GNU Linux-libre 4.9.309-gnu1
[releases.git] / arch / sparc / net / bpf_jit_comp.c
1 #include <linux/moduleloader.h>
2 #include <linux/workqueue.h>
3 #include <linux/netdevice.h>
4 #include <linux/filter.h>
5 #include <linux/cache.h>
6 #include <linux/if_vlan.h>
7
8 #include <asm/cacheflush.h>
9 #include <asm/ptrace.h>
10
11 #include "bpf_jit.h"
12
13 static inline bool is_simm13(unsigned int value)
14 {
15         return value + 0x1000 < 0x2000;
16 }
17
18 static void bpf_flush_icache(void *start_, void *end_)
19 {
20 #ifdef CONFIG_SPARC64
21         /* Cheetah's I-cache is fully coherent.  */
22         if (tlb_type == spitfire) {
23                 unsigned long start = (unsigned long) start_;
24                 unsigned long end = (unsigned long) end_;
25
26                 start &= ~7UL;
27                 end = (end + 7UL) & ~7UL;
28                 while (start < end) {
29                         flushi(start);
30                         start += 32;
31                 }
32         }
33 #endif
34 }
35
36 #define SEEN_DATAREF 1 /* might call external helpers */
37 #define SEEN_XREG    2 /* ebx is used */
38 #define SEEN_MEM     4 /* use mem[] for temporary storage */
39
40 #define S13(X)          ((X) & 0x1fff)
41 #define IMMED           0x00002000
42 #define RD(X)           ((X) << 25)
43 #define RS1(X)          ((X) << 14)
44 #define RS2(X)          ((X))
45 #define OP(X)           ((X) << 30)
46 #define OP2(X)          ((X) << 22)
47 #define OP3(X)          ((X) << 19)
48 #define COND(X)         ((X) << 25)
49 #define F1(X)           OP(X)
50 #define F2(X, Y)        (OP(X) | OP2(Y))
51 #define F3(X, Y)        (OP(X) | OP3(Y))
52
53 #define CONDN           COND(0x0)
54 #define CONDE           COND(0x1)
55 #define CONDLE          COND(0x2)
56 #define CONDL           COND(0x3)
57 #define CONDLEU         COND(0x4)
58 #define CONDCS          COND(0x5)
59 #define CONDNEG         COND(0x6)
60 #define CONDVC          COND(0x7)
61 #define CONDA           COND(0x8)
62 #define CONDNE          COND(0x9)
63 #define CONDG           COND(0xa)
64 #define CONDGE          COND(0xb)
65 #define CONDGU          COND(0xc)
66 #define CONDCC          COND(0xd)
67 #define CONDPOS         COND(0xe)
68 #define CONDVS          COND(0xf)
69
70 #define CONDGEU         CONDCC
71 #define CONDLU          CONDCS
72
73 #define WDISP22(X)      (((X) >> 2) & 0x3fffff)
74
75 #define BA              (F2(0, 2) | CONDA)
76 #define BGU             (F2(0, 2) | CONDGU)
77 #define BLEU            (F2(0, 2) | CONDLEU)
78 #define BGEU            (F2(0, 2) | CONDGEU)
79 #define BLU             (F2(0, 2) | CONDLU)
80 #define BE              (F2(0, 2) | CONDE)
81 #define BNE             (F2(0, 2) | CONDNE)
82
83 #ifdef CONFIG_SPARC64
84 #define BE_PTR          (F2(0, 1) | CONDE | (2 << 20))
85 #else
86 #define BE_PTR          BE
87 #endif
88
89 #define SETHI(K, REG)   \
90         (F2(0, 0x4) | RD(REG) | (((K) >> 10) & 0x3fffff))
91 #define OR_LO(K, REG)   \
92         (F3(2, 0x02) | IMMED | RS1(REG) | ((K) & 0x3ff) | RD(REG))
93
94 #define ADD             F3(2, 0x00)
95 #define AND             F3(2, 0x01)
96 #define ANDCC           F3(2, 0x11)
97 #define OR              F3(2, 0x02)
98 #define XOR             F3(2, 0x03)
99 #define SUB             F3(2, 0x04)
100 #define SUBCC           F3(2, 0x14)
101 #define MUL             F3(2, 0x0a)     /* umul */
102 #define DIV             F3(2, 0x0e)     /* udiv */
103 #define SLL             F3(2, 0x25)
104 #define SRL             F3(2, 0x26)
105 #define JMPL            F3(2, 0x38)
106 #define CALL            F1(1)
107 #define BR              F2(0, 0x01)
108 #define RD_Y            F3(2, 0x28)
109 #define WR_Y            F3(2, 0x30)
110
111 #define LD32            F3(3, 0x00)
112 #define LD8             F3(3, 0x01)
113 #define LD16            F3(3, 0x02)
114 #define LD64            F3(3, 0x0b)
115 #define ST32            F3(3, 0x04)
116
117 #ifdef CONFIG_SPARC64
118 #define LDPTR           LD64
119 #define BASE_STACKFRAME 176
120 #else
121 #define LDPTR           LD32
122 #define BASE_STACKFRAME 96
123 #endif
124
