GNU Linux-libre 4.9.337-gnu1
[releases.git] / arch / sparc / kernel / smp_64.c
1 /* smp.c: Sparc64 SMP support.
2  *
3  * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
4  */
5
6 #include <linux/export.h>
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/pagemap.h>
11 #include <linux/threads.h>
12 #include <linux/smp.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/delay.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/cache.h>
21 #include <linux/jiffies.h>
22 #include <linux/profile.h>
23 #include <linux/bootmem.h>
24 #include <linux/vmalloc.h>
25 #include <linux/ftrace.h>
26 #include <linux/cpu.h>
27 #include <linux/slab.h>
28 #include <linux/kgdb.h>
29
30 #include <asm/head.h>
31 #include <asm/ptrace.h>
32 #include <linux/atomic.h>
33 #include <asm/tlbflush.h>
34 #include <asm/mmu_context.h>
35 #include <asm/cpudata.h>
36 #include <asm/hvtramp.h>
37 #include <asm/io.h>
38 #include <asm/timer.h>
39 #include <asm/setup.h>
40
41 #include <asm/irq.h>
42 #include <asm/irq_regs.h>
43 #include <asm/page.h>
44 #include <asm/pgtable.h>
45 #include <asm/oplib.h>
46 #include <asm/uaccess.h>
47 #include <asm/starfire.h>
48 #include <asm/tlb.h>
49 #include <asm/sections.h>
50 #include <asm/prom.h>
51 #include <asm/mdesc.h>
52 #include <asm/ldc.h>
53 #include <asm/hypervisor.h>
54 #include <asm/pcr.h>
55
56 #include "cpumap.h"
57 #include "kernel.h"
58
59 DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
60 cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
61         { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
62
63 cpumask_t cpu_core_sib_map[NR_CPUS] __read_mostly = {
64         [0 ... NR_CPUS-1] = CPU_MASK_NONE };
65
66 cpumask_t cpu_core_sib_cache_map[NR_CPUS] __read_mostly = {
67         [0 ... NR_CPUS - 1] = CPU_MASK_NONE };
68
69 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
70 EXPORT_SYMBOL(cpu_core_map);
71 EXPORT_SYMBOL(cpu_core_sib_map);
72 EXPORT_SYMBOL(cpu_core_sib_cache_map);
73
74 static cpumask_t smp_commenced_mask;
75
76 void smp_info(struct seq_file *m)
77 {
78         int i;
79         
80         seq_printf(m, "State:\n");
81         for_each_online_cpu(i)
82                 seq_printf(m, "CPU%d:\t\tonline\n", i);
83 }
84
85 void smp_bogo(struct seq_file *m)
86 {
87         int i;
88         
89         for_each_online_cpu(i)
90                 seq_printf(m,
91                            "Cpu%dClkTck\t: %016lx\n",
92                            i, cpu_data(i).clock_tick);
93 }
94
95 extern void setup_sparc64_timer(void);
96
97 static volatile unsigned long callin_flag = 0;
98
99 void smp_callin(void)
100 {
101         int cpuid = hard_smp_processor_id();
102
103         __local_per_cpu_offset = __per_cpu_offset(cpuid);
104
105         if (tlb_type == hypervisor)
106                 sun4v_ktsb_register();
107
108         __flush_tlb_all();
109
110         setup_sparc64_timer();
111
112         if (cheetah_pcache_forced_on)
113                 cheetah_enable_pcache();
114
115         callin_flag = 1;
116         __asm__ __volatile__("membar #Sync\n\t"
117                              "flush  %%g6" : : : "memory");
118
119         /* Clear this or we will die instantly when we
120          * schedule back to this idler...
121          */
122         current_thread_info()->new_child = 0;
123
124         /* Attach to the address space of init_task. */
125         atomic_inc(&init_mm.mm_count);
126         current->active_mm = &init_mm;
127
128         /* inform the notifiers about the new cpu */
129         notify_cpu_starting(cpuid);
130
131         while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
132                 rmb();
133
134         set_cpu_online(cpuid, true);
135
136         /* idle thread is expected to have preempt disabled */
137         preempt_disable();
138
139         local_irq_enable();
140
141         cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
142 }
143
144 void cpu_panic(void)
145 {
146         printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
147         panic("SMP bolixed\n");
148 }
149
150 /* This tick register synchronization scheme is taken entirely from
151  * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
152  *
153  * The only change I've made is to rework it so that the master
154  * initiates the synchonization instead of the slave. -DaveM
155  */
156
157 #define MASTER  0
158 #define SLAVE   (SMP_CACHE_BYTES/sizeof(unsigned long))
159
160 #define NUM_ROUNDS      64      /* magic value */
161 #define NUM_ITERS       5       /* likewise */
162
163 static DEFINE_RAW_SPINLOCK(itc_sync_lock);
164 static unsigned long go[SLAVE + 1];
165
166 #define DEBUG_TICK_SYNC 0
167
168 static inline long get_delta (long *rt, long *master)
169 {
170         unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
171         unsigned long tcenter, t0, t1, tm;
172         unsigned long i;
173
174         for (i = 0; i < NUM_ITERS; i++) {
175                 t0 = tick_ops->get_tick();
176                 go[MASTER] = 1;
177                 membar_safe("#StoreLoad");
178                 while (!(tm = go[SLAVE]))
179                         rmb();
180                 go[SLAVE] = 0;
181                 wmb();
182                 t1 = tick_ops->get_tick();
183
184                 if (t1 - t0 < best_t1 - best_t0)
185                         best_t0 = t0, best_t1 = t1, best_tm = tm;
186         }
187
188         *rt = best_t1 - best_t0;
189         *master = best_tm - best_t0;
190
191         /* average best_t0 and best_t1 without overflow: */
192         tcenter = (best_t0/2 + best_t1/2);
193         if (best_t0 % 2 + best_t1 % 2 == 2)
194                 tcenter++;
195         return tcenter - best_tm;
196 }
197
198 void smp_synchronize_tick_client(void)
199 {
200         long i, delta, adj, adjust_latency = 0, done = 0;
201         unsigned long flags, rt, master_time_stamp;
202 #if DEBUG_TICK_SYNC
203         struct {
204                 long rt;        /* roundtrip time */
205                 long master;    /* master's timestamp */
206                 long diff;      /* difference between midpoint and master's timestamp */
207                 long lat;       /* estimate of itc adjustment latency */
208         } t[NUM_ROUNDS];
209 #endif
210
211         go[MASTER] = 1;
212
213         while (go[MASTER])
214                 rmb();
215
216         local_irq_save(flags);
217         {
218                 for (i = 0; i < NUM_ROUNDS; i++) {
219                         delta = get_delta(&rt, &master_time_stamp);
220                         if (delta == 0)
221                                 done = 1;       /* let's lock on to this... */
222
223                         if (!done) {
