GNU Linux-libre 4.4.284-gnu1
[releases.git] / arch / sparc / kernel / smp_64.c
1 /* smp.c: Sparc64 SMP support.
2  *
3  * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
4  */
5
6 #include <linux/export.h>
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/pagemap.h>
11 #include <linux/threads.h>
12 #include <linux/smp.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/delay.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/cache.h>
21 #include <linux/jiffies.h>
22 #include <linux/profile.h>
23 #include <linux/bootmem.h>
24 #include <linux/vmalloc.h>
25 #include <linux/ftrace.h>
26 #include <linux/cpu.h>
27 #include <linux/slab.h>
28 #include <linux/kgdb.h>
29
30 #include <asm/head.h>
31 #include <asm/ptrace.h>
32 #include <linux/atomic.h>
33 #include <asm/tlbflush.h>
34 #include <asm/mmu_context.h>
35 #include <asm/cpudata.h>
36 #include <asm/hvtramp.h>
37 #include <asm/io.h>
38 #include <asm/timer.h>
39 #include <asm/setup.h>
40
41 #include <asm/irq.h>
42 #include <asm/irq_regs.h>
43 #include <asm/page.h>
44 #include <asm/pgtable.h>
45 #include <asm/oplib.h>
46 #include <asm/uaccess.h>
47 #include <asm/starfire.h>
48 #include <asm/tlb.h>
49 #include <asm/sections.h>
50 #include <asm/prom.h>
51 #include <asm/mdesc.h>
52 #include <asm/ldc.h>
53 #include <asm/hypervisor.h>
54 #include <asm/pcr.h>
55
56 #include "cpumap.h"
57 #include "kernel.h"
58
59 DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
60 cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
61         { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
62
63 cpumask_t cpu_core_sib_map[NR_CPUS] __read_mostly = {
64         [0 ... NR_CPUS-1] = CPU_MASK_NONE };
65
66 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
67 EXPORT_SYMBOL(cpu_core_map);
68 EXPORT_SYMBOL(cpu_core_sib_map);
69
70 static cpumask_t smp_commenced_mask;
71
72 void smp_info(struct seq_file *m)
73 {
74         int i;
75         
76         seq_printf(m, "State:\n");
77         for_each_online_cpu(i)
78                 seq_printf(m, "CPU%d:\t\tonline\n", i);
79 }
80
81 void smp_bogo(struct seq_file *m)
82 {
83         int i;
84         
85         for_each_online_cpu(i)
86                 seq_printf(m,
87                            "Cpu%dClkTck\t: %016lx\n",
88                            i, cpu_data(i).clock_tick);
89 }
90
91 extern void setup_sparc64_timer(void);
92
93 static volatile unsigned long callin_flag = 0;
94
95 void smp_callin(void)
96 {
97         int cpuid = hard_smp_processor_id();
98
99         __local_per_cpu_offset = __per_cpu_offset(cpuid);
100
101         if (tlb_type == hypervisor)
102                 sun4v_ktsb_register();
103
104         __flush_tlb_all();
105
106         setup_sparc64_timer();
107
108         if (cheetah_pcache_forced_on)
109                 cheetah_enable_pcache();
110
111         callin_flag = 1;
112         __asm__ __volatile__("membar #Sync\n\t"
113                              "flush  %%g6" : : : "memory");
114
115         /* Clear this or we will die instantly when we
116          * schedule back to this idler...
117          */
118         current_thread_info()->new_child = 0;
119
120         /* Attach to the address space of init_task. */
121         atomic_inc(&init_mm.mm_count);
122         current->active_mm = &init_mm;
123
124         /* inform the notifiers about the new cpu */
125         notify_cpu_starting(cpuid);
126
127         while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
128                 rmb();
129
130         set_cpu_online(cpuid, true);
131
132         /* idle thread is expected to have preempt disabled */
133         preempt_disable();
134
135         local_irq_enable();
136
137         cpu_startup_entry(CPUHP_ONLINE);
138 }
139
140 void cpu_panic(void)
141 {
142         printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
143         panic("SMP bolixed\n");
144 }
145
146 /* This tick register synchronization scheme is taken entirely from
147  * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
148  *
149  * The only change I've made is to rework it so that the master
150  * initiates the synchonization instead of the slave. -DaveM
151  */
152
153 #define MASTER  0
154 #define SLAVE   (SMP_CACHE_BYTES/sizeof(unsigned long))
155
156 #define NUM_ROUNDS      64      /* magic value */
157 #define NUM_ITERS       5       /* likewise */
158
159 static DEFINE_RAW_SPINLOCK(itc_sync_lock);
160 static unsigned long go[SLAVE + 1];
161
162 #define DEBUG_TICK_SYNC 0
163
164 static inline long get_delta (long *rt, long *master)
165 {
166         unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
167         unsigned long tcenter, t0, t1, tm;
168         unsigned long i;
169
170         for (i = 0; i < NUM_ITERS; i++) {
171                 t0 = tick_ops->get_tick();
172                 go[MASTER] = 1;
173                 membar_safe("#StoreLoad");
174                 while (!(tm = go[SLAVE]))
175                         rmb();
176                 go[SLAVE] = 0;
177                 wmb();
178                 t1 = tick_ops->get_tick();
179
180                 if (t1 - t0 < best_t1 - best_t0)
181                         best_t0 = t0, best_t1 = t1, best_tm = tm;
182         }
183
184         *rt = best_t1 - best_t0;
185         *master = best_tm - best_t0;
186
187         /* average best_t0 and best_t1 without overflow: */
188         tcenter = (best_t0/2 + best_t1/2);
189         if (best_t0 % 2 + best_t1 % 2 == 2)
190                 tcenter++;
191         return tcenter - best_tm;
192 }
193
194 void smp_synchronize_tick_client(void)
195 {
196         long i, delta, adj, adjust_latency = 0, done = 0;
197         unsigned long flags, rt, master_time_stamp;
198 #if DEBUG_TICK_SYNC
199         struct {
200                 long rt;        /* roundtrip time */
201                 long master;    /* master's timestamp */
202                 long diff;      /* difference between midpoint and master's timestamp */
203                 long lat;       /* estimate of itc adjustment latency */
204         } t[NUM_ROUNDS];
205 #endif
206
207         go[MASTER] = 1;
208
209         while (go[MASTER])
210                 rmb();
211
212         local_irq_save(flags);
213         {
214                 for (i = 0; i < NUM_ROUNDS; i++) {
215                         delta = get_delta(&rt, &master_time_stamp);
216                         if (delta == 0)
217                                 done = 1;       /* let's lock on to this... */
218
219                         if (!done) {
220                                 if (i > 0) {
221                                         adjust_latency += -delta;