125 #define LD32I           (LD32 | IMMED)
126 #define LD8I            (LD8 | IMMED)
127 #define LD16I           (LD16 | IMMED)
128 #define LD64I           (LD64 | IMMED)
129 #define LDPTRI          (LDPTR | IMMED)
130 #define ST32I           (ST32 | IMMED)
131
132 #define emit_nop()              \
133 do {                            \
134         *prog++ = SETHI(0, G0); \
135 } while (0)
136
137 #define emit_neg()                                      \
138 do {    /* sub %g0, r_A, r_A */                         \
139         *prog++ = SUB | RS1(G0) | RS2(r_A) | RD(r_A);   \
140 } while (0)
141
142 #define emit_reg_move(FROM, TO)                         \
143 do {    /* or %g0, FROM, TO */                          \
144         *prog++ = OR | RS1(G0) | RS2(FROM) | RD(TO);    \
145 } while (0)
146
147 #define emit_clear(REG)                                 \
148 do {    /* or %g0, %g0, REG */                          \
149         *prog++ = OR | RS1(G0) | RS2(G0) | RD(REG);     \
150 } while (0)
151
152 #define emit_set_const(K, REG)                                  \
153 do {    /* sethi %hi(K), REG */                                 \
154         *prog++ = SETHI(K, REG);                                \
155         /* or REG, %lo(K), REG */                               \
156         *prog++ = OR_LO(K, REG);                                \
157 } while (0)
158
159         /* Emit
160          *
161          *      OP      r_A, r_X, r_A
162          */
163 #define emit_alu_X(OPCODE)                                      \
164 do {                                                            \
165         seen |= SEEN_XREG;                                      \
166         *prog++ = OPCODE | RS1(r_A) | RS2(r_X) | RD(r_A);       \
167 } while (0)
168
169         /* Emit either:
170          *
171          *      OP      r_A, K, r_A
172          *
173          * or
174          *
175          *      sethi   %hi(K), r_TMP
176          *      or      r_TMP, %lo(K), r_TMP
177          *      OP      r_A, r_TMP, r_A
178          *
179          * depending upon whether K fits in a signed 13-bit
180          * immediate instruction field.  Emit nothing if K
181          * is zero.
182          */
183 #define emit_alu_K(OPCODE, K)                                   \
184 do {                                                            \
185         if (K || OPCODE == AND || OPCODE == MUL) {              \
186                 unsigned int _insn = OPCODE;                    \
187                 _insn |= RS1(r_A) | RD(r_A);                    \
188                 if (is_simm13(K)) {                             \
189                         *prog++ = _insn | IMMED | S13(K);       \
190                 } else {                                        \
191                         emit_set_const(K, r_TMP);               \
192                         *prog++ = _insn | RS2(r_TMP);           \
193                 }                                               \
194         }                                                       \
195 } while (0)
196
197 #define emit_loadimm(K, DEST)                                           \
198 do {                                                                    \
199         if (is_simm13(K)) {                                             \
200                 /* or %g0, K, DEST */                                   \
201                 *prog++ = OR | IMMED | RS1(G0) | S13(K) | RD(DEST);     \
202         } else {                                                        \
203                 emit_set_const(K, DEST);                                \
204         }                                                               \
205 } while (0)
206
207 #define emit_loadptr(BASE, STRUCT, FIELD, DEST)                         \
208 do {    unsigned int _off = offsetof(STRUCT, FIELD);                    \
209         BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(void *));    \
210         *prog++ = LDPTRI | RS1(BASE) | S13(_off) | RD(DEST);            \
211 } while (0)
212
213 #define emit_load32(BASE, STRUCT, FIELD, DEST)                          \
