-bit bitmask "a" is set within "x", move
20  * it to the position indicated by single-bit bitmask "b".
21  */
22 #define move_set_bit(x, a, b)   (((x) & (a)) >> ilog2(a) << ilog2(b))
23
24 static inline unsigned long __pte_to_rste(pte_t pte)
25 {
26         unsigned long rste;
27
28         /*
29          * Convert encoding               pte bits      pmd / pud bits
30          *                              lIR.uswrdy.p    dy..R...I...wr
31          * empty                        010.000000.0 -> 00..0...1...00
32          * prot-none, clean, old        111.000000.1 -> 00..1...1...00
33          * prot-none, clean, young      111.000001.1 -> 01..1...1...00
34          * prot-none, dirty, old        111.000010.1 -> 10..1...1...00
35          * prot-none, dirty, young      111.000011.1 -> 11..1...1...00
36          * read-only, clean, old        111.000100.1 -> 00..1...1...01
37          * read-only, clean, young      101.000101.1 -> 01..1...0...01
38          * read-only, dirty, old        111.000110.1 -> 10..1...1...01
39          * read-only, dirty, young      101.000111.1 -> 11..1...0...01
40          * read-write, clean, old       111.001100.1 -> 00..1...1...11
41          * read-write, clean, young     101.001101.1 -> 01..1...0...11
42          * read-write, dirty, old       110.001110.1 -> 10..0...1...11
43          * read-write, dirty, young     100.001111.1 -> 11..0...0...11
44          * HW-bits: R read-only, I invalid
45          * SW-bits: p present, y young, d dirty, r read, w write, s special,
46          *          u unused, l large
47          */
48         if (pte_present(pte)) {
49                 rste = pte_val(pte) & PAGE_MASK;
50                 rste |= move_set_bit(pte_val(pte), _PAGE_READ,
51                                      _SEGMENT_ENTRY_READ);
52                 rste |= move_set_bit(pte_val(pte), _PAGE_WRITE,
53                                      _SEGMENT_ENTRY_WRITE);
54                 rste |= move_set_bit(pte_val(pte), _PAGE_INVALID,
55                                      _SEGMENT_ENTRY_INVALID);
56                 rste |= move_set_bit(pte_val(pte), _PAGE_PROTECT,
57                                      _SEGMENT_ENTRY_PROTECT);
58                 rste |= move_set_bit(pte_val(pte), _PAGE_DIRTY,
59                                      _SEGMENT_ENTRY_DIRTY);
60                 rste |= move_set_bit(pte_val(pte), _PAGE_YOUNG,
61                                      _SEGMENT_ENTRY_YOUNG);
62 #ifdef CONFIG_MEM_SOFT_DIRTY
63                 rste |= move_set_bit(pte_val(pte), _PAGE_SOFT_DIRTY,
64                                      _SEGMENT_ENTRY_SOFT_DIRTY);
65 #endif
66                 rste |= move_set_bit(pte_val(pte), _PAGE_NOEXEC,
67                                      _SEGMENT_ENTRY_NOEXEC);
68         } else
69                 rste = _SEGMENT_ENTRY_EMPTY;
70         return rste;
71 }
72
73 static inline pte_t __rste_to_pte(unsigned long rste)
74 {
75         int present;
76         pte_t pte;
77
78         if ((rste & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
79                 present = pud_present(__pud(rste));
80         else
81                 present = pmd_present(__pmd(rste));
82
83         /*
84          * Convert encoding             pmd / pud bits      pte bits
85          *                              dy..R...I...wr    lIR.uswrdy.p
86          * empty                        00..0...1...00 -> 010.000000.0
87          * prot-none, clean, old        00..1...1...00 -> 111.000000.1
88          * prot-none, clean, young      01..1...1...00 -> 111.000001.1
89          * prot-none, dirty, old        10..1...1...00 -> 111.000010.1
90          * prot-none, dirty, young      11..1...1...00 -> 111.000011.1
91          * read-only, clean, old        00..1...1...01 -> 111.000100.1
92          * read-only, clean, young      01..1...0...01 -> 101.000101.1
93          * read-only, dirty, old        10..1...1...01 -> 111.000110.1
94          * read-only, dirty, young      11..1...0...01 -> 101.000111.1
95          * read-write, clean, old       00..1...1...11 -> 111.001100.1
96          * read-write, clean, young     01..1...0...11 -> 101.001101.1
97          * read-write, dirty, old       10..0...1...11 -> 110.001110.1
98          * read-write, dirty, young     11..0...0...11 -> 100.001111.1
99          * HW-bits: R read-only, I invalid
100          * SW-bits: p present, y young, d dirty, r read, w write, s special,
101          *          u unused, l large
102          */
103         if (present) {
