GNU Linux-libre 4.19.286-gnu1
[releases.git] / arch / x86 / kernel / cpu / common.c
1 /* cpu_feature_enabled() cannot be used this early */
2 #define USE_EARLY_PGTABLE_L5
3
4 #include <linux/bootmem.h>
5 #include <linux/linkage.h>
6 #include <linux/bitops.h>
7 #include <linux/kernel.h>
8 #include <linux/export.h>
9 #include <linux/percpu.h>
10 #include <linux/string.h>
11 #include <linux/ctype.h>
12 #include <linux/delay.h>
13 #include <linux/sched/mm.h>
14 #include <linux/sched/clock.h>
15 #include <linux/sched/task.h>
16 #include <linux/init.h>
17 #include <linux/kprobes.h>
18 #include <linux/kgdb.h>
19 #include <linux/smp.h>
20 #include <linux/io.h>
21 #include <linux/syscore_ops.h>
22
23 #include <asm/stackprotector.h>
24 #include <asm/perf_event.h>
25 #include <asm/mmu_context.h>
26 #include <asm/archrandom.h>
27 #include <asm/hypervisor.h>
28 #include <asm/processor.h>
29 #include <asm/tlbflush.h>
30 #include <asm/debugreg.h>
31 #include <asm/sections.h>
32 #include <asm/vsyscall.h>
33 #include <linux/topology.h>
34 #include <linux/cpumask.h>
35 #include <asm/pgtable.h>
36 #include <linux/atomic.h>
37 #include <asm/proto.h>
38 #include <asm/setup.h>
39 #include <asm/apic.h>
40 #include <asm/desc.h>
41 #include <asm/fpu/internal.h>
42 #include <asm/mtrr.h>
43 #include <asm/hwcap2.h>
44 #include <linux/numa.h>
45 #include <asm/asm.h>
46 #include <asm/bugs.h>
47 #include <asm/cpu.h>
48 #include <asm/mce.h>
49 #include <asm/msr.h>
50 #include <asm/pat.h>
51 #include <asm/microcode.h>
52 #include <asm/microcode_intel.h>
53 #include <asm/intel-family.h>
54 #include <asm/cpu_device_id.h>
55
56 #ifdef CONFIG_X86_LOCAL_APIC
57 #include <asm/uv/uv.h>
58 #endif
59
60 #include "cpu.h"
61
62 u32 elf_hwcap2 __read_mostly;
63
64 /* all of these masks are initialized in setup_cpu_local_masks() */
65 cpumask_var_t cpu_initialized_mask;
66 cpumask_var_t cpu_callout_mask;
67 cpumask_var_t cpu_callin_mask;
68
69 /* representing cpus for which sibling maps can be computed */
70 cpumask_var_t cpu_sibling_setup_mask;
71
72 /* Number of siblings per CPU package */
73 int smp_num_siblings = 1;
74 EXPORT_SYMBOL(smp_num_siblings);
75
76 /* Last level cache ID of each logical CPU */
77 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
78
79 /* correctly size the local cpu masks */
80 void __init setup_cpu_local_masks(void)
81 {
82         alloc_bootmem_cpumask_var(&cpu_initialized_mask);
83         alloc_bootmem_cpumask_var(&cpu_callin_mask);
84         alloc_bootmem_cpumask_var(&cpu_callout_mask);
85         alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
86 }
87
88 static void default_init(struct cpuinfo_x86 *c)
89 {
90 #ifdef CONFIG_X86_64
91         cpu_detect_cache_sizes(c);
92 #else
93         /* Not much we can do here... */
94         /* Check if at least it has cpuid */
95         if (c->cpuid_level == -1) {
96                 /* No cpuid. It must be an ancient CPU */
97                 if (c->x86 == 4)
98                         strcpy(c->x86_model_id, "486");
99                 else if (c->x86 == 3)
100                         strcpy(c->x86_model_id, "386");
101         }
102 #endif
103 }
104
105 static const struct cpu_dev default_cpu = {
106         .c_init         = default_init,
107         .c_vendor       = "Unknown",
108         .c_x86_vendor   = X86_VENDOR_UNKNOWN,
109 };
110
111 static const struct cpu_dev *this_cpu = &default_cpu;
112
113 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
114 #ifdef CONFIG_X86_64
115         /*
116          * We need valid kernel segments for data and code in long mode too
117          * IRET will check the segment types  kkeil 2000/10/28
118          * Also sysret mandates a special GDT layout
119          *
120          * TLS descriptors are currently at a different place compared to i386.
121          * Hopefully nobody expects them at a fixed place (Wine?)
122          */
123         [GDT_ENTRY_KERNEL32_CS]         = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
124         [GDT_ENTRY_KERNEL_CS]           = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
125         [GDT_ENTRY_KERNEL_DS]           = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
126         [GDT_ENTRY_DEFAULT_USER32_CS]   = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
127         [GDT_ENTRY_DEFAULT_USER_DS]     = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
128         [GDT_ENTRY_DEFAULT_USER_CS]     = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
129 #else
130         [GDT_ENTRY_KERNEL_CS]           = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
131         [GDT_ENTRY_KERNEL_DS]           = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
132         [GDT_ENTRY_DEFAULT_USER_CS]     = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
133         [GDT_ENTRY_DEFAULT_USER_DS]     = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
134         /*
135          * Segments used for calling PnP BIOS have byte granularity.
136          * They code segments and data segments have fixed 64k limits,
137          * the transfer segment sizes are set at run time.
138          */
139         /* 32-bit code */
140         [GDT_ENTRY_PNPBIOS_CS32]        = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
141         /* 16-bit code */
142         [GDT_ENTRY_PNPBIOS_CS16]        = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
143         /* 16-bit data */
144         [GDT_ENTRY_PNPBIOS_DS]          = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
145         /* 16-bit data */
146         [GDT_ENTRY_PNPBIOS_TS1]         = GDT_ENTRY_INIT(0x0092, 0, 0),
147         /* 16-bit data */
148         [GDT_ENTRY_PNPBIOS_TS2]         = GDT_ENTRY_INIT(0x0092, 0, 0),
149         /*
150          * The APM segments have byte granularity and their bases
151          * are set at run time.  All have 64k limits.
152          */
153         /* 32-bit code */
154         [GDT_ENTRY_APMBIOS_BASE]        = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
155         /* 16-bit code */
156         [GDT_ENTRY_APMBIOS_BASE+1]      = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
157         /* data */
158         [GDT_ENTRY_APMBIOS_BASE+2]      = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
159
160         [GDT_ENTRY_ESPFIX_SS]           = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
161         [GDT_ENTRY_PERCPU]              = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
162         GDT_STACK_CANARY_INIT
163 #endif
164 } };
165 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
166
167 static int __init x86_mpx_setup(char *s)
168 {
169         /* require an exact match without trailing characters */
170         if (strlen(s))
171                 return 0;
172
173         /* do not emit a message if the feature is not present */
174         if (!boot_cpu_has(X86_FEATURE_MPX))
175                 return 1;
176
177         setup_clear_cpu_cap(X86_FEATURE_MPX);
178         pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
179         return 1;
180 }
181 __setup("nompx", x86_mpx_setup);
182
183 #ifdef CONFIG_X86_64
184 static int __init x86_nopcid_setup(char *s)
185 {
186         /* nopcid doesn't accept parameters */
187         if (s)
188                 return -EINVAL;
189
190         /* do not emit a message if the feature is not present */
191         if (!boot_cpu_has(X86_FEATURE_PCID))
192                 return 0;
193
194         setup_clear_cpu_cap(X86_FEATURE_PCID);
195         pr_info("nopcid: PCID feature disabled\n");
196         return 0;
197 }
198 early_param("nopcid", x86_nopcid_setup);
199 #endif
200
201 static int __init x86_noinvpcid_setup(char *s)
202 {
203         /* noinvpcid doesn't accept parameters */
204         if (s)
205                 return -EINVAL;
206
207         /* do not emit a message if the feature is not present */
208         if (!boot_cpu_has(X86_FEATURE_INVPCID))
209                 return 0;
210
211         setup_clear_cpu_cap(X86_FEATURE_INVPCID);
212         pr_info("noinvpcid: INVPCID feature disabled\n");
213         return 0;
214 }
215 early_param("noinvpcid", x86_noinvpcid_setup);
216
217 #ifdef CONFIG_X86_32
218 static int cachesize_override = -1;
219 static int disable_x86_serial_nr = 1;
220
221 static int __init cachesize_setup(char *str)
222 {
223         get_option(&str, &cachesize_override);
224         return 1;
225 }
226 __setup("cachesize=", cachesize_setup);
227
228 static int __init x86_sep_setup(char *s)
229 {
230         setup_clear_cpu_cap(X86_FEATURE_SEP);
231         return 1;
232 }
233 __setup("nosep", x86_sep_setup);
234
235 /* Standard macro to see if a specific flag is changeable */
236 static inline int flag_is_changeable_p(u32 flag)
237 {
238         u32 f1, f2;
239
240         /*
241          * Cyrix and IDT cpus allow disabling of CPUID
242          * so the code below may return different results
243          * when it is executed before and after enabling
244          * the CPUID. Add "volatile" to not allow gcc to
245          * optimize the subsequent calls to this function.