214 do {    unsigned int _off = offsetof(STRUCT, FIELD);                    \
215         BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u32));       \
216         *prog++ = LD32I | RS1(BASE) | S13(_off) | RD(DEST);             \
217 } while (0)
218
219 #define emit_load16(BASE, STRUCT, FIELD, DEST)                          \
220 do {    unsigned int _off = offsetof(STRUCT, FIELD);                    \
221         BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u16));       \
222         *prog++ = LD16I | RS1(BASE) | S13(_off) | RD(DEST);             \
223 } while (0)
224
225 #define __emit_load8(BASE, STRUCT, FIELD, DEST)                         \
226 do {    unsigned int _off = offsetof(STRUCT, FIELD);                    \
227         *prog++ = LD8I | RS1(BASE) | S13(_off) | RD(DEST);              \
228 } while (0)
229
230 #define emit_load8(BASE, STRUCT, FIELD, DEST)                           \
231 do {    BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u8));        \
232         __emit_load8(BASE, STRUCT, FIELD, DEST);                        \
233 } while (0)
234
235 #ifdef CONFIG_SPARC64
236 #define BIAS (STACK_BIAS - 4)
237 #else
238 #define BIAS (-4)
239 #endif
240
241 #define emit_ldmem(OFF, DEST)                                           \
242 do {    *prog++ = LD32I | RS1(SP) | S13(BIAS - (OFF)) | RD(DEST);       \
243 } while (0)
244
245 #define emit_stmem(OFF, SRC)                                            \
246 do {    *prog++ = ST32I | RS1(SP) | S13(BIAS - (OFF)) | RD(SRC);        \
247 } while (0)
248
249 #ifdef CONFIG_SMP
250 #ifdef CONFIG_SPARC64
251 #define emit_load_cpu(REG)                                              \
252         emit_load16(G6, struct thread_info, cpu, REG)
253 #else
254 #define emit_load_cpu(REG)                                              \
255         emit_load32(G6, struct thread_info, cpu, REG)
256 #endif
257 #else
258 #define emit_load_cpu(REG)      emit_clear(REG)
259 #endif
260
261 #define emit_skb_loadptr(FIELD, DEST) \
262         emit_loadptr(r_SKB, struct sk_buff, FIELD, DEST)
263 #define emit_skb_load32(FIELD, DEST) \
264         emit_load32(r_SKB, struct sk_buff, FIELD, DEST)
265 #define emit_skb_load16(FIELD, DEST) \
266         emit_load16(r_SKB, struct sk_buff, FIELD, DEST)
267 #define __emit_skb_load8(FIELD, DEST) \
268         __emit_load8(r_SKB, struct sk_buff, FIELD, DEST)
269 #define emit_skb_load8(FIELD, DEST) \
270         emit_load8(r_SKB, struct sk_buff, FIELD, DEST)
271
272 #define emit_jmpl(BASE, IMM_OFF, LREG) \
273         *prog++ = (JMPL | IMMED | RS1(BASE) | S13(IMM_OFF) | RD(LREG))
274
275 #define emit_call(FUNC)                                 \
276 do {    void *_here = image + addrs[i] - 8;             \
277         unsigned int _off = (void *)(FUNC) - _here;     \
278         *prog++ = CALL | (((_off) >> 2) & 0x3fffffff);  \
279         emit_nop();                                     \
280 } while (0)
281
282 #define emit_branch(BR_OPC, DEST)                       \
283 do {    unsigned int _here = addrs[i] - 8;              \
284         *prog++ = BR_OPC | WDISP22((DEST) - _here);     \
285 } while (0)
286
287 #define emit_branch_off(BR_OPC, OFF)                    \
288 do {    *prog++ = BR_OPC | WDISP22(OFF);                \
289 } while (0)
290
291 #define emit_jump(DEST)         emit_branch(BA, DEST)
292
293 #define emit_read_y(REG)        *prog++ = RD_Y | RD(REG)
294 #define emit_write_y(REG)       *prog++ = WR_Y | IMMED | RS1(REG) | S13(0)
295
296 #define emit_cmp(R1, R2) \
297         *prog++ = (SUBCC | RS1(R1) | RS2(R2) | RD(G0))
298
299 #define emit_cmpi(R1, IMM) \
300         *prog++ = (SUBCC | IMMED | RS1(R1) | S13(IMM) | RD(G0));
301
302 #define emit_btst(R1, R2) \
303         *prog++ = (ANDCC | RS1(R1) | RS2(R2) | RD(G0))
304
305 #define emit_btsti(R1, IMM) \
306         *prog++ = (ANDCC | IMMED | RS1(R1) | S13(IMM) | RD(G0));
307
308 #define emit_sub(R1, R2, R3) \
309         *prog++ = (SUB | RS1(R1) | RS2(R2) | RD(R3))
310
311 #define emit_subi(R1, IMM, R3) \