224                                 if (i > 0) {
225                                         adjust_latency += -delta;
226                                         adj = -delta + adjust_latency/4;
227                                 } else
228                                         adj = -delta;
229
230                                 tick_ops->add_tick(adj);
231                         }
232 #if DEBUG_TICK_SYNC
233                         t[i].rt = rt;
234                         t[i].master = master_time_stamp;
235                         t[i].diff = delta;
236                         t[i].lat = adjust_latency/4;
237 #endif
238                 }
239         }
240         local_irq_restore(flags);
241
242 #if DEBUG_TICK_SYNC
243         for (i = 0; i < NUM_ROUNDS; i++)
244                 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
245                        t[i].rt, t[i].master, t[i].diff, t[i].lat);
246 #endif
247
248         printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
249                "(last diff %ld cycles, maxerr %lu cycles)\n",
250                smp_processor_id(), delta, rt);
251 }
252
253 static void smp_start_sync_tick_client(int cpu);
254
255 static void smp_synchronize_one_tick(int cpu)
256 {
257         unsigned long flags, i;
258
259         go[MASTER] = 0;
260
261         smp_start_sync_tick_client(cpu);
262
263         /* wait for client to be ready */
264         while (!go[MASTER])
265                 rmb();
266
267         /* now let the client proceed into his loop */
268         go[MASTER] = 0;
269         membar_safe("#StoreLoad");
270
271         raw_spin_lock_irqsave(&itc_sync_lock, flags);
272         {
273                 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
274                         while (!go[MASTER])
275                                 rmb();
276                         go[MASTER] = 0;
277                         wmb();
278                         go[SLAVE] = tick_ops->get_tick();
279                         membar_safe("#StoreLoad");
280                 }
281         }
282         raw_spin_unlock_irqrestore(&itc_sync_lock, flags);
283 }
284
285 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
286 static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg,
287                                 void **descrp)
288 {
289         extern unsigned long sparc64_ttable_tl0;
290         extern unsigned long kern_locked_tte_data;
291         struct hvtramp_descr *hdesc;
292         unsigned long trampoline_ra;
293         struct trap_per_cpu *tb;
294         u64 tte_vaddr, tte_data;
295         unsigned long hv_err;
296         int i;
297
298         hdesc = kzalloc(sizeof(*hdesc) +
299                         (sizeof(struct hvtramp_mapping) *
300                          num_kernel_image_mappings - 1),
301                         GFP_KERNEL);
302         if (!hdesc) {
303                 printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
304                        "hvtramp_descr.\n");
305                 return;
306         }
307         *descrp = hdesc;
308
309         hdesc->cpu = cpu;
310         hdesc->num_mappings = num_kernel_image_mappings;
311
312         tb = &trap_block[cpu];
313
314         hdesc->fault_info_va = (unsigned long) &tb->fault_info;
315         hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
316
317         hdesc->thread_reg = thread_reg;
318
319         tte_vaddr = (unsigned long) KERNBASE;
320         tte_data = kern_locked_tte_data;
321
322         for (i = 0; i < hdesc->num_mappings; i++) {
323                 hdesc->maps[i].vaddr = tte_vaddr;
324                 hdesc->maps[i].tte   = tte_data;
325                 tte_vaddr += 0x400000;
326                 tte_data  += 0x400000;
327         }
328
329         trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
330
331         hv_err = sun4v_cpu_start(cpu, trampoline_ra,
332                                  kimage_addr_to_ra(&sparc64_ttable_tl0),
333                                  __pa(hdesc));
334         if (hv_err)
335                 printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
336                        "gives error %lu\n", hv_err);
337 }
338 #endif
339
340 extern unsigned long sparc64_cpu_startup;
341
342 /* The OBP cpu startup callback truncates the 3rd arg cookie to
343  * 32-bits (I think) so to be safe we have it read the pointer
344  * contained here so we work on >4GB machines. -DaveM
345  */
346 static struct thread_info *cpu_new_thread = NULL;
347
348 static int smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle)
349 {
350         unsigned long entry =
351                 (unsigned long)(&sparc64_cpu_startup);
352         unsigned long cookie =
353                 (unsigned long)(&cpu_new_thread);
354         void *descr = NULL;
355         int timeout, ret;
356
357         callin_flag = 0;
358         cpu_new_thread = task_thread_info(idle);
359
360         if (tlb_type == hypervisor) {
361 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
362                 if (ldom_domaining_enabled)
363                         ldom_startcpu_cpuid(cpu,
364                                             (unsigned long) cpu_new_thread,
365                                             &descr);
366                 else
367 #endif
368                         prom_startcpu_cpuid(cpu, entry, cookie);
369         } else {
370                 struct device_node *dp = of_find_node_by_cpuid(cpu);
371
372                 prom_startcpu(dp->phandle, entry, cookie);
373         }
374
375         for (timeout = 0; timeout < 50000; timeout++) {
376                 if (callin_flag)
377                         break;
378                 udelay(100);
379         }
380
381         if (callin_flag) {
382                 ret = 0;
383         } else {
384                 printk("Processor %d is stuck.\n", cpu);
385                 ret = -ENODEV;
386         }
387         cpu_new_thread = NULL;
388
389         kfree(descr);
390
391         return ret;
392 }
393
394 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
395 {
396         u64 result, target;
397         int stuck, tmp;
398
399         if (this_is_starfire) {
400                 /* map to real upaid */
401                 cpu = (((cpu & 0x3c) << 1) |
402                         ((cpu & 0x40) >> 4) |
403                         (cpu & 0x3));
404         }
405
406         target = (cpu << 14) | 0x70;
407 again:
408         /* Ok, this is the real Spitfire Errata #54.
409          * One must read back from a UDB internal register
410          * after writes to the UDB interrupt dispatch, but
411          * before the membar Sync for that write.
