GNU Linux-libre 4.19.264-gnu1
[releases.git] / arch / sh / kernel / smp.c
1 /*
2  * arch/sh/kernel/smp.c
3  *
4  * SMP support for the SuperH processors.
5  *
6  * Copyright (C) 2002 - 2010 Paul Mundt
7  * Copyright (C) 2006 - 2007 Akio Idehara
8  *
9  * This file is subject to the terms and conditions of the GNU General Public
10  * License.  See the file "COPYING" in the main directory of this archive
11  * for more details.
12  */
13 #include <linux/err.h>
14 #include <linux/cache.h>
15 #include <linux/cpumask.h>
16 #include <linux/delay.h>
17 #include <linux/init.h>
18 #include <linux/spinlock.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/cpu.h>
22 #include <linux/interrupt.h>
23 #include <linux/sched/mm.h>
24 #include <linux/sched/hotplug.h>
25 #include <linux/atomic.h>
26 #include <linux/clockchips.h>
27 #include <asm/processor.h>
28 #include <asm/mmu_context.h>
29 #include <asm/smp.h>
30 #include <asm/cacheflush.h>
31 #include <asm/sections.h>
32 #include <asm/setup.h>
33
34 int __cpu_number_map[NR_CPUS];          /* Map physical to logical */
35 int __cpu_logical_map[NR_CPUS];         /* Map logical to physical */
36
37 struct plat_smp_ops *mp_ops = NULL;
38
39 /* State of each CPU */
40 DEFINE_PER_CPU(int, cpu_state) = { 0 };
41
42 void register_smp_ops(struct plat_smp_ops *ops)
43 {
44         if (mp_ops)
45                 printk(KERN_WARNING "Overriding previously set SMP ops\n");
46
47         mp_ops = ops;
48 }
49
50 static inline void smp_store_cpu_info(unsigned int cpu)
51 {
52         struct sh_cpuinfo *c = cpu_data + cpu;
53
54         memcpy(c, &boot_cpu_data, sizeof(struct sh_cpuinfo));
55
56         c->loops_per_jiffy = loops_per_jiffy;
57 }
58
59 void __init smp_prepare_cpus(unsigned int max_cpus)
60 {
61         unsigned int cpu = smp_processor_id();
62
63         init_new_context(current, &init_mm);
64         current_thread_info()->cpu = cpu;
65         mp_ops->prepare_cpus(max_cpus);
66
67 #ifndef CONFIG_HOTPLUG_CPU
68         init_cpu_present(cpu_possible_mask);
69 #endif
70 }
71
72 void __init smp_prepare_boot_cpu(void)
73 {
74         unsigned int cpu = smp_processor_id();
75
76         __cpu_number_map[0] = cpu;
77         __cpu_logical_map[0] = cpu;
78
79         set_cpu_online(cpu, true);
80         set_cpu_possible(cpu, true);
81
82         per_cpu(cpu_state, cpu) = CPU_ONLINE;
83 }
84
85 #ifdef CONFIG_HOTPLUG_CPU
86 void native_cpu_die(unsigned int cpu)
87 {
88         unsigned int i;
89
90         for (i = 0; i < 10; i++) {
91                 smp_rmb();
92                 if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
93                         if (system_state == SYSTEM_RUNNING)
94                                 pr_info("CPU %u is now offline\n", cpu);
95
96                         return;
97                 }
98
99                 msleep(100);
100         }
101
102         pr_err("CPU %u didn't die...\n", cpu);
103 }
104
105 int native_cpu_disable(unsigned int cpu)
106 {
107         return cpu == 0 ? -EPERM : 0;
108 }
109
110 void play_dead_common(void)
111 {
112         idle_task_exit();
113         irq_ctx_exit(raw_smp_processor_id());
114         mb();
115
116         __this_cpu_write(cpu_state, CPU_DEAD);
117         local_irq_disable();
118 }
119
120 void native_play_dead(void)
121 {
122         play_dead_common();
123 }
124
125 int __cpu_disable(void)
126 {
127         unsigned int cpu = smp_processor_id();
128         int ret;
129
130         ret = mp_ops->cpu_disable(cpu);
131         if (ret)
132                 return ret;
133
134         /*
135          * Take this CPU offline.  Once we clear this, we can't return,
136          * and we must not schedule until we're ready to give up the cpu.
137          */
138         set_cpu_online(cpu, false);
139
140         /*
141          * OK - migrate IRQs away from this CPU
142          */
143         migrate_irqs();
144
145         /*
146          * Flush user cache and TLB mappings, and then remove this CPU
147          * from the vm mask set of all processes.