246          */
247         asm volatile ("pushfl           \n\t"
248                       "pushfl           \n\t"
249                       "popl %0          \n\t"
250                       "movl %0, %1      \n\t"
251                       "xorl %2, %0      \n\t"
252                       "pushl %0         \n\t"
253                       "popfl            \n\t"
254                       "pushfl           \n\t"
255                       "popl %0          \n\t"
256                       "popfl            \n\t"
257
258                       : "=&r" (f1), "=&r" (f2)
259                       : "ir" (flag));
260
261         return ((f1^f2) & flag) != 0;
262 }
263
264 /* Probe for the CPUID instruction */
265 int have_cpuid_p(void)
266 {
267         return flag_is_changeable_p(X86_EFLAGS_ID);
268 }
269
270 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
271 {
272         unsigned long lo, hi;
273
274         if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
275                 return;
276
277         /* Disable processor serial number: */
278
279         rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
280         lo |= 0x200000;
281         wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
282
283         pr_notice("CPU serial number disabled.\n");
284         clear_cpu_cap(c, X86_FEATURE_PN);
285
286         /* Disabling the serial number may affect the cpuid level */
287         c->cpuid_level = cpuid_eax(0);
288 }
289
290 static int __init x86_serial_nr_setup(char *s)
291 {
292         disable_x86_serial_nr = 0;
293         return 1;
294 }
295 __setup("serialnumber", x86_serial_nr_setup);
296 #else
297 static inline int flag_is_changeable_p(u32 flag)
298 {
299         return 1;
300 }
301 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
302 {
303 }
304 #endif
305
306 static __init int setup_disable_smep(char *arg)
307 {
308         setup_clear_cpu_cap(X86_FEATURE_SMEP);
309         /* Check for things that depend on SMEP being enabled: */
310         check_mpx_erratum(&boot_cpu_data);
311         return 1;
312 }
313 __setup("nosmep", setup_disable_smep);
314
315 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
316 {
317         if (cpu_has(c, X86_FEATURE_SMEP))
318                 cr4_set_bits(X86_CR4_SMEP);
319 }
320
321 static __init int setup_disable_smap(char *arg)
322 {
323         setup_clear_cpu_cap(X86_FEATURE_SMAP);
324         return 1;
325 }
326 __setup("nosmap", setup_disable_smap);
327
328 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
329 {
330         unsigned long eflags = native_save_fl();
331
332         /* This should have been cleared long ago */
333         BUG_ON(eflags & X86_EFLAGS_AC);
334
335         if (cpu_has(c, X86_FEATURE_SMAP)) {
336 #ifdef CONFIG_X86_SMAP
337                 cr4_set_bits(X86_CR4_SMAP);
338 #else
339                 cr4_clear_bits(X86_CR4_SMAP);
340 #endif
341         }
342 }
343
344 static __always_inline void setup_umip(struct cpuinfo_x86 *c)
345 {
346         /* Check the boot processor, plus build option for UMIP. */
347         if (!cpu_feature_enabled(X86_FEATURE_UMIP))
348                 goto out;
349
350         /* Check the current processor's cpuid bits. */
351         if (!cpu_has(c, X86_FEATURE_UMIP))
352                 goto out;
353
354         cr4_set_bits(X86_CR4_UMIP);
355
356         pr_info("x86/cpu: Activated the Intel User Mode Instruction Prevention (UMIP) CPU feature\n");
357
358         return;
359
360 out:
361         /*
362          * Make sure UMIP is disabled in case it was enabled in a
363          * previous boot (e.g., via kexec).
364          */
365         cr4_clear_bits(X86_CR4_UMIP);
366 }
367
368 /*
369  * Protection Keys are not available in 32-bit mode.
370  */
371 static bool pku_disabled;
372
373 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
374 {
375         /* check the boot processor, plus compile options for PKU: */
376         if (!cpu_feature_enabled(X86_FEATURE_PKU))
377                 return;
378         /* checks the actual processor's cpuid bits: */
379         if (!cpu_has(c, X86_FEATURE_PKU))
380                 return;
381         if (pku_disabled)
382                 return;
383
384         cr4_set_bits(X86_CR4_PKE);
385         /*
386          * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
387          * cpuid bit to be set.  We need to ensure that we
388          * update that bit in this CPU's "cpu_info".
389          */
390         set_cpu_cap(c, X86_FEATURE_OSPKE);
391 }
392
393 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
394 static __init int setup_disable_pku(char *arg)
395 {
396         /*
397          * Do not clear the X86_FEATURE_PKU bit.  All of the
398          * runtime checks are against OSPKE so clearing the
399          * bit does nothing.
400          *
401          * This way, we will see "pku" in cpuinfo, but not
402          * "ospke", which is exactly what we want.  It shows
403          * that the CPU has PKU, but the OS has not enabled it.
404          * This happens to be exactly how a system would look
405          * if we disabled the config option.
406          */
407         pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
408         pku_disabled = true;
409         return 1;
410 }
411 __setup("nopku", setup_disable_pku);
412 #endif /* CONFIG_X86_64 */
413
414 /*
415  * Some CPU features depend on higher CPUID levels, which may not always
416  * be available due to CPUID level capping or broken virtualization
417  * software.  Add those features to this table to auto-disable them.
418  */
419 struct cpuid_dependent_feature {
420         u32 feature;
421         u32 level;
422 };
423
424 static const struct cpuid_dependent_feature
425 cpuid_dependent_features[] = {
426         { X86_FEATURE_MWAIT,            0x00000005 },
427         { X86_FEATURE_DCA,              0x00000009 },
428         { X86_FEATURE_XSAVE,            0x0000000d },
429         { 0, 0 }
430 };
431
432 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
433 {
434         const struct cpuid_dependent_feature *df;
435
436         for (df = cpuid_dependent_features; df->feature; df++) {
437
438                 if (!cpu_has(c, df->feature))
439                         continue;
440                 /*
441                  * Note: cpuid_level is set to -1 if unavailable, but
442                  * extended_extended_level is set to 0 if unavailable
443                  * and the legitimate extended levels are all negative
444                  * when signed; hence the weird messing around with
445                  * signs here...
446                  */
447                 if (!((s32)df->level < 0 ?
448                      (u32)df->level > (u32)c->extended_cpuid_level :
449                      (s32)df->level > (s32)c->cpuid_level))
450                         continue;
451
452                 clear_cpu_cap(c, df->feature);
453                 if (!warn)
454                         continue;
455
456                 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
457                         x86_cap_flag(df->feature), df->level);
458         }
459 }
460
461 /*
462  * Naming convention should be: <Name> [(<Codename>)]
463  * This table only is used unless init_<vendor>() below doesn't set it;
464  * in particular, if CPUID levels 0x80000002..4 are supported, this
465  * isn't used
466  */
467
468 /* Look up CPU names by table lookup. */
469 static const char *table_lookup_model(struct cpuinfo_x86 *c)
470 {
471 #ifdef CONFIG_X86_32
472         const struct legacy_cpu_model_info *info;
473
474         if (c->x86_model >= 16)
475                 return NULL;    /* Range check */
476
477         if (!this_cpu)
478                 return NULL;
479
480         info = this_cpu->legacy_models;
481
482         while (info->family) {
483                 if (info->family == c->x86)
484                         return info->model_names[c->x86_model];
485                 info++;
486         }
487 #endif
488         return NULL;            /* Not found */
489 }
490
491 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS];
492 __u32 cpu_caps_set[NCAPINTS + NBUGINTS];
493
494 void load_percpu_segment(int cpu)
495 {
496 #ifdef CONFIG_X86_32
497         loadsegment(fs, __KERNEL_PERCPU);
498 #else
499         __loadsegment_simple(gs, 0);
500         wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
501 #endif
502         load_stack_canary_segment();
503 }
504
505 #ifdef CONFIG_X86_32
506 /* The 32-bit entry code needs to find cpu_entry_area. */
507 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
508 #endif
509
510 #ifdef CONFIG_X86_64
511 /*
512  * Special IST stacks which the CPU switches to when it calls
513  * an IST-marked descriptor entry. Up to 7 stacks (hardware
514  * limit), all of them are 4K, except the debug stack which
515  * is 8K.
516  */
517 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
518           [0 ... N_EXCEPTION_STACKS - 1]        = EXCEPTION_STKSZ,
519           [DEBUG_STACK - 1]                     = DEBUG_STKSZ
520 };
521 #endif
522
523 /* Load the original GDT from the per-cpu structure */
524 void load_direct_gdt(int cpu)
525 {
526         struct desc_ptr gdt_descr;
527
528         gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
529         gdt_descr.size = GDT_SIZE - 1;
530         load_gdt(&gdt_descr);
531 }
532 EXPORT_SYMBOL_GPL(load_direct_gdt);
533
534 /* Load a fixmap remapping of the per-cpu GDT */
535 void load_fixmap_gdt(int cpu)
536 {
537         struct desc_ptr gdt_descr;
538
539         gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
540         gdt_descr.size = GDT_SIZE - 1;
541         load_gdt(&gdt_descr);
542 }
543 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
544
545 /*
546  * Current gdt points %fs at the "master" per-cpu area: after this,
547  * it's on the real one.