412          * So we use the high UDB control register (ASI 0x7f,
413          * ADDR 0x20) for the dummy read. -DaveM
414          */
415         tmp = 0x40;
416         __asm__ __volatile__(
417         "wrpr   %1, %2, %%pstate\n\t"
418         "stxa   %4, [%0] %3\n\t"
419         "stxa   %5, [%0+%8] %3\n\t"
420         "add    %0, %8, %0\n\t"
421         "stxa   %6, [%0+%8] %3\n\t"
422         "membar #Sync\n\t"
423         "stxa   %%g0, [%7] %3\n\t"
424         "membar #Sync\n\t"
425         "mov    0x20, %%g1\n\t"
426         "ldxa   [%%g1] 0x7f, %%g0\n\t"
427         "membar #Sync"
428         : "=r" (tmp)
429         : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
430           "r" (data0), "r" (data1), "r" (data2), "r" (target),
431           "r" (0x10), "0" (tmp)
432         : "g1");
433
434         /* NOTE: PSTATE_IE is still clear. */
435         stuck = 100000;
436         do {
437                 __asm__ __volatile__("ldxa [%%g0] %1, %0"
438                         : "=r" (result)
439                         : "i" (ASI_INTR_DISPATCH_STAT));
440                 if (result == 0) {
441                         __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
442                                              : : "r" (pstate));
443                         return;
444                 }
445                 stuck -= 1;
446                 if (stuck == 0)
447                         break;
448         } while (result & 0x1);
449         __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
450                              : : "r" (pstate));
451         if (stuck == 0) {
452                 printk("CPU[%d]: mondo stuckage result[%016llx]\n",
453                        smp_processor_id(), result);
454         } else {
455                 udelay(2);
456                 goto again;
457         }
458 }
459
460 static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
461 {
462         u64 *mondo, data0, data1, data2;
463         u16 *cpu_list;
464         u64 pstate;
465         int i;
466
467         __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
468         cpu_list = __va(tb->cpu_list_pa);
469         mondo = __va(tb->cpu_mondo_block_pa);
470         data0 = mondo[0];
471         data1 = mondo[1];
472         data2 = mondo[2];
473         for (i = 0; i < cnt; i++)
474                 spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
475 }
476
477 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
478  * packet, but we have no use for that.  However we do take advantage of
479  * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
480  */
481 static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
482 {
483         int nack_busy_id, is_jbus, need_more;
484         u64 *mondo, pstate, ver, busy_mask;
485         u16 *cpu_list;
486
487         cpu_list = __va(tb->cpu_list_pa);
488         mondo = __va(tb->cpu_mondo_block_pa);
489
490         /* Unfortunately, someone at Sun had the brilliant idea to make the
491          * busy/nack fields hard-coded by ITID number for this Ultra-III
492          * derivative processor.
493          */
494         __asm__ ("rdpr %%ver, %0" : "=r" (ver));
495         is_jbus = ((ver >> 32) == __JALAPENO_ID ||
496                    (ver >> 32) == __SERRANO_ID);
497
498         __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
499
500 retry:
501         need_more = 0;
502         __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
503                              : : "r" (pstate), "i" (PSTATE_IE));
504
505         /* Setup the dispatch data registers. */
506         __asm__ __volatile__("stxa      %0, [%3] %6\n\t"
507                              "stxa      %1, [%4] %6\n\t"
508                              "stxa      %2, [%5] %6\n\t"
509                              "membar    #Sync\n\t"
510                              : /* no outputs */
511                              : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
512                                "r" (0x40), "r" (0x50), "r" (0x60),
513                                "i" (ASI_INTR_W));
514
515         nack_busy_id = 0;
516         busy_mask = 0;
517         {
518                 int i;
519
520                 for (i = 0; i < cnt; i++) {
521                         u64 target, nr;
522
523                         nr = cpu_list[i];
524                         if (nr == 0xffff)
525                                 continue;
526
527                         target = (nr << 14) | 0x70;
528                         if (is_jbus) {
529                                 busy_mask |= (0x1UL << (nr * 2));
530                         } else {
531                                 target |= (nack_busy_id << 24);
532                                 busy_mask |= (0x1UL <<
533                                               (nack_busy_id * 2));
534                         }
535                         __asm__ __volatile__(
536                                 "stxa   %%g0, [%0] %1\n\t"
537                                 "membar #Sync\n\t"
538                                 : /* no outputs */
539                                 : "r" (target), "i" (ASI_INTR_W));
540                         nack_busy_id++;
541                         if (nack_busy_id == 32) {
542                                 need_more = 1;
543                                 break;
544                         }
545                 }
546         }
547
548         /* Now, poll for completion. */
549         {
550                 u64 dispatch_stat, nack_mask;
551                 long stuck;
552
553                 stuck = 100000 * nack_busy_id;
554                 nack_mask = busy_mask << 1;
555                 do {
556                         __asm__ __volatile__("ldxa      [%%g0] %1, %0"
557                                              : "=r" (dispatch_stat)
558                                              : "i" (ASI_INTR_DISPATCH_STAT));
559                         if (!(dispatch_stat & (busy_mask | nack_mask))) {
560                                 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
561                                                      : : "r" (pstate));
562                                 if (unlikely(need_more)) {
563                                         int i, this_cnt = 0;
564                                         for (i = 0; i < cnt; i++) {
565                                                 if (cpu_list[i] == 0xffff)
566                                                         continue;
567                                                 cpu_list[i] = 0xffff;
568                                                 this_cnt++;
569                                                 if (this_cnt == 32)
570                                                         break;
571                                         }
572                                         goto retry;
573                                 }
574                                 return;
575                         }
576                         if (!--stuck)
577                                 break;
578                 } while (dispatch_stat & busy_mask);
579
580                 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
581                                      : : "r" (pstate));
582
583                 if (dispatch_stat & busy_mask) {
584                         /* Busy bits will not clear, continue instead
585                          * of freezing up on this cpu.
586                          */
587                         printk("CPU[%d]: mondo stuckage result[%016llx]\n",
588                                smp_processor_id(), dispatch_stat);
589                 } else {
590                         int i, this_busy_nack = 0;
591
592                         /* Delay some random time with interrupts enabled
593                          * to prevent deadlock.
594                          */
595                         udelay(2 * nack_busy_id);
596
597                         /* Clear out the mask bits for cpus which did not
598                          * NACK us.