312         *prog++ = (SUB | IMMED | RS1(R1) | S13(IMM) | RD(R3))
313
314 #define emit_add(R1, R2, R3) \
315         *prog++ = (ADD | RS1(R1) | RS2(R2) | RD(R3))
316
317 #define emit_addi(R1, IMM, R3) \
318         *prog++ = (ADD | IMMED | RS1(R1) | S13(IMM) | RD(R3))
319
320 #define emit_and(R1, R2, R3) \
321         *prog++ = (AND | RS1(R1) | RS2(R2) | RD(R3))
322
323 #define emit_andi(R1, IMM, R3) \
324         *prog++ = (AND | IMMED | RS1(R1) | S13(IMM) | RD(R3))
325
326 #define emit_alloc_stack(SZ) \
327         *prog++ = (SUB | IMMED | RS1(SP) | S13(SZ) | RD(SP))
328
329 #define emit_release_stack(SZ) \
330         *prog++ = (ADD | IMMED | RS1(SP) | S13(SZ) | RD(SP))
331
332 /* A note about branch offset calculations.  The addrs[] array,
333  * indexed by BPF instruction, records the address after all the
334  * sparc instructions emitted for that BPF instruction.
335  *
336  * The most common case is to emit a branch at the end of such
337  * a code sequence.  So this would be two instructions, the
338  * branch and it's delay slot.
339  *
340  * Therefore by default the branch emitters calculate the branch
341  * offset field as:
342  *
343  *      destination - (addrs[i] - 8)
344  *
345  * This "addrs[i] - 8" is the address of the branch itself or
346  * what "." would be in assembler notation.  The "8" part is
347  * how we take into consideration the branch and it's delay
348  * slot mentioned above.
349  *
350  * Sometimes we need to emit a branch earlier in the code
351  * sequence.  And in these situations we adjust "destination"
352  * to accommodate this difference.  For example, if we needed
353  * to emit a branch (and it's delay slot) right before the
354  * final instruction emitted for a BPF opcode, we'd use
355  * "destination + 4" instead of just plain "destination" above.
356  *
357  * This is why you see all of these funny emit_branch() and
358  * emit_jump() calls with adjusted offsets.
359  */
360
361 void bpf_jit_compile(struct bpf_prog *fp)
362 {
363         unsigned int cleanup_addr, proglen, oldproglen = 0;
364         u32 temp[8], *prog, *func, seen = 0, pass;
365         const struct sock_filter *filter = fp->insns;
366         int i, flen = fp->len, pc_ret0 = -1;
367         unsigned int *addrs;
368         void *image;
369
370         if (!bpf_jit_enable)
371                 return;
372
373         addrs = kmalloc(flen * sizeof(*addrs), GFP_KERNEL);
374         if (addrs == NULL)
375                 return;
376
377         /* Before first pass, make a rough estimation of addrs[]
378          * each bpf instruction is translated to less than 64 bytes
379          */
380         for (proglen = 0, i = 0; i < flen; i++) {
381                 proglen += 64;
382                 addrs[i] = proglen;
383         }
384         cleanup_addr = proglen; /* epilogue address */
385         image = NULL;
386         for (pass = 0; pass < 10; pass++) {
387                 u8 seen_or_pass0 = (pass == 0) ? (SEEN_XREG | SEEN_DATAREF | SEEN_MEM) : seen;
388
389                 /* no prologue/epilogue for trivial filters (RET something) */
390                 proglen = 0;
391                 prog = temp;
392
393                 /* Prologue */
394                 if (seen_or_pass0) {
395                         if (seen_or_pass0 & SEEN_MEM) {
396                                 unsigned int sz = BASE_STACKFRAME;
397                                 sz += BPF_MEMWORDS * sizeof(u32);
398                                 emit_alloc_stack(sz);
399                         }
400
401                         /* Make sure we dont leek kernel memory. */
402                         if (seen_or_pass0 & SEEN_XREG)
403                                 emit_clear(r_X);
404
405                         /* If this filter needs to access skb data,
406                          * load %o4 and %o5 with:
407                          *  %o4 = skb->len - skb->data_len
408                          *  %o5 = skb->data
409                          * And also back up %o7 into r_saved_O7 so we can
410                          * invoke the stubs using 'call'.
