GNU Linux-libre 4.9.337-gnu1
[releases.git] / arch / x86 / kernel / cpu / common.c
1 #include <linux/bootmem.h>
2 #include <linux/linkage.h>
3 #include <linux/bitops.h>
4 #include <linux/kernel.h>
5 #include <linux/export.h>
6 #include <linux/percpu.h>
7 #include <linux/string.h>
8 #include <linux/ctype.h>
9 #include <linux/delay.h>
10 #include <linux/sched.h>
11 #include <linux/init.h>
12 #include <linux/kprobes.h>
13 #include <linux/kgdb.h>
14 #include <linux/smp.h>
15 #include <linux/io.h>
16 #include <linux/syscore_ops.h>
17
18 #include <asm/stackprotector.h>
19 #include <asm/perf_event.h>
20 #include <asm/mmu_context.h>
21 #include <asm/archrandom.h>
22 #include <asm/hypervisor.h>
23 #include <asm/processor.h>
24 #include <asm/tlbflush.h>
25 #include <asm/debugreg.h>
26 #include <asm/sections.h>
27 #include <asm/vsyscall.h>
28 #include <linux/topology.h>
29 #include <linux/cpumask.h>
30 #include <asm/pgtable.h>
31 #include <linux/atomic.h>
32 #include <asm/proto.h>
33 #include <asm/setup.h>
34 #include <asm/apic.h>
35 #include <asm/desc.h>
36 #include <asm/fpu/internal.h>
37 #include <asm/mtrr.h>
38 #include <linux/numa.h>
39 #include <asm/asm.h>
40 #include <asm/bugs.h>
41 #include <asm/cpu.h>
42 #include <asm/mce.h>
43 #include <asm/msr.h>
44 #include <asm/pat.h>
45 #include <asm/microcode.h>
46 #include <asm/microcode_intel.h>
47 #include <asm/intel-family.h>
48 #include <asm/cpu_device_id.h>
49
50 #ifdef CONFIG_X86_LOCAL_APIC
51 #include <asm/uv/uv.h>
52 #endif
53
54 #include "cpu.h"
55
56 /* all of these masks are initialized in setup_cpu_local_masks() */
57 cpumask_var_t cpu_initialized_mask;
58 cpumask_var_t cpu_callout_mask;
59 cpumask_var_t cpu_callin_mask;
60
61 /* representing cpus for which sibling maps can be computed */
62 cpumask_var_t cpu_sibling_setup_mask;
63
64 /* Number of siblings per CPU package */
65 int smp_num_siblings = 1;
66 EXPORT_SYMBOL(smp_num_siblings);
67
68 /* Last level cache ID of each logical CPU */
69 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
70
71 /* correctly size the local cpu masks */
72 void __init setup_cpu_local_masks(void)
73 {
74         alloc_bootmem_cpumask_var(&cpu_initialized_mask);
75         alloc_bootmem_cpumask_var(&cpu_callin_mask);
76         alloc_bootmem_cpumask_var(&cpu_callout_mask);
77         alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
78 }
79
80 static void default_init(struct cpuinfo_x86 *c)
81 {
82 #ifdef CONFIG_X86_64
83         cpu_detect_cache_sizes(c);
84 #else
85         /* Not much we can do here... */
86         /* Check if at least it has cpuid */
87         if (c->cpuid_level == -1) {
88                 /* No cpuid. It must be an ancient CPU */
89                 if (c->x86 == 4)
90                         strcpy(c->x86_model_id, "486");
91                 else if (c->x86 == 3)
92                         strcpy(c->x86_model_id, "386");
93         }
94 #endif
95 }
96
97 static const struct cpu_dev default_cpu = {
98         .c_init         = default_init,
99         .c_vendor       = "Unknown",
100         .c_x86_vendor   = X86_VENDOR_UNKNOWN,
101 };
102
103 static const struct cpu_dev *this_cpu = &default_cpu;
104
105 DEFINE_PER_CPU_PAGE_ALIGNED_USER_MAPPED(struct gdt_page, gdt_page) = { .gdt = {
106 #ifdef CONFIG_X86_64
107         /*
108          * We need valid kernel segments for data and code in long mode too
109          * IRET will check the segment types  kkeil 2000/10/28
110          * Also sysret mandates a special GDT layout
111          *
112          * TLS descriptors are currently at a different place compared to i386.
113          * Hopefully nobody expects them at a fixed place (Wine?)
114          */
115         [GDT_ENTRY_KERNEL32_CS]         = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
116         [GDT_ENTRY_KERNEL_CS]           = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
117         [GDT_ENTRY_KERNEL_DS]           = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
118         [GDT_ENTRY_DEFAULT_USER32_CS]   = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
119         [GDT_ENTRY_DEFAULT_USER_DS]     = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
120         [GDT_ENTRY_DEFAULT_USER_CS]     = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
121 #else
122         [GDT_ENTRY_KERNEL_CS]           = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
123         [GDT_ENTRY_KERNEL_DS]           = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
124         [GDT_ENTRY_DEFAULT_USER_CS]     = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
125         [GDT_ENTRY_DEFAULT_USER_DS]     = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
126         /*
127          * Segments used for calling PnP BIOS have byte granularity.
128          * They code segments and data segments have fixed 64k limits,
129          * the transfer segment sizes are set at run time.
130          */
131         /* 32-bit code */
132         [GDT_ENTRY_PNPBIOS_CS32]        = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
133         /* 16-bit code */
134         [GDT_ENTRY_PNPBIOS_CS16]        = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
135         /* 16-bit data */
136         [GDT_ENTRY_PNPBIOS_DS]          = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
137         /* 16-bit data */
138         [GDT_ENTRY_PNPBIOS_TS1]         = GDT_ENTRY_INIT(0x0092, 0, 0),
139         /* 16-bit data */
140         [GDT_ENTRY_PNPBIOS_TS2]         = GDT_ENTRY_INIT(0x0092, 0, 0),
141         /*
142          * The APM segments have byte granularity and their bases
143          * are set at run time.  All have 64k limits.
144          */
145         /* 32-bit code */
146         [GDT_ENTRY_APMBIOS_BASE]        = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
147         /* 16-bit code */
148         [GDT_ENTRY_APMBIOS_BASE+1]      = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
149         /* data */
150         [GDT_ENTRY_APMBIOS_BASE+2]      = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
151
152         [GDT_ENTRY_ESPFIX_SS]           = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
153         [GDT_ENTRY_PERCPU]              = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
154         GDT_STACK_CANARY_INIT
155 #endif
156 } };
157 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
158
159 static int __init x86_mpx_setup(char *s)
160 {
161         /* require an exact match without trailing characters */
162         if (strlen(s))
163                 return 0;
164
165         /* do not emit a message if the feature is not present */
166         if (!boot_cpu_has(X86_FEATURE_MPX))
167                 return 1;
168
169         setup_clear_cpu_cap(X86_FEATURE_MPX);
170         pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
171         return 1;
172 }
173 __setup("nompx", x86_mpx_setup);
174
175 #ifdef CONFIG_X86_64
176 static int __init x86_pcid_setup(char *s)
177 {
178         /* require an exact match without trailing characters */
179         if (strlen(s))
180                 return 0;
181
182         /* do not emit a message if the feature is not present */
183         if (!boot_cpu_has(X86_FEATURE_PCID))
184                 return 1;
185
186         setup_clear_cpu_cap(X86_FEATURE_PCID);
187         pr_info("nopcid: PCID feature disabled\n");
188         return 1;
189 }
190 __setup("nopcid", x86_pcid_setup);
191 #endif
192
193 static int __init x86_noinvpcid_setup(char *s)
194 {
195         /* noinvpcid doesn't accept parameters */
196         if (s)
197                 return -EINVAL;
198
199         /* do not emit a message if the feature is not present */
200         if (!boot_cpu_has(X86_FEATURE_INVPCID))
201                 return 0;
202
203         setup_clear_cpu_cap(X86_FEATURE_INVPCID);
204         pr_info("noinvpcid: INVPCID feature disabled\n");
205         return 0;
206 }
207 early_param("noinvpcid", x86_noinvpcid_setup);
208
209 #ifdef CONFIG_X86_32
210 static int cachesize_override = -1;
211 static int disable_x86_serial_nr = 1;
212
213 static int __init cachesize_setup(char *str)
214 {
215         get_option(&str, &cachesize_override);
216         return 1;
217 }
218 __setup("cachesize=", cachesize_setup);
219
220 static int __init x86_sep_setup(char *s)
221 {
222         setup_clear_cpu_cap(X86_FEATURE_SEP);
223         return 1;
224 }
225 __setup("nosep", x86_sep_setup);
226
227 /* Standard macro to see if a specific flag is changeable */
228 static inline int flag_is_changeable_p(u32 flag)
229 {
230         u32 f1, f2;
231
232         /*
233          * Cyrix and IDT cpus allow disabling of CPUID
234          * so the code below may return different results
235          * when it is executed before and after enabling
236          * the CPUID. Add "volatile" to not allow gcc to
237          * optimize the subsequent calls to this function.