599                          */
600                         for (i = 0; i < cnt; i++) {
601                                 u64 check_mask, nr;
602
603                                 nr = cpu_list[i];
604                                 if (nr == 0xffff)
605                                         continue;
606
607                                 if (is_jbus)
608                                         check_mask = (0x2UL << (2*nr));
609                                 else
610                                         check_mask = (0x2UL <<
611                                                       this_busy_nack);
612                                 if ((dispatch_stat & check_mask) == 0)
613                                         cpu_list[i] = 0xffff;
614                                 this_busy_nack += 2;
615                                 if (this_busy_nack == 64)
616                                         break;
617                         }
618
619                         goto retry;
620                 }
621         }
622 }
623
624 #define CPU_MONDO_COUNTER(cpuid)        (cpu_mondo_counter[cpuid])
625 #define MONDO_USEC_WAIT_MIN             2
626 #define MONDO_USEC_WAIT_MAX             100
627 #define MONDO_RETRY_LIMIT               500000
628
629 /* Multi-cpu list version.
630  *
631  * Deliver xcalls to 'cnt' number of cpus in 'cpu_list'.
632  * Sometimes not all cpus receive the mondo, requiring us to re-send
633  * the mondo until all cpus have received, or cpus are truly stuck
634  * unable to receive mondo, and we timeout.
635  * Occasionally a target cpu strand is borrowed briefly by hypervisor to
636  * perform guest service, such as PCIe error handling. Consider the
637  * service time, 1 second overall wait is reasonable for 1 cpu.
638  * Here two in-between mondo check wait time are defined: 2 usec for
639  * single cpu quick turn around and up to 100usec for large cpu count.
640  * Deliver mondo to large number of cpus could take longer, we adjusts
641  * the retry count as long as target cpus are making forward progress.
642  */
643 static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
644 {
645         int this_cpu, tot_cpus, prev_sent, i, rem;
646         int usec_wait, retries, tot_retries;
647         u16 first_cpu = 0xffff;
648         unsigned long xc_rcvd = 0;
649         unsigned long status;
650         int ecpuerror_id = 0;
651         int enocpu_id = 0;
652         u16 *cpu_list;
653         u16 cpu;
654
655         this_cpu = smp_processor_id();
656         cpu_list = __va(tb->cpu_list_pa);
657         usec_wait = cnt * MONDO_USEC_WAIT_MIN;
658         if (usec_wait > MONDO_USEC_WAIT_MAX)
659                 usec_wait = MONDO_USEC_WAIT_MAX;
660         retries = tot_retries = 0;
661         tot_cpus = cnt;
662         prev_sent = 0;
663
664         do {
665                 int n_sent, mondo_delivered, target_cpu_busy;
666
667                 status = sun4v_cpu_mondo_send(cnt,
668                                               tb->cpu_list_pa,
669                                               tb->cpu_mondo_block_pa);
670
671                 /* HV_EOK means all cpus received the xcall, we're done.  */
672                 if (likely(status == HV_EOK))
673                         goto xcall_done;
674
675                 /* If not these non-fatal errors, panic */
676                 if (unlikely((status != HV_EWOULDBLOCK) &&
677                         (status != HV_ECPUERROR) &&
678                         (status != HV_ENOCPU)))
679                         goto fatal_errors;
680
681                 /* First, see if we made any forward progress.
682                  *
683                  * Go through the cpu_list, count the target cpus that have
684                  * received our mondo (n_sent), and those that did not (rem).
685                  * Re-pack cpu_list with the cpus remain to be retried in the
686                  * front - this simplifies tracking the truly stalled cpus.
687                  *
688                  * The hypervisor indicates successful sends by setting
689                  * cpu list entries to the value 0xffff.
690                  *
691                  * EWOULDBLOCK means some target cpus did not receive the
692                  * mondo and retry usually helps.
693                  *
694                  * ECPUERROR means at least one target cpu is in error state,
695                  * it's usually safe to skip the faulty cpu and retry.
696                  *
697                  * ENOCPU means one of the target cpu doesn't belong to the
698                  * domain, perhaps offlined which is unexpected, but not
699                  * fatal and it's okay to skip the offlined cpu.
700                  */
701                 rem = 0;
702                 n_sent = 0;
703                 for (i = 0; i < cnt; i++) {
704                         cpu = cpu_list[i];
705                         if (likely(cpu == 0xffff)) {
706                                 n_sent++;
707                         } else if ((status == HV_ECPUERROR) &&
708                                 (sun4v_cpu_state(cpu) == HV_CPU_STATE_ERROR)) {
709                                 ecpuerror_id = cpu + 1;
710                         } else if (status == HV_ENOCPU && !cpu_online(cpu)) {
711                                 enocpu_id = cpu + 1;
712                         } else {
713                                 cpu_list[rem++] = cpu;
714                         }
715                 }
716
717                 /* No cpu remained, we're done. */
718                 if (rem == 0)
719                         break;
720
721                 /* Otherwise, update the cpu count for retry. */
722                 cnt = rem;
723
724                 /* Record the overall number of mondos received by the
725                  * first of the remaining cpus.
726                  */
727                 if (first_cpu != cpu_list[0]) {
728                         first_cpu = cpu_list[0];
729                         xc_rcvd = CPU_MONDO_COUNTER(first_cpu);
730                 }
731
732                 /* Was any mondo delivered successfully? */
733                 mondo_delivered = (n_sent > prev_sent);
734                 prev_sent = n_sent;
735
736                 /* or, was any target cpu busy processing other mondos? */
737                 target_cpu_busy = (xc_rcvd < CPU_MONDO_COUNTER(first_cpu));
738                 xc_rcvd = CPU_MONDO_COUNTER(first_cpu);
739
740                 /* Retry count is for no progress. If we're making progress,
741                  * reset the retry count.
742                  */
743                 if (likely(mondo_delivered || target_cpu_busy)) {
744                         tot_retries += retries;
745                         retries = 0;
746                 } else if (unlikely(retries > MONDO_RETRY_LIMIT)) {
747                         goto fatal_mondo_timeout;
748                 }
749
750                 /* Delay a little bit to let other cpus catch up on
751                  * their cpu mondo queue work.