411                          */
412                         if (seen_or_pass0 & SEEN_DATAREF) {
413                                 emit_load32(r_SKB, struct sk_buff, len, r_HEADLEN);
414                                 emit_load32(r_SKB, struct sk_buff, data_len, r_TMP);
415                                 emit_sub(r_HEADLEN, r_TMP, r_HEADLEN);
416                                 emit_loadptr(r_SKB, struct sk_buff, data, r_SKB_DATA);
417                         }
418                 }
419                 emit_reg_move(O7, r_saved_O7);
420
421                 /* Make sure we dont leak kernel information to the user. */
422                 if (bpf_needs_clear_a(&filter[0]))
423                         emit_clear(r_A); /* A = 0 */
424
425                 for (i = 0; i < flen; i++) {
426                         unsigned int K = filter[i].k;
427                         unsigned int t_offset;
428                         unsigned int f_offset;
429                         u32 t_op, f_op;
430                         u16 code = bpf_anc_helper(&filter[i]);
431                         int ilen;
432
433                         switch (code) {
434                         case BPF_ALU | BPF_ADD | BPF_X: /* A += X; */
435                                 emit_alu_X(ADD);
436                                 break;
437                         case BPF_ALU | BPF_ADD | BPF_K: /* A += K; */
438                                 emit_alu_K(ADD, K);
439                                 break;
440                         case BPF_ALU | BPF_SUB | BPF_X: /* A -= X; */
441                                 emit_alu_X(SUB);
442                                 break;
443                         case BPF_ALU | BPF_SUB | BPF_K: /* A -= K */
444                                 emit_alu_K(SUB, K);
445                                 break;
446                         case BPF_ALU | BPF_AND | BPF_X: /* A &= X */
447                                 emit_alu_X(AND);
448                                 break;
449                         case BPF_ALU | BPF_AND | BPF_K: /* A &= K */
450                                 emit_alu_K(AND, K);
451                                 break;
452                         case BPF_ALU | BPF_OR | BPF_X:  /* A |= X */
453                                 emit_alu_X(OR);
454                                 break;
455                         case BPF_ALU | BPF_OR | BPF_K:  /* A |= K */
456                                 emit_alu_K(OR, K);
457                                 break;
458                         case BPF_ANC | SKF_AD_ALU_XOR_X: /* A ^= X; */
459                         case BPF_ALU | BPF_XOR | BPF_X:
460                                 emit_alu_X(XOR);
461                                 break;
462                         case BPF_ALU | BPF_XOR | BPF_K: /* A ^= K */
463                                 emit_alu_K(XOR, K);
464                                 break;
465                         case BPF_ALU | BPF_LSH | BPF_X: /* A <<= X */
466                                 emit_alu_X(SLL);
467                                 break;
468                         case BPF_ALU | BPF_LSH | BPF_K: /* A <<= K */
469                                 emit_alu_K(SLL, K);
470                                 break;
471                         case BPF_ALU | BPF_RSH | BPF_X: /* A >>= X */
472                                 emit_alu_X(SRL);
473                                 break;
474                         case BPF_ALU | BPF_RSH | BPF_K: /* A >>= K */
475                                 emit_alu_K(SRL, K);
476                                 break;
477                         case BPF_ALU | BPF_MUL | BPF_X: /* A *= X; */
478                                 emit_alu_X(MUL);
479                                 break;
480                         case BPF_ALU | BPF_MUL | BPF_K: /* A *= K */
481                                 emit_alu_K(MUL, K);
482                                 break;
483                         case BPF_ALU | BPF_DIV | BPF_K: /* A /= K with K != 0*/
484                                 if (K == 1)
485                                         break;
486                                 emit_write_y(G0);
487 #ifdef CONFIG_SPARC32
488                                 /* The Sparc v8 architecture requires
489                                  * three instructions between a %y
490                                  * register write and the first use.
