GNU Linux-libre 4.19.264-gnu1
[releases.git] / arch / x86 / kernel / cpu / mcheck / mce_amd.c
1 /*
2  *  (c) 2005-2016 Advanced Micro Devices, Inc.
3  *  Your use of this code is subject to the terms and conditions of the
4  *  GNU general public license version 2. See "COPYING" or
5  *  http://www.gnu.org/licenses/gpl.html
6  *
7  *  Written by Jacob Shin - AMD, Inc.
8  *  Maintained by: Borislav Petkov <bp@alien8.de>
9  *
10  *  All MC4_MISCi registers are shared between cores on a node.
11  */
12 #include <linux/interrupt.h>
13 #include <linux/notifier.h>
14 #include <linux/kobject.h>
15 #include <linux/percpu.h>
16 #include <linux/errno.h>
17 #include <linux/sched.h>
18 #include <linux/sysfs.h>
19 #include <linux/slab.h>
20 #include <linux/init.h>
21 #include <linux/cpu.h>
22 #include <linux/smp.h>
23 #include <linux/string.h>
24
25 #include <asm/amd_nb.h>
26 #include <asm/traps.h>
27 #include <asm/apic.h>
28 #include <asm/mce.h>
29 #include <asm/msr.h>
30 #include <asm/trace/irq_vectors.h>
31
32 #include "mce-internal.h"
33
34 #define NR_BLOCKS         5
35 #define THRESHOLD_MAX     0xFFF
36 #define INT_TYPE_APIC     0x00020000
37 #define MASK_VALID_HI     0x80000000
38 #define MASK_CNTP_HI      0x40000000
39 #define MASK_LOCKED_HI    0x20000000
40 #define MASK_LVTOFF_HI    0x00F00000
41 #define MASK_COUNT_EN_HI  0x00080000
42 #define MASK_INT_TYPE_HI  0x00060000
43 #define MASK_OVERFLOW_HI  0x00010000
44 #define MASK_ERR_COUNT_HI 0x00000FFF
45 #define MASK_BLKPTR_LO    0xFF000000
46 #define MCG_XBLK_ADDR     0xC0000400
47
48 /* Deferred error settings */
49 #define MSR_CU_DEF_ERR          0xC0000410
50 #define MASK_DEF_LVTOFF         0x000000F0
51 #define MASK_DEF_INT_TYPE       0x00000006
52 #define DEF_LVT_OFF             0x2
53 #define DEF_INT_TYPE_APIC       0x2
54
55 /* Scalable MCA: */
56
57 /* Threshold LVT offset is at MSR0xC0000410[15:12] */
58 #define SMCA_THR_LVT_OFF        0xF000
59
60 static bool thresholding_irq_en;
61
62 static const char * const th_names[] = {
63         "load_store",
64         "insn_fetch",
65         "combined_unit",
66         "decode_unit",
67         "northbridge",
68         "execution_unit",
69 };
70
71 static const char * const smca_umc_block_names[] = {
72         "dram_ecc",
73         "misc_umc"
74 };
75
76 struct smca_bank_name {
77         const char *name;       /* Short name for sysfs */
78         const char *long_name;  /* Long name for pretty-printing */
79 };
80
81 static struct smca_bank_name smca_names[] = {
82         [SMCA_LS]       = { "load_store",       "Load Store Unit" },
83         [SMCA_IF]       = { "insn_fetch",       "Instruction Fetch Unit" },
84         [SMCA_L2_CACHE] = { "l2_cache",         "L2 Cache" },
85         [SMCA_DE]       = { "decode_unit",      "Decode Unit" },
86         [SMCA_RESERVED] = { "reserved",         "Reserved" },
87         [SMCA_EX]       = { "execution_unit",   "Execution Unit" },
88         [SMCA_FP]       = { "floating_point",   "Floating Point Unit" },
89         [SMCA_L3_CACHE] = { "l3_cache",         "L3 Cache" },
90         [SMCA_CS]       = { "coherent_slave",   "Coherent Slave" },
91         [SMCA_PIE]      = { "pie",              "Power, Interrupts, etc." },