752                  */
753                 if (!mondo_delivered)
754                         udelay(usec_wait);
755
756                 retries++;
757         } while (1);
758
759 xcall_done:
760         if (unlikely(ecpuerror_id > 0)) {
761                 pr_crit("CPU[%d]: SUN4V mondo cpu error, target cpu(%d) was in error state\n",
762                        this_cpu, ecpuerror_id - 1);
763         } else if (unlikely(enocpu_id > 0)) {
764                 pr_crit("CPU[%d]: SUN4V mondo cpu error, target cpu(%d) does not belong to the domain\n",
765                        this_cpu, enocpu_id - 1);
766         }
767         return;
768
769 fatal_errors:
770         /* fatal errors include bad alignment, etc */
771         pr_crit("CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) mondo_block_pa(%lx)\n",
772                this_cpu, tot_cpus, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
773         panic("Unexpected SUN4V mondo error %lu\n", status);
774
775 fatal_mondo_timeout:
776         /* some cpus being non-responsive to the cpu mondo */
777         pr_crit("CPU[%d]: SUN4V mondo timeout, cpu(%d) made no forward progress after %d retries. Total target cpus(%d).\n",
778                this_cpu, first_cpu, (tot_retries + retries), tot_cpus);
779         panic("SUN4V mondo timeout panic\n");
780 }
781
782 static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
783
784 static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
785 {
786         struct trap_per_cpu *tb;
787         int this_cpu, i, cnt;
788         unsigned long flags;
789         u16 *cpu_list;
790         u64 *mondo;
791
792         /* We have to do this whole thing with interrupts fully disabled.
793          * Otherwise if we send an xcall from interrupt context it will
794          * corrupt both our mondo block and cpu list state.
795          *
796          * One consequence of this is that we cannot use timeout mechanisms
797          * that depend upon interrupts being delivered locally.  So, for
798          * example, we cannot sample jiffies and expect it to advance.
799          *
800          * Fortunately, udelay() uses %stick/%tick so we can use that.
801          */
802         local_irq_save(flags);
803
804         this_cpu = smp_processor_id();
805         tb = &trap_block[this_cpu];
806
807         mondo = __va(tb->cpu_mondo_block_pa);
808         mondo[0] = data0;
809         mondo[1] = data1;
810         mondo[2] = data2;
811         wmb();
812
813         cpu_list = __va(tb->cpu_list_pa);
814
815         /* Setup the initial cpu list.  */
816         cnt = 0;
817         for_each_cpu(i, mask) {
818                 if (i == this_cpu || !cpu_online(i))
819                         continue;
820                 cpu_list[cnt++] = i;
821         }
822
823         if (cnt)
824                 xcall_deliver_impl(tb, cnt);
825
826         local_irq_restore(flags);
827 }
828
829 /* Send cross call to all processors mentioned in MASK_P
830  * except self.  Really, there are only two cases currently,
831  * "cpu_online_mask" and "mm_cpumask(mm)".
832  */
833 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
834 {
835         u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
836
837         xcall_deliver(data0, data1, data2, mask);
838 }
839
840 /* Send cross call to all processors except self. */
841 static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
842 {
843         smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask);
844 }
845
846 extern unsigned long xcall_sync_tick;
847
848 static void smp_start_sync_tick_client(int cpu)
849 {
850         xcall_deliver((u64) &xcall_sync_tick, 0, 0,
851                       cpumask_of(cpu));
852 }
853
854 extern unsigned long xcall_call_function;
855
856 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
857 {
858         xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
859 }
860
861 extern unsigned long xcall_call_function_single;
862
863 void arch_send_call_function_single_ipi(int cpu)
864 {
865         xcall_deliver((u64) &xcall_call_function_single, 0, 0,
866                       cpumask_of(cpu));
867 }
868
869 void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
870 {
871         clear_softint(1 << irq);
872         irq_enter();
873         generic_smp_call_function_interrupt();
874         irq_exit();
875 }
876
877 void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
878 {
879         clear_softint(1 << irq);
880         irq_enter();
881         generic_smp_call_function_single_interrupt();
882         irq_exit();
883 }
884
885 static void tsb_sync(void *info)
886 {
887         struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
888         struct mm_struct *mm = info;
889
890         /* It is not valid to test "current->active_mm == mm" here.
891          *
892          * The value of "current" is not changed atomically with
893          * switch_mm().  But that's OK, we just need to check the
894          * current cpu's trap block PGD physical address.
895          */
896         if (tp->pgd_paddr == __pa(mm->pgd))
897                 tsb_context_switch(mm);
898 }
899
900 void smp_tsb_sync(struct mm_struct *mm)
901 {
902         smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
903 }
904
905 extern unsigned long xcall_flush_tlb_mm;
906 extern unsigned long xcall_flush_tlb_page;
907 extern unsigned long xcall_flush_tlb_kernel_range;
908 extern unsigned long xcall_fetch_glob_regs;
909 extern unsigned long xcall_fetch_glob_pmu;
910 extern unsigned long xcall_fetch_glob_pmu_n4;
911 extern unsigned long xcall_receive_signal;
912 extern unsigned long xcall_new_mmu_context_version;
913 #ifdef CONFIG_KGDB
914 extern unsigned long xcall_kgdb_capture;
915 #endif
916
917 #ifdef DCACHE_ALIASING_POSSIBLE
918 extern unsigned long xcall_flush_dcache_page_cheetah;
919 #endif
920 extern unsigned long xcall_flush_dcache_page_spitfire;
921
922 static inline void __local_flush_dcache_page(struct page *page)
923 {
924 #ifdef DCACHE_ALIASING_POSSIBLE
925         __flush_dcache_page(page_address(page),
926                             ((tlb_type == spitfire) &&
927                              page_mapping(page) != NULL));
928 #else
929         if (page_mapping(page) != NULL &&
930             tlb_type == spitfire)
931                 __flush_icache_page(__pa(page_address(page)));
932 #endif
933 }
934
935 void smp_flush_dcache_page_impl(struct page *page, int cpu)
936 {
937         int this_cpu;
938
939         if (tlb_type == hypervisor)
940                 return;
941
942 #ifdef CONFIG_DEBUG_DCFLUSH
943         atomic_inc(&dcpage_flushes);
944 #endif
945
946         this_cpu = get_cpu();
947
948         if (cpu == this_cpu) {
949                 __local_flush_dcache_page(page);
950         } else if (cpu_online(cpu)) {
951                 void *pg_addr = page_address(page);