238          */
239         asm volatile ("pushfl           \n\t"
240                       "pushfl           \n\t"
241                       "popl %0          \n\t"
242                       "movl %0, %1      \n\t"
243                       "xorl %2, %0      \n\t"
244                       "pushl %0         \n\t"
245                       "popfl            \n\t"
246                       "pushfl           \n\t"
247                       "popl %0          \n\t"
248                       "popfl            \n\t"
249
250                       : "=&r" (f1), "=&r" (f2)
251                       : "ir" (flag));
252
253         return ((f1^f2) & flag) != 0;
254 }
255
256 /* Probe for the CPUID instruction */
257 int have_cpuid_p(void)
258 {
259         return flag_is_changeable_p(X86_EFLAGS_ID);
260 }
261
262 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
263 {
264         unsigned long lo, hi;
265
266         if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
267                 return;
268
269         /* Disable processor serial number: */
270
271         rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
272         lo |= 0x200000;
273         wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
274
275         pr_notice("CPU serial number disabled.\n");
276         clear_cpu_cap(c, X86_FEATURE_PN);
277
278         /* Disabling the serial number may affect the cpuid level */
279         c->cpuid_level = cpuid_eax(0);
280 }
281
282 static int __init x86_serial_nr_setup(char *s)
283 {
284         disable_x86_serial_nr = 0;
285         return 1;
286 }
287 __setup("serialnumber", x86_serial_nr_setup);
288 #else
289 static inline int flag_is_changeable_p(u32 flag)
290 {
291         return 1;
292 }
293 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
294 {
295 }
296 #endif
297
298 static __init int setup_disable_smep(char *arg)
299 {
300         setup_clear_cpu_cap(X86_FEATURE_SMEP);
301         /* Check for things that depend on SMEP being enabled: */
302         check_mpx_erratum(&boot_cpu_data);
303         return 1;
304 }
305 __setup("nosmep", setup_disable_smep);
306
307 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
308 {
309         if (cpu_has(c, X86_FEATURE_SMEP))
310                 cr4_set_bits(X86_CR4_SMEP);
311 }
312
313 static __init int setup_disable_smap(char *arg)
314 {
315         setup_clear_cpu_cap(X86_FEATURE_SMAP);
316         return 1;
317 }
318 __setup("nosmap", setup_disable_smap);
319
320 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
321 {
322         unsigned long eflags = native_save_fl();
323
324         /* This should have been cleared long ago */
325         BUG_ON(eflags & X86_EFLAGS_AC);
326
327         if (cpu_has(c, X86_FEATURE_SMAP)) {
328 #ifdef CONFIG_X86_SMAP
329                 cr4_set_bits(X86_CR4_SMAP);
330 #else
331                 cr4_clear_bits(X86_CR4_SMAP);
332 #endif
333         }
334 }
335
336 static void setup_pcid(struct cpuinfo_x86 *c)
337 {
338         if (cpu_has(c, X86_FEATURE_PCID)) {
339                 if (cpu_has(c, X86_FEATURE_PGE) || kaiser_enabled) {
340                         cr4_set_bits(X86_CR4_PCIDE);
341                         /*
342                          * INVPCID has two "groups" of types:
343                          * 1/2: Invalidate an individual address
344                          * 3/4: Invalidate all contexts
345                          *
346                          * 1/2 take a PCID, but 3/4 do not.  So, 3/4
347                          * ignore the PCID argument in the descriptor.
348                          * But, we have to be careful not to call 1/2
349                          * with an actual non-zero PCID in them before
350                          * we do the above cr4_set_bits().
351                          */
352                         if (cpu_has(c, X86_FEATURE_INVPCID))
353                                 set_cpu_cap(c, X86_FEATURE_INVPCID_SINGLE);
354                 } else {
355                         /*
356                          * flush_tlb_all(), as currently implemented, won't
357                          * work if PCID is on but PGE is not.  Since that
358                          * combination doesn't exist on real hardware, there's
359                          * no reason to try to fully support it, but it's
360                          * polite to avoid corrupting data if we're on
361                          * an improperly configured VM.
362                          */
363                         clear_cpu_cap(c, X86_FEATURE_PCID);
364                 }
365         }
366         kaiser_setup_pcid();
367 }
368
369 /*
370  * Protection Keys are not available in 32-bit mode.
371  */
372 static bool pku_disabled;
373
374 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
375 {
376         /* check the boot processor, plus compile options for PKU: */
377         if (!cpu_feature_enabled(X86_FEATURE_PKU))
378                 return;
379         /* checks the actual processor's cpuid bits: */
380         if (!cpu_has(c, X86_FEATURE_PKU))
381                 return;
382         if (pku_disabled)
383                 return;
384
385         cr4_set_bits(X86_CR4_PKE);
386         /*
387          * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
388          * cpuid bit to be set.  We need to ensure that we
389          * update that bit in this CPU's "cpu_info".
390          */
391         set_cpu_cap(c, X86_FEATURE_OSPKE);
392 }
393
394 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
395 static __init int setup_disable_pku(char *arg)
396 {
397         /*
398          * Do not clear the X86_FEATURE_PKU bit.  All of the
399          * runtime checks are against OSPKE so clearing the
400          * bit does nothing.
401          *
402          * This way, we will see "pku" in cpuinfo, but not
403          * "ospke", which is exactly what we want.  It shows
404          * that the CPU has PKU, but the OS has not enabled it.
405          * This happens to be exactly how a system would look
406          * if we disabled the config option.
407          */
408         pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
409         pku_disabled = true;
410         return 1;
411 }
412 __setup("nopku", setup_disable_pku);
413 #endif /* CONFIG_X86_64 */
414
415 /*
416  * Some CPU features depend on higher CPUID levels, which may not always
417  * be available due to CPUID level capping or broken virtualization
418  * software.  Add those features to this table to auto-disable them.
419  */
420 struct cpuid_dependent_feature {
421         u32 feature;
422         u32 level;
423 };
424
425 static const struct cpuid_dependent_feature
426 cpuid_dependent_features[] = {
427         { X86_FEATURE_MWAIT,            0x00000005 },
428         { X86_FEATURE_DCA,              0x00000009 },
429         { X86_FEATURE_XSAVE,            0x0000000d },
430         { 0, 0 }
431 };
432
433 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
434 {
435         const struct cpuid_dependent_feature *df;
436
437         for (df = cpuid_dependent_features; df->feature; df++) {
438
439                 if (!cpu_has(c, df->feature))
440                         continue;
441                 /*
442                  * Note: cpuid_level is set to -1 if unavailable, but
443                  * extended_extended_level is set to 0 if unavailable
444                  * and the legitimate extended levels are all negative
445                  * when signed; hence the weird messing around with
446                  * signs here...
447                  */
448                 if (!((s32)df->level < 0 ?
449                      (u32)df->level > (u32)c->extended_cpuid_level :
450                      (s32)df->level > (s32)c->cpuid_level))
451                         continue;
452
453                 clear_cpu_cap(c, df->feature);
454                 if (!warn)
455                         continue;
456
457                 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
458                         x86_cap_flag(df->feature), df->level);
459         }
460 }
461
462 /*
463  * Naming convention should be: <Name> [(<Codename>)]
464  * This table only is used unless init_<vendor>() below doesn't set it;
465  * in particular, if CPUID levels 0x80000002..4 are supported, this
466  * isn't used
467  */
468
469 /* Look up CPU names by table lookup. */
470 static const char *table_lookup_model(struct cpuinfo_x86 *c)
471 {
472 #ifdef CONFIG_X86_32
473         const struct legacy_cpu_model_info *info;
474
475         if (c->x86_model >= 16)
476                 return NULL;    /* Range check */
477
478         if (!this_cpu)
479                 return NULL;
480
481         info = this_cpu->legacy_models;
482
483         while (info->family) {
484                 if (info->family == c->x86)
485                         return info->model_names[c->x86_model];
486                 info++;
487         }
488 #endif
489         return NULL;            /* Not found */
490 }
491
492 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS];
493 __u32 cpu_caps_set[NCAPINTS + NBUGINTS];
494
495 void load_percpu_segment(int cpu)
496 {
497 #ifdef CONFIG_X86_32
498         loadsegment(fs, __KERNEL_PERCPU);
499 #else
500         __loadsegment_simple(gs, 0);
501         wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
502 #endif
503         load_stack_canary_segment();
504 }
505
506 /*
507  * Current gdt points %fs at the "master" per-cpu area: after this,
508  * it's on the real one.