548  */
549 void switch_to_new_gdt(int cpu)
550 {
551         /* Load the original GDT */
552         load_direct_gdt(cpu);
553         /* Reload the per-cpu base */
554         load_percpu_segment(cpu);
555 }
556
557 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
558
559 static void get_model_name(struct cpuinfo_x86 *c)
560 {
561         unsigned int *v;
562         char *p, *q, *s;
563
564         if (c->extended_cpuid_level < 0x80000004)
565                 return;
566
567         v = (unsigned int *)c->x86_model_id;
568         cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
569         cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
570         cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
571         c->x86_model_id[48] = 0;
572
573         /* Trim whitespace */
574         p = q = s = &c->x86_model_id[0];
575
576         while (*p == ' ')
577                 p++;
578
579         while (*p) {
580                 /* Note the last non-whitespace index */
581                 if (!isspace(*p))
582                         s = q;
583
584                 *q++ = *p++;
585         }
586
587         *(s + 1) = '\0';
588 }
589
590 void detect_num_cpu_cores(struct cpuinfo_x86 *c)
591 {
592         unsigned int eax, ebx, ecx, edx;
593
594         c->x86_max_cores = 1;
595         if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
596                 return;
597
598         cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
599         if (eax & 0x1f)
600                 c->x86_max_cores = (eax >> 26) + 1;
601 }
602
603 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
604 {
605         unsigned int n, dummy, ebx, ecx, edx, l2size;
606
607         n = c->extended_cpuid_level;
608
609         if (n >= 0x80000005) {
610                 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
611                 c->x86_cache_size = (ecx>>24) + (edx>>24);
612 #ifdef CONFIG_X86_64
613                 /* On K8 L1 TLB is inclusive, so don't count it */
614                 c->x86_tlbsize = 0;
615 #endif
616         }
617
618         if (n < 0x80000006)     /* Some chips just has a large L1. */
619                 return;
620
621         cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
622         l2size = ecx >> 16;
623
624 #ifdef CONFIG_X86_64
625         c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
626 #else
627         /* do processor-specific cache resizing */
628         if (this_cpu->legacy_cache_size)
629                 l2size = this_cpu->legacy_cache_size(c, l2size);
630
631         /* Allow user to override all this if necessary. */
632         if (cachesize_override != -1)
633                 l2size = cachesize_override;
634
635         if (l2size == 0)
636                 return;         /* Again, no L2 cache is possible */
637 #endif
638
639         c->x86_cache_size = l2size;
640 }
641
642 u16 __read_mostly tlb_lli_4k[NR_INFO];
643 u16 __read_mostly tlb_lli_2m[NR_INFO];
644 u16 __read_mostly tlb_lli_4m[NR_INFO];
645 u16 __read_mostly tlb_lld_4k[NR_INFO];
646 u16 __read_mostly tlb_lld_2m[NR_INFO];
647 u16 __read_mostly tlb_lld_4m[NR_INFO];
648 u16 __read_mostly tlb_lld_1g[NR_INFO];
649
650 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
651 {
652         if (this_cpu->c_detect_tlb)
653                 this_cpu->c_detect_tlb(c);
654
655         pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
656                 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
657                 tlb_lli_4m[ENTRIES]);
658
659         pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
660                 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
661                 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
662 }
663
664 int detect_ht_early(struct cpuinfo_x86 *c)
665 {
666 #ifdef CONFIG_SMP
667         u32 eax, ebx, ecx, edx;
668
669         if (!cpu_has(c, X86_FEATURE_HT))
670                 return -1;
671
672         if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
673                 return -1;
674
675         if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
676                 return -1;
677
678         cpuid(1, &eax, &ebx, &ecx, &edx);
679
680         smp_num_siblings = (ebx & 0xff0000) >> 16;
681         if (smp_num_siblings == 1)
682                 pr_info_once("CPU0: Hyper-Threading is disabled\n");
683 #endif
684         return 0;
685 }
686
687 void detect_ht(struct cpuinfo_x86 *c)
688 {
689 #ifdef CONFIG_SMP
690         int index_msb, core_bits;
691
692         if (detect_ht_early(c) < 0)
693                 return;
694
695         index_msb = get_count_order(smp_num_siblings);
696         c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
697
698         smp_num_siblings = smp_num_siblings / c->x86_max_cores;
699
700         index_msb = get_count_order(smp_num_siblings);
701
702         core_bits = get_count_order(c->x86_max_cores);
703
704         c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
705                                        ((1 << core_bits) - 1);
706 #endif
707 }
708
709 static void get_cpu_vendor(struct cpuinfo_x86 *c)
710 {
711         char *v = c->x86_vendor_id;
712         int i;
713
714         for (i = 0; i < X86_VENDOR_NUM; i++) {
715                 if (!cpu_devs[i])
716                         break;
717
718                 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
719                     (cpu_devs[i]->c_ident[1] &&
720                      !strcmp(v, cpu_devs[i]->c_ident[1]))) {
721
722                         this_cpu = cpu_devs[i];
723                         c->x86_vendor = this_cpu->c_x86_vendor;
724                         return;
725                 }
726         }
727
728         pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
729                     "CPU: Your system may be unstable.\n", v);
730
731         c->x86_vendor = X86_VENDOR_UNKNOWN;
732         this_cpu = &default_cpu;
733 }
734
735 void cpu_detect(struct cpuinfo_x86 *c)
736 {
737         /* Get vendor name */
738         cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
739               (unsigned int *)&c->x86_vendor_id[0],
740               (unsigned int *)&c->x86_vendor_id[8],
741               (unsigned int *)&c->x86_vendor_id[4]);
742
743         c->x86 = 4;
744         /* Intel-defined flags: level 0x00000001 */
745         if (c->cpuid_level >= 0x00000001) {
746                 u32 junk, tfms, cap0, misc;
747
748                 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
749                 c->x86          = x86_family(tfms);
750                 c->x86_model    = x86_model(tfms);
751                 c->x86_stepping = x86_stepping(tfms);
752
753                 if (cap0 & (1<<19)) {
754                         c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
755                         c->x86_cache_alignment = c->x86_clflush_size;
756                 }
757         }
758 }
759
760 static void apply_forced_caps(struct cpuinfo_x86 *c)
761 {
762         int i;
763
764         for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
765                 c->x86_capability[i] &= ~cpu_caps_cleared[i];
766                 c->x86_capability[i] |= cpu_caps_set[i];
767         }
768 }
769
770 static void init_speculation_control(struct cpuinfo_x86 *c)
771 {
772         /*
773          * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
774          * and they also have a different bit for STIBP support. Also,
775          * a hypervisor might have set the individual AMD bits even on
776          * Intel CPUs, for finer-grained selection of what's available.
777          */
778         if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
779                 set_cpu_cap(c, X86_FEATURE_IBRS);
780                 set_cpu_cap(c, X86_FEATURE_IBPB);
781                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
782         }
783
784         if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
785                 set_cpu_cap(c, X86_FEATURE_STIBP);
786
787         if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
788             cpu_has(c, X86_FEATURE_VIRT_SSBD))
789                 set_cpu_cap(c, X86_FEATURE_SSBD);
790
791         if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
792                 set_cpu_cap(c, X86_FEATURE_IBRS);
793                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
794         }
795
796         if (cpu_has(c, X86_FEATURE_AMD_IBPB))
797                 set_cpu_cap(c, X86_FEATURE_IBPB);
798
799         if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
800                 set_cpu_cap(c, X86_FEATURE_STIBP);
801                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
802         }
803
804         if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
805                 set_cpu_cap(c, X86_FEATURE_SSBD);
806                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
807                 clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
808         }
809 }
810
811 static void init_cqm(struct cpuinfo_x86 *c)
812 {
813         if (!cpu_has(c, X86_FEATURE_CQM_LLC)) {
814                 c->x86_cache_max_rmid  = -1;
815                 c->x86_cache_occ_scale = -1;
816                 return;
817         }
818
819         /* will be overridden if occupancy monitoring exists */
820         c->x86_cache_max_rmid = cpuid_ebx(0xf);
821
822         if (cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC) ||
823             cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL) ||
824             cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)) {
825                 u32 eax, ebx, ecx, edx;
826
827                 /* QoS sub-leaf, EAX=0Fh, ECX=1 */
828                 cpuid_count(0xf, 1, &eax, &ebx, &ecx, &edx);
829
830                 c->x86_cache_max_rmid  = ecx;
831                 c->x86_cache_occ_scale = ebx;
832         }
833 }
834
835 void get_cpu_cap(struct cpuinfo_x86 *c)
836 {
837         u32 eax, ebx, ecx, edx;
838
839         /* Intel-defined flags: level 0x00000001 */
840         if (c->cpuid_level >= 0x00000001) {
841                 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
842
843                 c->x86_capability[CPUID_1_ECX] = ecx;
844                 c->x86_capability[CPUID_1_EDX] = edx;
845         }
846
847         /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
848         if (c->cpuid_level >= 0x00000006)
849                 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
850
851         /* Additional Intel-defined flags: level 0x00000007 */
852         if (c->cpuid_level >= 0x00000007) {
853                 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
854                 c->x86_capability[CPUID_7_0_EBX] = ebx;
855                 c->x86_capability[CPUID_7_ECX] = ecx;
856                 c->x86_capability[CPUID_7_EDX] = edx;
857         }
858
859         /* Extended state features: level 0x0000000d */
860         if (c->cpuid_level >= 0x0000000d) {
861                 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
862
863                 c->x86_capability[CPUID_D_1_EAX] = eax;
864         }
865
866         /* AMD-defined flags: level 0x80000001 */
867         eax = cpuid_eax(0x80000000);
868         c->extended_cpuid_level = eax;
869
870         if ((eax & 0xffff0000) == 0x80000000) {
871                 if (eax >= 0x80000001) {
872                         cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
873
874                         c->x86_capability[CPUID_8000_0001_ECX] = ecx;
875                         c->x86_capability[CPUID_8000_0001_EDX] = edx;
876                 }
877         }
878
879         if (c->extended_cpuid_level >= 0x80000007) {
880                 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
881
882                 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
883                 c->x86_power = edx;
884         }
885
886         if (c->extended_cpuid_level >= 0x80000008) {
887                 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
888                 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
889         }
890
891         if (c->extended_cpuid_level >= 0x8000000a)
892                 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
893
894         init_scattered_cpuid_features(c);
895         init_speculation_control(c);
896         init_cqm(c);
897
898         /*
899          * Clear/Set all flags overridden by options, after probe.