952                 u64 data0 = 0;
953
954                 if (tlb_type == spitfire) {
955                         data0 = ((u64)&xcall_flush_dcache_page_spitfire);
956                         if (page_mapping(page) != NULL)
957                                 data0 |= ((u64)1 << 32);
958                 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
959 #ifdef DCACHE_ALIASING_POSSIBLE
960                         data0 = ((u64)&xcall_flush_dcache_page_cheetah);
961 #endif
962                 }
963                 if (data0) {
964                         xcall_deliver(data0, __pa(pg_addr),
965                                       (u64) pg_addr, cpumask_of(cpu));
966 #ifdef CONFIG_DEBUG_DCFLUSH
967                         atomic_inc(&dcpage_flushes_xcall);
968 #endif
969                 }
970         }
971
972         put_cpu();
973 }
974
975 void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
976 {
977         void *pg_addr;
978         u64 data0;
979
980         if (tlb_type == hypervisor)
981                 return;
982
983         preempt_disable();
984
985 #ifdef CONFIG_DEBUG_DCFLUSH
986         atomic_inc(&dcpage_flushes);
987 #endif
988         data0 = 0;
989         pg_addr = page_address(page);
990         if (tlb_type == spitfire) {
991                 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
992                 if (page_mapping(page) != NULL)
993                         data0 |= ((u64)1 << 32);
994         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
995 #ifdef DCACHE_ALIASING_POSSIBLE
996                 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
997 #endif
998         }
999         if (data0) {
1000                 xcall_deliver(data0, __pa(pg_addr),
1001                               (u64) pg_addr, cpu_online_mask);
1002 #ifdef CONFIG_DEBUG_DCFLUSH
1003                 atomic_inc(&dcpage_flushes_xcall);
1004 #endif
1005         }
1006         __local_flush_dcache_page(page);
1007
1008         preempt_enable();
1009 }
1010
1011 #ifdef CONFIG_KGDB
1012 void kgdb_roundup_cpus(unsigned long flags)
1013 {
1014         smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
1015 }
1016 #endif
1017
1018 void smp_fetch_global_regs(void)
1019 {
1020         smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1021 }
1022
1023 void smp_fetch_global_pmu(void)
1024 {
1025         if (tlb_type == hypervisor &&
1026             sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
1027                 smp_cross_call(&xcall_fetch_glob_pmu_n4, 0, 0, 0);
1028         else
1029                 smp_cross_call(&xcall_fetch_glob_pmu, 0, 0, 0);
1030 }
1031
1032 /* We know that the window frames of the user have been flushed
1033  * to the stack before we get here because all callers of us
1034  * are flush_tlb_*() routines, and these run after flush_cache_*()
1035  * which performs the flushw.
1036  *
1037  * mm->cpu_vm_mask is a bit mask of which cpus an address
1038  * space has (potentially) executed on, this is the heuristic
1039  * we use to limit cross calls.
1040  */
1041
1042 /* This currently is only used by the hugetlb arch pre-fault
1043  * hook on UltraSPARC-III+ and later when changing the pagesize
1044  * bits of the context register for an address space.
1045  */
1046 void smp_flush_tlb_mm(struct mm_struct *mm)
1047 {
1048         u32 ctx = CTX_HWBITS(mm->context);
1049
1050         get_cpu();
1051
1052         smp_cross_call_masked(&xcall_flush_tlb_mm,
1053                               ctx, 0, 0,
1054                               mm_cpumask(mm));
1055
1056         __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1057
1058         put_cpu();
1059 }
1060
1061 struct tlb_pending_info {
1062         unsigned long ctx;
1063         unsigned long nr;
1064         unsigned long *vaddrs;
1065 };
1066
1067 static void tlb_pending_func(void *info)
1068 {
1069         struct tlb_pending_info *t = info;
1070
1071         __flush_tlb_pending(t->ctx, t->nr, t->vaddrs);
1072 }
1073
1074 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1075 {
1076         u32 ctx = CTX_HWBITS(mm->context);
1077         struct tlb_pending_info info;
1078
1079         get_cpu();
1080
1081         info.ctx = ctx;
1082         info.nr = nr;
1083         info.vaddrs = vaddrs;
1084
1085         smp_call_function_many(mm_cpumask(mm), tlb_pending_func,
1086                                &info, 1);
1087
1088         __flush_tlb_pending(ctx, nr, vaddrs);
1089
1090         put_cpu();
1091 }
1092
1093 void smp_flush_tlb_page(struct mm_struct *mm, unsigned long vaddr)
1094 {
1095         unsigned long context = CTX_HWBITS(mm->context);
1096
1097         get_cpu();
1098
1099         smp_cross_call_masked(&xcall_flush_tlb_page,
1100                               context, vaddr, 0,
1101                               mm_cpumask(mm));
1102
1103         __flush_tlb_page(context, vaddr);
1104
1105         put_cpu();
1106 }
1107
1108 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1109 {
1110         start &= PAGE_MASK;
1111         end    = PAGE_ALIGN(end);
1112         if (start != end) {
1113                 smp_cross_call(&xcall_flush_tlb_kernel_range,
1114                                0, start, end);
1115
1116                 __flush_tlb_kernel_range(start, end);
1117         }
1118 }
1119
1120 /* CPU capture. */
1121 /* #define CAPTURE_DEBUG */
1122 extern unsigned long xcall_capture;
1123
1124 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1125 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1126 static unsigned long penguins_are_doing_time;
1127
1128 void smp_capture(void)
1129 {
1130         int result = atomic_add_return(1, &smp_capture_depth);
1131
1132         if (result == 1) {
1133                 int ncpus = num_online_cpus();
1134
1135 #ifdef CAPTURE_DEBUG
1136                 printk("CPU[%d]: Sending penguins to jail...",
1137                        smp_processor_id());
1138 #endif
1139                 penguins_are_doing_time = 1;
1140                 atomic_inc(&smp_capture_registry);
1141                 smp_cross_call(&xcall_capture, 0, 0, 0);
1142                 while (atomic_read(&smp_capture_registry) != ncpus)
1143                         rmb();
1144 #ifdef CAPTURE_DEBUG
1145                 printk("done\n");
1146 #endif
1147         }
1148 }
1149
1150 void smp_release(void)
1151 {
1152         if (atomic_dec_and_test(&smp_capture_depth)) {
1153 #ifdef CAPTURE_DEBUG
1154                 printk("CPU[%d]: Giving pardon to "
1155                        "imprisoned penguins\n",
1156                        smp_processor_id());
1157 #endif
1158                 penguins_are_doing_time = 0;
1159                 membar_safe("#StoreLoad");
1160                 atomic_dec(&smp_capture_registry);
1161         }
1162 }
1163
1164 /* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1165  * set, so they can service tlb flush xcalls...