92         [SMCA_UMC]      = { "umc",              "Unified Memory Controller" },
93         [SMCA_PB]       = { "param_block",      "Parameter Block" },
94         [SMCA_PSP]      = { "psp",              "Platform Security Processor" },
95         [SMCA_SMU]      = { "smu",              "System Management Unit" },
96 };
97
98 static u32 smca_bank_addrs[MAX_NR_BANKS][NR_BLOCKS] __ro_after_init =
99 {
100         [0 ... MAX_NR_BANKS - 1] = { [0 ... NR_BLOCKS - 1] = -1 }
101 };
102
103 static const char *smca_get_name(enum smca_bank_types t)
104 {
105         if (t >= N_SMCA_BANK_TYPES)
106                 return NULL;
107
108         return smca_names[t].name;
109 }
110
111 const char *smca_get_long_name(enum smca_bank_types t)
112 {
113         if (t >= N_SMCA_BANK_TYPES)
114                 return NULL;
115
116         return smca_names[t].long_name;
117 }
118 EXPORT_SYMBOL_GPL(smca_get_long_name);
119
120 static enum smca_bank_types smca_get_bank_type(unsigned int bank)
121 {
122         struct smca_bank *b;
123
124         if (bank >= MAX_NR_BANKS)
125                 return N_SMCA_BANK_TYPES;
126
127         b = &smca_banks[bank];
128         if (!b->hwid)
129                 return N_SMCA_BANK_TYPES;
130
131         return b->hwid->bank_type;
132 }
133
134 static struct smca_hwid smca_hwid_mcatypes[] = {
135         /* { bank_type, hwid_mcatype, xec_bitmap } */
136
137         /* Reserved type */
138         { SMCA_RESERVED, HWID_MCATYPE(0x00, 0x0), 0x0 },
139
140         /* ZN Core (HWID=0xB0) MCA types */
141         { SMCA_LS,       HWID_MCATYPE(0xB0, 0x0), 0x1FFFEF },
142         { SMCA_IF,       HWID_MCATYPE(0xB0, 0x1), 0x3FFF },
143         { SMCA_L2_CACHE, HWID_MCATYPE(0xB0, 0x2), 0xF },
144         { SMCA_DE,       HWID_MCATYPE(0xB0, 0x3), 0x1FF },
145         /* HWID 0xB0 MCATYPE 0x4 is Reserved */
146         { SMCA_EX,       HWID_MCATYPE(0xB0, 0x5), 0x7FF },
147         { SMCA_FP,       HWID_MCATYPE(0xB0, 0x6), 0x7F },
148         { SMCA_L3_CACHE, HWID_MCATYPE(0xB0, 0x7), 0xFF },
149
150         /* Data Fabric MCA types */
151         { SMCA_CS,       HWID_MCATYPE(0x2E, 0x0), 0x1FF },
152         { SMCA_PIE,      HWID_MCATYPE(0x2E, 0x1), 0xF },
153
154         /* Unified Memory Controller MCA type */
155         { SMCA_UMC,      HWID_MCATYPE(0x96, 0x0), 0x3F },
156
157         /* Parameter Block MCA type */
158         { SMCA_PB,       HWID_MCATYPE(0x05, 0x0), 0x1 },
159
160         /* Platform Security Processor MCA type */
161         { SMCA_PSP,      HWID_MCATYPE(0xFF, 0x0), 0x1 },
162
163         /* System Management Unit MCA type */
164         { SMCA_SMU,      HWID_MCATYPE(0x01, 0x0), 0x1 },
165 };
166
167 struct smca_bank smca_banks[MAX_NR_BANKS];
168 EXPORT_SYMBOL_GPL(smca_banks);
169
170 /*
171  * In SMCA enabled processors, we can have multiple banks for a given IP type.
172  * So to define a unique name for each bank, we use a temp c-string to append
173  * the MCA_IPID[InstanceId] to type's name in get_name().
174  *
175  * InstanceId is 32 bits which is 8 characters. Make sure MAX_MCATYPE_NAME_LEN
176  * is greater than 8 plus 1 (for underscore) plus length of longest type name.