900          * This needs to happen each time we re-probe, which may happen
901          * several times during CPU initialization.
902          */
903         apply_forced_caps(c);
904 }
905
906 void get_cpu_address_sizes(struct cpuinfo_x86 *c)
907 {
908         u32 eax, ebx, ecx, edx;
909
910         if (c->extended_cpuid_level >= 0x80000008) {
911                 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
912
913                 c->x86_virt_bits = (eax >> 8) & 0xff;
914                 c->x86_phys_bits = eax & 0xff;
915         }
916 #ifdef CONFIG_X86_32
917         else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
918                 c->x86_phys_bits = 36;
919 #endif
920         c->x86_cache_bits = c->x86_phys_bits;
921 }
922
923 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
924 {
925 #ifdef CONFIG_X86_32
926         int i;
927
928         /*
929          * First of all, decide if this is a 486 or higher
930          * It's a 486 if we can modify the AC flag
931          */
932         if (flag_is_changeable_p(X86_EFLAGS_AC))
933                 c->x86 = 4;
934         else
935                 c->x86 = 3;
936
937         for (i = 0; i < X86_VENDOR_NUM; i++)
938                 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
939                         c->x86_vendor_id[0] = 0;
940                         cpu_devs[i]->c_identify(c);
941                         if (c->x86_vendor_id[0]) {
942                                 get_cpu_vendor(c);
943                                 break;
944                         }
945                 }
946 #endif
947 }
948
949 #define NO_SPECULATION          BIT(0)
950 #define NO_MELTDOWN             BIT(1)
951 #define NO_SSB                  BIT(2)
952 #define NO_L1TF                 BIT(3)
953 #define NO_MDS                  BIT(4)
954 #define MSBDS_ONLY              BIT(5)
955 #define NO_SWAPGS               BIT(6)
956 #define NO_ITLB_MULTIHIT        BIT(7)
957 #define NO_MMIO                 BIT(8)
958 #define NO_EIBRS_PBRSB          BIT(9)
959
960 #define VULNWL(_vendor, _family, _model, _whitelist)    \
961         { X86_VENDOR_##_vendor, _family, _model, X86_FEATURE_ANY, _whitelist }
962
963 #define VULNWL_INTEL(model, whitelist)          \
964         VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
965
966 #define VULNWL_AMD(family, whitelist)           \
967         VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
968
969 static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
970         VULNWL(ANY,     4, X86_MODEL_ANY,       NO_SPECULATION),
971         VULNWL(CENTAUR, 5, X86_MODEL_ANY,       NO_SPECULATION),
972         VULNWL(INTEL,   5, X86_MODEL_ANY,       NO_SPECULATION),
973         VULNWL(NSC,     5, X86_MODEL_ANY,       NO_SPECULATION),
974
975         /* Intel Family 6 */
976         VULNWL_INTEL(TIGERLAKE,                 NO_MMIO),
977         VULNWL_INTEL(TIGERLAKE_L,               NO_MMIO),
978         VULNWL_INTEL(ALDERLAKE,                 NO_MMIO),
979         VULNWL_INTEL(ALDERLAKE_L,               NO_MMIO),
980
981         VULNWL_INTEL(ATOM_SALTWELL,             NO_SPECULATION | NO_ITLB_MULTIHIT),
982         VULNWL_INTEL(ATOM_SALTWELL_TABLET,      NO_SPECULATION | NO_ITLB_MULTIHIT),
983         VULNWL_INTEL(ATOM_SALTWELL_MID,         NO_SPECULATION | NO_ITLB_MULTIHIT),
984         VULNWL_INTEL(ATOM_BONNELL,              NO_SPECULATION | NO_ITLB_MULTIHIT),
985         VULNWL_INTEL(ATOM_BONNELL_MID,          NO_SPECULATION | NO_ITLB_MULTIHIT),
986
987         VULNWL_INTEL(ATOM_SILVERMONT,           NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
988         VULNWL_INTEL(ATOM_SILVERMONT_X,         NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
989         VULNWL_INTEL(ATOM_SILVERMONT_MID,       NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
990         VULNWL_INTEL(ATOM_AIRMONT,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
991         VULNWL_INTEL(XEON_PHI_KNL,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
992         VULNWL_INTEL(XEON_PHI_KNM,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
993
994         VULNWL_INTEL(CORE_YONAH,                NO_SSB),
995
996         VULNWL_INTEL(ATOM_AIRMONT_MID,          NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
997
998         VULNWL_INTEL(ATOM_GOLDMONT,             NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
999         VULNWL_INTEL(ATOM_GOLDMONT_X,           NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1000         VULNWL_INTEL(ATOM_GOLDMONT_PLUS,        NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
1001
1002         /*
1003          * Technically, swapgs isn't serializing on AMD (despite it previously
1004          * being documented as such in the APM).  But according to AMD, %gs is
1005          * updated non-speculatively, and the issuing of %gs-relative memory
1006          * operands will be blocked until the %gs update completes, which is
1007          * good enough for our purposes.
1008          */
1009
1010         VULNWL_INTEL(ATOM_TREMONT,              NO_EIBRS_PBRSB),
1011         VULNWL_INTEL(ATOM_TREMONT_L,            NO_EIBRS_PBRSB),
1012         VULNWL_INTEL(ATOM_TREMONT_X,            NO_ITLB_MULTIHIT | NO_EIBRS_PBRSB),
1013
1014         /* AMD Family 0xf - 0x12 */
1015         VULNWL_AMD(0x0f,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1016         VULNWL_AMD(0x10,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1017         VULNWL_AMD(0x11,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1018         VULNWL_AMD(0x12,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1019
1020         /* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1021         VULNWL_AMD(X86_FAMILY_ANY,      NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1022         {}
1023 };
1024
1025 #define VULNBL(vendor, family, model, blacklist)        \
1026         X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, blacklist)
1027
1028 #define VULNBL_INTEL_STEPPINGS(model, steppings, issues)                   \
1029         X86_MATCH_VENDOR_FAM_MODEL_STEPPINGS_FEATURE(INTEL, 6,             \
1030                                             INTEL_FAM6_##model, steppings, \
1031                                             X86_FEATURE_ANY, issues)
1032
1033 #define VULNBL_AMD(family, blacklist)           \
1034         VULNBL(AMD, family, X86_MODEL_ANY, blacklist)
1035
1036 #define SRBDS           BIT(0)
1037 /* CPU is affected by X86_BUG_MMIO_STALE_DATA */
1038 #define MMIO            BIT(1)
1039 /* CPU is affected by Shared Buffers Data Sampling (SBDS), a variant of X86_BUG_MMIO_STALE_DATA */
1040 #define MMIO_SBDS       BIT(2)
1041 /* CPU is affected by RETbleed, speculating where you would not expect it */
1042 #define RETBLEED        BIT(3)
1043
1044 static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
1045         VULNBL_INTEL_STEPPINGS(IVYBRIDGE,       X86_STEPPING_ANY,               SRBDS),
1046         VULNBL_INTEL_STEPPINGS(HASWELL_CORE,    X86_STEPPING_ANY,               SRBDS),
1047         VULNBL_INTEL_STEPPINGS(HASWELL_ULT,     X86_STEPPING_ANY,               SRBDS),
1048         VULNBL_INTEL_STEPPINGS(HASWELL_GT3E,    X86_STEPPING_ANY,               SRBDS),
1049         VULNBL_INTEL_STEPPINGS(HASWELL_X,       X86_STEPPING_ANY,               MMIO),
1050         VULNBL_INTEL_STEPPINGS(BROADWELL_XEON_D,X86_STEPPING_ANY,               MMIO),
1051         VULNBL_INTEL_STEPPINGS(BROADWELL_GT3E,  X86_STEPPING_ANY,               SRBDS),
1052         VULNBL_INTEL_STEPPINGS(BROADWELL_X,     X86_STEPPING_ANY,               MMIO),
1053         VULNBL_INTEL_STEPPINGS(BROADWELL_CORE,  X86_STEPPING_ANY,               SRBDS),
1054         VULNBL_INTEL_STEPPINGS(SKYLAKE_MOBILE,  X86_STEPPING_ANY,               SRBDS | MMIO | RETBLEED),
1055         VULNBL_INTEL_STEPPINGS(SKYLAKE_X,       X86_STEPPING_ANY,               MMIO | RETBLEED),
1056         VULNBL_INTEL_STEPPINGS(SKYLAKE_DESKTOP, X86_STEPPING_ANY,               SRBDS | MMIO | RETBLEED),