1166  */
1167 extern void prom_world(int);
1168
1169 void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
1170 {
1171         clear_softint(1 << irq);
1172
1173         preempt_disable();
1174
1175         __asm__ __volatile__("flushw");
1176         prom_world(1);
1177         atomic_inc(&smp_capture_registry);
1178         membar_safe("#StoreLoad");
1179         while (penguins_are_doing_time)
1180                 rmb();
1181         atomic_dec(&smp_capture_registry);
1182         prom_world(0);
1183
1184         preempt_enable();
1185 }
1186
1187 /* /proc/profile writes can call this, don't __init it please. */
1188 int setup_profiling_timer(unsigned int multiplier)
1189 {
1190         return -EINVAL;
1191 }
1192
1193 void __init smp_prepare_cpus(unsigned int max_cpus)
1194 {
1195 }
1196
1197 void smp_prepare_boot_cpu(void)
1198 {
1199 }
1200
1201 void __init smp_setup_processor_id(void)
1202 {
1203         if (tlb_type == spitfire)
1204                 xcall_deliver_impl = spitfire_xcall_deliver;
1205         else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1206                 xcall_deliver_impl = cheetah_xcall_deliver;
1207         else
1208                 xcall_deliver_impl = hypervisor_xcall_deliver;
1209 }
1210
1211 void __init smp_fill_in_cpu_possible_map(void)
1212 {
1213         int possible_cpus = num_possible_cpus();
1214         int i;
1215
1216         if (possible_cpus > nr_cpu_ids)
1217                 possible_cpus = nr_cpu_ids;
1218
1219         for (i = 0; i < possible_cpus; i++)
1220                 set_cpu_possible(i, true);
1221         for (; i < NR_CPUS; i++)
1222                 set_cpu_possible(i, false);
1223 }
1224
1225 void smp_fill_in_sib_core_maps(void)
1226 {
1227         unsigned int i;
1228
1229         for_each_present_cpu(i) {
1230                 unsigned int j;
1231
1232                 cpumask_clear(&cpu_core_map[i]);
1233                 if (cpu_data(i).core_id == 0) {
1234                         cpumask_set_cpu(i, &cpu_core_map[i]);
1235                         continue;
1236                 }
1237
1238                 for_each_present_cpu(j) {
1239                         if (cpu_data(i).core_id ==
1240                             cpu_data(j).core_id)
1241                                 cpumask_set_cpu(j, &cpu_core_map[i]);
1242                 }
1243         }
1244
1245         for_each_present_cpu(i)  {
1246                 unsigned int j;
1247
1248                 for_each_present_cpu(j)  {
1249                         if (cpu_data(i).max_cache_id ==
1250                             cpu_data(j).max_cache_id)
1251                                 cpumask_set_cpu(j, &cpu_core_sib_cache_map[i]);
1252
1253                         if (cpu_data(i).sock_id == cpu_data(j).sock_id)
1254                                 cpumask_set_cpu(j, &cpu_core_sib_map[i]);
1255                 }
1256         }
1257
1258         for_each_present_cpu(i) {
1259                 unsigned int j;
1260
1261                 cpumask_clear(&per_cpu(cpu_sibling_map, i));
1262                 if (cpu_data(i).proc_id == -1) {
1263                         cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i));
1264                         continue;
1265                 }
1266
1267                 for_each_present_cpu(j) {
1268                         if (cpu_data(i).proc_id ==
1269                             cpu_data(j).proc_id)
1270                                 cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i));
1271                 }
1272         }
1273 }
1274
1275 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1276 {
1277         int ret = smp_boot_one_cpu(cpu, tidle);
1278
1279         if (!ret) {
1280                 cpumask_set_cpu(cpu, &smp_commenced_mask);
1281                 while (!cpu_online(cpu))
1282                         mb();
1283                 if (!cpu_online(cpu)) {
1284                         ret = -ENODEV;
1285                 } else {
1286                         /* On SUN4V, writes to %tick and %stick are
1287                          * not allowed.
1288                          */
1289                         if (tlb_type != hypervisor)
1290                                 smp_synchronize_one_tick(cpu);
1291                 }
1292         }
1293         return ret;
1294 }
1295
1296 #ifdef CONFIG_HOTPLUG_CPU
1297 void cpu_play_dead(void)
1298 {
1299         int cpu = smp_processor_id();
1300         unsigned long pstate;
1301
1302         idle_task_exit();
1303
1304         if (tlb_type == hypervisor) {
1305                 struct trap_per_cpu *tb = &trap_block[cpu];
1306
1307                 sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1308                                 tb->cpu_mondo_pa, 0);
1309                 sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1310                                 tb->dev_mondo_pa, 0);
1311                 sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1312                                 tb->resum_mondo_pa, 0);
1313                 sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1314                                 tb->nonresum_mondo_pa, 0);
1315         }
1316
1317         cpumask_clear_cpu(cpu, &smp_commenced_mask);
1318         membar_safe("#Sync");
1319
1320         local_irq_disable();
1321
1322         __asm__ __volatile__(
1323                 "rdpr   %%pstate, %0\n\t"
1324                 "wrpr   %0, %1, %%pstate"
1325                 : "=r" (pstate)
1326                 : "i" (PSTATE_IE));
1327
1328         while (1)
1329                 barrier();
1330 }
1331
1332 int __cpu_disable(void)
1333 {
1334         int cpu = smp_processor_id();
1335         cpuinfo_sparc *c;
1336         int i;
1337
1338         for_each_cpu(i, &cpu_core_map[cpu])
1339                 cpumask_clear_cpu(cpu, &cpu_core_map[i]);
1340         cpumask_clear(&cpu_core_map[cpu]);
1341
1342         for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
1343                 cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
1344         cpumask_clear(&per_cpu(cpu_sibling_map, cpu));
1345
1346         c = &cpu_data(cpu);
1347
1348         c->core_id = 0;
1349         c->proc_id = -1;
1350
1351         smp_wmb();
1352
1353         /* Make sure no interrupts point to this cpu.  */
1354         fixup_irqs();
1355
1356         local_irq_enable();
1357         mdelay(1);
1358         local_irq_disable();
1359
1360         set_cpu_online(cpu, false);
1361
1362         cpu_map_rebuild();
1363
1364         return 0;
1365 }
1366
1367 void __cpu_die(unsigned int cpu)
1368 {
1369         int i;
1370
1371         for (i = 0; i < 100; i++) {
1372                 smp_rmb();
1373                 if (!cpumask_test_cpu(cpu, &smp_commenced_mask))
1374                         break;
1375                 msleep(100);
1376         }
1377         if (cpumask_test_cpu(cpu, &smp_commenced_mask)) {
1378                 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1379         } else {