148          */
149         flush_cache_all();
150 #ifdef CONFIG_MMU
151         local_flush_tlb_all();
152 #endif
153
154         clear_tasks_mm_cpumask(cpu);
155
156         return 0;
157 }
158 #else /* ... !CONFIG_HOTPLUG_CPU */
159 int native_cpu_disable(unsigned int cpu)
160 {
161         return -ENOSYS;
162 }
163
164 void native_cpu_die(unsigned int cpu)
165 {
166         /* We said "no" in __cpu_disable */
167         BUG();
168 }
169
170 void native_play_dead(void)
171 {
172         BUG();
173 }
174 #endif
175
176 asmlinkage void start_secondary(void)
177 {
178         unsigned int cpu = smp_processor_id();
179         struct mm_struct *mm = &init_mm;
180
181         enable_mmu();
182         mmgrab(mm);
183         mmget(mm);
184         current->active_mm = mm;
185 #ifdef CONFIG_MMU
186         enter_lazy_tlb(mm, current);
187         local_flush_tlb_all();
188 #endif
189
190         per_cpu_trap_init();
191
192         preempt_disable();
193
194         notify_cpu_starting(cpu);
195
196         local_irq_enable();
197
198         calibrate_delay();
199
200         smp_store_cpu_info(cpu);
201
202         set_cpu_online(cpu, true);
203         per_cpu(cpu_state, cpu) = CPU_ONLINE;
204
205         cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
206 }
207
208 extern struct {
209         unsigned long sp;
210         unsigned long bss_start;
211         unsigned long bss_end;
212         void *start_kernel_fn;
213         void *cpu_init_fn;
214         void *thread_info;
215 } stack_start;
216
217 int __cpu_up(unsigned int cpu, struct task_struct *tsk)
218 {
219         unsigned long timeout;
220
221         per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
222
223         /* Fill in data in head.S for secondary cpus */
224         stack_start.sp = tsk->thread.sp;
225         stack_start.thread_info = tsk->stack;
226         stack_start.bss_start = 0; /* don't clear bss for secondary cpus */
227         stack_start.start_kernel_fn = start_secondary;
228
229         flush_icache_range((unsigned long)&stack_start,
230                            (unsigned long)&stack_start + sizeof(stack_start));
231         wmb();
232
233         mp_ops->start_cpu(cpu, (unsigned long)_stext);
234
235         timeout = jiffies + HZ;
236         while (time_before(jiffies, timeout)) {
237                 if (cpu_online(cpu))
238                         break;
239
240                 udelay(10);
241                 barrier();
242         }
243
244         if (cpu_online(cpu))
245                 return 0;
246
247         return -ENOENT;
248 }
249
250 void __init smp_cpus_done(unsigned int max_cpus)
251 {
252         unsigned long bogosum = 0;
253         int cpu;
254
255         for_each_online_cpu(cpu)
256                 bogosum += cpu_data[cpu].loops_per_jiffy;
257
258         printk(KERN_INFO "SMP: Total of %d processors activated "
259                "(%lu.%02lu BogoMIPS).\n", num_online_cpus(),
260                bogosum / (500000/HZ),
261                (bogosum / (5000/HZ)) % 100);
262 }
263
264 void smp_send_reschedule(int cpu)
265 {
266         mp_ops->send_ipi(cpu, SMP_MSG_RESCHEDULE);
267 }
268
269 void smp_send_stop(void)
270 {
271         smp_call_function(stop_this_cpu, 0, 0);
272 }
273
274 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
275 {
276         int cpu;
277
278         for_each_cpu(cpu, mask)
279                 mp_ops->send_ipi(cpu, SMP_MSG_FUNCTION);
280 }
281
282 void arch_send_call_function_single_ipi(int cpu)
283 {
284         mp_ops->send_ipi(cpu, SMP_MSG_FUNCTION_SINGLE);
285 }
286
287 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
288 void tick_broadcast(const struct cpumask *mask)
289 {
290         int cpu;
291
292         for_each_cpu(cpu, mask)
293                 mp_ops->send_ipi(cpu, SMP_MSG_TIMER);
294 }
295
296 static void ipi_timer(void)
297 {
298         irq_enter();
299         tick_receive_broadcast();
300         irq_exit();
301 }
302 #endif
303
304 void smp_message_recv(unsigned int msg)
305 {
306         switch (msg) {
307         case SMP_MSG_FUNCTION:
308                 generic_smp_call_function_interrupt();
309                 break;
310         case SMP_MSG_RESCHEDULE:
311                 scheduler_ipi();
312                 break;
313         case SMP_MSG_FUNCTION_SINGLE:
314                 generic_smp_call_function_single_interrupt();
315                 break;
316 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
317         case SMP_MSG_TIMER:
318                 ipi_timer();
319                 break;
320 #endif
321         default:
322                 printk(KERN_WARNING "SMP %d: %s(): unknown IPI %d\n",
323                        smp_processor_id(), __func__, msg);
324                 break;
325         }
326 }
327
328 /* Not really SMP stuff ... */
329 int setup_profiling_timer(unsigned int multiplier)
330 {
331         return 0;
332 }
333
334 #ifdef CONFIG_MMU
335
336 static void flush_tlb_all_ipi(void *info)
337 {
338         local_flush_tlb_all();
339 }
340
341 void flush_tlb_all(void)
342 {
343         on_each_cpu(flush_tlb_all_ipi, 0, 1);
344 }
345
346 static void flush_tlb_mm_ipi(void *mm)
347 {
348         local_flush_tlb_mm((struct mm_struct *)mm);
349 }
350
351 /*
352  * The following tlb flush calls are invoked when old translations are
353  * being torn down, or pte attributes are changing. For single threaded
354  * address spaces, a new context is obtained on the current cpu, and tlb
355  * context on other cpus are invalidated to force a new context allocation
356  * at switch_mm time, should the mm ever be used on other cpus. For
357  * multithreaded address spaces, intercpu interrupts have to be sent.