1057         VULNBL_INTEL_STEPPINGS(KABYLAKE_MOBILE, X86_STEPPING_ANY,               SRBDS | MMIO | RETBLEED),
1058         VULNBL_INTEL_STEPPINGS(KABYLAKE_DESKTOP,X86_STEPPING_ANY,               SRBDS | MMIO | RETBLEED),
1059         VULNBL_INTEL_STEPPINGS(CANNONLAKE_MOBILE,X86_STEPPING_ANY,              RETBLEED),
1060         VULNBL_INTEL_STEPPINGS(ICELAKE_MOBILE,  X86_STEPPING_ANY,               MMIO | MMIO_SBDS | RETBLEED),
1061         VULNBL_INTEL_STEPPINGS(ICELAKE_XEON_D,  X86_STEPPING_ANY,               MMIO),
1062         VULNBL_INTEL_STEPPINGS(ICELAKE_X,       X86_STEPPING_ANY,               MMIO),
1063         VULNBL_INTEL_STEPPINGS(COMETLAKE,       X86_STEPPING_ANY,               MMIO | MMIO_SBDS | RETBLEED),
1064         VULNBL_INTEL_STEPPINGS(COMETLAKE_L,     X86_STEPPING_ANY,               MMIO | MMIO_SBDS | RETBLEED),
1065         VULNBL_INTEL_STEPPINGS(LAKEFIELD,       X86_STEPPING_ANY,               MMIO | MMIO_SBDS | RETBLEED),
1066         VULNBL_INTEL_STEPPINGS(ROCKETLAKE,      X86_STEPPING_ANY,               MMIO | RETBLEED),
1067         VULNBL_INTEL_STEPPINGS(ATOM_TREMONT,    X86_STEPPING_ANY,               MMIO | MMIO_SBDS),
1068         VULNBL_INTEL_STEPPINGS(ATOM_TREMONT_X,  X86_STEPPING_ANY,               MMIO),
1069         VULNBL_INTEL_STEPPINGS(ATOM_TREMONT_L,  X86_STEPPING_ANY,               MMIO | MMIO_SBDS),
1070
1071         VULNBL_AMD(0x15, RETBLEED),
1072         VULNBL_AMD(0x16, RETBLEED),
1073         VULNBL_AMD(0x17, RETBLEED),
1074         {}
1075 };
1076
1077 static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
1078 {
1079         const struct x86_cpu_id *m = x86_match_cpu(table);
1080
1081         return m && !!(m->driver_data & which);
1082 }
1083
1084 u64 x86_read_arch_cap_msr(void)
1085 {
1086         u64 ia32_cap = 0;
1087
1088         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1089                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
1090
1091         return ia32_cap;
1092 }
1093
1094 static bool arch_cap_mmio_immune(u64 ia32_cap)
1095 {
1096         return (ia32_cap & ARCH_CAP_FBSDP_NO &&
1097                 ia32_cap & ARCH_CAP_PSDP_NO &&
1098                 ia32_cap & ARCH_CAP_SBDR_SSDP_NO);
1099 }
1100
1101 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1102 {
1103         u64 ia32_cap = x86_read_arch_cap_msr();
1104
1105         /* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1106         if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
1107             !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO))
1108                 setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1109
1110         if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
1111                 return;
1112
1113         setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1114         setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1115
1116         if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
1117             !(ia32_cap & ARCH_CAP_SSB_NO) &&
1118            !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1119                 setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1120
1121         if (ia32_cap & ARCH_CAP_IBRS_ALL)
1122                 setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1123
1124         if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
1125             !(ia32_cap & ARCH_CAP_MDS_NO)) {
1126                 setup_force_cpu_bug(X86_BUG_MDS);
1127                 if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
1128                         setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1129         }
1130
1131         if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
1132                 setup_force_cpu_bug(X86_BUG_SWAPGS);
1133
1134         /*
1135          * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1136          *      - TSX is supported or
1137          *      - TSX_CTRL is present
1138          *
1139          * TSX_CTRL check is needed for cases when TSX could be disabled before
1140          * the kernel boot e.g. kexec.
1141          * TSX_CTRL check alone is not sufficient for cases when the microcode
1142          * update is not present or running as guest that don't get TSX_CTRL.
1143          */
1144         if (!(ia32_cap & ARCH_CAP_TAA_NO) &&
1145             (cpu_has(c, X86_FEATURE_RTM) ||
1146              (ia32_cap & ARCH_CAP_TSX_CTRL_MSR)))
1147                 setup_force_cpu_bug(X86_BUG_TAA);
1148
1149         /*
1150          * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
1151          * in the vulnerability blacklist.
1152          *
1153          * Some of the implications and mitigation of Shared Buffers Data
1154          * Sampling (SBDS) are similar to SRBDS. Give SBDS same treatment as
1155          * SRBDS.
1156          */
1157         if ((cpu_has(c, X86_FEATURE_RDRAND) ||
1158              cpu_has(c, X86_FEATURE_RDSEED)) &&
1159             cpu_matches(cpu_vuln_blacklist, SRBDS | MMIO_SBDS))
1160                     setup_force_cpu_bug(X86_BUG_SRBDS);
1161
1162         /*
1163          * Processor MMIO Stale Data bug enumeration
1164          *
1165          * Affected CPU list is generally enough to enumerate the vulnerability,
1166          * but for virtualization case check for ARCH_CAP MSR bits also, VMM may
1167          * not want the guest to enumerate the bug.
1168          *
1169          * Set X86_BUG_MMIO_UNKNOWN for CPUs that are neither in the blacklist,
1170          * nor in the whitelist and also don't enumerate MSR ARCH_CAP MMIO bits.
1171          */
1172         if (!arch_cap_mmio_immune(ia32_cap)) {
1173                 if (cpu_matches(cpu_vuln_blacklist, MMIO))
1174                         setup_force_cpu_bug(X86_BUG_MMIO_STALE_DATA);
1175                 else if (!cpu_matches(cpu_vuln_whitelist, NO_MMIO))
1176                         setup_force_cpu_bug(X86_BUG_MMIO_UNKNOWN);
1177         }
1178
1179         if (!cpu_has(c, X86_FEATURE_BTC_NO)) {
1180                 if (cpu_matches(cpu_vuln_blacklist, RETBLEED) || (ia32_cap & ARCH_CAP_RSBA))
1181                         setup_force_cpu_bug(X86_BUG_RETBLEED);
1182         }
1183
1184         if (cpu_has(c, X86_FEATURE_IBRS_ENHANCED) &&
1185             !cpu_matches(cpu_vuln_whitelist, NO_EIBRS_PBRSB) &&
1186             !(ia32_cap & ARCH_CAP_PBRSB_NO))
1187                 setup_force_cpu_bug(X86_BUG_EIBRS_PBRSB);
1188
1189         if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
1190                 return;
1191
1192         /* Rogue Data Cache Load? No! */
1193         if (ia32_cap & ARCH_CAP_RDCL_NO)
1194                 return;
1195
1196         setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1197
1198         if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
1199                 return;
1200
1201         setup_force_cpu_bug(X86_BUG_L1TF);
1202 }
1203
1204 /*
1205  * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1206  * unfortunately, that's not true in practice because of early VIA
1207  * chips and (more importantly) broken virtualizers that are not easy
1208  * to detect. In the latter case it doesn't even *fail* reliably, so
1209  * probing for it doesn't even work. Disable it completely on 32-bit
1210  * unless we can find a reliable way to detect all the broken cases.
1211  * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1212  */
1213 static void detect_nopl(void)
1214 {
1215 #ifdef CONFIG_X86_32
1216         setup_clear_cpu_cap(X86_FEATURE_NOPL);
1217 #else
1218         setup_force_cpu_cap(X86_FEATURE_NOPL);
1219 #endif
1220 }
1221
1222 /*
1223  * Do minimum CPU detection early.
1224  * Fields really needed: vendor, cpuid_level, family, model, mask,
1225  * cache alignment.
1226  * The others are not touched to avoid unwanted side effects.
1227  *
1228  * WARNING: this function is only called on the boot CPU.  Don't add code
1229  * here that is supposed to run on all CPUs.