1380 #if defined(CONFIG_SUN_LDOMS)
1381                 unsigned long hv_err;
1382                 int limit = 100;
1383
1384                 do {
1385                         hv_err = sun4v_cpu_stop(cpu);
1386                         if (hv_err == HV_EOK) {
1387                                 set_cpu_present(cpu, false);
1388                                 break;
1389                         }
1390                 } while (--limit > 0);
1391                 if (limit <= 0) {
1392                         printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1393                                hv_err);
1394                 }
1395 #endif
1396         }
1397 }
1398 #endif
1399
1400 void __init smp_cpus_done(unsigned int max_cpus)
1401 {
1402 }
1403
1404 void smp_send_reschedule(int cpu)
1405 {
1406         if (cpu == smp_processor_id()) {
1407                 WARN_ON_ONCE(preemptible());
1408                 set_softint(1 << PIL_SMP_RECEIVE_SIGNAL);
1409         } else {
1410                 xcall_deliver((u64) &xcall_receive_signal,
1411                               0, 0, cpumask_of(cpu));
1412         }
1413 }
1414
1415 void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
1416 {
1417         clear_softint(1 << irq);
1418         scheduler_ipi();
1419 }
1420
1421 static void stop_this_cpu(void *dummy)
1422 {
1423         prom_stopself();
1424 }
1425
1426 void smp_send_stop(void)
1427 {
1428         int cpu;
1429
1430         if (tlb_type == hypervisor) {
1431                 int this_cpu = smp_processor_id();
1432 #ifdef CONFIG_SERIAL_SUNHV
1433                 sunhv_migrate_hvcons_irq(this_cpu);
1434 #endif
1435                 for_each_online_cpu(cpu) {
1436                         if (cpu == this_cpu)
1437                                 continue;
1438 #ifdef CONFIG_SUN_LDOMS
1439                         if (ldom_domaining_enabled) {
1440                                 unsigned long hv_err;
1441                                 hv_err = sun4v_cpu_stop(cpu);
1442                                 if (hv_err)
1443                                         printk(KERN_ERR "sun4v_cpu_stop() "
1444                                                "failed err=%lu\n", hv_err);
1445                         } else
1446 #endif
1447                                 prom_stopcpu_cpuid(cpu);
1448                 }
1449         } else
1450                 smp_call_function(stop_this_cpu, NULL, 0);
1451 }
1452
1453 /**
1454  * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
1455  * @cpu: cpu to allocate for
1456  * @size: size allocation in bytes
1457  * @align: alignment
1458  *
1459  * Allocate @size bytes aligned at @align for cpu @cpu.  This wrapper
1460  * does the right thing for NUMA regardless of the current
1461  * configuration.
1462  *
1463  * RETURNS:
1464  * Pointer to the allocated area on success, NULL on failure.
1465  */
1466 static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size,
1467                                         size_t align)
1468 {
1469         const unsigned long goal = __pa(MAX_DMA_ADDRESS);
1470 #ifdef CONFIG_NEED_MULTIPLE_NODES
1471         int node = cpu_to_node(cpu);
1472         void *ptr;
1473
1474         if (!node_online(node) || !NODE_DATA(node)) {
1475                 ptr = __alloc_bootmem(size, align, goal);
1476                 pr_info("cpu %d has no node %d or node-local memory\n",
1477                         cpu, node);
1478                 pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
1479                          cpu, size, __pa(ptr));
1480         } else {
1481                 ptr = __alloc_bootmem_node(NODE_DATA(node),
1482                                            size, align, goal);
1483                 pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
1484                          "%016lx\n", cpu, size, node, __pa(ptr));
1485         }
1486         return ptr;
1487 #else
1488         return __alloc_bootmem(size, align, goal);
1489 #endif
1490 }
1491
1492 static void __init pcpu_free_bootmem(void *ptr, size_t size)
1493 {
1494         free_bootmem(__pa(ptr), size);
1495 }
1496
1497 static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
1498 {
1499         if (cpu_to_node(from) == cpu_to_node(to))
1500                 return LOCAL_DISTANCE;
1501         else
1502                 return REMOTE_DISTANCE;
1503 }
1504
1505 static void __init pcpu_populate_pte(unsigned long addr)
1506 {
1507         pgd_t *pgd = pgd_offset_k(addr);
1508         pud_t *pud;
1509         pmd_t *pmd;
1510
1511         if (pgd_none(*pgd)) {
1512                 pud_t *new;
1513
1514                 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1515                 pgd_populate(&init_mm, pgd, new);
1516         }
1517
1518         pud = pud_offset(pgd, addr);
1519         if (pud_none(*pud)) {
1520                 pmd_t *new;
1521
1522                 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1523                 pud_populate(&init_mm, pud, new);
1524         }
1525
1526         pmd = pmd_offset(pud, addr);
1527         if (!pmd_present(*pmd)) {
1528                 pte_t *new;
1529
1530                 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1531                 pmd_populate_kernel(&init_mm, pmd, new);
1532         }
1533 }
1534
1535 void __init setup_per_cpu_areas(void)
1536 {
1537         unsigned long delta;
1538         unsigned int cpu;
1539         int rc = -EINVAL;
1540
1541         if (pcpu_chosen_fc != PCPU_FC_PAGE) {
1542                 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1543                                             PERCPU_DYNAMIC_RESERVE, 4 << 20,
1544                                             pcpu_cpu_distance,
1545                                             pcpu_alloc_bootmem,
1546                                             pcpu_free_bootmem);
1547                 if (rc)
1548                         pr_warning("PERCPU: %s allocator failed (%d), "
1549                                    "falling back to page size\n",
1550                                    pcpu_fc_names[pcpu_chosen_fc], rc);
1551         }
1552         if (rc < 0)
1553                 rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
1554                                            pcpu_alloc_bootmem,
1555                                            pcpu_free_bootmem,
1556                                            pcpu_populate_pte);
1557         if (rc < 0)
1558                 panic("cannot initialize percpu area (err=%d)", rc);
1559
1560         delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1561         for_each_possible_cpu(cpu)
1562                 __per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
1563
1564         /* Setup %g5 for the boot cpu.  */
1565         __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1566
1567         of_fill_in_cpu_data();
1568         if (tlb_type == hypervisor)
1569                 mdesc_fill_in_cpu_data(cpu_all_mask);
1570 }