177  */
178 #define MAX_MCATYPE_NAME_LEN    30
179 static char buf_mcatype[MAX_MCATYPE_NAME_LEN];
180
181 static DEFINE_PER_CPU(struct threshold_bank **, threshold_banks);
182 static DEFINE_PER_CPU(unsigned int, bank_map);  /* see which banks are on */
183
184 static void amd_threshold_interrupt(void);
185 static void amd_deferred_error_interrupt(void);
186
187 static void default_deferred_error_interrupt(void)
188 {
189         pr_err("Unexpected deferred interrupt at vector %x\n", DEFERRED_ERROR_VECTOR);
190 }
191 void (*deferred_error_int_vector)(void) = default_deferred_error_interrupt;
192
193 static void smca_configure(unsigned int bank, unsigned int cpu)
194 {
195         unsigned int i, hwid_mcatype;
196         struct smca_hwid *s_hwid;
197         u32 high, low;
198         u32 smca_config = MSR_AMD64_SMCA_MCx_CONFIG(bank);
199
200         /* Set appropriate bits in MCA_CONFIG */
201         if (!rdmsr_safe(smca_config, &low, &high)) {
202                 /*
203                  * OS is required to set the MCAX bit to acknowledge that it is
204                  * now using the new MSR ranges and new registers under each
205                  * bank. It also means that the OS will configure deferred
206                  * errors in the new MCx_CONFIG register. If the bit is not set,
207                  * uncorrectable errors will cause a system panic.
208                  *
209                  * MCA_CONFIG[MCAX] is bit 32 (0 in the high portion of the MSR.)
210                  */
211                 high |= BIT(0);
212
213                 /*
214                  * SMCA sets the Deferred Error Interrupt type per bank.
215                  *
216                  * MCA_CONFIG[DeferredIntTypeSupported] is bit 5, and tells us
217                  * if the DeferredIntType bit field is available.
218                  *
219                  * MCA_CONFIG[DeferredIntType] is bits [38:37] ([6:5] in the
220                  * high portion of the MSR). OS should set this to 0x1 to enable
221                  * APIC based interrupt. First, check that no interrupt has been
222                  * set.
223                  */
224                 if ((low & BIT(5)) && !((high >> 5) & 0x3))
225                         high |= BIT(5);
226
227                 wrmsr(smca_config, low, high);
228         }
229
230         /* Return early if this bank was already initialized. */
231         if (smca_banks[bank].hwid && smca_banks[bank].hwid->hwid_mcatype != 0)
232                 return;
233
234         if (rdmsr_safe(MSR_AMD64_SMCA_MCx_IPID(bank), &low, &high)) {
235                 pr_warn("Failed to read MCA_IPID for bank %d\n", bank);
236                 return;
237         }
238
239         hwid_mcatype = HWID_MCATYPE(high & MCI_IPID_HWID,
240                                     (high & MCI_IPID_MCATYPE) >> 16);
241
242         for (i = 0; i < ARRAY_SIZE(smca_hwid_mcatypes); i++) {
243                 s_hwid = &smca_hwid_mcatypes[i];
244                 if (hwid_mcatype == s_hwid->hwid_mcatype) {
245                         smca_banks[bank].hwid = s_hwid;
246                         smca_banks[bank].id = low;
247                         smca_banks[bank].sysfs_id = s_hwid->count++;
248                         break;
249                 }
250         }
251 }
252
253 struct thresh_restart {
254         struct threshold_block  *b;
255         int                     reset;
256         int                     set_lvt_off;
257         int                     lvt_off;
258         u16                     old_limit;
259 };
260
261 static inline bool is_shared_bank(int bank)
262 {
263         /*
264          * Scalable MCA provides for only one core to have access to the MSRs of
265          * a shared bank.
266          */
267         if (mce_flags.smca)
268                 return false;
269
270         /* Bank 4 is for northbridge reporting and is thus shared */
271         return (bank == 4);
272 }
273
274 static const char *bank4_names(const struct threshold_block *b)
275 {
276         switch (b->address) {
277         /* MSR4_MISC0 */
278         case 0x00000413:
279                 return "dram";
280
281         case 0xc0000408:
282                 return "ht_links";
283
284         case 0xc0000409:
285                 return "l3_cache";
286
287         default:
288                 WARN(1, "Funny MSR: 0x%08x\n", b->address);
289                 return "";
290         }
291 };
292
293
294 static bool lvt_interrupt_supported(unsigned int bank, u32 msr_high_bits)
295 {
296         /*
297          * bank 4 supports APIC LVT interrupts implicitly since forever.