491                                  */
492                                 emit_nop();
493                                 emit_nop();
494                                 emit_nop();
495 #endif
496                                 emit_alu_K(DIV, K);
497                                 break;
498                         case BPF_ALU | BPF_DIV | BPF_X: /* A /= X; */
499                                 emit_cmpi(r_X, 0);
500                                 if (pc_ret0 > 0) {
501                                         t_offset = addrs[pc_ret0 - 1];
502 #ifdef CONFIG_SPARC32
503                                         emit_branch(BE, t_offset + 20);
504 #else
505                                         emit_branch(BE, t_offset + 8);
506 #endif
507                                         emit_nop(); /* delay slot */
508                                 } else {
509                                         emit_branch_off(BNE, 16);
510                                         emit_nop();
511 #ifdef CONFIG_SPARC32
512                                         emit_jump(cleanup_addr + 20);
513 #else
514                                         emit_jump(cleanup_addr + 8);
515 #endif
516                                         emit_clear(r_A);
517                                 }
518                                 emit_write_y(G0);
519 #ifdef CONFIG_SPARC32
520                                 /* The Sparc v8 architecture requires
521                                  * three instructions between a %y
522                                  * register write and the first use.
523                                  */
524                                 emit_nop();
525                                 emit_nop();
526                                 emit_nop();
527 #endif
528                                 emit_alu_X(DIV);
529                                 break;
530                         case BPF_ALU | BPF_NEG:
531                                 emit_neg();
532                                 break;
533                         case BPF_RET | BPF_K:
534                                 if (!K) {
535                                         if (pc_ret0 == -1)
536                                                 pc_ret0 = i;
537                                         emit_clear(r_A);
538                                 } else {
539                                         emit_loadimm(K, r_A);
540                                 }
541                                 /* Fallthrough */
542                         case BPF_RET | BPF_A:
543                                 if (seen_or_pass0) {
544                                         if (i != flen - 1) {
545                                                 emit_jump(cleanup_addr);
546                                                 emit_nop();
547                                                 break;
548                                         }
549                                         if (seen_or_pass0 & SEEN_MEM) {
550                                                 unsigned int sz = BASE_STACKFRAME;
551                                                 sz += BPF_MEMWORDS * sizeof(u32);
552                                                 emit_release_stack(sz);
553                                         }
554                                 }
555                                 /* jmpl %r_saved_O7 + 8, %g0 */
556                                 emit_jmpl(r_saved_O7, 8, G0);
557                                 emit_reg_move(r_A, O0); /* delay slot */
558                                 break;
559                         case BPF_MISC | BPF_TAX:
560                                 seen |= SEEN_XREG;
561                                 emit_reg_move(r_A, r_X);
562                                 break;
563                         case BPF_MISC | BPF_TXA:
564                                 seen |= SEEN_XREG;
565                                 emit_reg_move(r_X, r_A);
566                                 break;
567                         case BPF_ANC | SKF_AD_CPU:
568                                 emit_load_cpu(r_A);
569                                 break;
570                         case BPF_ANC | SKF_AD_PROTOCOL:
571                                 emit_skb_load16(protocol, r_A);
572                                 break;
573                         case BPF_ANC | SKF_AD_PKTTYPE:
574                                 __emit_skb_load8(__pkt_type_offset, r_A);
575                                 emit_andi(r_A, PKT_TYPE_MAX, r_A);
576                                 emit_alu_K(SRL, 5);
577                                 break;
578                         case BPF_ANC | SKF_AD_IFINDEX:
579                                 emit_skb_loadptr(dev, r_A);
580                                 emit_cmpi(r_A, 0);
581                                 emit_branch(BE_PTR, cleanup_addr + 4);
582                                 emit_nop();
583                                 emit_load32(r_A, struct net_device, ifindex, r_A);
584                                 break;
585                         case BPF_ANC | SKF_AD_MARK:
586                                 emit_skb_load32(mark, r_A);
587                                 break;
588                         case BPF_ANC | SKF_AD_QUEUE:
589                                 emit_skb_load16(queue_mapping, r_A);
590                                 break;
591                         case BPF_ANC | SKF_AD_HATYPE:
592                                 emit_skb_loadptr(dev, r_A);
593                                 emit_cmpi(r_A, 0);
594                                 emit_branch(BE_PTR, cleanup_addr + 4);
595                                 emit_nop();