1230  */
1231 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1232 {
1233 #ifdef CONFIG_X86_64
1234         c->x86_clflush_size = 64;
1235         c->x86_phys_bits = 36;
1236         c->x86_virt_bits = 48;
1237 #else
1238         c->x86_clflush_size = 32;
1239         c->x86_phys_bits = 32;
1240         c->x86_virt_bits = 32;
1241 #endif
1242         c->x86_cache_alignment = c->x86_clflush_size;
1243
1244         memset(&c->x86_capability, 0, sizeof c->x86_capability);
1245         c->extended_cpuid_level = 0;
1246
1247         if (!have_cpuid_p())
1248                 identify_cpu_without_cpuid(c);
1249
1250         /* cyrix could have cpuid enabled via c_identify()*/
1251         if (have_cpuid_p()) {
1252                 cpu_detect(c);
1253                 get_cpu_vendor(c);
1254                 get_cpu_cap(c);
1255                 get_cpu_address_sizes(c);
1256                 setup_force_cpu_cap(X86_FEATURE_CPUID);
1257
1258                 if (this_cpu->c_early_init)
1259                         this_cpu->c_early_init(c);
1260
1261                 c->cpu_index = 0;
1262                 filter_cpuid_features(c, false);
1263
1264                 if (this_cpu->c_bsp_init)
1265                         this_cpu->c_bsp_init(c);
1266         } else {
1267                 setup_clear_cpu_cap(X86_FEATURE_CPUID);
1268         }
1269
1270         setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1271
1272         cpu_set_bug_bits(c);
1273
1274         fpu__init_system(c);
1275
1276 #ifdef CONFIG_X86_32
1277         /*
1278          * Regardless of whether PCID is enumerated, the SDM says
1279          * that it can't be enabled in 32-bit mode.
1280          */
1281         setup_clear_cpu_cap(X86_FEATURE_PCID);
1282 #endif
1283
1284         /*
1285          * Later in the boot process pgtable_l5_enabled() relies on
1286          * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1287          * enabled by this point we need to clear the feature bit to avoid
1288          * false-positives at the later stage.
1289          *
1290          * pgtable_l5_enabled() can be false here for several reasons:
1291          *  - 5-level paging is disabled compile-time;
1292          *  - it's 32-bit kernel;
1293          *  - machine doesn't support 5-level paging;
1294          *  - user specified 'no5lvl' in kernel command line.
1295          */
1296         if (!pgtable_l5_enabled())
1297                 setup_clear_cpu_cap(X86_FEATURE_LA57);
1298
1299         detect_nopl();
1300 }
1301
1302 void __init early_cpu_init(void)
1303 {
1304         const struct cpu_dev *const *cdev;
1305         int count = 0;
1306
1307 #ifdef CONFIG_PROCESSOR_SELECT
1308         pr_info("KERNEL supported cpus:\n");
1309 #endif
1310
1311         for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1312                 const struct cpu_dev *cpudev = *cdev;
1313
1314                 if (count >= X86_VENDOR_NUM)
1315                         break;
1316                 cpu_devs[count] = cpudev;
1317                 count++;
1318
1319 #ifdef CONFIG_PROCESSOR_SELECT
1320                 {
1321                         unsigned int j;
1322
1323                         for (j = 0; j < 2; j++) {
1324                                 if (!cpudev->c_ident[j])
1325                                         continue;
1326                                 pr_info("  %s %s\n", cpudev->c_vendor,
1327                                         cpudev->c_ident[j]);
1328                         }
1329                 }
1330 #endif
1331         }
1332         early_identify_cpu(&boot_cpu_data);
1333 }
1334
1335 static bool detect_null_seg_behavior(void)
1336 {
1337         /*
1338          * Empirically, writing zero to a segment selector on AMD does
1339          * not clear the base, whereas writing zero to a segment
1340          * selector on Intel does clear the base.  Intel's behavior
1341          * allows slightly faster context switches in the common case
1342          * where GS is unused by the prev and next threads.
1343          *
1344          * Since neither vendor documents this anywhere that I can see,
1345          * detect it directly instead of hardcoding the choice by
1346          * vendor.
1347          *
1348          * I've designated AMD's behavior as the "bug" because it's
1349          * counterintuitive and less friendly.
1350          */
1351
1352         unsigned long old_base, tmp;
1353         rdmsrl(MSR_FS_BASE, old_base);
1354         wrmsrl(MSR_FS_BASE, 1);
1355         loadsegment(fs, 0);
1356         rdmsrl(MSR_FS_BASE, tmp);
1357         wrmsrl(MSR_FS_BASE, old_base);
1358         return tmp == 0;
1359 }
1360
1361 void check_null_seg_clears_base(struct cpuinfo_x86 *c)
1362 {
1363         /* BUG_NULL_SEG is only relevant with 64bit userspace */
1364         if (!IS_ENABLED(CONFIG_X86_64))
1365                 return;
1366
1367         /* Zen3 CPUs advertise Null Selector Clears Base in CPUID. */
1368         if (c->extended_cpuid_level >= 0x80000021 &&
1369             cpuid_eax(0x80000021) & BIT(6))
1370                 return;
1371
1372         /*
1373          * CPUID bit above wasn't set. If this kernel is still running
1374          * as a HV guest, then the HV has decided not to advertize
1375          * that CPUID bit for whatever reason.  For example, one
1376          * member of the migration pool might be vulnerable.  Which
1377          * means, the bug is present: set the BUG flag and return.
1378          */
1379         if (cpu_has(c, X86_FEATURE_HYPERVISOR)) {
1380                 set_cpu_bug(c, X86_BUG_NULL_SEG);
1381                 return;
1382         }
1383
1384         /*
1385          * Zen2 CPUs also have this behaviour, but no CPUID bit.
1386          * 0x18 is the respective family for Hygon.
1387          */
1388         if ((c->x86 == 0x17 || c->x86 == 0x18) &&
1389             detect_null_seg_behavior())
1390                 return;
1391
1392         /* All the remaining ones are affected */
1393         set_cpu_bug(c, X86_BUG_NULL_SEG);
1394 }
1395
1396 static void generic_identify(struct cpuinfo_x86 *c)
1397 {
1398         c->extended_cpuid_level = 0;
1399
1400         if (!have_cpuid_p())
1401                 identify_cpu_without_cpuid(c);
1402
1403         /* cyrix could have cpuid enabled via c_identify()*/
1404         if (!have_cpuid_p())
1405                 return;
1406
1407         cpu_detect(c);
1408
1409         get_cpu_vendor(c);
1410
1411         get_cpu_cap(c);
1412
1413         get_cpu_address_sizes(c);
1414
1415         if (c->cpuid_level >= 0x00000001) {
1416                 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1417 #ifdef CONFIG_X86_32
1418 # ifdef CONFIG_SMP
1419                 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1420 # else
1421                 c->apicid = c->initial_apicid;
1422 # endif
1423 #endif
1424                 c->phys_proc_id = c->initial_apicid;
1425         }
1426
1427         get_model_name(c); /* Default name */
1428
1429         /*
1430          * ESPFIX is a strange bug.  All real CPUs have it.  Paravirt
1431          * systems that run Linux at CPL > 0 may or may not have the
1432          * issue, but, even if they have the issue, there's absolutely
1433          * nothing we can do about it because we can't use the real IRET
1434          * instruction.
1435          *
1436          * NB: For the time being, only 32-bit kernels support
1437          * X86_BUG_ESPFIX as such.  64-bit kernels directly choose
1438          * whether to apply espfix using paravirt hooks.  If any
1439          * non-paravirt system ever shows up that does *not* have the
1440          * ESPFIX issue, we can change this.
1441          */
1442 #ifdef CONFIG_X86_32
1443 # ifdef CONFIG_PARAVIRT
1444         do {
1445                 extern void native_iret(void);
1446                 if (pv_cpu_ops.iret == native_iret)
1447                         set_cpu_bug(c, X86_BUG_ESPFIX);
1448         } while (0);
1449 # else
1450         set_cpu_bug(c, X86_BUG_ESPFIX);
1451 # endif
1452 #endif
1453 }
1454
1455 static void x86_init_cache_qos(struct cpuinfo_x86 *c)
1456 {
1457         /*
1458          * The heavy lifting of max_rmid and cache_occ_scale are handled
1459          * in get_cpu_cap().  Here we just set the max_rmid for the boot_cpu
1460          * in case CQM bits really aren't there in this CPU.
1461          */
1462         if (c != &boot_cpu_data) {
1463                 boot_cpu_data.x86_cache_max_rmid =
1464                         min(boot_cpu_data.x86_cache_max_rmid,
1465                             c->x86_cache_max_rmid);
1466         }
1467 }
1468
1469 /*
1470  * Validate that ACPI/mptables have the same information about the
1471  * effective APIC id and update the package map.
1472  */
1473 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1474 {
1475 #ifdef CONFIG_SMP
1476         unsigned int apicid, cpu = smp_processor_id();
1477
1478         apicid = apic->cpu_present_to_apicid(cpu);
1479
1480         if (apicid != c->apicid) {
1481                 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1482                        cpu, apicid, c->initial_apicid);
1483         }
1484         BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1485 #else
1486         c->logical_proc_id = 0;
1487 #endif
1488 }
1489
1490 /*
1491  * This does the hard work of actually picking apart the CPU stuff...