298          */
299         if (bank == 4)
300                 return true;
301
302         /*
303          * IntP: interrupt present; if this bit is set, the thresholding
304          * bank can generate APIC LVT interrupts
305          */
306         return msr_high_bits & BIT(28);
307 }
308
309 static int lvt_off_valid(struct threshold_block *b, int apic, u32 lo, u32 hi)
310 {
311         int msr = (hi & MASK_LVTOFF_HI) >> 20;
312
313         if (apic < 0) {
314                 pr_err(FW_BUG "cpu %d, failed to setup threshold interrupt "
315                        "for bank %d, block %d (MSR%08X=0x%x%08x)\n", b->cpu,
316                        b->bank, b->block, b->address, hi, lo);
317                 return 0;
318         }
319
320         if (apic != msr) {
321                 /*
322                  * On SMCA CPUs, LVT offset is programmed at a different MSR, and
323                  * the BIOS provides the value. The original field where LVT offset
324                  * was set is reserved. Return early here:
325                  */
326                 if (mce_flags.smca)
327                         return 0;
328
329                 pr_err(FW_BUG "cpu %d, invalid threshold interrupt offset %d "
330                        "for bank %d, block %d (MSR%08X=0x%x%08x)\n",
331                        b->cpu, apic, b->bank, b->block, b->address, hi, lo);
332                 return 0;
333         }
334
335         return 1;
336 };
337
338 /* Reprogram MCx_MISC MSR behind this threshold bank. */
339 static void threshold_restart_bank(void *_tr)
340 {
341         struct thresh_restart *tr = _tr;
342         u32 hi, lo;
343
344         rdmsr(tr->b->address, lo, hi);
345
346         if (tr->b->threshold_limit < (hi & THRESHOLD_MAX))
347                 tr->reset = 1;  /* limit cannot be lower than err count */
348
349         if (tr->reset) {                /* reset err count and overflow bit */
350                 hi =
351                     (hi & ~(MASK_ERR_COUNT_HI | MASK_OVERFLOW_HI)) |
352                     (THRESHOLD_MAX - tr->b->threshold_limit);
353         } else if (tr->old_limit) {     /* change limit w/o reset */
354                 int new_count = (hi & THRESHOLD_MAX) +
355                     (tr->old_limit - tr->b->threshold_limit);
356
357                 hi = (hi & ~MASK_ERR_COUNT_HI) |
358                     (new_count & THRESHOLD_MAX);
359         }
360
361         /* clear IntType */
362         hi &= ~MASK_INT_TYPE_HI;
363
364         if (!tr->b->interrupt_capable)
365                 goto done;
366
367         if (tr->set_lvt_off) {
368                 if (lvt_off_valid(tr->b, tr->lvt_off, lo, hi)) {
369                         /* set new lvt offset */
370                         hi &= ~MASK_LVTOFF_HI;
371                         hi |= tr->lvt_off << 20;
372                 }
373         }
374
375         if (tr->b->interrupt_enable)
376                 hi |= INT_TYPE_APIC;
377
378  done:
379
380         hi |= MASK_COUNT_EN_HI;
381         wrmsr(tr->b->address, lo, hi);
382 }
383
384 static void mce_threshold_block_init(struct threshold_block *b, int offset)
385 {
386         struct thresh_restart tr = {
387                 .b                      = b,
388                 .set_lvt_off            = 1,
389                 .lvt_off                = offset,
390         };
391
392         b->threshold_limit              = THRESHOLD_MAX;
393         threshold_restart_bank(&tr);
394 };
395
396 static int setup_APIC_mce_threshold(int reserved, int new)
397 {
398         if (reserved < 0 && !setup_APIC_eilvt(new, THRESHOLD_APIC_VECTOR,
399                                               APIC_EILVT_MSG_FIX, 0))
400                 return new;
401
402         return reserved;
403 }
404
405 static int setup_APIC_deferred_error(int reserved, int new)
406 {
407         if (reserved < 0 && !setup_APIC_eilvt(new, DEFERRED_ERROR_VECTOR,
408                                               APIC_EILVT_MSG_FIX, 0))
409                 return new;
410
411         return reserved;
412 }
413
414 static void deferred_error_interrupt_enable(struct cpuinfo_x86 *c)
415 {
416         u32 low = 0, high = 0;
417         int def_offset = -1, def_new;
418
419         if (rdmsr_safe(MSR_CU_DEF_ERR, &low, &high))
420                 return;
421
422         def_new = (low & MASK_DEF_LVTOFF) >> 4;