104                 pte_val(pte) = rste & _SEGMENT_ENTRY_ORIGIN_LARGE;
105                 pte_val(pte) |= _PAGE_LARGE | _PAGE_PRESENT;
106                 pte_val(pte) |= move_set_bit(rste, _SEGMENT_ENTRY_READ,
107                                              _PAGE_READ);
108                 pte_val(pte) |= move_set_bit(rste, _SEGMENT_ENTRY_WRITE,
109                                              _PAGE_WRITE);
110                 pte_val(pte) |= move_set_bit(rste, _SEGMENT_ENTRY_INVALID,
111                                              _PAGE_INVALID);
112                 pte_val(pte) |= move_set_bit(rste, _SEGMENT_ENTRY_PROTECT,
113                                              _PAGE_PROTECT);
114                 pte_val(pte) |= move_set_bit(rste, _SEGMENT_ENTRY_DIRTY,
115                                              _PAGE_DIRTY);
116                 pte_val(pte) |= move_set_bit(rste, _SEGMENT_ENTRY_YOUNG,
117                                              _PAGE_YOUNG);
118 #ifdef CONFIG_MEM_SOFT_DIRTY
119                 pte_val(pte) |= move_set_bit(rste, _SEGMENT_ENTRY_SOFT_DIRTY,
120                                              _PAGE_SOFT_DIRTY);
121 #endif
122                 pte_val(pte) |= move_set_bit(rste, _SEGMENT_ENTRY_NOEXEC,
123                                              _PAGE_NOEXEC);
124         } else
125                 pte_val(pte) = _PAGE_INVALID;
126         return pte;
127 }
128
129 void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
130                      pte_t *ptep, pte_t pte)
131 {
132         unsigned long rste;
133
134         rste = __pte_to_rste(pte);
135         if (!MACHINE_HAS_NX)
136                 rste &= ~_SEGMENT_ENTRY_NOEXEC;
137
138         /* Set correct table type for 2G hugepages */
139         if ((pte_val(*ptep) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
140                 rste |= _REGION_ENTRY_TYPE_R3 | _REGION3_ENTRY_LARGE;
141         else
142                 rste |= _SEGMENT_ENTRY_LARGE;
143         pte_val(*ptep) = rste;
144 }
145
146 pte_t huge_ptep_get(pte_t *ptep)
147 {
148         return __rste_to_pte(pte_val(*ptep));
149 }
150
151 pte_t huge_ptep_get_and_clear(struct mm_struct *mm,
152                               unsigned long addr, pte_t *ptep)
153 {
154         pte_t pte = huge_ptep_get(ptep);
155         pmd_t *pmdp = (pmd_t *) ptep;
156         pud_t *pudp = (pud_t *) ptep;
157
158         if ((pte_val(*ptep) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
159                 pudp_xchg_direct(mm, addr, pudp, __pud(_REGION3_ENTRY_EMPTY));
160         else
161                 pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
162         return pte;
163 }
164
165 pte_t *huge_pte_alloc(struct mm_struct *mm,
166                         unsigned long addr, unsigned long sz)
167 {
168         pgd_t *pgdp;
169         p4d_t *p4dp;
170         pud_t *pudp;
171         pmd_t *pmdp = NULL;
172
173         pgdp = pgd_offset(mm, addr);
174         p4dp = p4d_alloc(mm, pgdp, addr);
175         if (p4dp) {
176                 pudp = pud_alloc(mm, p4dp, addr);
177                 if (pudp) {
178                         if (sz == PUD_SIZE)
179                                 return (pte_t *) pudp;
180                         else if (sz == PMD_SIZE)
181                                 pmdp = pmd_alloc(mm, pudp, addr);
182                 }
183         }
184         return (pte_t *) pmdp;
185 }
186
187 pte_t *huge_pte_offset(struct mm_struct *mm,
188                        unsigned long addr, unsigned long sz)
189 {
190         pgd_t *pgdp;
191         p4d_t *p4dp;
192         pud_t *pudp;
193         pmd_t *pmdp = NULL;
194
195         pgdp = pgd_offset(mm, addr);
196         if (pgd_present(*pgdp)) {
197                 p4dp = p4d_offset(pgdp, addr);
198                 if (p4d_present(*p4dp)) {
199                         pudp = pud_offset(p4dp, addr);
200                         if (pud_present(*pudp)) {
201                                 if (pud_large(*pudp))
202                                         return (pte_t *) pudp;
203                                 pmdp = pmd_offset(pudp, addr);
204                         }
205                 }
206         }
207         return (pte_t *) pmdp;
208 }
209
210 int pmd_huge(pmd_t pmd)
211 {
212         return pmd_large(pmd);
213 }
214
215 int pud_huge(pud_t pud)
216 {
217         return pud_large(pud);
218 }
219
220 struct page *
221 follow_huge_pud(struct mm_struct *mm, unsigned long address,
222                 pud_t *pud, int flags)
223 {