222                                         adj = -delta + adjust_latency/4;
223                                 } else
224                                         adj = -delta;
225
226                                 tick_ops->add_tick(adj);
227                         }
228 #if DEBUG_TICK_SYNC
229                         t[i].rt = rt;
230                         t[i].master = master_time_stamp;
231                         t[i].diff = delta;
232                         t[i].lat = adjust_latency/4;
233 #endif
234                 }
235         }
236         local_irq_restore(flags);
237
238 #if DEBUG_TICK_SYNC
239         for (i = 0; i < NUM_ROUNDS; i++)
240                 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
241                        t[i].rt, t[i].master, t[i].diff, t[i].lat);
242 #endif
243
244         printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
245                "(last diff %ld cycles, maxerr %lu cycles)\n",
246                smp_processor_id(), delta, rt);
247 }
248
249 static void smp_start_sync_tick_client(int cpu);
250
251 static void smp_synchronize_one_tick(int cpu)
252 {
253         unsigned long flags, i;
254
255         go[MASTER] = 0;
256
257         smp_start_sync_tick_client(cpu);
258
259         /* wait for client to be ready */
260         while (!go[MASTER])
261                 rmb();
262
263         /* now let the client proceed into his loop */
264         go[MASTER] = 0;
265         membar_safe("#StoreLoad");
266
267         raw_spin_lock_irqsave(&itc_sync_lock, flags);
268         {
269                 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
270                         while (!go[MASTER])
271                                 rmb();
272                         go[MASTER] = 0;
273                         wmb();
274                         go[SLAVE] = tick_ops->get_tick();
275                         membar_safe("#StoreLoad");
276                 }
277         }
278         raw_spin_unlock_irqrestore(&itc_sync_lock, flags);
279 }
280
281 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
282 static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg,
283                                 void **descrp)
284 {
285         extern unsigned long sparc64_ttable_tl0;
286         extern unsigned long kern_locked_tte_data;
287         struct hvtramp_descr *hdesc;
288         unsigned long trampoline_ra;
289         struct trap_per_cpu *tb;
290         u64 tte_vaddr, tte_data;
291         unsigned long hv_err;
292         int i;
293
294         hdesc = kzalloc(sizeof(*hdesc) +
295                         (sizeof(struct hvtramp_mapping) *
296                          num_kernel_image_mappings - 1),
297                         GFP_KERNEL);
298         if (!hdesc) {
299                 printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
300                        "hvtramp_descr.\n");
301                 return;
302         }
303         *descrp = hdesc;
304
305         hdesc->cpu = cpu;
306         hdesc->num_mappings = num_kernel_image_mappings;
307
308         tb = &trap_block[cpu];
309
310         hdesc->fault_info_va = (unsigned long) &tb->fault_info;
311         hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
312
313         hdesc->thread_reg = thread_reg;
314
315         tte_vaddr = (unsigned long) KERNBASE;
316         tte_data = kern_locked_tte_data;
317
318         for (i = 0; i < hdesc->num_mappings; i++) {
319                 hdesc->maps[i].vaddr = tte_vaddr;
320                 hdesc->maps[i].tte   = tte_data;
321                 tte_vaddr += 0x400000;
322                 tte_data  += 0x400000;
323         }
324
325         trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
326
327         hv_err = sun4v_cpu_start(cpu, trampoline_ra,
328                                  kimage_addr_to_ra(&sparc64_ttable_tl0),
329                                  __pa(hdesc));
330         if (hv_err)
331                 printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
332                        "gives error %lu\n", hv_err);
333 }
334 #endif
335
336 extern unsigned long sparc64_cpu_startup;
337
338 /* The OBP cpu startup callback truncates the 3rd arg cookie to
339  * 32-bits (I think) so to be safe we have it read the pointer
340  * contained here so we work on >4GB machines. -DaveM
341  */
342 static struct thread_info *cpu_new_thread = NULL;
343
344 static int smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle)
345 {
346         unsigned long entry =
347                 (unsigned long)(&sparc64_cpu_startup);
348         unsigned long cookie =
349                 (unsigned long)(&cpu_new_thread);
350         void *descr = NULL;
351         int timeout, ret;
352
353         callin_flag = 0;
354         cpu_new_thread = task_thread_info(idle);
355
356         if (tlb_type == hypervisor) {
357 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
358                 if (ldom_domaining_enabled)
359                         ldom_startcpu_cpuid(cpu,
360                                             (unsigned long) cpu_new_thread,
361                                             &descr);
362                 else
363 #endif
364                         prom_startcpu_cpuid(cpu, entry, cookie);
365         } else {
366                 struct device_node *dp = of_find_node_by_cpuid(cpu);
367
368                 prom_startcpu(dp->phandle, entry, cookie);
369         }
370
371         for (timeout = 0; timeout < 50000; timeout++) {
372                 if (callin_flag)
373                         break;
374                 udelay(100);
375         }
376
377         if (callin_flag) {
378                 ret = 0;
379         } else {
380                 printk("Processor %d is stuck.\n", cpu);
381                 ret = -ENODEV;
382         }
383         cpu_new_thread = NULL;
384
385         kfree(descr);
386
387         return ret;
388 }
389
390 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
391 {
392         u64 result, target;
393         int stuck, tmp;
394
395         if (this_is_starfire) {
396                 /* map to real upaid */
397                 cpu = (((cpu & 0x3c) << 1) |
398                         ((cpu & 0x40) >> 4) |
399                         (cpu & 0x3));
400         }
401
402         target = (cpu << 14) | 0x70;
403 again:
404         /* Ok, this is the real Spitfire Errata #54.
405          * One must read back from a UDB internal register
406          * after writes to the UDB interrupt dispatch, but
407          * before the membar Sync for that write.