423         if (!(low & MASK_DEF_LVTOFF)) {
424                 pr_err(FW_BUG "Your BIOS is not setting up LVT offset 0x2 for deferred error IRQs correctly.\n");
425                 def_new = DEF_LVT_OFF;
426                 low = (low & ~MASK_DEF_LVTOFF) | (DEF_LVT_OFF << 4);
427         }
428
429         def_offset = setup_APIC_deferred_error(def_offset, def_new);
430         if ((def_offset == def_new) &&
431             (deferred_error_int_vector != amd_deferred_error_interrupt))
432                 deferred_error_int_vector = amd_deferred_error_interrupt;
433
434         if (!mce_flags.smca)
435                 low = (low & ~MASK_DEF_INT_TYPE) | DEF_INT_TYPE_APIC;
436
437         wrmsr(MSR_CU_DEF_ERR, low, high);
438 }
439
440 static u32 smca_get_block_address(unsigned int bank, unsigned int block)
441 {
442         u32 low, high;
443         u32 addr = 0;
444
445         if (smca_get_bank_type(bank) == SMCA_RESERVED)
446                 return addr;
447
448         if (!block)
449                 return MSR_AMD64_SMCA_MCx_MISC(bank);
450
451         /* Check our cache first: */
452         if (smca_bank_addrs[bank][block] != -1)
453                 return smca_bank_addrs[bank][block];
454
455         /*
456          * For SMCA enabled processors, BLKPTR field of the first MISC register
457          * (MCx_MISC0) indicates presence of additional MISC regs set (MISC1-4).
458          */
459         if (rdmsr_safe(MSR_AMD64_SMCA_MCx_CONFIG(bank), &low, &high))
460                 goto out;
461
462         if (!(low & MCI_CONFIG_MCAX))
463                 goto out;
464
465         if (!rdmsr_safe(MSR_AMD64_SMCA_MCx_MISC(bank), &low, &high) &&
466             (low & MASK_BLKPTR_LO))
467                 addr = MSR_AMD64_SMCA_MCx_MISCy(bank, block - 1);
468
469 out:
470         smca_bank_addrs[bank][block] = addr;
471         return addr;
472 }
473
474 static u32 get_block_address(u32 current_addr, u32 low, u32 high,
475                              unsigned int bank, unsigned int block)
476 {
477         u32 addr = 0, offset = 0;
478
479         if ((bank >= mca_cfg.banks) || (block >= NR_BLOCKS))
480                 return addr;
481
482         if (mce_flags.smca)
483                 return smca_get_block_address(bank, block);
484
485         /* Fall back to method we used for older processors: */
486         switch (block) {
487         case 0:
488                 addr = msr_ops.misc(bank);
489                 break;
490         case 1:
491                 offset = ((low & MASK_BLKPTR_LO) >> 21);
492                 if (offset)
493                         addr = MCG_XBLK_ADDR + offset;
494                 break;
495         default:
496                 addr = ++current_addr;
497         }
498         return addr;
499 }
500
501 static int
502 prepare_threshold_block(unsigned int bank, unsigned int block, u32 addr,
503                         int offset, u32 misc_high)
504 {
505         unsigned int cpu = smp_processor_id();
506         u32 smca_low, smca_high;
507         struct threshold_block b;
508         int new;
509
510         if (!block)
511                 per_cpu(bank_map, cpu) |= (1 << bank);
512
513         memset(&b, 0, sizeof(b));
514         b.cpu                   = cpu;
515         b.bank                  = bank;
516         b.block                 = block;
517         b.address               = addr;
518         b.interrupt_capable     = lvt_interrupt_supported(bank, misc_high);
519
520         if (!b.interrupt_capable)
521                 goto done;
522
523         b.interrupt_enable = 1;
524
525         if (!mce_flags.smca) {
526                 new = (misc_high & MASK_LVTOFF_HI) >> 20;
527                 goto set_offset;
528         }
529
530         /* Gather LVT offset for thresholding: */
531         if (rdmsr_safe(MSR_CU_DEF_ERR, &smca_low, &smca_high))
532                 goto out;
533
534         new = (smca_low & SMCA_THR_LVT_OFF) >> 12;
535
536 set_offset:
537         offset = setup_APIC_mce_threshold(offset, new);
538         if (offset == new)
539                 thresholding_irq_en = true;
540
541 done:
542         mce_threshold_block_init(&b, offset);
543
544 out:
545         return offset;
546 }
547
548 /*
549  * Turn off MC4_MISC thresholding banks on all family 0x15 models since
550  * they're not supported there.