358  * Another case where intercpu interrupts are required is when the target
359  * mm might be active on another cpu (eg debuggers doing the flushes on
360  * behalf of debugees, kswapd stealing pages from another process etc).
361  * Kanoj 07/00.
362  */
363 void flush_tlb_mm(struct mm_struct *mm)
364 {
365         preempt_disable();
366
367         if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
368                 smp_call_function(flush_tlb_mm_ipi, (void *)mm, 1);
369         } else {
370                 int i;
371                 for_each_online_cpu(i)
372                         if (smp_processor_id() != i)
373                                 cpu_context(i, mm) = 0;
374         }
375         local_flush_tlb_mm(mm);
376
377         preempt_enable();
378 }
379
380 struct flush_tlb_data {
381         struct vm_area_struct *vma;
382         unsigned long addr1;
383         unsigned long addr2;
384 };
385
386 static void flush_tlb_range_ipi(void *info)
387 {
388         struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
389
390         local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
391 }
392
393 void flush_tlb_range(struct vm_area_struct *vma,
394                      unsigned long start, unsigned long end)
395 {
396         struct mm_struct *mm = vma->vm_mm;
397
398         preempt_disable();
399         if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
400                 struct flush_tlb_data fd;
401
402                 fd.vma = vma;
403                 fd.addr1 = start;
404                 fd.addr2 = end;
405                 smp_call_function(flush_tlb_range_ipi, (void *)&fd, 1);
406         } else {
407                 int i;
408                 for_each_online_cpu(i)
409                         if (smp_processor_id() != i)
410                                 cpu_context(i, mm) = 0;
411         }
412         local_flush_tlb_range(vma, start, end);
413         preempt_enable();
414 }
415
416 static void flush_tlb_kernel_range_ipi(void *info)
417 {
418         struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
419
420         local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
421 }
422
423 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
424 {
425         struct flush_tlb_data fd;
426
427         fd.addr1 = start;
428         fd.addr2 = end;
429         on_each_cpu(flush_tlb_kernel_range_ipi, (void *)&fd, 1);
430 }
431
432 static void flush_tlb_page_ipi(void *info)
433 {
434         struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
435
436         local_flush_tlb_page(fd->vma, fd->addr1);
437 }
438
439 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
440 {
441         preempt_disable();
442         if ((atomic_read(&vma->vm_mm->mm_users) != 1) ||
443             (current->mm != vma->vm_mm)) {
444                 struct flush_tlb_data fd;
445
446                 fd.vma = vma;
447                 fd.addr1 = page;
448                 smp_call_function(flush_tlb_page_ipi, (void *)&fd, 1);
449         } else {
450                 int i;
451                 for_each_online_cpu(i)
452                         if (smp_processor_id() != i)
453                                 cpu_context(i, vma->vm_mm) = 0;
454         }
455         local_flush_tlb_page(vma, page);
456         preempt_enable();
457 }
458
459 static void flush_tlb_one_ipi(void *info)
460 {
461         struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
462         local_flush_tlb_one(fd->addr1, fd->addr2);
463 }
464
465 void flush_tlb_one(unsigned long asid, unsigned long vaddr)
466 {
467         struct flush_tlb_data fd;
468
469         fd.addr1 = asid;
470         fd.addr2 = vaddr;
471
472         smp_call_function(flush_tlb_one_ipi, (void *)&fd, 1);
473         local_flush_tlb_one(asid, vaddr);
474 }
475
476 #endif