408          * So we use the high UDB control register (ASI 0x7f,
409          * ADDR 0x20) for the dummy read. -DaveM
410          */
411         tmp = 0x40;
412         __asm__ __volatile__(
413         "wrpr   %1, %2, %%pstate\n\t"
414         "stxa   %4, [%0] %3\n\t"
415         "stxa   %5, [%0+%8] %3\n\t"
416         "add    %0, %8, %0\n\t"
417         "stxa   %6, [%0+%8] %3\n\t"
418         "membar #Sync\n\t"
419         "stxa   %%g0, [%7] %3\n\t"
420         "membar #Sync\n\t"
421         "mov    0x20, %%g1\n\t"
422         "ldxa   [%%g1] 0x7f, %%g0\n\t"
423         "membar #Sync"
424         : "=r" (tmp)
425         : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
426           "r" (data0), "r" (data1), "r" (data2), "r" (target),
427           "r" (0x10), "0" (tmp)
428         : "g1");
429
430         /* NOTE: PSTATE_IE is still clear. */
431         stuck = 100000;
432         do {
433                 __asm__ __volatile__("ldxa [%%g0] %1, %0"
434                         : "=r" (result)
435                         : "i" (ASI_INTR_DISPATCH_STAT));
436                 if (result == 0) {
437                         __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
438                                              : : "r" (pstate));
439                         return;
440                 }
441                 stuck -= 1;
442                 if (stuck == 0)
443                         break;
444         } while (result & 0x1);
445         __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
446                              : : "r" (pstate));
447         if (stuck == 0) {
448                 printk("CPU[%d]: mondo stuckage result[%016llx]\n",
449                        smp_processor_id(), result);
450         } else {
451                 udelay(2);
452                 goto again;
453         }
454 }
455
456 static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
457 {
458         u64 *mondo, data0, data1, data2;
459         u16 *cpu_list;
460         u64 pstate;
461         int i;
462
463         __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
464         cpu_list = __va(tb->cpu_list_pa);
465         mondo = __va(tb->cpu_mondo_block_pa);
466         data0 = mondo[0];
467         data1 = mondo[1];
468         data2 = mondo[2];
469         for (i = 0; i < cnt; i++)
470                 spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
471 }
472
473 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
474  * packet, but we have no use for that.  However we do take advantage of
475  * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
476  */
477 static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
478 {
479         int nack_busy_id, is_jbus, need_more;
480         u64 *mondo, pstate, ver, busy_mask;
481         u16 *cpu_list;
482
483         cpu_list = __va(tb->cpu_list_pa);
484         mondo = __va(tb->cpu_mondo_block_pa);
485
486         /* Unfortunately, someone at Sun had the brilliant idea to make the
487          * busy/nack fields hard-coded by ITID number for this Ultra-III
488          * derivative processor.
489          */
490         __asm__ ("rdpr %%ver, %0" : "=r" (ver));
491         is_jbus = ((ver >> 32) == __JALAPENO_ID ||
492                    (ver >> 32) == __SERRANO_ID);
493
494         __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
495
496 retry:
497         need_more = 0;
498         __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
499                              : : "r" (pstate), "i" (PSTATE_IE));
500
501         /* Setup the dispatch data registers. */
502         __asm__ __volatile__("stxa      %0, [%3] %6\n\t"
503                              "stxa      %1, [%4] %6\n\t"
504                              "stxa      %2, [%5] %6\n\t"
505                              "membar    #Sync\n\t"
506                              : /* no outputs */
507                              : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
508                                "r" (0x40), "r" (0x50), "r" (0x60),
509                                "i" (ASI_INTR_W));
510
511         nack_busy_id = 0;
512         busy_mask = 0;
513         {
514                 int i;
515
516                 for (i = 0; i < cnt; i++) {
517                         u64 target, nr;
518
519                         nr = cpu_list[i];
520                         if (nr == 0xffff)
521                                 continue;
522
523                         target = (nr << 14) | 0x70;
524                         if (is_jbus) {
525                                 busy_mask |= (0x1UL << (nr * 2));
526                         } else {
527                                 target |= (nack_busy_id << 24);
528                                 busy_mask |= (0x1UL <<
529                                               (nack_busy_id * 2));
530                         }
531                         __asm__ __volatile__(
532                                 "stxa   %%g0, [%0] %1\n\t"
533                                 "membar #Sync\n\t"
534                                 : /* no outputs */
535                                 : "r" (target), "i" (ASI_INTR_W));
536                         nack_busy_id++;
537                         if (nack_busy_id == 32) {
538                                 need_more = 1;
539                                 break;
540                         }
541                 }
542         }
543
544         /* Now, poll for completion. */
545         {
546                 u64 dispatch_stat, nack_mask;
547                 long stuck;
548
549                 stuck = 100000 * nack_busy_id;
550                 nack_mask = busy_mask << 1;
551                 do {
552                         __asm__ __volatile__("ldxa      [%%g0] %1, %0"
553                                              : "=r" (dispatch_stat)
554                                              : "i" (ASI_INTR_DISPATCH_STAT));
555                         if (!(dispatch_stat & (busy_mask | nack_mask))) {
556                                 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
557                                                      : : "r" (pstate));
558                                 if (unlikely(need_more)) {
559                                         int i, this_cnt = 0;
560                                         for (i = 0; i < cnt; i++) {
561                                                 if (cpu_list[i] == 0xffff)
562                                                         continue;
563                                                 cpu_list[i] = 0xffff;
564                                                 this_cnt++;
565                                                 if (this_cnt == 32)
566                                                         break;
567                                         }
568                                         goto retry;
569                                 }
570                                 return;
571                         }
572                         if (!--stuck)
573                                 break;
574                 } while (dispatch_stat & busy_mask);
575
576                 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
577                                      : : "r" (pstate));
578
579                 if (dispatch_stat & busy_mask) {
580                         /* Busy bits will not clear, continue instead
581                          * of freezing up on this cpu.
582                          */
583                         printk("CPU[%d]: mondo stuckage result[%016llx]\n",
584                                smp_processor_id(), dispatch_stat);
585                 } else {
586                         int i, this_busy_nack = 0;
587
588                         /* Delay some random time with interrupts enabled
589                          * to prevent deadlock.
590                          */
591                         udelay(2 * nack_busy_id);
592
593                         /* Clear out the mask bits for cpus which did not
594                          * NACK us.