596                                 emit_load16(r_A, struct net_device, type, r_A);
597                                 break;
598                         case BPF_ANC | SKF_AD_RXHASH:
599                                 emit_skb_load32(hash, r_A);
600                                 break;
601                         case BPF_ANC | SKF_AD_VLAN_TAG:
602                         case BPF_ANC | SKF_AD_VLAN_TAG_PRESENT:
603                                 emit_skb_load16(vlan_tci, r_A);
604                                 if (code != (BPF_ANC | SKF_AD_VLAN_TAG)) {
605                                         emit_alu_K(SRL, 12);
606                                         emit_andi(r_A, 1, r_A);
607                                 } else {
608                                         emit_loadimm(~VLAN_TAG_PRESENT, r_TMP);
609                                         emit_and(r_A, r_TMP, r_A);
610                                 }
611                                 break;
612                         case BPF_LD | BPF_W | BPF_LEN:
613                                 emit_skb_load32(len, r_A);
614                                 break;
615                         case BPF_LDX | BPF_W | BPF_LEN:
616                                 emit_skb_load32(len, r_X);
617                                 break;
618                         case BPF_LD | BPF_IMM:
619                                 emit_loadimm(K, r_A);
620                                 break;
621                         case BPF_LDX | BPF_IMM:
622                                 emit_loadimm(K, r_X);
623                                 break;
624                         case BPF_LD | BPF_MEM:
625                                 seen |= SEEN_MEM;
626                                 emit_ldmem(K * 4, r_A);
627                                 break;
628                         case BPF_LDX | BPF_MEM:
629                                 seen |= SEEN_MEM | SEEN_XREG;
630                                 emit_ldmem(K * 4, r_X);
631                                 break;
632                         case BPF_ST:
633                                 seen |= SEEN_MEM;
634                                 emit_stmem(K * 4, r_A);
635                                 break;
636                         case BPF_STX:
637                                 seen |= SEEN_MEM | SEEN_XREG;
638                                 emit_stmem(K * 4, r_X);
639                                 break;
640
641 #define CHOOSE_LOAD_FUNC(K, func) \
642         ((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
643
644                         case BPF_LD | BPF_W | BPF_ABS:
645                                 func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_word);
646 common_load:                    seen |= SEEN_DATAREF;
647                                 emit_loadimm(K, r_OFF);
648                                 emit_call(func);
649                                 break;
650                         case BPF_LD | BPF_H | BPF_ABS:
651                                 func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_half);
652                                 goto common_load;
653                         case BPF_LD | BPF_B | BPF_ABS:
654                                 func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_byte);
655                                 goto common_load;
656                         case BPF_LDX | BPF_B | BPF_MSH:
657                                 func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_byte_msh);
658                                 goto common_load;
659                         case BPF_LD | BPF_W | BPF_IND:
660                                 func = bpf_jit_load_word;
661 common_load_ind:                seen |= SEEN_DATAREF | SEEN_XREG;
662                                 if (K) {
663                                         if (is_simm13(K)) {
664                                                 emit_addi(r_X, K, r_OFF);
665                                         } else {
666                                                 emit_loadimm(K, r_TMP);
667                                                 emit_add(r_X, r_TMP, r_OFF);
668                                         }
669                                 } else {
670                                         emit_reg_move(r_X, r_OFF);
671                                 }
672                                 emit_call(func);
673                                 break;
674                         case BPF_LD | BPF_H | BPF_IND:
675                                 func = bpf_jit_load_half;
676                                 goto common_load_ind;
677                         case BPF_LD | BPF_B | BPF_IND:
678                                 func = bpf_jit_load_byte;
679                                 goto common_load_ind;
680                         case BPF_JMP | BPF_JA:
681                                 emit_jump(addrs[i + K]);
682                                 emit_nop();
683                                 break;
684
685 #define COND_SEL(CODE, TOP, FOP)        \
686         case CODE:                      \
687                 t_op = TOP;             \
688                 f_op = FOP;             \
689                 goto cond_branch
690
691                         COND_SEL(BPF_JMP | BPF_JGT | BPF_K, BGU, BLEU);
692                         COND_SEL(BPF_JMP | BPF_JGE | BPF_K, BGEU, BLU);
693                         COND_SEL(BPF_JMP | BPF_JEQ | BPF_K, BE, BNE);
694                         COND_SEL(BPF_JMP | BPF_JSET | BPF_K, BNE, BE);
695                         COND_SEL(BPF_JMP | BPF_JGT | BPF_X, BGU, BLEU);
696                         COND_SEL(BPF_JMP | BPF_JGE | BPF_X, BGEU, BLU);
697                         COND_SEL(BPF_JMP | BPF_JEQ | BPF_X, BE, BNE);