509  */
510 void switch_to_new_gdt(int cpu)
511 {
512         struct desc_ptr gdt_descr;
513
514         gdt_descr.address = (long)get_cpu_gdt_table(cpu);
515         gdt_descr.size = GDT_SIZE - 1;
516         load_gdt(&gdt_descr);
517         /* Reload the per-cpu base */
518
519         load_percpu_segment(cpu);
520 }
521
522 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
523
524 static void get_model_name(struct cpuinfo_x86 *c)
525 {
526         unsigned int *v;
527         char *p, *q, *s;
528
529         if (c->extended_cpuid_level < 0x80000004)
530                 return;
531
532         v = (unsigned int *)c->x86_model_id;
533         cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
534         cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
535         cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
536         c->x86_model_id[48] = 0;
537
538         /* Trim whitespace */
539         p = q = s = &c->x86_model_id[0];
540
541         while (*p == ' ')
542                 p++;
543
544         while (*p) {
545                 /* Note the last non-whitespace index */
546                 if (!isspace(*p))
547                         s = q;
548
549                 *q++ = *p++;
550         }
551
552         *(s + 1) = '\0';
553 }
554
555 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
556 {
557         unsigned int n, dummy, ebx, ecx, edx, l2size;
558
559         n = c->extended_cpuid_level;
560
561         if (n >= 0x80000005) {
562                 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
563                 c->x86_cache_size = (ecx>>24) + (edx>>24);
564 #ifdef CONFIG_X86_64
565                 /* On K8 L1 TLB is inclusive, so don't count it */
566                 c->x86_tlbsize = 0;
567 #endif
568         }
569
570         if (n < 0x80000006)     /* Some chips just has a large L1. */
571                 return;
572
573         cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
574         l2size = ecx >> 16;
575
576 #ifdef CONFIG_X86_64
577         c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
578 #else
579         /* do processor-specific cache resizing */
580         if (this_cpu->legacy_cache_size)
581                 l2size = this_cpu->legacy_cache_size(c, l2size);
582
583         /* Allow user to override all this if necessary. */
584         if (cachesize_override != -1)
585                 l2size = cachesize_override;
586
587         if (l2size == 0)
588                 return;         /* Again, no L2 cache is possible */
589 #endif
590
591         c->x86_cache_size = l2size;
592 }
593
594 u16 __read_mostly tlb_lli_4k[NR_INFO];
595 u16 __read_mostly tlb_lli_2m[NR_INFO];
596 u16 __read_mostly tlb_lli_4m[NR_INFO];
597 u16 __read_mostly tlb_lld_4k[NR_INFO];
598 u16 __read_mostly tlb_lld_2m[NR_INFO];
599 u16 __read_mostly tlb_lld_4m[NR_INFO];
600 u16 __read_mostly tlb_lld_1g[NR_INFO];
601
602 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
603 {
604         if (this_cpu->c_detect_tlb)
605                 this_cpu->c_detect_tlb(c);
606
607         pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
608                 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
609                 tlb_lli_4m[ENTRIES]);
610
611         pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
612                 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
613                 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
614 }
615
616 int detect_ht_early(struct cpuinfo_x86 *c)
617 {
618 #ifdef CONFIG_SMP
619         u32 eax, ebx, ecx, edx;
620
621         if (!cpu_has(c, X86_FEATURE_HT))
622                 return -1;
623
624         if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
625                 return -1;
626
627         if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
628                 return -1;
629
630         cpuid(1, &eax, &ebx, &ecx, &edx);
631
632         smp_num_siblings = (ebx & 0xff0000) >> 16;
633         if (smp_num_siblings == 1)
634                 pr_info_once("CPU0: Hyper-Threading is disabled\n");
635 #endif
636         return 0;
637 }
638
639 void detect_ht(struct cpuinfo_x86 *c)
640 {
641 #ifdef CONFIG_SMP
642         int index_msb, core_bits;
643
644         if (detect_ht_early(c) < 0)
645                 return;
646
647         index_msb = get_count_order(smp_num_siblings);
648         c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
649
650         smp_num_siblings = smp_num_siblings / c->x86_max_cores;
651
652         index_msb = get_count_order(smp_num_siblings);
653
654         core_bits = get_count_order(c->x86_max_cores);
655
656         c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
657                                        ((1 << core_bits) - 1);
658 #endif
659 }
660
661 static void get_cpu_vendor(struct cpuinfo_x86 *c)
662 {
663         char *v = c->x86_vendor_id;
664         int i;
665
666         for (i = 0; i < X86_VENDOR_NUM; i++) {
667                 if (!cpu_devs[i])
668                         break;
669
670                 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
671                     (cpu_devs[i]->c_ident[1] &&
672                      !strcmp(v, cpu_devs[i]->c_ident[1]))) {
673
674                         this_cpu = cpu_devs[i];
675                         c->x86_vendor = this_cpu->c_x86_vendor;
676                         return;
677                 }
678         }
679
680         pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
681                     "CPU: Your system may be unstable.\n", v);
682
683         c->x86_vendor = X86_VENDOR_UNKNOWN;
684         this_cpu = &default_cpu;
685 }
686
687 void cpu_detect(struct cpuinfo_x86 *c)
688 {
689         /* Get vendor name */
690         cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
691               (unsigned int *)&c->x86_vendor_id[0],
692               (unsigned int *)&c->x86_vendor_id[8],
693               (unsigned int *)&c->x86_vendor_id[4]);
694
695         c->x86 = 4;
696         /* Intel-defined flags: level 0x00000001 */
697         if (c->cpuid_level >= 0x00000001) {
698                 u32 junk, tfms, cap0, misc;
699
700                 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
701                 c->x86          = x86_family(tfms);
702                 c->x86_model    = x86_model(tfms);
703                 c->x86_stepping = x86_stepping(tfms);
704
705                 if (cap0 & (1<<19)) {
706                         c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
707                         c->x86_cache_alignment = c->x86_clflush_size;
708                 }
709         }
710 }
711
712 static void apply_forced_caps(struct cpuinfo_x86 *c)
713 {
714         int i;
715
716         for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
717                 c->x86_capability[i] &= ~cpu_caps_cleared[i];
718                 c->x86_capability[i] |= cpu_caps_set[i];
719         }
720 }
721
722 static void init_speculation_control(struct cpuinfo_x86 *c)
723 {
724         /*
725          * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
726          * and they also have a different bit for STIBP support. Also,
727          * a hypervisor might have set the individual AMD bits even on
728          * Intel CPUs, for finer-grained selection of what's available.
729          */
730         if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
731                 set_cpu_cap(c, X86_FEATURE_IBRS);
732                 set_cpu_cap(c, X86_FEATURE_IBPB);
733                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
734         }
735
736         if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
737                 set_cpu_cap(c, X86_FEATURE_STIBP);
738
739         if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
740             cpu_has(c, X86_FEATURE_VIRT_SSBD))
741                 set_cpu_cap(c, X86_FEATURE_SSBD);
742
743         if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
744                 set_cpu_cap(c, X86_FEATURE_IBRS);
745                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
746         }
747
748         if (cpu_has(c, X86_FEATURE_AMD_IBPB))
749                 set_cpu_cap(c, X86_FEATURE_IBPB);
750
751         if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
752                 set_cpu_cap(c, X86_FEATURE_STIBP);
753                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
754         }
755
756         if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
757                 set_cpu_cap(c, X86_FEATURE_SSBD);
758                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
759                 clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
760         }
761 }
762
763 void get_cpu_cap(struct cpuinfo_x86 *c)
764 {
765         u32 eax, ebx, ecx, edx;
766
767         /* Intel-defined flags: level 0x00000001 */
768         if (c->cpuid_level >= 0x00000001) {
769                 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
770
771                 c->x86_capability[CPUID_1_ECX] = ecx;
772                 c->x86_capability[CPUID_1_EDX] = edx;
773         }
774
775         /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
776         if (c->cpuid_level >= 0x00000006)
777                 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
778
779         /* Additional Intel-defined flags: level 0x00000007 */
780         if (c->cpuid_level >= 0x00000007) {
781                 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
782                 c->x86_capability[CPUID_7_0_EBX] = ebx;
783                 c->x86_capability[CPUID_7_ECX] = ecx;
784                 c->x86_capability[CPUID_7_EDX] = edx;
785         }
786
787         /* Extended state features: level 0x0000000d */
788         if (c->cpuid_level >= 0x0000000d) {
789                 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
790
791                 c->x86_capability[CPUID_D_1_EAX] = eax;
792         }
793
794         /* Additional Intel-defined flags: level 0x0000000F */
795         if (c->cpuid_level >= 0x0000000F) {
796
797                 /* QoS sub-leaf, EAX=0Fh, ECX=0 */
798                 cpuid_count(0x0000000F, 0, &eax, &ebx, &ecx, &edx);
799                 c->x86_capability[CPUID_F_0_EDX] = edx;
800
801                 if (cpu_has(c, X86_FEATURE_CQM_LLC)) {
802                         /* will be overridden if occupancy monitoring exists */
803                         c->x86_cache_max_rmid = ebx;
804
805                         /* QoS sub-leaf, EAX=0Fh, ECX=1 */
806                         cpuid_count(0x0000000F, 1, &eax, &ebx, &ecx, &edx);
807                         c->x86_capability[CPUID_F_1_EDX] = edx;
808
809                         if ((cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC)) ||
810                               ((cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL)) ||
811                                (cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)))) {
812                                 c->x86_cache_max_rmid = ecx;
813                                 c->x86_cache_occ_scale = ebx;
814                         }
815                 } else {
816                         c->x86_cache_max_rmid = -1;
817                         c->x86_cache_occ_scale = -1;
818                 }
819         }
820
821         /* AMD-defined flags: level 0x80000001 */
822         eax = cpuid_eax(0x80000000);
823         c->extended_cpuid_level = eax;
824
825         if ((eax & 0xffff0000) == 0x80000000) {
826                 if (eax >= 0x80000001) {
827                         cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
828
829                         c->x86_capability[CPUID_8000_0001_ECX] = ecx;
830                         c->x86_capability[CPUID_8000_0001_EDX] = edx;
831                 }
832         }
833
834         if (c->extended_cpuid_level >= 0x80000007) {
835                 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
836
837                 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
838                 c->x86_power = edx;
839         }
840
841         if (c->extended_cpuid_level >= 0x80000008) {
842                 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
843
844                 c->x86_virt_bits = (eax >> 8) & 0xff;
845                 c->x86_phys_bits = eax & 0xff;
846                 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
847         }
848 #ifdef CONFIG_X86_32
849         else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
850                 c->x86_phys_bits = 36;
851 #endif
852         c->x86_cache_bits = c->x86_phys_bits;
853
854         if (c->extended_cpuid_level >= 0x8000000a)
855                 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
856
857         init_scattered_cpuid_features(c);
858         init_speculation_control(c);
859
860         /*
861          * Clear/Set all flags overridden by options, after probe.