1492  */
1493 static void identify_cpu(struct cpuinfo_x86 *c)
1494 {
1495         int i;
1496
1497         c->loops_per_jiffy = loops_per_jiffy;
1498         c->x86_cache_size = 0;
1499         c->x86_vendor = X86_VENDOR_UNKNOWN;
1500         c->x86_model = c->x86_stepping = 0;     /* So far unknown... */
1501         c->x86_vendor_id[0] = '\0'; /* Unset */
1502         c->x86_model_id[0] = '\0';  /* Unset */
1503         c->x86_max_cores = 1;
1504         c->x86_coreid_bits = 0;
1505         c->cu_id = 0xff;
1506 #ifdef CONFIG_X86_64
1507         c->x86_clflush_size = 64;
1508         c->x86_phys_bits = 36;
1509         c->x86_virt_bits = 48;
1510 #else
1511         c->cpuid_level = -1;    /* CPUID not detected */
1512         c->x86_clflush_size = 32;
1513         c->x86_phys_bits = 32;
1514         c->x86_virt_bits = 32;
1515 #endif
1516         c->x86_cache_alignment = c->x86_clflush_size;
1517         memset(&c->x86_capability, 0, sizeof c->x86_capability);
1518
1519         generic_identify(c);
1520
1521         if (this_cpu->c_identify)
1522                 this_cpu->c_identify(c);
1523
1524         /* Clear/Set all flags overridden by options, after probe */
1525         apply_forced_caps(c);
1526
1527 #ifdef CONFIG_X86_64
1528         c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1529 #endif
1530
1531         /*
1532          * Vendor-specific initialization.  In this section we
1533          * canonicalize the feature flags, meaning if there are
1534          * features a certain CPU supports which CPUID doesn't
1535          * tell us, CPUID claiming incorrect flags, or other bugs,
1536          * we handle them here.
1537          *
1538          * At the end of this section, c->x86_capability better
1539          * indicate the features this CPU genuinely supports!
1540          */
1541         if (this_cpu->c_init)
1542                 this_cpu->c_init(c);
1543
1544         /* Disable the PN if appropriate */
1545         squash_the_stupid_serial_number(c);
1546
1547         /* Set up SMEP/SMAP/UMIP */
1548         setup_smep(c);
1549         setup_smap(c);
1550         setup_umip(c);
1551
1552         /*
1553          * The vendor-specific functions might have changed features.
1554          * Now we do "generic changes."
1555          */
1556
1557         /* Filter out anything that depends on CPUID levels we don't have */
1558         filter_cpuid_features(c, true);
1559
1560         /* If the model name is still unset, do table lookup. */
1561         if (!c->x86_model_id[0]) {
1562                 const char *p;
1563                 p = table_lookup_model(c);
1564                 if (p)
1565                         strcpy(c->x86_model_id, p);
1566                 else
1567                         /* Last resort... */
1568                         sprintf(c->x86_model_id, "%02x/%02x",
1569                                 c->x86, c->x86_model);
1570         }
1571
1572 #ifdef CONFIG_X86_64
1573         detect_ht(c);
1574 #endif
1575
1576         x86_init_rdrand(c);
1577         x86_init_cache_qos(c);
1578         setup_pku(c);
1579
1580         /*
1581          * Clear/Set all flags overridden by options, need do it
1582          * before following smp all cpus cap AND.
1583          */
1584         apply_forced_caps(c);
1585
1586         /*
1587          * On SMP, boot_cpu_data holds the common feature set between
1588          * all CPUs; so make sure that we indicate which features are
1589          * common between the CPUs.  The first time this routine gets
1590          * executed, c == &boot_cpu_data.
1591          */
1592         if (c != &boot_cpu_data) {
1593                 /* AND the already accumulated flags with these */
1594                 for (i = 0; i < NCAPINTS; i++)
1595                         boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1596
1597                 /* OR, i.e. replicate the bug flags */
1598                 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1599                         c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1600         }
1601
1602         /* Init Machine Check Exception if available. */
1603         mcheck_cpu_init(c);
1604
1605         select_idle_routine(c);
1606
1607 #ifdef CONFIG_NUMA
1608         numa_add_cpu(smp_processor_id());
1609 #endif
1610 }
1611
1612 /*
1613  * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1614  * on 32-bit kernels:
1615  */
1616 #ifdef CONFIG_X86_32
1617 void enable_sep_cpu(void)
1618 {
1619         struct tss_struct *tss;
1620         int cpu;
1621
1622         if (!boot_cpu_has(X86_FEATURE_SEP))
1623                 return;
1624
1625         cpu = get_cpu();
1626         tss = &per_cpu(cpu_tss_rw, cpu);
1627
1628         /*
1629          * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1630          * see the big comment in struct x86_hw_tss's definition.
1631          */
1632
1633         tss->x86_tss.ss1 = __KERNEL_CS;
1634         wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1635         wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1636         wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1637
1638         put_cpu();
1639 }
1640 #endif
1641
1642 void __init identify_boot_cpu(void)
1643 {
1644         identify_cpu(&boot_cpu_data);
1645 #ifdef CONFIG_X86_32
1646         sysenter_setup();
1647         enable_sep_cpu();
1648 #endif
1649         cpu_detect_tlb(&boot_cpu_data);
1650         tsx_init();
1651 }
1652
1653 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1654 {
1655         BUG_ON(c == &boot_cpu_data);
1656         identify_cpu(c);
1657 #ifdef CONFIG_X86_32
1658         enable_sep_cpu();
1659 #endif
1660         mtrr_ap_init();
1661         validate_apic_and_package_id(c);
1662         x86_spec_ctrl_setup_ap();
1663         update_srbds_msr();
1664 }
1665
1666 static __init int setup_noclflush(char *arg)
1667 {
1668         setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1669         setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1670         return 1;
1671 }
1672 __setup("noclflush", setup_noclflush);
1673
1674 void print_cpu_info(struct cpuinfo_x86 *c)
1675 {
1676         const char *vendor = NULL;
1677
1678         if (c->x86_vendor < X86_VENDOR_NUM) {
1679                 vendor = this_cpu->c_vendor;
1680         } else {
1681                 if (c->cpuid_level >= 0)
1682                         vendor = c->x86_vendor_id;
1683         }
1684
1685         if (vendor && !strstr(c->x86_model_id, vendor))
1686                 pr_cont("%s ", vendor);
1687
1688         if (c->x86_model_id[0])
1689                 pr_cont("%s", c->x86_model_id);
1690         else
1691                 pr_cont("%d86", c->x86);
1692
1693         pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1694
1695         if (c->x86_stepping || c->cpuid_level >= 0)
1696                 pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
1697         else
1698                 pr_cont(")\n");
1699 }
1700
1701 /*
1702  * clearcpuid= was already parsed in fpu__init_parse_early_param.
1703  * But we need to keep a dummy __setup around otherwise it would
1704  * show up as an environment variable for init.
1705  */
1706 static __init int setup_clearcpuid(char *arg)
1707 {
1708         return 1;
1709 }
1710 __setup("clearcpuid=", setup_clearcpuid);
1711
1712 #ifdef CONFIG_X86_64
1713 DEFINE_PER_CPU_FIRST(union irq_stack_union,
1714                      irq_stack_union) __aligned(PAGE_SIZE) __visible;
1715 EXPORT_PER_CPU_SYMBOL_GPL(irq_stack_union);
1716
1717 /*
1718  * The following percpu variables are hot.  Align current_task to
1719  * cacheline size such that they fall in the same cacheline.
1720  */
1721 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1722         &init_task;
1723 EXPORT_PER_CPU_SYMBOL(current_task);
1724
1725 DEFINE_PER_CPU(char *, irq_stack_ptr) =
1726         init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE;
1727
1728 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1729
1730 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1731 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1732
1733 /* May not be marked __init: used by software suspend */
1734 void syscall_init(void)
1735 {
1736         extern char _entry_trampoline[];
1737         extern char entry_SYSCALL_64_trampoline[];
1738
1739         int cpu = smp_processor_id();
1740         unsigned long SYSCALL64_entry_trampoline =
1741                 (unsigned long)get_cpu_entry_area(cpu)->entry_trampoline +
1742                 (entry_SYSCALL_64_trampoline - _entry_trampoline);
1743
1744         wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1745         if (static_cpu_has(X86_FEATURE_PTI))
1746                 wrmsrl(MSR_LSTAR, SYSCALL64_entry_trampoline);
1747         else
1748                 wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1749
1750 #ifdef CONFIG_IA32_EMULATION
1751         wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1752         /*
1753          * This only works on Intel CPUs.
1754          * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1755          * This does not cause SYSENTER to jump to the wrong location, because
1756          * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1757          */
1758         wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1759         wrmsrl_safe(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1));
1760         wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1761 #else
1762         wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1763         wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1764         wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1765         wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1766 #endif
1767
1768         /* Flags to clear on syscall */
1769         wrmsrl(MSR_SYSCALL_MASK,
1770                X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1771                X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1772 }
1773
1774 /*
1775  * Copies of the original ist values from the tss are only accessed during
1776  * debugging, no special alignment required.