595                          */
596                         for (i = 0; i < cnt; i++) {
597                                 u64 check_mask, nr;
598
599                                 nr = cpu_list[i];
600                                 if (nr == 0xffff)
601                                         continue;
602
603                                 if (is_jbus)
604                                         check_mask = (0x2UL << (2*nr));
605                                 else
606                                         check_mask = (0x2UL <<
607                                                       this_busy_nack);
608                                 if ((dispatch_stat & check_mask) == 0)
609                                         cpu_list[i] = 0xffff;
610                                 this_busy_nack += 2;
611                                 if (this_busy_nack == 64)
612                                         break;
613                         }
614
615                         goto retry;
616                 }
617         }
618 }
619
620 #define CPU_MONDO_COUNTER(cpuid)        (cpu_mondo_counter[cpuid])
621 #define MONDO_USEC_WAIT_MIN             2
622 #define MONDO_USEC_WAIT_MAX             100
623 #define MONDO_RETRY_LIMIT               500000
624
625 /* Multi-cpu list version.
626  *
627  * Deliver xcalls to 'cnt' number of cpus in 'cpu_list'.
628  * Sometimes not all cpus receive the mondo, requiring us to re-send
629  * the mondo until all cpus have received, or cpus are truly stuck
630  * unable to receive mondo, and we timeout.
631  * Occasionally a target cpu strand is borrowed briefly by hypervisor to
632  * perform guest service, such as PCIe error handling. Consider the
633  * service time, 1 second overall wait is reasonable for 1 cpu.
634  * Here two in-between mondo check wait time are defined: 2 usec for
635  * single cpu quick turn around and up to 100usec for large cpu count.
636  * Deliver mondo to large number of cpus could take longer, we adjusts
637  * the retry count as long as target cpus are making forward progress.
638  */
639 static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
640 {
641         int this_cpu, tot_cpus, prev_sent, i, rem;
642         int usec_wait, retries, tot_retries;
643         u16 first_cpu = 0xffff;
644         unsigned long xc_rcvd = 0;
645         unsigned long status;
646         int ecpuerror_id = 0;
647         int enocpu_id = 0;
648         u16 *cpu_list;
649         u16 cpu;
650
651         this_cpu = smp_processor_id();
652         cpu_list = __va(tb->cpu_list_pa);
653         usec_wait = cnt * MONDO_USEC_WAIT_MIN;
654         if (usec_wait > MONDO_USEC_WAIT_MAX)
655                 usec_wait = MONDO_USEC_WAIT_MAX;
656         retries = tot_retries = 0;
657         tot_cpus = cnt;
658         prev_sent = 0;
659
660         do {
661                 int n_sent, mondo_delivered, target_cpu_busy;
662
663                 status = sun4v_cpu_mondo_send(cnt,
664                                               tb->cpu_list_pa,
665                                               tb->cpu_mondo_block_pa);
666
667                 /* HV_EOK means all cpus received the xcall, we're done.  */
668                 if (likely(status == HV_EOK))
669                         goto xcall_done;
670
671                 /* If not these non-fatal errors, panic */
672                 if (unlikely((status != HV_EWOULDBLOCK) &&
673                         (status != HV_ECPUERROR) &&
674                         (status != HV_ENOCPU)))
675                         goto fatal_errors;
676
677                 /* First, see if we made any forward progress.
678                  *
679                  * Go through the cpu_list, count the target cpus that have
680                  * received our mondo (n_sent), and those that did not (rem).
681                  * Re-pack cpu_list with the cpus remain to be retried in the
682                  * front - this simplifies tracking the truly stalled cpus.
683                  *
684                  * The hypervisor indicates successful sends by setting
685                  * cpu list entries to the value 0xffff.
686                  *
687                  * EWOULDBLOCK means some target cpus did not receive the
688                  * mondo and retry usually helps.
689                  *
690                  * ECPUERROR means at least one target cpu is in error state,
691                  * it's usually safe to skip the faulty cpu and retry.
692                  *
693                  * ENOCPU means one of the target cpu doesn't belong to the
694                  * domain, perhaps offlined which is unexpected, but not
695                  * fatal and it's okay to skip the offlined cpu.
696                  */
697                 rem = 0;
698                 n_sent = 0;
699                 for (i = 0; i < cnt; i++) {
700                         cpu = cpu_list[i];
701                         if (likely(cpu == 0xffff)) {
702                                 n_sent++;
703                         } else if ((status == HV_ECPUERROR) &&
704                                 (sun4v_cpu_state(cpu) == HV_CPU_STATE_ERROR)) {
705                                 ecpuerror_id = cpu + 1;
706                         } else if (status == HV_ENOCPU && !cpu_online(cpu)) {
707                                 enocpu_id = cpu + 1;
708                         } else {
709                                 cpu_list[rem++] = cpu;
710                         }
711                 }
712
713                 /* No cpu remained, we're done. */
714                 if (rem == 0)
715                         break;
716
717                 /* Otherwise, update the cpu count for retry. */
718                 cnt = rem;
719
720                 /* Record the overall number of mondos received by the
721                  * first of the remaining cpus.
722                  */
723                 if (first_cpu != cpu_list[0]) {
724                         first_cpu = cpu_list[0];
725                         xc_rcvd = CPU_MONDO_COUNTER(first_cpu);
726                 }
727
728                 /* Was any mondo delivered successfully? */
729                 mondo_delivered = (n_sent > prev_sent);
730                 prev_sent = n_sent;
731
732                 /* or, was any target cpu busy processing other mondos? */
733                 target_cpu_busy = (xc_rcvd < CPU_MONDO_COUNTER(first_cpu));
734                 xc_rcvd = CPU_MONDO_COUNTER(first_cpu);
735
736                 /* Retry count is for no progress. If we're making progress,
737                  * reset the retry count.
738                  */
739                 if (likely(mondo_delivered || target_cpu_busy)) {
740                         tot_retries += retries;
741                         retries = 0;
742                 } else if (unlikely(retries > MONDO_RETRY_LIMIT)) {
743                         goto fatal_mondo_timeout;
744                 }
745
746                 /* Delay a little bit to let other cpus catch up on
747                  * their cpu mondo queue work.