862          * This needs to happen each time we re-probe, which may happen
863          * several times during CPU initialization.
864          */
865         apply_forced_caps(c);
866 }
867
868 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
869 {
870 #ifdef CONFIG_X86_32
871         int i;
872
873         /*
874          * First of all, decide if this is a 486 or higher
875          * It's a 486 if we can modify the AC flag
876          */
877         if (flag_is_changeable_p(X86_EFLAGS_AC))
878                 c->x86 = 4;
879         else
880                 c->x86 = 3;
881
882         for (i = 0; i < X86_VENDOR_NUM; i++)
883                 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
884                         c->x86_vendor_id[0] = 0;
885                         cpu_devs[i]->c_identify(c);
886                         if (c->x86_vendor_id[0]) {
887                                 get_cpu_vendor(c);
888                                 break;
889                         }
890                 }
891 #endif
892 }
893
894 #define NO_SPECULATION          BIT(0)
895 #define NO_MELTDOWN             BIT(1)
896 #define NO_SSB                  BIT(2)
897 #define NO_L1TF                 BIT(3)
898 #define NO_MDS                  BIT(4)
899 #define MSBDS_ONLY              BIT(5)
900 #define NO_SWAPGS               BIT(6)
901 #define NO_ITLB_MULTIHIT        BIT(7)
902 #define NO_MMIO                 BIT(8)
903
904 #define VULNWL(_vendor, _family, _model, _whitelist)    \
905         { X86_VENDOR_##_vendor, _family, _model, X86_FEATURE_ANY, _whitelist }
906
907 #define VULNWL_INTEL(model, whitelist)          \
908         VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
909
910 #define VULNWL_AMD(family, whitelist)           \
911         VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
912
913 static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
914         VULNWL(ANY,     4, X86_MODEL_ANY,       NO_SPECULATION),
915         VULNWL(CENTAUR, 5, X86_MODEL_ANY,       NO_SPECULATION),
916         VULNWL(INTEL,   5, X86_MODEL_ANY,       NO_SPECULATION),
917         VULNWL(NSC,     5, X86_MODEL_ANY,       NO_SPECULATION),
918
919         /* Intel Family 6 */
920         VULNWL_INTEL(TIGERLAKE,                 NO_MMIO),
921         VULNWL_INTEL(TIGERLAKE_L,               NO_MMIO),
922         VULNWL_INTEL(ALDERLAKE,                 NO_MMIO),
923         VULNWL_INTEL(ALDERLAKE_L,               NO_MMIO),
924
925         VULNWL_INTEL(ATOM_SALTWELL,             NO_SPECULATION | NO_ITLB_MULTIHIT),
926         VULNWL_INTEL(ATOM_SALTWELL_TABLET,      NO_SPECULATION | NO_ITLB_MULTIHIT),
927         VULNWL_INTEL(ATOM_SALTWELL_MID,         NO_SPECULATION | NO_ITLB_MULTIHIT),
928         VULNWL_INTEL(ATOM_BONNELL,              NO_SPECULATION | NO_ITLB_MULTIHIT),
929         VULNWL_INTEL(ATOM_BONNELL_MID,          NO_SPECULATION | NO_ITLB_MULTIHIT),
930
931         VULNWL_INTEL(ATOM_SILVERMONT,           NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
932         VULNWL_INTEL(ATOM_SILVERMONT_X,         NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
933         VULNWL_INTEL(ATOM_SILVERMONT_MID,       NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
934         VULNWL_INTEL(ATOM_AIRMONT,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
935         VULNWL_INTEL(XEON_PHI_KNL,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
936         VULNWL_INTEL(XEON_PHI_KNM,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
937
938         VULNWL_INTEL(CORE_YONAH,                NO_SSB),
939
940         VULNWL_INTEL(ATOM_AIRMONT_MID,          NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
941
942         VULNWL_INTEL(ATOM_GOLDMONT,             NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
943         VULNWL_INTEL(ATOM_GOLDMONT_X,           NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
944         VULNWL_INTEL(ATOM_GOLDMONT_PLUS,        NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
945
946         /*
947          * Technically, swapgs isn't serializing on AMD (despite it previously
948          * being documented as such in the APM).  But according to AMD, %gs is
949          * updated non-speculatively, and the issuing of %gs-relative memory
950          * operands will be blocked until the %gs update completes, which is
951          * good enough for our purposes.