551  */
552 void disable_err_thresholding(struct cpuinfo_x86 *c)
553 {
554         int i;
555         u64 hwcr;
556         bool need_toggle;
557         u32 msrs[] = {
558                 0x00000413, /* MC4_MISC0 */
559                 0xc0000408, /* MC4_MISC1 */
560         };
561
562         if (c->x86 != 0x15)
563                 return;
564
565         rdmsrl(MSR_K7_HWCR, hwcr);
566
567         /* McStatusWrEn has to be set */
568         need_toggle = !(hwcr & BIT(18));
569
570         if (need_toggle)
571                 wrmsrl(MSR_K7_HWCR, hwcr | BIT(18));
572
573         /* Clear CntP bit safely */
574         for (i = 0; i < ARRAY_SIZE(msrs); i++)
575                 msr_clear_bit(msrs[i], 62);
576
577         /* restore old settings */
578         if (need_toggle)
579                 wrmsrl(MSR_K7_HWCR, hwcr);
580 }
581
582 /* cpu init entry point, called from mce.c with preempt off */
583 void mce_amd_feature_init(struct cpuinfo_x86 *c)
584 {
585         u32 low = 0, high = 0, address = 0;
586         unsigned int bank, block, cpu = smp_processor_id();
587         int offset = -1;
588
589         disable_err_thresholding(c);
590
591         for (bank = 0; bank < mca_cfg.banks; ++bank) {
592                 if (mce_flags.smca)
593                         smca_configure(bank, cpu);
594
595                 for (block = 0; block < NR_BLOCKS; ++block) {
596                         address = get_block_address(address, low, high, bank, block);
597                         if (!address)
598                                 break;
599
600                         if (rdmsr_safe(address, &low, &high))
601                                 break;
602
603                         if (!(high & MASK_VALID_HI))
604                                 continue;
605
606                         if (!(high & MASK_CNTP_HI)  ||
607                              (high & MASK_LOCKED_HI))
608                                 continue;
609
610                         offset = prepare_threshold_block(bank, block, address, offset, high);
611                 }
612         }
613
614         if (mce_flags.succor)
615                 deferred_error_interrupt_enable(c);
616 }
617
618 int umc_normaddr_to_sysaddr(u64 norm_addr, u16 nid, u8 umc, u64 *sys_addr)
619 {
620         u64 dram_base_addr, dram_limit_addr, dram_hole_base;
621         /* We start from the normalized address */
622         u64 ret_addr = norm_addr;
623
624         u32 tmp;
625
626         u8 die_id_shift, die_id_mask, socket_id_shift, socket_id_mask;
627         u8 intlv_num_dies, intlv_num_chan, intlv_num_sockets;
628         u8 intlv_addr_sel, intlv_addr_bit;
629         u8 num_intlv_bits, hashed_bit;
630         u8 lgcy_mmio_hole_en, base = 0;
631         u8 cs_mask, cs_id = 0;
632         bool hash_enabled = false;
633
634         /* Read D18F0x1B4 (DramOffset), check if base 1 is used. */
635         if (amd_df_indirect_read(nid, 0, 0x1B4, umc, &tmp))
636                 goto out_err;
637
638         /* Remove HiAddrOffset from normalized address, if enabled: */
639         if (tmp & BIT(0)) {
640                 u64 hi_addr_offset = (tmp & GENMASK_ULL(31, 20)) << 8;
641
642                 if (norm_addr >= hi_addr_offset) {
643                         ret_addr -= hi_addr_offset;