748                  */
749                 if (!mondo_delivered)
750                         udelay(usec_wait);
751
752                 retries++;
753         } while (1);
754
755 xcall_done:
756         if (unlikely(ecpuerror_id > 0)) {
757                 pr_crit("CPU[%d]: SUN4V mondo cpu error, target cpu(%d) was in error state\n",
758                        this_cpu, ecpuerror_id - 1);
759         } else if (unlikely(enocpu_id > 0)) {
760                 pr_crit("CPU[%d]: SUN4V mondo cpu error, target cpu(%d) does not belong to the domain\n",
761                        this_cpu, enocpu_id - 1);
762         }
763         return;
764
765 fatal_errors:
766         /* fatal errors include bad alignment, etc */
767         pr_crit("CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) mondo_block_pa(%lx)\n",
768                this_cpu, tot_cpus, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
769         panic("Unexpected SUN4V mondo error %lu\n", status);
770
771 fatal_mondo_timeout:
772         /* some cpus being non-responsive to the cpu mondo */
773         pr_crit("CPU[%d]: SUN4V mondo timeout, cpu(%d) made no forward progress after %d retries. Total target cpus(%d).\n",
774                this_cpu, first_cpu, (tot_retries + retries), tot_cpus);
775         panic("SUN4V mondo timeout panic\n");
776 }
777
778 static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
779
780 static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
781 {
782         struct trap_per_cpu *tb;
783         int this_cpu, i, cnt;
784         unsigned long flags;
785         u16 *cpu_list;
786         u64 *mondo;
787
788         /* We have to do this whole thing with interrupts fully disabled.
789          * Otherwise if we send an xcall from interrupt context it will
790          * corrupt both our mondo block and cpu list state.
791          *
792          * One consequence of this is that we cannot use timeout mechanisms
793          * that depend upon interrupts being delivered locally.  So, for
794          * example, we cannot sample jiffies and expect it to advance.
795          *
796          * Fortunately, udelay() uses %stick/%tick so we can use that.
797          */
798         local_irq_save(flags);
799
800         this_cpu = smp_processor_id();
801         tb = &trap_block[this_cpu];
802
803         mondo = __va(tb->cpu_mondo_block_pa);
804         mondo[0] = data0;
805         mondo[1] = data1;
806         mondo[2] = data2;
807         wmb();
808
809         cpu_list = __va(tb->cpu_list_pa);
810
811         /* Setup the initial cpu list.  */
812         cnt = 0;
813         for_each_cpu(i, mask) {
814                 if (i == this_cpu || !cpu_online(i))
815                         continue;
816                 cpu_list[cnt++] = i;
817         }
818
819         if (cnt)
820                 xcall_deliver_impl(tb, cnt);
821
822         local_irq_restore(flags);
823 }
824
825 /* Send cross call to all processors mentioned in MASK_P
826  * except self.  Really, there are only two cases currently,
827  * "cpu_online_mask" and "mm_cpumask(mm)".
828  */
829 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
830 {
831         u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
832
833         xcall_deliver(data0, data1, data2, mask);
834 }
835
836 /* Send cross call to all processors except self. */
837 static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
838 {
839         smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask);
840 }
841
842 extern unsigned long xcall_sync_tick;
843
844 static void smp_start_sync_tick_client(int cpu)
845 {
846         xcall_deliver((u64) &xcall_sync_tick, 0, 0,
847                       cpumask_of(cpu));
848 }
849
850 extern unsigned long xcall_call_function;
851
852 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
853 {
854         xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
855 }
856
857 extern unsigned long xcall_call_function_single;
858
859 void arch_send_call_function_single_ipi(int cpu)
860 {
861         xcall_deliver((u64) &xcall_call_function_single, 0, 0,
862                       cpumask_of(cpu));
863 }
864
865 void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
866 {
867         clear_softint(1 << irq);
868         irq_enter();
869         generic_smp_call_function_interrupt();
870         irq_exit();
871 }
872
873 void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
874 {
875         clear_softint(1 << irq);
876         irq_enter();
877         generic_smp_call_function_single_interrupt();
878         irq_exit();
879 }
880
881 static void tsb_sync(void *info)
882 {
883         struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
884         struct mm_struct *mm = info;
885
886         /* It is not valid to test "current->active_mm == mm" here.
887          *
888          * The value of "current" is not changed atomically with
889          * switch_mm().  But that's OK, we just need to check the
890          * current cpu's trap block PGD physical address.
891          */
892         if (tp->pgd_paddr == __pa(mm->pgd))
893                 tsb_context_switch(mm);
894 }
895
896 void smp_tsb_sync(struct mm_struct *mm)
897 {
898         smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
899 }
900
901 extern unsigned long xcall_flush_tlb_mm;
902 extern unsigned long xcall_flush_tlb_page;
903 extern unsigned long xcall_flush_tlb_kernel_range;
904 extern unsigned long xcall_fetch_glob_regs;
905 extern unsigned long xcall_fetch_glob_pmu;
906 extern unsigned long xcall_fetch_glob_pmu_n4;
907 extern unsigned long xcall_receive_signal;
908 extern unsigned long xcall_new_mmu_context_version;
909 #ifdef CONFIG_KGDB
910 extern unsigned long xcall_kgdb_capture;
911 #endif
912
913 #ifdef DCACHE_ALIASING_POSSIBLE
914 extern unsigned long xcall_flush_dcache_page_cheetah;
915 #endif
916 extern unsigned long xcall_flush_dcache_page_spitfire;
917
918 static inline void __local_flush_dcache_page(struct page *page)
919 {
920 #ifdef DCACHE_ALIASING_POSSIBLE
921         __flush_dcache_page(page_address(page),
922                             ((tlb_type == spitfire) &&
923                              page_mapping(page) != NULL));
924 #else
925         if (page_mapping(page) != NULL &&
926             tlb_type == spitfire)
927                 __flush_icache_page(__pa(page_address(page)));
928 #endif
929 }
930
931 void smp_flush_dcache_page_impl(struct page *page, int cpu)
932 {
933         int this_cpu;
934
935         if (tlb_type == hypervisor)
936                 return;
937
938 #ifdef CONFIG_DEBUG_DCFLUSH
939         atomic_inc(&dcpage_flushes);
940 #endif
941
942         this_cpu = get_cpu();
943
944         if (cpu == this_cpu) {
945                 __local_flush_dcache_page(page);
946         } else if (cpu_online(cpu)) {
947                 void *pg_addr = page_address(page);