1777  */
1778 DEFINE_PER_CPU(struct orig_ist, orig_ist);
1779
1780 static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
1781 DEFINE_PER_CPU(int, debug_stack_usage);
1782
1783 int is_debug_stack(unsigned long addr)
1784 {
1785         return __this_cpu_read(debug_stack_usage) ||
1786                 (addr <= __this_cpu_read(debug_stack_addr) &&
1787                  addr > (__this_cpu_read(debug_stack_addr) - DEBUG_STKSZ));
1788 }
1789 NOKPROBE_SYMBOL(is_debug_stack);
1790
1791 DEFINE_PER_CPU(u32, debug_idt_ctr);
1792
1793 void debug_stack_set_zero(void)
1794 {
1795         this_cpu_inc(debug_idt_ctr);
1796         load_current_idt();
1797 }
1798 NOKPROBE_SYMBOL(debug_stack_set_zero);
1799
1800 void debug_stack_reset(void)
1801 {
1802         if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1803                 return;
1804         if (this_cpu_dec_return(debug_idt_ctr) == 0)
1805                 load_current_idt();
1806 }
1807 NOKPROBE_SYMBOL(debug_stack_reset);
1808
1809 #else   /* CONFIG_X86_64 */
1810
1811 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1812 EXPORT_PER_CPU_SYMBOL(current_task);
1813 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1814 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1815
1816 /*
1817  * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1818  * the top of the kernel stack.  Use an extra percpu variable to track the
1819  * top of the kernel stack directly.
1820  */
1821 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1822         (unsigned long)&init_thread_union + THREAD_SIZE;
1823 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1824
1825 #ifdef CONFIG_STACKPROTECTOR
1826 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1827 #endif
1828
1829 #endif  /* CONFIG_X86_64 */
1830
1831 /*
1832  * Clear all 6 debug registers:
1833  */
1834 static void clear_all_debug_regs(void)
1835 {
1836         int i;
1837
1838         for (i = 0; i < 8; i++) {
1839                 /* Ignore db4, db5 */
1840                 if ((i == 4) || (i == 5))
1841                         continue;
1842
1843                 set_debugreg(0, i);
1844         }
1845 }
1846
1847 #ifdef CONFIG_KGDB
1848 /*
1849  * Restore debug regs if using kgdbwait and you have a kernel debugger
1850  * connection established.
1851  */
1852 static void dbg_restore_debug_regs(void)
1853 {
1854         if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1855                 arch_kgdb_ops.correct_hw_break();
1856 }
1857 #else /* ! CONFIG_KGDB */
1858 #define dbg_restore_debug_regs()
1859 #endif /* ! CONFIG_KGDB */
1860
1861 static void wait_for_master_cpu(int cpu)
1862 {
1863 #ifdef CONFIG_SMP
1864         /*
1865          * wait for ACK from master CPU before continuing
1866          * with AP initialization
1867          */
1868         WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1869         while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1870                 cpu_relax();
1871 #endif
1872 }
1873
1874 /*
1875  * cpu_init() initializes state that is per-CPU. Some data is already
1876  * initialized (naturally) in the bootstrap process, such as the GDT
1877  * and IDT. We reload them nevertheless, this function acts as a
1878  * 'CPU state barrier', nothing should get across.
1879  * A lot of state is already set up in PDA init for 64 bit
1880  */
1881 #ifdef CONFIG_X86_64
1882
1883 void cpu_init(void)
1884 {
1885         struct orig_ist *oist;
1886         struct task_struct *me;
1887         struct tss_struct *t;
1888         unsigned long v;
1889         int cpu = raw_smp_processor_id();
1890         int i;
1891
1892         wait_for_master_cpu(cpu);
1893
1894         /*
1895          * Initialize the CR4 shadow before doing anything that could
1896          * try to read it.
1897          */
1898         cr4_init_shadow();
1899
1900         if (cpu)
1901                 load_ucode_ap();
1902
1903         t = &per_cpu(cpu_tss_rw, cpu);
1904         oist = &per_cpu(orig_ist, cpu);
1905
1906 #ifdef CONFIG_NUMA
1907         if (this_cpu_read(numa_node) == 0 &&
1908             early_cpu_to_node(cpu) != NUMA_NO_NODE)
1909                 set_numa_node(early_cpu_to_node(cpu));
1910 #endif
1911
1912         me = current;
1913
1914         pr_debug("Initializing CPU#%d\n", cpu);
1915
1916         cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1917
1918         /*
1919          * Initialize the per-CPU GDT with the boot GDT,
1920          * and set up the GDT descriptor:
1921          */
1922
1923         switch_to_new_gdt(cpu);
1924         loadsegment(fs, 0);
1925
1926         load_current_idt();
1927
1928         memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1929         syscall_init();
1930
1931         wrmsrl(MSR_FS_BASE, 0);
1932         wrmsrl(MSR_KERNEL_GS_BASE, 0);
1933         barrier();
1934
1935         x86_configure_nx();
1936         x2apic_setup();
1937
1938         /*
1939          * set up and load the per-CPU TSS
1940          */
1941         if (!oist->ist[0]) {
1942                 char *estacks = get_cpu_entry_area(cpu)->exception_stacks;
1943
1944                 for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1945                         estacks += exception_stack_sizes[v];
1946                         oist->ist[v] = t->x86_tss.ist[v] =
1947                                         (unsigned long)estacks;
1948                         if (v == DEBUG_STACK-1)
1949                                 per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1950                 }
1951         }
1952
1953         t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
1954
1955         /*
1956          * <= is required because the CPU will access up to
1957          * 8 bits beyond the end of the IO permission bitmap.
1958          */
1959         for (i = 0; i <= IO_BITMAP_LONGS; i++)
1960                 t->io_bitmap[i] = ~0UL;
1961
1962         mmgrab(&init_mm);
1963         me->active_mm = &init_mm;
1964         BUG_ON(me->mm);
1965         initialize_tlbstate_and_flush();
1966         enter_lazy_tlb(&init_mm, me);
1967
1968         /*
1969          * Initialize the TSS.  sp0 points to the entry trampoline stack
1970          * regardless of what task is running.
1971          */
1972         set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1973         load_TR_desc();
1974         load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
1975
1976         load_mm_ldt(&init_mm);
1977
1978         clear_all_debug_regs();
1979         dbg_restore_debug_regs();
1980
1981         fpu__init_cpu();
1982
1983         if (is_uv_system())
1984                 uv_cpu_init();
1985
1986         load_fixmap_gdt(cpu);
1987 }
1988
1989 #else
1990
1991 void cpu_init(void)
1992 {
1993         int cpu = smp_processor_id();
1994         struct task_struct *curr = current;
1995         struct tss_struct *t = &per_cpu(cpu_tss_rw, cpu);
1996
1997         wait_for_master_cpu(cpu);
1998
1999         /*
2000          * Initialize the CR4 shadow before doing anything that could
2001          * try to read it.
2002          */
2003         cr4_init_shadow();
2004
2005         show_ucode_info_early();
2006
2007         pr_info("Initializing CPU#%d\n", cpu);
2008
2009         if (cpu_feature_enabled(X86_FEATURE_VME) ||
2010             boot_cpu_has(X86_FEATURE_TSC) ||
2011             boot_cpu_has(X86_FEATURE_DE))
2012                 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
2013
2014         load_current_idt();
2015         switch_to_new_gdt(cpu);
2016
2017         /*
2018          * Set up and load the per-CPU TSS and LDT
2019          */
2020         mmgrab(&init_mm);
2021         curr->active_mm = &init_mm;
2022         BUG_ON(curr->mm);
2023         initialize_tlbstate_and_flush();
2024         enter_lazy_tlb(&init_mm, curr);
2025
2026         /*
2027          * Initialize the TSS.  sp0 points to the entry trampoline stack
2028          * regardless of what task is running.
2029          */
2030         set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
2031         load_TR_desc();
2032         load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
2033
2034         load_mm_ldt(&init_mm);
2035
2036         t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
2037
2038 #ifdef CONFIG_DOUBLEFAULT
2039         /* Set up doublefault TSS pointer in the GDT */
2040         __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
2041 #endif
2042
2043         clear_all_debug_regs();
2044         dbg_restore_debug_regs();
2045
2046         fpu__init_cpu();
2047
2048         load_fixmap_gdt(cpu);
2049 }
2050 #endif
2051
2052 static void bsp_resume(void)
2053 {
2054         if (this_cpu->c_bsp_resume)
2055                 this_cpu->c_bsp_resume(&boot_cpu_data);
2056 }
2057
2058 static struct syscore_ops cpu_syscore_ops = {
2059         .resume         = bsp_resume,
2060 };
2061
2062 static int __init init_cpu_syscore(void)
2063 {
2064         register_syscore_ops(&cpu_syscore_ops);
2065         return 0;
2066 }
2067 core_initcall(init_cpu_syscore);
2068
2069 /*
2070  * The microcode loader calls this upon late microcode load to recheck features,
2071  * only when microcode has been updated. Caller holds microcode_mutex and CPU
2072  * hotplug lock.
2073  */
2074 void microcode_check(void)
2075 {
2076         struct cpuinfo_x86 info;
2077
2078         perf_check_microcode();
2079
2080         /* Reload CPUID max function as it might've changed. */
2081         info.cpuid_level = cpuid_eax(0);
2082
2083         /*
2084          * Copy all capability leafs to pick up the synthetic ones so that
2085          * memcmp() below doesn't fail on that. The ones coming from CPUID will
2086          * get overwritten in get_cpu_cap().
2087          */
2088         memcpy(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability));
2089
2090         get_cpu_cap(&info);
2091
2092         if (!memcmp(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability)))
2093                 return;
2094
2095         pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
2096         pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
2097 }