952          */
953
954         /* AMD Family 0xf - 0x12 */
955         VULNWL_AMD(0x0f,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
956         VULNWL_AMD(0x10,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
957         VULNWL_AMD(0x11,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
958         VULNWL_AMD(0x12,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
959
960         /* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
961         VULNWL_AMD(X86_FAMILY_ANY,      NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
962         {}
963 };
964
965 #define VULNBL_INTEL_STEPPINGS(model, steppings, issues)                   \
966         X86_MATCH_VENDOR_FAM_MODEL_STEPPINGS_FEATURE(INTEL, 6,             \
967                                             INTEL_FAM6_##model, steppings, \
968                                             X86_FEATURE_ANY, issues)
969
970 #define SRBDS           BIT(0)
971 /* CPU is affected by X86_BUG_MMIO_STALE_DATA */
972 #define MMIO            BIT(1)
973 /* CPU is affected by Shared Buffers Data Sampling (SBDS), a variant of X86_BUG_MMIO_STALE_DATA */
974 #define MMIO_SBDS       BIT(2)
975
976 static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
977         VULNBL_INTEL_STEPPINGS(IVYBRIDGE,       X86_STEPPING_ANY,               SRBDS),
978         VULNBL_INTEL_STEPPINGS(HASWELL_CORE,    X86_STEPPING_ANY,               SRBDS),
979         VULNBL_INTEL_STEPPINGS(HASWELL_ULT,     X86_STEPPING_ANY,               SRBDS),
980         VULNBL_INTEL_STEPPINGS(HASWELL_GT3E,    X86_STEPPING_ANY,               SRBDS),
981         VULNBL_INTEL_STEPPINGS(HASWELL_X,       BIT(2) | BIT(4),                MMIO),
982         VULNBL_INTEL_STEPPINGS(BROADWELL_XEON_D,X86_STEPPINGS(0x3, 0x5),        MMIO),
983         VULNBL_INTEL_STEPPINGS(BROADWELL_GT3E,  X86_STEPPING_ANY,               SRBDS),
984         VULNBL_INTEL_STEPPINGS(BROADWELL_X,     X86_STEPPING_ANY,               MMIO),
985         VULNBL_INTEL_STEPPINGS(BROADWELL_CORE,  X86_STEPPING_ANY,               SRBDS),
986         VULNBL_INTEL_STEPPINGS(SKYLAKE_MOBILE,  X86_STEPPINGS(0x3, 0x3),        SRBDS | MMIO),
987         VULNBL_INTEL_STEPPINGS(SKYLAKE_MOBILE,  X86_STEPPING_ANY,               SRBDS),
988         VULNBL_INTEL_STEPPINGS(SKYLAKE_X,       BIT(3) | BIT(4) | BIT(6) |
989                                                 BIT(7) | BIT(0xB),              MMIO),
990         VULNBL_INTEL_STEPPINGS(SKYLAKE_DESKTOP, X86_STEPPINGS(0x3, 0x3),        SRBDS | MMIO),
991         VULNBL_INTEL_STEPPINGS(SKYLAKE_DESKTOP, X86_STEPPING_ANY,               SRBDS),
992         VULNBL_INTEL_STEPPINGS(KABYLAKE_MOBILE, X86_STEPPINGS(0x9, 0xC),        SRBDS | MMIO),
993         VULNBL_INTEL_STEPPINGS(KABYLAKE_MOBILE, X86_STEPPINGS(0x0, 0x8),        SRBDS),
994         VULNBL_INTEL_STEPPINGS(KABYLAKE_DESKTOP,X86_STEPPINGS(0x9, 0xD),        SRBDS | MMIO),
995         VULNBL_INTEL_STEPPINGS(KABYLAKE_DESKTOP,X86_STEPPINGS(0x0, 0x8),        SRBDS),
996         VULNBL_INTEL_STEPPINGS(ICELAKE_MOBILE,  X86_STEPPINGS(0x5, 0x5),        MMIO | MMIO_SBDS),
997         VULNBL_INTEL_STEPPINGS(ICELAKE_XEON_D,  X86_STEPPINGS(0x1, 0x1),        MMIO),
998         VULNBL_INTEL_STEPPINGS(ICELAKE_X,       X86_STEPPINGS(0x4, 0x6),        MMIO),
999         VULNBL_INTEL_STEPPINGS(COMETLAKE,       BIT(2) | BIT(3) | BIT(5),       MMIO | MMIO_SBDS),
1000         VULNBL_INTEL_STEPPINGS(COMETLAKE_L,     X86_STEPPINGS(0x1, 0x1),        MMIO | MMIO_SBDS),
1001         VULNBL_INTEL_STEPPINGS(COMETLAKE_L,     X86_STEPPINGS(0x0, 0x0),        MMIO),
1002         VULNBL_INTEL_STEPPINGS(LAKEFIELD,       X86_STEPPINGS(0x1, 0x1),        MMIO | MMIO_SBDS),
1003         VULNBL_INTEL_STEPPINGS(ROCKETLAKE,      X86_STEPPINGS(0x1, 0x1),        MMIO),
1004         VULNBL_INTEL_STEPPINGS(ATOM_TREMONT,    X86_STEPPINGS(0x1, 0x1),        MMIO | MMIO_SBDS),
1005         VULNBL_INTEL_STEPPINGS(ATOM_TREMONT_X,  X86_STEPPING_ANY,               MMIO),
1006         VULNBL_INTEL_STEPPINGS(ATOM_TREMONT_L,  X86_STEPPINGS(0x0, 0x0),        MMIO | MMIO_SBDS),
1007         {}
1008 };
1009
1010 static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
1011 {
1012         const struct x86_cpu_id *m = x86_match_cpu(table);
1013
1014         return m && !!(m->driver_data & which);
1015 }
1016
1017 u64 x86_read_arch_cap_msr(void)
1018 {
1019         u64 ia32_cap = 0;
1020
1021         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1022                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
1023
1024         return ia32_cap;
1025 }
1026
1027 static bool arch_cap_mmio_immune(u64 ia32_cap)
1028 {
1029         return (ia32_cap & ARCH_CAP_FBSDP_NO &&
1030                 ia32_cap & ARCH_CAP_PSDP_NO &&
1031                 ia32_cap & ARCH_CAP_SBDR_SSDP_NO);
1032 }
1033
1034 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1035 {
1036         u64 ia32_cap = x86_read_arch_cap_msr();
1037
1038         /* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1039         if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
1040             !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO))
1041                 setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1042
1043         if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
1044                 return;
1045
1046         setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1047         setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1048
1049         if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
1050             !(ia32_cap & ARCH_CAP_SSB_NO) &&
1051            !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1052                 setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1053
1054         if (ia32_cap & ARCH_CAP_IBRS_ALL)
1055                 setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1056
1057         if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
1058             !(ia32_cap & ARCH_CAP_MDS_NO)) {
1059                 setup_force_cpu_bug(X86_BUG_MDS);
1060                 if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
1061                         setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1062         }
1063
1064         if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
1065                 setup_force_cpu_bug(X86_BUG_SWAPGS);
1066
1067         /*
1068          * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1069          *      - TSX is supported or
1070          *      - TSX_CTRL is present
1071          *
1072          * TSX_CTRL check is needed for cases when TSX could be disabled before
1073          * the kernel boot e.g. kexec.
1074          * TSX_CTRL check alone is not sufficient for cases when the microcode
1075          * update is not present or running as guest that don't get TSX_CTRL.
1076          */
1077         if (!(ia32_cap & ARCH_CAP_TAA_NO) &&
1078             (cpu_has(c, X86_FEATURE_RTM) ||
1079              (ia32_cap & ARCH_CAP_TSX_CTRL_MSR)))
1080                 setup_force_cpu_bug(X86_BUG_TAA);
1081
1082         /*
1083          * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
1084          * in the vulnerability blacklist.
1085          *
1086          * Some of the implications and mitigation of Shared Buffers Data
1087          * Sampling (SBDS) are similar to SRBDS. Give SBDS same treatment as
1088          * SRBDS.
1089          */
1090         if ((cpu_has(c, X86_FEATURE_RDRAND) ||
1091              cpu_has(c, X86_FEATURE_RDSEED)) &&
1092             cpu_matches(cpu_vuln_blacklist, SRBDS | MMIO_SBDS))
1093                     setup_force_cpu_bug(X86_BUG_SRBDS);
1094
1095         /*
1096          * Processor MMIO Stale Data bug enumeration
1097          *
1098          * Affected CPU list is generally enough to enumerate the vulnerability,
1099          * but for virtualization case check for ARCH_CAP MSR bits also, VMM may
1100          * not want the guest to enumerate the bug.
1101          *
1102          * Set X86_BUG_MMIO_UNKNOWN for CPUs that are neither in the blacklist,
1103          * nor in the whitelist and also don't enumerate MSR ARCH_CAP MMIO bits.
1104          */
1105         if (!arch_cap_mmio_immune(ia32_cap)) {
1106                 if (cpu_matches(cpu_vuln_blacklist, MMIO))
1107                         setup_force_cpu_bug(X86_BUG_MMIO_STALE_DATA);
1108                 else if (!cpu_matches(cpu_vuln_whitelist, NO_MMIO))
1109                         setup_force_cpu_bug(X86_BUG_MMIO_UNKNOWN);
1110         }
1111
1112         if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
1113                 return;
1114
1115         /* Rogue Data Cache Load? No! */
1116         if (ia32_cap & ARCH_CAP_RDCL_NO)
1117                 return;
1118
1119         setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1120
1121         if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
1122                 return;
1123
1124         setup_force_cpu_bug(X86_BUG_L1TF);
1125 }
1126
1127 /*
1128  * Do minimum CPU detection early.
1129  * Fields really needed: vendor, cpuid_level, family, model, mask,
1130  * cache alignment.
1131  * The others are not touched to avoid unwanted side effects.
1132  *
1133  * WARNING: this function is only called on the BP.  Don't add code here
1134  * that is supposed to run on all CPUs.
1135  */
1136 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1137 {
1138 #ifdef CONFIG_X86_64
1139         c->x86_clflush_size = 64;
1140         c->x86_phys_bits = 36;
1141         c->x86_virt_bits = 48;
1142 #else
1143         c->x86_clflush_size = 32;
1144         c->x86_phys_bits = 32;
1145         c->x86_virt_bits = 32;
1146 #endif
1147         c->x86_cache_alignment = c->x86_clflush_size;
1148
1149         memset(&c->x86_capability, 0, sizeof c->x86_capability);
1150         c->extended_cpuid_level = 0;
1151
1152         if (!have_cpuid_p())
1153                 identify_cpu_without_cpuid(c);
1154
1155         /* cyrix could have cpuid enabled via c_identify()*/
1156         if (have_cpuid_p()) {
1157                 cpu_detect(c);
1158                 get_cpu_vendor(c);
1159                 get_cpu_cap(c);
1160
1161                 if (this_cpu->c_early_init)
1162                         this_cpu->c_early_init(c);
1163
1164                 c->cpu_index = 0;
1165                 filter_cpuid_features(c, false);
1166
1167                 if (this_cpu->c_bsp_init)
1168                         this_cpu->c_bsp_init(c);
1169         }
1170
1171         setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1172
1173         cpu_set_bug_bits(c);
1174
1175         fpu__init_system(c);
1176
1177 #ifdef CONFIG_X86_32
1178         /*
1179          * Regardless of whether PCID is enumerated, the SDM says
1180          * that it can't be enabled in 32-bit mode.