948                 u64 data0 = 0;
949
950                 if (tlb_type == spitfire) {
951                         data0 = ((u64)&xcall_flush_dcache_page_spitfire);
952                         if (page_mapping(page) != NULL)
953                                 data0 |= ((u64)1 << 32);
954                 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
955 #ifdef DCACHE_ALIASING_POSSIBLE
956                         data0 = ((u64)&xcall_flush_dcache_page_cheetah);
957 #endif
958                 }
959                 if (data0) {
960                         xcall_deliver(data0, __pa(pg_addr),
961                                       (u64) pg_addr, cpumask_of(cpu));
962 #ifdef CONFIG_DEBUG_DCFLUSH
963                         atomic_inc(&dcpage_flushes_xcall);
964 #endif
965                 }
966         }
967
968         put_cpu();
969 }
970
971 void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
972 {
973         void *pg_addr;
974         u64 data0;
975
976         if (tlb_type == hypervisor)
977                 return;
978
979         preempt_disable();
980
981 #ifdef CONFIG_DEBUG_DCFLUSH
982         atomic_inc(&dcpage_flushes);
983 #endif
984         data0 = 0;
985         pg_addr = page_address(page);
986         if (tlb_type == spitfire) {
987                 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
988                 if (page_mapping(page) != NULL)
989                         data0 |= ((u64)1 << 32);
990         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
991 #ifdef DCACHE_ALIASING_POSSIBLE
992                 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
993 #endif
994         }
995         if (data0) {
996                 xcall_deliver(data0, __pa(pg_addr),
997                               (u64) pg_addr, cpu_online_mask);
998 #ifdef CONFIG_DEBUG_DCFLUSH
999                 atomic_inc(&dcpage_flushes_xcall);
1000 #endif
1001         }
1002         __local_flush_dcache_page(page);
1003
1004         preempt_enable();
1005 }
1006
1007 #ifdef CONFIG_KGDB
1008 void kgdb_roundup_cpus(unsigned long flags)
1009 {
1010         smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
1011 }
1012 #endif
1013
1014 void smp_fetch_global_regs(void)
1015 {
1016         smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1017 }
1018
1019 void smp_fetch_global_pmu(void)
1020 {
1021         if (tlb_type == hypervisor &&
1022             sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
1023                 smp_cross_call(&xcall_fetch_glob_pmu_n4, 0, 0, 0);
1024         else
1025                 smp_cross_call(&xcall_fetch_glob_pmu, 0, 0, 0);
1026 }
1027
1028 /* We know that the window frames of the user have been flushed
1029  * to the stack before we get here because all callers of us
1030  * are flush_tlb_*() routines, and these run after flush_cache_*()
1031  * which performs the flushw.
1032  *
1033  * mm->cpu_vm_mask is a bit mask of which cpus an address
1034  * space has (potentially) executed on, this is the heuristic
1035  * we use to limit cross calls.
1036  */
1037
1038 /* This currently is only used by the hugetlb arch pre-fault
1039  * hook on UltraSPARC-III+ and later when changing the pagesize
1040  * bits of the context register for an address space.
1041  */
1042 void smp_flush_tlb_mm(struct mm_struct *mm)
1043 {
1044         u32 ctx = CTX_HWBITS(mm->context);
1045
1046         get_cpu();
1047
1048         smp_cross_call_masked(&xcall_flush_tlb_mm,
1049                               ctx, 0, 0,
1050                               mm_cpumask(mm));
1051
1052         __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1053
1054         put_cpu();
1055 }
1056
1057 struct tlb_pending_info {
1058         unsigned long ctx;
1059         unsigned long nr;
1060         unsigned long *vaddrs;
1061 };
1062
1063 static void tlb_pending_func(void *info)
1064 {
1065         struct tlb_pending_info *t = info;
1066
1067         __flush_tlb_pending(t->ctx, t->nr, t->vaddrs);
1068 }
1069
1070 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1071 {
1072         u32 ctx = CTX_HWBITS(mm->context);
1073         struct tlb_pending_info info;
1074
1075         get_cpu();
1076
1077         info.ctx = ctx;
1078         info.nr = nr;
1079         info.vaddrs = vaddrs;
1080
1081         smp_call_function_many(mm_cpumask(mm), tlb_pending_func,
1082                                &info, 1);
1083
1084         __flush_tlb_pending(ctx, nr, vaddrs);
1085
1086         put_cpu();
1087 }
1088
1089 void smp_flush_tlb_page(struct mm_struct *mm, unsigned long vaddr)
1090 {
1091         unsigned long context = CTX_HWBITS(mm->context);
1092
1093         get_cpu();
1094
1095         smp_cross_call_masked(&xcall_flush_tlb_page,
1096                               context, vaddr, 0,
1097                               mm_cpumask(mm));
1098
1099         __flush_tlb_page(context, vaddr);
1100
1101         put_cpu();
1102 }
1103
1104 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1105 {
1106         start &= PAGE_MASK;
1107         end    = PAGE_ALIGN(end);
1108         if (start != end) {
1109                 smp_cross_call(&xcall_flush_tlb_kernel_range,
1110                                0, start, end);
1111
1112                 __flush_tlb_kernel_range(start, end);
1113         }
1114 }
1115
1116 /* CPU capture. */
1117 /* #define CAPTURE_DEBUG */
1118 extern unsigned long xcall_capture;
1119
1120 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1121 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1122 static unsigned long penguins_are_doing_time;
1123
1124 void smp_capture(void)
1125 {
1126         int result = atomic_add_return(1, &smp_capture_depth);
1127
1128         if (result == 1) {
1129                 int ncpus = num_online_cpus();
1130
1131 #ifdef CAPTURE_DEBUG
1132                 printk("CPU[%d]: Sending penguins to jail...",
1133                        smp_processor_id());
1134 #endif
1135                 penguins_are_doing_time = 1;
1136                 atomic_inc(&smp_capture_registry);
1137                 smp_cross_call(&xcall_capture, 0, 0, 0);
1138                 while (atomic_read(&smp_capture_registry) != ncpus)
1139                         rmb();
1140 #ifdef CAPTURE_DEBUG
1141                 printk("done\n");
1142 #endif
1143         }
1144 }
1145
1146 void smp_release(void)
1147 {
1148         if (atomic_dec_and_test(&smp_capture_depth)) {
1149 #ifdef CAPTURE_DEBUG
1150                 printk("CPU[%d]: Giving pardon to "
1151                        "imprisoned penguins\n",
1152                        smp_processor_id());
1153 #endif
1154                 penguins_are_doing_time = 0;
1155                 membar_safe("#StoreLoad");
1156                 atomic_dec(&smp_capture_registry);
1157         }
1158 }
1159
1160 /* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1161  * set, so they can service tlb flush xcalls...