644                         base = 1;
645                 }
646         }
647
648         /* Read D18F0x110 (DramBaseAddress). */
649         if (amd_df_indirect_read(nid, 0, 0x110 + (8 * base), umc, &tmp))
650                 goto out_err;
651
652         /* Check if address range is valid. */
653         if (!(tmp & BIT(0))) {
654                 pr_err("%s: Invalid DramBaseAddress range: 0x%x.\n",
655                         __func__, tmp);
656                 goto out_err;
657         }
658
659         lgcy_mmio_hole_en = tmp & BIT(1);
660         intlv_num_chan    = (tmp >> 4) & 0xF;
661         intlv_addr_sel    = (tmp >> 8) & 0x7;
662         dram_base_addr    = (tmp & GENMASK_ULL(31, 12)) << 16;
663
664         /* {0, 1, 2, 3} map to address bits {8, 9, 10, 11} respectively */
665         if (intlv_addr_sel > 3) {
666                 pr_err("%s: Invalid interleave address select %d.\n",
667                         __func__, intlv_addr_sel);
668                 goto out_err;
669         }
670
671         /* Read D18F0x114 (DramLimitAddress). */
672         if (amd_df_indirect_read(nid, 0, 0x114 + (8 * base), umc, &tmp))
673                 goto out_err;
674
675         intlv_num_sockets = (tmp >> 8) & 0x1;
676         intlv_num_dies    = (tmp >> 10) & 0x3;
677         dram_limit_addr   = ((tmp & GENMASK_ULL(31, 12)) << 16) | GENMASK_ULL(27, 0);
678
679         intlv_addr_bit = intlv_addr_sel + 8;
680
681         /* Re-use intlv_num_chan by setting it equal to log2(#channels) */
682         switch (intlv_num_chan) {
683         case 0: intlv_num_chan = 0; break;
684         case 1: intlv_num_chan = 1; break;
685         case 3: intlv_num_chan = 2; break;
686         case 5: intlv_num_chan = 3; break;
687         case 7: intlv_num_chan = 4; break;
688
689         case 8: intlv_num_chan = 1;
690                 hash_enabled = true;
691                 break;
692         default:
693                 pr_err("%s: Invalid number of interleaved channels %d.\n",
694                         __func__, intlv_num_chan);
695                 goto out_err;
696         }
697
698         num_intlv_bits = intlv_num_chan;
699
700         if (intlv_num_dies > 2) {
701                 pr_err("%s: Invalid number of interleaved nodes/dies %d.\n",
702                         __func__, intlv_num_dies);
703                 goto out_err;
704         }
705
706         num_intlv_bits += intlv_num_dies;
707
708         /* Add a bit if sockets are interleaved. */
709         num_intlv_bits += intlv_num_sockets;
710
711         /* Assert num_intlv_bits <= 4 */
712         if (num_intlv_bits > 4) {
713                 pr_err("%s: Invalid interleave bits %d.\n",
714                         __func__, num_intlv_bits);
715                 goto out_err;
716         }
717
718         if (num_intlv_bits > 0) {
719                 u64 temp_addr_x, temp_addr_i, temp_addr_y;
720                 u8 die_id_bit, sock_id_bit, cs_fabric_id;
721
722                 /*
723                  * Read FabricBlockInstanceInformation3_CS[BlockFabricID].
724                  * This is the fabric id for this coherent slave. Use
725                  * umc/channel# as instance id of the coherent slave
726                  * for FICAA.