224         if (flags & FOLL_GET)
225                 return NULL;
226
227         return pud_page(*pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
228 }
229
230 static __init int setup_hugepagesz(char *opt)
231 {
232         unsigned long size;
233         char *string = opt;
234
235         size = memparse(opt, &opt);
236         if (MACHINE_HAS_EDAT1 && size == PMD_SIZE) {
237                 hugetlb_add_hstate(PMD_SHIFT - PAGE_SHIFT);
238         } else if (MACHINE_HAS_EDAT2 && size == PUD_SIZE) {
239                 hugetlb_add_hstate(PUD_SHIFT - PAGE_SHIFT);
240         } else {
241                 hugetlb_bad_size();
242                 pr_err("hugepagesz= specifies an unsupported page size %s\n",
243                         string);
244                 return 0;
245         }
246         return 1;
247 }
248 __setup("hugepagesz=", setup_hugepagesz);
249
250 static unsigned long hugetlb_get_unmapped_area_bottomup(struct file *file,
251                 unsigned long addr, unsigned long len,
252                 unsigned long pgoff, unsigned long flags)
253 {
254         struct hstate *h = hstate_file(file);
255         struct vm_unmapped_area_info info;
256
257         info.flags = 0;
258         info.length = len;
259         info.low_limit = current->mm->mmap_base;
260         info.high_limit = TASK_SIZE;
261         info.align_mask = PAGE_MASK & ~huge_page_mask(h);
262         info.align_offset = 0;
263         return vm_unmapped_area(&info);
264 }
265
266 static unsigned long hugetlb_get_unmapped_area_topdown(struct file *file,
267                 unsigned long addr0, unsigned long len,
268                 unsigned long pgoff, unsigned long flags)
269 {
270         struct hstate *h = hstate_file(file);
271         struct vm_unmapped_area_info info;
272         unsigned long addr;
273
274         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
275         info.length = len;
276         info.low_limit = max(PAGE_SIZE, mmap_min_addr);
277         info.high_limit = current->mm->mmap_base;
278         info.align_mask = PAGE_MASK & ~huge_page_mask(h);
279         info.align_offset = 0;
280         addr = vm_unmapped_area(&info);
281
282         /*
283          * A failed mmap() very likely causes application failure,
284          * so fall back to the bottom-up function here. This scenario
285          * can happen with large stack limits and large mmap()
286          * allocations.
287          */
288         if (addr & ~PAGE_MASK) {
289                 VM_BUG_ON(addr != -ENOMEM);
290                 info.flags = 0;
291                 info.low_limit = TASK_UNMAPPED_BASE;
292                 info.high_limit = TASK_SIZE;
293                 addr = vm_unmapped_area(&info);
294         }
295
296         return addr;
297 }
298
299 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
300                 unsigned long len, unsigned long pgoff, unsigned long flags)
301 {
302         struct hstate *h = hstate_file(file);
303         struct mm_struct *mm = current->mm;
304         struct vm_area_struct *vma;
305         int rc;
306
307         if (len & ~huge_page_mask(h))
308                 return -EINVAL;
309         if (len > TASK_SIZE - mmap_min_addr)
310                 return -ENOMEM;
311
312         if (flags & MAP_FIXED) {
313                 if (prepare_hugepage_range(file, addr, len))
314                         return -EINVAL;
315                 goto check_asce_limit;
316         }
317
318         if (addr) {
319                 addr = ALIGN(addr, huge_page_size(h));
320                 vma = find_vma(mm, addr);
321                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
322                     (!vma || addr + len <= vm_start_gap(vma)))
323                         goto check_asce_limit;
324         }
325
326         if (mm->get_unmapped_area == arch_get_unmapped_area)
327                 addr = hugetlb_get_unmapped_area_bottomup(file, addr, len,
328                                 pgoff, flags);
329         else
330                 addr = hugetlb_get_unmapped_area_topdown(file, addr, len,
331                                 pgoff, flags);
332         if (addr & ~PAGE_MASK)
333                 return addr;
334
335 check_asce_limit:
336         if (addr + len > current->mm->context.asce_limit &&
337             addr + len <= TASK_SIZE) {
338                 rc = crst_table_upgrade(mm, addr + len);
339                 if (rc)
340                         return (unsigned long) rc;
341         }
342         return addr;
343 }