1162  */
1163 extern void prom_world(int);
1164
1165 void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
1166 {
1167         clear_softint(1 << irq);
1168
1169         preempt_disable();
1170
1171         __asm__ __volatile__("flushw");
1172         prom_world(1);
1173         atomic_inc(&smp_capture_registry);
1174         membar_safe("#StoreLoad");
1175         while (penguins_are_doing_time)
1176                 rmb();
1177         atomic_dec(&smp_capture_registry);
1178         prom_world(0);
1179
1180         preempt_enable();
1181 }
1182
1183 /* /proc/profile writes can call this, don't __init it please. */
1184 int setup_profiling_timer(unsigned int multiplier)
1185 {
1186         return -EINVAL;
1187 }
1188
1189 void __init smp_prepare_cpus(unsigned int max_cpus)
1190 {
1191 }
1192
1193 void smp_prepare_boot_cpu(void)
1194 {
1195 }
1196
1197 void __init smp_setup_processor_id(void)
1198 {
1199         if (tlb_type == spitfire)
1200                 xcall_deliver_impl = spitfire_xcall_deliver;
1201         else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1202                 xcall_deliver_impl = cheetah_xcall_deliver;
1203         else
1204                 xcall_deliver_impl = hypervisor_xcall_deliver;
1205 }
1206
1207 void smp_fill_in_sib_core_maps(void)
1208 {
1209         unsigned int i;
1210
1211         for_each_present_cpu(i) {
1212                 unsigned int j;
1213
1214                 cpumask_clear(&cpu_core_map[i]);
1215                 if (cpu_data(i).core_id == 0) {
1216                         cpumask_set_cpu(i, &cpu_core_map[i]);
1217                         continue;
1218                 }
1219
1220                 for_each_present_cpu(j) {
1221                         if (cpu_data(i).core_id ==
1222                             cpu_data(j).core_id)
1223                                 cpumask_set_cpu(j, &cpu_core_map[i]);
1224                 }
1225         }
1226
1227         for_each_present_cpu(i)  {
1228                 unsigned int j;
1229
1230                 for_each_present_cpu(j)  {
1231                         if (cpu_data(i).sock_id == cpu_data(j).sock_id)
1232                                 cpumask_set_cpu(j, &cpu_core_sib_map[i]);
1233                 }
1234         }
1235
1236         for_each_present_cpu(i) {
1237                 unsigned int j;
1238
1239                 cpumask_clear(&per_cpu(cpu_sibling_map, i));
1240                 if (cpu_data(i).proc_id == -1) {
1241                         cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i));
1242                         continue;
1243                 }
1244
1245                 for_each_present_cpu(j) {
1246                         if (cpu_data(i).proc_id ==
1247                             cpu_data(j).proc_id)
1248                                 cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i));
1249                 }
1250         }
1251 }
1252
1253 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1254 {
1255         int ret = smp_boot_one_cpu(cpu, tidle);
1256
1257         if (!ret) {
1258                 cpumask_set_cpu(cpu, &smp_commenced_mask);
1259                 while (!cpu_online(cpu))
1260                         mb();
1261                 if (!cpu_online(cpu)) {
1262                         ret = -ENODEV;
1263                 } else {
1264                         /* On SUN4V, writes to %tick and %stick are
1265                          * not allowed.
1266                          */
1267                         if (tlb_type != hypervisor)
1268                                 smp_synchronize_one_tick(cpu);
1269                 }
1270         }
1271         return ret;
1272 }
1273
1274 #ifdef CONFIG_HOTPLUG_CPU
1275 void cpu_play_dead(void)
1276 {
1277         int cpu = smp_processor_id();
1278         unsigned long pstate;
1279
1280         idle_task_exit();
1281
1282         if (tlb_type == hypervisor) {
1283                 struct trap_per_cpu *tb = &trap_block[cpu];
1284
1285                 sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1286                                 tb->cpu_mondo_pa, 0);
1287                 sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1288                                 tb->dev_mondo_pa, 0);
1289                 sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1290                                 tb->resum_mondo_pa, 0);
1291                 sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1292                                 tb->nonresum_mondo_pa, 0);
1293         }
1294
1295         cpumask_clear_cpu(cpu, &smp_commenced_mask);
1296         membar_safe("#Sync");
1297
1298         local_irq_disable();
1299
1300         __asm__ __volatile__(
1301                 "rdpr   %%pstate, %0\n\t"
1302                 "wrpr   %0, %1, %%pstate"
1303                 : "=r" (pstate)
1304                 : "i" (PSTATE_IE));
1305
1306         while (1)
1307                 barrier();
1308 }
1309
1310 int __cpu_disable(void)
1311 {
1312         int cpu = smp_processor_id();
1313         cpuinfo_sparc *c;
1314         int i;
1315
1316         for_each_cpu(i, &cpu_core_map[cpu])
1317                 cpumask_clear_cpu(cpu, &cpu_core_map[i]);
1318         cpumask_clear(&cpu_core_map[cpu]);
1319
1320         for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
1321                 cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
1322         cpumask_clear(&per_cpu(cpu_sibling_map, cpu));
1323
1324         c = &cpu_data(cpu);
1325
1326         c->core_id = 0;
1327         c->proc_id = -1;
1328
1329         smp_wmb();
1330
1331         /* Make sure no interrupts point to this cpu.  */
1332         fixup_irqs();
1333
1334         local_irq_enable();
1335         mdelay(1);
1336         local_irq_disable();
1337
1338         set_cpu_online(cpu, false);
1339
1340         cpu_map_rebuild();
1341
1342         return 0;
1343 }
1344
1345 void __cpu_die(unsigned int cpu)
1346 {
1347         int i;
1348
1349         for (i = 0; i < 100; i++) {
1350                 smp_rmb();
1351                 if (!cpumask_test_cpu(cpu, &smp_commenced_mask))
1352                         break;
1353                 msleep(100);
1354         }
1355         if (cpumask_test_cpu(cpu, &smp_commenced_mask)) {
1356                 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1357         } else {
1358 #if defined(CONFIG_SUN_LDOMS)
1359                 unsigned long hv_err;
1360                 int limit = 100;
1361
1362                 do {
1363                         hv_err = sun4v_cpu_stop(cpu);
1364                         if (hv_err == HV_EOK) {
1365                                 set_cpu_present(cpu, false);