1181          */
1182         setup_clear_cpu_cap(X86_FEATURE_PCID);
1183 #endif
1184 }
1185
1186 void __init early_cpu_init(void)
1187 {
1188         const struct cpu_dev *const *cdev;
1189         int count = 0;
1190
1191 #ifdef CONFIG_PROCESSOR_SELECT
1192         pr_info("KERNEL supported cpus:\n");
1193 #endif
1194
1195         for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1196                 const struct cpu_dev *cpudev = *cdev;
1197
1198                 if (count >= X86_VENDOR_NUM)
1199                         break;
1200                 cpu_devs[count] = cpudev;
1201                 count++;
1202
1203 #ifdef CONFIG_PROCESSOR_SELECT
1204                 {
1205                         unsigned int j;
1206
1207                         for (j = 0; j < 2; j++) {
1208                                 if (!cpudev->c_ident[j])
1209                                         continue;
1210                                 pr_info("  %s %s\n", cpudev->c_vendor,
1211                                         cpudev->c_ident[j]);
1212                         }
1213                 }
1214 #endif
1215         }
1216         early_identify_cpu(&boot_cpu_data);
1217 }
1218
1219 /*
1220  * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1221  * unfortunately, that's not true in practice because of early VIA
1222  * chips and (more importantly) broken virtualizers that are not easy
1223  * to detect. In the latter case it doesn't even *fail* reliably, so
1224  * probing for it doesn't even work. Disable it completely on 32-bit
1225  * unless we can find a reliable way to detect all the broken cases.
1226  * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1227  */
1228 static void detect_nopl(struct cpuinfo_x86 *c)
1229 {
1230 #ifdef CONFIG_X86_32
1231         clear_cpu_cap(c, X86_FEATURE_NOPL);
1232 #else
1233         set_cpu_cap(c, X86_FEATURE_NOPL);
1234 #endif
1235 }
1236
1237 static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
1238 {
1239 #ifdef CONFIG_X86_64
1240         /*
1241          * Empirically, writing zero to a segment selector on AMD does
1242          * not clear the base, whereas writing zero to a segment
1243          * selector on Intel does clear the base.  Intel's behavior
1244          * allows slightly faster context switches in the common case
1245          * where GS is unused by the prev and next threads.
1246          *
1247          * Since neither vendor documents this anywhere that I can see,
1248          * detect it directly instead of hardcoding the choice by
1249          * vendor.
1250          *
1251          * I've designated AMD's behavior as the "bug" because it's
1252          * counterintuitive and less friendly.
1253          */
1254
1255         unsigned long old_base, tmp;
1256         rdmsrl(MSR_FS_BASE, old_base);
1257         wrmsrl(MSR_FS_BASE, 1);
1258         loadsegment(fs, 0);
1259         rdmsrl(MSR_FS_BASE, tmp);
1260         if (tmp != 0)
1261                 set_cpu_bug(c, X86_BUG_NULL_SEG);
1262         wrmsrl(MSR_FS_BASE, old_base);
1263 #endif
1264 }
1265
1266 static void generic_identify(struct cpuinfo_x86 *c)
1267 {
1268         c->extended_cpuid_level = 0;
1269
1270         if (!have_cpuid_p())
1271                 identify_cpu_without_cpuid(c);
1272
1273         /* cyrix could have cpuid enabled via c_identify()*/
1274         if (!have_cpuid_p())
1275                 return;
1276
1277         cpu_detect(c);
1278
1279         get_cpu_vendor(c);
1280
1281         get_cpu_cap(c);
1282
1283         if (c->cpuid_level >= 0x00000001) {
1284                 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1285 #ifdef CONFIG_X86_32
1286 # ifdef CONFIG_SMP
1287                 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1288 # else
1289                 c->apicid = c->initial_apicid;
1290 # endif
1291 #endif
1292                 c->phys_proc_id = c->initial_apicid;
1293         }
1294
1295         get_model_name(c); /* Default name */
1296
1297         detect_nopl(c);
1298
1299         detect_null_seg_behavior(c);
1300
1301         /*
1302          * ESPFIX is a strange bug.  All real CPUs have it.  Paravirt
1303          * systems that run Linux at CPL > 0 may or may not have the
1304          * issue, but, even if they have the issue, there's absolutely
1305          * nothing we can do about it because we can't use the real IRET
1306          * instruction.
1307          *
1308          * NB: For the time being, only 32-bit kernels support
1309          * X86_BUG_ESPFIX as such.  64-bit kernels directly choose
1310          * whether to apply espfix using paravirt hooks.  If any
1311          * non-paravirt system ever shows up that does *not* have the
1312          * ESPFIX issue, we can change this.
1313          */
1314 #ifdef CONFIG_X86_32
1315 # ifdef CONFIG_PARAVIRT
1316         do {
1317                 extern void native_iret(void);
1318                 if (pv_cpu_ops.iret == native_iret)
1319                         set_cpu_bug(c, X86_BUG_ESPFIX);
1320         } while (0);
1321 # else
1322         set_cpu_bug(c, X86_BUG_ESPFIX);
1323 # endif
1324 #endif
1325 }
1326
1327 static void x86_init_cache_qos(struct cpuinfo_x86 *c)
1328 {
1329         /*
1330          * The heavy lifting of max_rmid and cache_occ_scale are handled
1331          * in get_cpu_cap().  Here we just set the max_rmid for the boot_cpu
1332          * in case CQM bits really aren't there in this CPU.
1333          */
1334         if (c != &boot_cpu_data) {
1335                 boot_cpu_data.x86_cache_max_rmid =
1336                         min(boot_cpu_data.x86_cache_max_rmid,
1337                             c->x86_cache_max_rmid);
1338         }
1339 }
1340
1341 /*
1342  * Validate that ACPI/mptables have the same information about the
1343  * effective APIC id and update the package map.
1344  */
1345 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1346 {
1347 #ifdef CONFIG_SMP
1348         unsigned int apicid, cpu = smp_processor_id();
1349
1350         apicid = apic->cpu_present_to_apicid(cpu);
1351
1352         if (apicid != c->apicid) {
1353                 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1354                        cpu, apicid, c->initial_apicid);
1355         }
1356         BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1357 #else
1358         c->logical_proc_id = 0;
1359 #endif
1360 }
1361
1362 /*
1363  * This does the hard work of actually picking apart the CPU stuff...
1364  */
1365 static void identify_cpu(struct cpuinfo_x86 *c)
1366 {
1367         int i;
1368
1369         c->loops_per_jiffy = loops_per_jiffy;
1370         c->x86_cache_size = 0;
1371         c->x86_vendor = X86_VENDOR_UNKNOWN;
1372         c->x86_model = c->x86_stepping = 0;     /* So far unknown... */
1373         c->x86_vendor_id[0] = '\0'; /* Unset */
1374         c->x86_model_id[0] = '\0';  /* Unset */
1375         c->x86_max_cores = 1;
1376         c->x86_coreid_bits = 0;
1377         c->cu_id = 0xff;
1378 #ifdef CONFIG_X86_64
1379         c->x86_clflush_size = 64;
1380         c->x86_phys_bits = 36;
1381         c->x86_virt_bits = 48;
1382 #else
1383         c->cpuid_level = -1;    /* CPUID not detected */
1384         c->x86_clflush_size = 32;
1385         c->x86_phys_bits = 32;
1386         c->x86_virt_bits = 32;
1387 #endif
1388         c->x86_cache_alignment = c->x86_clflush_size;
1389         memset(&c->x86_capability, 0, sizeof c->x86_capability);
1390
1391         generic_identify(c);
1392
1393         if (this_cpu->c_identify)
1394                 this_cpu->c_identify(c);
1395
1396         /* Clear/Set all flags overridden by options, after probe */
1397         apply_forced_caps(c);
1398
1399 #ifdef CONFIG_X86_64
1400         c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1401 #endif
1402
1403         /*
1404          * Vendor-specific initialization.  In this section we
1405          * canonicalize the feature flags, meaning if there are
1406          * features a certain CPU supports which CPUID doesn't
1407          * tell us, CPUID claiming incorrect flags, or other bugs,
1408          * we handle them here.
1409          *
1410          * At the end of this section, c->x86_capability better
1411          * indicate the features this CPU genuinely supports!
1412          */
1413         if (this_cpu->c_init)
1414                 this_cpu->c_init(c);
1415
1416         /* Disable the PN if appropriate */
1417         squash_the_stupid_serial_number(c);
1418
1419         /* Set up SMEP/SMAP */
1420         setup_smep(c);
1421         setup_smap(c);
1422
1423         /* Set up PCID */
1424         setup_pcid(c);
1425
1426         /*
1427          * The vendor-specific functions might have changed features.
1428          * Now we do "generic changes."