698                         COND_SEL(BPF_JMP | BPF_JSET | BPF_X, BNE, BE);
699
700 cond_branch:                    f_offset = addrs[i + filter[i].jf];
701                                 t_offset = addrs[i + filter[i].jt];
702
703                                 /* same targets, can avoid doing the test :) */
704                                 if (filter[i].jt == filter[i].jf) {
705                                         emit_jump(t_offset);
706                                         emit_nop();
707                                         break;
708                                 }
709
710                                 switch (code) {
711                                 case BPF_JMP | BPF_JGT | BPF_X:
712                                 case BPF_JMP | BPF_JGE | BPF_X:
713                                 case BPF_JMP | BPF_JEQ | BPF_X:
714                                         seen |= SEEN_XREG;
715                                         emit_cmp(r_A, r_X);
716                                         break;
717                                 case BPF_JMP | BPF_JSET | BPF_X:
718                                         seen |= SEEN_XREG;
719                                         emit_btst(r_A, r_X);
720                                         break;
721                                 case BPF_JMP | BPF_JEQ | BPF_K:
722                                 case BPF_JMP | BPF_JGT | BPF_K:
723                                 case BPF_JMP | BPF_JGE | BPF_K:
724                                         if (is_simm13(K)) {
725                                                 emit_cmpi(r_A, K);
726                                         } else {
727                                                 emit_loadimm(K, r_TMP);
728                                                 emit_cmp(r_A, r_TMP);
729                                         }
730                                         break;
731                                 case BPF_JMP | BPF_JSET | BPF_K:
732                                         if (is_simm13(K)) {
733                                                 emit_btsti(r_A, K);
734                                         } else {
735                                                 emit_loadimm(K, r_TMP);
736                                                 emit_btst(r_A, r_TMP);
737                                         }
738                                         break;
739                                 }
740                                 if (filter[i].jt != 0) {
741                                         if (filter[i].jf)
742                                                 t_offset += 8;
743                                         emit_branch(t_op, t_offset);
744                                         emit_nop(); /* delay slot */
745                                         if (filter[i].jf) {
746                                                 emit_jump(f_offset);
747                                                 emit_nop();
748                                         }
749                                         break;
750                                 }
751                                 emit_branch(f_op, f_offset);
752                                 emit_nop(); /* delay slot */
753                                 break;
754
755                         default:
756                                 /* hmm, too complex filter, give up with jit compiler */
757                                 goto out;
758                         }
759                         ilen = (void *) prog - (void *) temp;
760                         if (image) {
761                                 if (unlikely(proglen + ilen > oldproglen)) {
762                                         pr_err("bpb_jit_compile fatal error\n");
763                                         kfree(addrs);
764                                         module_memfree(image);
765                                         return;
766                                 }
767                                 memcpy(image + proglen, temp, ilen);
768                         }
769                         proglen += ilen;
770                         addrs[i] = proglen;
771                         prog = temp;
772                 }
773                 /* last bpf instruction is always a RET :
774                  * use it to give the cleanup instruction(s) addr
775                  */
776                 cleanup_addr = proglen - 8; /* jmpl; mov r_A,%o0; */
777                 if (seen_or_pass0 & SEEN_MEM)
778                         cleanup_addr -= 4; /* add %sp, X, %sp; */
779
780                 if (image) {
781                         if (proglen != oldproglen)
782                                 pr_err("bpb_jit_compile proglen=%u != oldproglen=%u\n",
783                                        proglen, oldproglen);
784                         break;
785                 }
786                 if (proglen == oldproglen) {
787                         image = module_alloc(proglen);
788                         if (!image)
789                                 goto out;
790                 }
791                 oldproglen = proglen;
792         }
793
794         if (bpf_jit_enable > 1)
795                 bpf_jit_dump(flen, proglen, pass + 1, image);
796
797         if (image) {
798                 bpf_flush_icache(image, image + proglen);
799                 fp->bpf_func = (void *)image;
800                 fp->jited = 1;
801         }
802 out:
803         kfree(addrs);
804         return;
805 }
806
807 void bpf_jit_free(struct bpf_prog *fp)
808 {
809         if (fp->jited)
810                 module_memfree(fp->bpf_func);
811
812         bpf_prog_unlock_free(fp);
813 }