1366                                 break;
1367                         }
1368                 } while (--limit > 0);
1369                 if (limit <= 0) {
1370                         printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1371                                hv_err);
1372                 }
1373 #endif
1374         }
1375 }
1376 #endif
1377
1378 void __init smp_cpus_done(unsigned int max_cpus)
1379 {
1380 }
1381
1382 void smp_send_reschedule(int cpu)
1383 {
1384         if (cpu == smp_processor_id()) {
1385                 WARN_ON_ONCE(preemptible());
1386                 set_softint(1 << PIL_SMP_RECEIVE_SIGNAL);
1387         } else {
1388                 xcall_deliver((u64) &xcall_receive_signal,
1389                               0, 0, cpumask_of(cpu));
1390         }
1391 }
1392
1393 void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
1394 {
1395         clear_softint(1 << irq);
1396         scheduler_ipi();
1397 }
1398
1399 static void stop_this_cpu(void *dummy)
1400 {
1401         prom_stopself();
1402 }
1403
1404 void smp_send_stop(void)
1405 {
1406         int cpu;
1407
1408         if (tlb_type == hypervisor) {
1409                 int this_cpu = smp_processor_id();
1410 #ifdef CONFIG_SERIAL_SUNHV
1411                 sunhv_migrate_hvcons_irq(this_cpu);
1412 #endif
1413                 for_each_online_cpu(cpu) {
1414                         if (cpu == this_cpu)
1415                                 continue;
1416 #ifdef CONFIG_SUN_LDOMS
1417                         if (ldom_domaining_enabled) {
1418                                 unsigned long hv_err;
1419                                 hv_err = sun4v_cpu_stop(cpu);
1420                                 if (hv_err)
1421                                         printk(KERN_ERR "sun4v_cpu_stop() "
1422                                                "failed err=%lu\n", hv_err);
1423                         } else
1424 #endif
1425                                 prom_stopcpu_cpuid(cpu);
1426                 }
1427         } else
1428                 smp_call_function(stop_this_cpu, NULL, 0);
1429 }
1430
1431 /**
1432  * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
1433  * @cpu: cpu to allocate for
1434  * @size: size allocation in bytes
1435  * @align: alignment
1436  *
1437  * Allocate @size bytes aligned at @align for cpu @cpu.  This wrapper
1438  * does the right thing for NUMA regardless of the current
1439  * configuration.
1440  *
1441  * RETURNS:
1442  * Pointer to the allocated area on success, NULL on failure.
1443  */
1444 static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size,
1445                                         size_t align)
1446 {
1447         const unsigned long goal = __pa(MAX_DMA_ADDRESS);
1448 #ifdef CONFIG_NEED_MULTIPLE_NODES
1449         int node = cpu_to_node(cpu);
1450         void *ptr;
1451
1452         if (!node_online(node) || !NODE_DATA(node)) {
1453                 ptr = __alloc_bootmem(size, align, goal);
1454                 pr_info("cpu %d has no node %d or node-local memory\n",
1455                         cpu, node);
1456                 pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
1457                          cpu, size, __pa(ptr));
1458         } else {
1459                 ptr = __alloc_bootmem_node(NODE_DATA(node),
1460                                            size, align, goal);
1461                 pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
1462                          "%016lx\n", cpu, size, node, __pa(ptr));
1463         }
1464         return ptr;
1465 #else
1466         return __alloc_bootmem(size, align, goal);
1467 #endif
1468 }
1469
1470 static void __init pcpu_free_bootmem(void *ptr, size_t size)
1471 {
1472         free_bootmem(__pa(ptr), size);
1473 }
1474
1475 static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
1476 {
1477         if (cpu_to_node(from) == cpu_to_node(to))
1478                 return LOCAL_DISTANCE;
1479         else
1480                 return REMOTE_DISTANCE;
1481 }
1482
1483 static void __init pcpu_populate_pte(unsigned long addr)
1484 {
1485         pgd_t *pgd = pgd_offset_k(addr);
1486         pud_t *pud;
1487         pmd_t *pmd;
1488
1489         if (pgd_none(*pgd)) {
1490                 pud_t *new;
1491
1492                 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1493                 pgd_populate(&init_mm, pgd, new);
1494         }
1495
1496         pud = pud_offset(pgd, addr);
1497         if (pud_none(*pud)) {
1498                 pmd_t *new;
1499
1500                 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1501                 pud_populate(&init_mm, pud, new);
1502         }
1503
1504         pmd = pmd_offset(pud, addr);
1505         if (!pmd_present(*pmd)) {
1506                 pte_t *new;
1507
1508                 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1509                 pmd_populate_kernel(&init_mm, pmd, new);
1510         }
1511 }
1512
1513 void __init setup_per_cpu_areas(void)
1514 {
1515         unsigned long delta;
1516         unsigned int cpu;
1517         int rc = -EINVAL;
1518
1519         if (pcpu_chosen_fc != PCPU_FC_PAGE) {
1520                 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1521                                             PERCPU_DYNAMIC_RESERVE, 4 << 20,
1522                                             pcpu_cpu_distance,
1523                                             pcpu_alloc_bootmem,
1524                                             pcpu_free_bootmem);
1525                 if (rc)
1526                         pr_warning("PERCPU: %s allocator failed (%d), "
1527                                    "falling back to page size\n",
1528                                    pcpu_fc_names[pcpu_chosen_fc], rc);
1529         }
1530         if (rc < 0)
1531                 rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
1532                                            pcpu_alloc_bootmem,
1533                                            pcpu_free_bootmem,
1534                                            pcpu_populate_pte);
1535         if (rc < 0)
1536                 panic("cannot initialize percpu area (err=%d)", rc);
1537
1538         delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1539         for_each_possible_cpu(cpu)
1540                 __per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
1541
1542         /* Setup %g5 for the boot cpu.  */
1543         __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1544
1545         of_fill_in_cpu_data();
1546         if (tlb_type == hypervisor)
1547                 mdesc_fill_in_cpu_data(cpu_all_mask);
1548 }