1429          */
1430
1431         /* Filter out anything that depends on CPUID levels we don't have */
1432         filter_cpuid_features(c, true);
1433
1434         /* If the model name is still unset, do table lookup. */
1435         if (!c->x86_model_id[0]) {
1436                 const char *p;
1437                 p = table_lookup_model(c);
1438                 if (p)
1439                         strcpy(c->x86_model_id, p);
1440                 else
1441                         /* Last resort... */
1442                         sprintf(c->x86_model_id, "%02x/%02x",
1443                                 c->x86, c->x86_model);
1444         }
1445
1446 #ifdef CONFIG_X86_64
1447         detect_ht(c);
1448 #endif
1449
1450         init_hypervisor(c);
1451         x86_init_rdrand(c);
1452         x86_init_cache_qos(c);
1453         setup_pku(c);
1454
1455         /*
1456          * Clear/Set all flags overridden by options, need do it
1457          * before following smp all cpus cap AND.
1458          */
1459         apply_forced_caps(c);
1460
1461         /*
1462          * On SMP, boot_cpu_data holds the common feature set between
1463          * all CPUs; so make sure that we indicate which features are
1464          * common between the CPUs.  The first time this routine gets
1465          * executed, c == &boot_cpu_data.
1466          */
1467         if (c != &boot_cpu_data) {
1468                 /* AND the already accumulated flags with these */
1469                 for (i = 0; i < NCAPINTS; i++)
1470                         boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1471
1472                 /* OR, i.e. replicate the bug flags */
1473                 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1474                         c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1475         }
1476
1477         /* Init Machine Check Exception if available. */
1478         mcheck_cpu_init(c);
1479
1480         select_idle_routine(c);
1481
1482 #ifdef CONFIG_NUMA
1483         numa_add_cpu(smp_processor_id());
1484 #endif
1485 }
1486
1487 /*
1488  * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1489  * on 32-bit kernels:
1490  */
1491 #ifdef CONFIG_X86_32
1492 void enable_sep_cpu(void)
1493 {
1494         struct tss_struct *tss;
1495         int cpu;
1496
1497         if (!boot_cpu_has(X86_FEATURE_SEP))
1498                 return;
1499
1500         cpu = get_cpu();
1501         tss = &per_cpu(cpu_tss, cpu);
1502
1503         /*
1504          * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1505          * see the big comment in struct x86_hw_tss's definition.
1506          */
1507
1508         tss->x86_tss.ss1 = __KERNEL_CS;
1509         wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1510
1511         wrmsr(MSR_IA32_SYSENTER_ESP,
1512               (unsigned long)tss + offsetofend(struct tss_struct, SYSENTER_stack),
1513               0);
1514
1515         wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1516
1517         put_cpu();
1518 }
1519 #endif
1520
1521 void __init identify_boot_cpu(void)
1522 {
1523         identify_cpu(&boot_cpu_data);
1524         init_amd_e400_c1e_mask();
1525 #ifdef CONFIG_X86_32
1526         sysenter_setup();
1527         enable_sep_cpu();
1528 #endif
1529         cpu_detect_tlb(&boot_cpu_data);
1530
1531         tsx_init();
1532 }
1533
1534 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1535 {
1536         BUG_ON(c == &boot_cpu_data);
1537         identify_cpu(c);
1538 #ifdef CONFIG_X86_32
1539         enable_sep_cpu();
1540 #endif
1541         mtrr_ap_init();
1542         validate_apic_and_package_id(c);
1543         x86_spec_ctrl_setup_ap();
1544         update_srbds_msr();
1545 }
1546
1547 struct msr_range {
1548         unsigned        min;
1549         unsigned        max;
1550 };
1551
1552 static const struct msr_range msr_range_array[] = {
1553         { 0x00000000, 0x00000418},
1554         { 0xc0000000, 0xc000040b},
1555         { 0xc0010000, 0xc0010142},
1556         { 0xc0011000, 0xc001103b},
1557 };
1558
1559 static void __print_cpu_msr(void)
1560 {
1561         unsigned index_min, index_max;
1562         unsigned index;
1563         u64 val;
1564         int i;
1565
1566         for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
1567                 index_min = msr_range_array[i].min;
1568                 index_max = msr_range_array[i].max;
1569
1570                 for (index = index_min; index < index_max; index++) {
1571                         if (rdmsrl_safe(index, &val))
1572                                 continue;
1573                         pr_info(" MSR%08x: %016llx\n", index, val);
1574                 }
1575         }
1576 }
1577
1578 static int show_msr;
1579
1580 static __init int setup_show_msr(char *arg)
1581 {
1582         int num;
1583
1584         get_option(&arg, &num);
1585
1586         if (num > 0)
1587                 show_msr = num;
1588         return 1;
1589 }
1590 __setup("show_msr=", setup_show_msr);
1591
1592 static __init int setup_noclflush(char *arg)
1593 {
1594         setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1595         setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1596         return 1;
1597 }
1598 __setup("noclflush", setup_noclflush);
1599
1600 void print_cpu_info(struct cpuinfo_x86 *c)
1601 {
1602         const char *vendor = NULL;
1603
1604         if (c->x86_vendor < X86_VENDOR_NUM) {
1605                 vendor = this_cpu->c_vendor;
1606         } else {
1607                 if (c->cpuid_level >= 0)
1608                         vendor = c->x86_vendor_id;
1609         }
1610
1611         if (vendor && !strstr(c->x86_model_id, vendor))
1612                 pr_cont("%s ", vendor);
1613
1614         if (c->x86_model_id[0])
1615                 pr_cont("%s", c->x86_model_id);
1616         else
1617                 pr_cont("%d86", c->x86);
1618
1619         pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1620
1621         if (c->x86_stepping || c->cpuid_level >= 0)
1622                 pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
1623         else
1624                 pr_cont(")\n");
1625
1626         print_cpu_msr(c);
1627 }
1628
1629 void print_cpu_msr(struct cpuinfo_x86 *c)
1630 {
1631         if (c->cpu_index < show_msr)
1632                 __print_cpu_msr();
1633 }
1634
1635 static __init int setup_disablecpuid(char *arg)
1636 {
1637         int bit;
1638
1639         if (get_option(&arg, &bit) && bit >= 0 && bit < NCAPINTS * 32)
1640                 setup_clear_cpu_cap(bit);
1641         else
1642                 return 0;
1643
1644         return 1;
1645 }
1646 __setup("clearcpuid=", setup_disablecpuid);
1647
1648 #ifdef CONFIG_X86_64
1649 struct desc_ptr idt_descr __ro_after_init = {
1650         .size = NR_VECTORS * 16 - 1,
1651         .address = (unsigned long) idt_table,
1652 };
1653 const struct desc_ptr debug_idt_descr = {
1654         .size = NR_VECTORS * 16 - 1,
1655         .address = (unsigned long) debug_idt_table,
1656 };
1657
1658 DEFINE_PER_CPU_FIRST(union irq_stack_union,
1659                      irq_stack_union) __aligned(PAGE_SIZE) __visible;
1660
1661 /*
1662  * The following percpu variables are hot.  Align current_task to
1663  * cacheline size such that they fall in the same cacheline.
1664  */
1665 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1666         &init_task;
1667 EXPORT_PER_CPU_SYMBOL(current_task);
1668
1669 DEFINE_PER_CPU(char *, irq_stack_ptr) =
1670         init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE;
1671
1672 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1673
1674 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1675 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1676
1677 /*
1678  * Special IST stacks which the CPU switches to when it calls
1679  * an IST-marked descriptor entry. Up to 7 stacks (hardware
1680  * limit), all of them are 4K, except the debug stack which
1681  * is 8K.
1682  */
1683 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
1684           [0 ... N_EXCEPTION_STACKS - 1]        = EXCEPTION_STKSZ,
1685           [DEBUG_STACK - 1]                     = DEBUG_STKSZ
1686 };
1687
1688 DEFINE_PER_CPU_PAGE_ALIGNED_USER_MAPPED(char, exception_stacks
1689         [(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
1690
1691 /* May not be marked __init: used by software suspend */
1692 void syscall_init(void)
1693 {
1694         wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1695         wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1696
1697 #ifdef CONFIG_IA32_EMULATION
1698         wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1699         /*
1700          * This only works on Intel CPUs.
1701          * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1702          * This does not cause SYSENTER to jump to the wrong location, because
1703          * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1704          */
1705         wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1706         wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1707         wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1708 #else
1709         wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1710         wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1711         wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1712         wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1713 #endif
1714
1715         /* Flags to clear on syscall */
1716         wrmsrl(MSR_SYSCALL_MASK,
1717                X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1718                X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1719 }
1720
1721 /*
1722  * Copies of the original ist values from the tss are only accessed during
1723  * debugging, no special alignment required.
1724  */
1725 DEFINE_PER_CPU(struct orig_ist, orig_ist);
1726
1727 static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
1728 DEFINE_PER_CPU(int, debug_stack_usage);
1729
1730 int is_debug_stack(unsigned long addr)
1731 {
1732         return __this_cpu_read(debug_stack_usage) ||
1733                 (addr <= __this_cpu_read(debug_stack_addr) &&
1734                  addr > (__this_cpu_read(debug_stack_addr) - DEBUG_STKSZ));
1735 }
1736 NOKPROBE_SYMBOL(is_debug_stack);
1737
1738 DEFINE_PER_CPU(u32, debug_idt_ctr);
1739
1740 void debug_stack_set_zero(void)
1741 {
1742         this_cpu_inc(debug_idt_ctr);
1743         load_current_idt();
1744 }
1745 NOKPROBE_SYMBOL(debug_stack_set_zero);
1746
1747 void debug_stack_reset(void)
1748 {
1749         if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1750                 return;
1751         if (this_cpu_dec_return(debug_idt_ctr) == 0)
1752                 load_current_idt();
1753 }
1754 NOKPROBE_SYMBOL(debug_stack_reset);
1755
1756 #else   /* CONFIG_X86_64 */
1757
1758 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1759 EXPORT_PER_CPU_SYMBOL(current_task);
1760 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1761 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1762
1763 /*
1764  * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1765  * the top of the kernel stack.  Use an extra percpu variable to track the
1766  * top of the kernel stack directly.
1767  */
1768 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1769         (unsigned long)&init_thread_union + THREAD_SIZE;
1770 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1771
1772 #ifdef CONFIG_CC_STACKPROTECTOR
1773 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1774 #endif
1775
1776 #endif  /* CONFIG_X86_64 */
1777
1778 /*
1779  * Clear all 6 debug registers:
1780  */
1781 static void clear_all_debug_regs(void)
1782 {
1783         int i;
1784
1785         for (i = 0; i < 8; i++) {
1786                 /* Ignore db4, db5 */
1787                 if ((i == 4) || (i == 5))
1788                         continue;
1789
1790                 set_debugreg(0, i);
1791         }
1792 }
1793
1794 #ifdef CONFIG_KGDB
1795 /*
1796  * Restore debug regs if using kgdbwait and you have a kernel debugger
1797  * connection established.
1798  */
1799 static void dbg_restore_debug_regs(void)
1800 {
1801         if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1802                 arch_kgdb_ops.correct_hw_break();
1803 }
1804 #else /* ! CONFIG_KGDB */
1805 #define dbg_restore_debug_regs()
1806 #endif /* ! CONFIG_KGDB */
1807
1808 static void wait_for_master_cpu(int cpu)
1809 {
1810 #ifdef CONFIG_SMP
1811         /*
1812          * wait for ACK from master CPU before continuing
1813          * with AP initialization
1814          */
1815         WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1816         while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1817                 cpu_relax();
1818 #endif
1819 }
1820
1821 /*
1822  * cpu_init() initializes state that is per-CPU. Some data is already
1823  * initialized (naturally) in the bootstrap process, such as the GDT
1824  * and IDT. We reload them nevertheless, this function acts as a
1825  * 'CPU state barrier', nothing should get across.
1826  * A lot of state is already set up in PDA init for 64 bit
1827  */
1828 #ifdef CONFIG_X86_64
1829
1830 void cpu_init(void)
1831 {
1832         struct orig_ist *oist;
1833         struct task_struct *me;
1834         struct tss_struct *t;
1835         unsigned long v;
1836         int cpu = raw_smp_processor_id();
1837         int i;
1838
1839         wait_for_master_cpu(cpu);
1840
1841         /*
1842          * Initialize the CR4 shadow before doing anything that could
1843          * try to read it.
1844          */
1845         cr4_init_shadow();
1846         if (!kaiser_enabled) {
1847                 /*
1848                  * secondary_startup_64() deferred setting PGE in cr4:
1849                  * probe_page_size_mask() sets it on the boot cpu,
1850                  * but it needs to be set on each secondary cpu.
1851                  */
1852                 cr4_set_bits(X86_CR4_PGE);
1853         }
1854
1855         /*
1856          * Load microcode on this cpu if a valid microcode is available.
1857          * This is early microcode loading procedure.
1858          */
1859         load_ucode_ap();
1860
1861         t = &per_cpu(cpu_tss, cpu);
1862         oist = &per_cpu(orig_ist, cpu);
1863
1864 #ifdef CONFIG_NUMA
1865         if (this_cpu_read(numa_node) == 0 &&
1866             early_cpu_to_node(cpu) != NUMA_NO_NODE)
1867                 set_numa_node(early_cpu_to_node(cpu));
1868 #endif
1869
1870         me = current;
1871
1872         pr_debug("Initializing CPU#%d\n", cpu);
1873
1874         cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1875
1876         /*
1877          * Initialize the per-CPU GDT with the boot GDT,
1878          * and set up the GDT descriptor:
1879          */
1880
1881         switch_to_new_gdt(cpu);
1882         loadsegment(fs, 0);
1883
1884         load_current_idt();
1885
1886         memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1887         syscall_init();
1888
1889         wrmsrl(MSR_FS_BASE, 0);
1890         wrmsrl(MSR_KERNEL_GS_BASE, 0);
1891         barrier();
1892
1893         x86_configure_nx();
1894         x2apic_setup();
1895
1896         /*
1897          * set up and load the per-CPU TSS
1898          */
1899         if (!oist->ist[0]) {
1900                 char *estacks = per_cpu(exception_stacks, cpu);
1901
1902                 for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1903                         estacks += exception_stack_sizes[v];
1904                         oist->ist[v] = t->x86_tss.ist[v] =
1905                                         (unsigned long)estacks;
1906                         if (v == DEBUG_STACK-1)
1907                                 per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1908                 }
1909         }
1910
1911         t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1912
1913         /*
1914          * <= is required because the CPU will access up to
1915          * 8 bits beyond the end of the IO permission bitmap.
1916          */
1917         for (i = 0; i <= IO_BITMAP_LONGS; i++)
1918                 t->io_bitmap[i] = ~0UL;
1919
1920         atomic_inc(&init_mm.mm_count);
1921         me->active_mm = &init_mm;
1922         BUG_ON(me->mm);
1923         enter_lazy_tlb(&init_mm, me);
1924
1925         load_sp0(t, &current->thread);
1926         set_tss_desc(cpu, t);
1927         load_TR_desc();
1928         load_mm_ldt(&init_mm);
1929
1930         clear_all_debug_regs();
1931         dbg_restore_debug_regs();
1932
1933         fpu__init_cpu();
1934
1935         if (is_uv_system())
1936                 uv_cpu_init();
1937 }
1938
1939 #else
1940
1941 void cpu_init(void)
1942 {
1943         int cpu = smp_processor_id();
1944         struct task_struct *curr = current;
1945         struct tss_struct *t = &per_cpu(cpu_tss, cpu);
1946         struct thread_struct *thread = &curr->thread;
1947
1948         wait_for_master_cpu(cpu);
1949
1950         /*
1951          * Initialize the CR4 shadow before doing anything that could
1952          * try to read it.
1953          */
1954         cr4_init_shadow();
1955
1956         show_ucode_info_early();
1957
1958         pr_info("Initializing CPU#%d\n", cpu);
1959
1960         if (cpu_feature_enabled(X86_FEATURE_VME) ||
1961             boot_cpu_has(X86_FEATURE_TSC) ||
1962             boot_cpu_has(X86_FEATURE_DE))
1963                 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1964
1965         load_current_idt();
1966         switch_to_new_gdt(cpu);
1967
1968         /*
1969          * Set up and load the per-CPU TSS and LDT
1970          */
1971         atomic_inc(&init_mm.mm_count);
1972         curr->active_mm = &init_mm;
1973         BUG_ON(curr->mm);
1974         enter_lazy_tlb(&init_mm, curr);
1975
1976         load_sp0(t, thread);
1977         set_tss_desc(cpu, t);
1978         load_TR_desc();
1979         load_mm_ldt(&init_mm);
1980
1981         t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1982
1983 #ifdef CONFIG_DOUBLEFAULT
1984         /* Set up doublefault TSS pointer in the GDT */
1985         __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1986 #endif
1987
1988         clear_all_debug_regs();
1989         dbg_restore_debug_regs();
1990
1991         fpu__init_cpu();
1992 }
1993 #endif
1994
1995 static void bsp_resume(void)
1996 {
1997         if (this_cpu->c_bsp_resume)
1998                 this_cpu->c_bsp_resume(&boot_cpu_data);
1999 }
2000
2001 static struct syscore_ops cpu_syscore_ops = {
2002         .resume         = bsp_resume,
2003 };
2004
2005 static int __init init_cpu_syscore(void)
2006 {
2007         register_syscore_ops(&cpu_syscore_ops);
2008         return 0;
2009 }
2010 core_initcall(init_cpu_syscore);