727                  */
728                 if (amd_df_indirect_read(nid, 0, 0x50, umc, &tmp))
729                         goto out_err;
730
731                 cs_fabric_id = (tmp >> 8) & 0xFF;
732                 die_id_bit   = 0;
733
734                 /* If interleaved over more than 1 channel: */
735                 if (intlv_num_chan) {
736                         die_id_bit = intlv_num_chan;
737                         cs_mask    = (1 << die_id_bit) - 1;
738                         cs_id      = cs_fabric_id & cs_mask;
739                 }
740
741                 sock_id_bit = die_id_bit;
742
743                 /* Read D18F1x208 (SystemFabricIdMask). */
744                 if (intlv_num_dies || intlv_num_sockets)
745                         if (amd_df_indirect_read(nid, 1, 0x208, umc, &tmp))
746                                 goto out_err;
747
748                 /* If interleaved over more than 1 die. */
749                 if (intlv_num_dies) {
750                         sock_id_bit  = die_id_bit + intlv_num_dies;
751                         die_id_shift = (tmp >> 24) & 0xF;
752                         die_id_mask  = (tmp >> 8) & 0xFF;
753
754                         cs_id |= ((cs_fabric_id & die_id_mask) >> die_id_shift) << die_id_bit;
755                 }
756
757                 /* If interleaved over more than 1 socket. */
758                 if (intlv_num_sockets) {
759                         socket_id_shift = (tmp >> 28) & 0xF;
760                         socket_id_mask  = (tmp >> 16) & 0xFF;
761
762                         cs_id |= ((cs_fabric_id & socket_id_mask) >> socket_id_shift) << sock_id_bit;
763                 }
764
765                 /*
766                  * The pre-interleaved address consists of XXXXXXIIIYYYYY
767                  * where III is the ID for this CS, and XXXXXXYYYYY are the
768                  * address bits from the post-interleaved address.
769                  * "num_intlv_bits" has been calculated to tell us how many "I"
770                  * bits there are. "intlv_addr_bit" tells us how many "Y" bits
771                  * there are (where "I" starts).
772                  */
773                 temp_addr_y = ret_addr & GENMASK_ULL(intlv_addr_bit-1, 0);
774                 temp_addr_i = (cs_id << intlv_addr_bit);
775                 temp_addr_x = (ret_addr & GENMASK_ULL(63, intlv_addr_bit)) << num_intlv_bits;
776                 ret_addr    = temp_addr_x | temp_addr_i | temp_addr_y;
777         }
778
779         /* Add dram base address */
780         ret_addr += dram_base_addr;
781
782         /* If legacy MMIO hole enabled */
783         if (lgcy_mmio_hole_en) {
784                 if (amd_df_indirect_read(nid, 0, 0x104, umc, &tmp))
785                         goto out_err;
786
787                 dram_hole_base = tmp & GENMASK(31, 24);
788                 if (ret_addr >= dram_hole_base)
789                         ret_addr += (BIT_ULL(32) - dram_hole_base);
790         }
791
792         if (hash_enabled) {
793                 /* Save some parentheses and grab ls-bit at the end. */
794                 hashed_bit =    (ret_addr >> 12) ^
795                                 (ret_addr >> 18) ^
796                                 (ret_addr >> 21) ^
797                                 (ret_addr >> 30) ^
798                                 cs_id;
799
800                 hashed_bit &= BIT(0);
801
802                 if (hashed_bit != ((ret_addr >> intlv_addr_bit) & BIT(0)))
803                         ret_addr ^= BIT(intlv_addr_bit);
804         }
805
806         /* Is calculated system address is above DRAM limit address? */
807         if (ret_addr > dram_limit_addr)
808                 goto out_err;
809
810         *sys_addr = ret_addr;
811         return 0;
812
813 out_err:
814         return -EINVAL;
815 }
816 EXPORT_SYMBOL_GPL(umc_normaddr_to_sysaddr);
817
818 bool amd_mce_is_memory_error(struct mce *m)
819 {
820         /* ErrCodeExt[20:16] */
821         u8 xec = (m->status >> 16) & 0x1f;
822
823         if (mce_flags.smca)
824                 return smca_get_bank_type(m->bank) == SMCA_UMC && xec == 0x0;
825
826         return m->bank == 4 && xec == 0x8;
827 }
828
829 static void __log_error(unsigned int bank, u64 status, u64 addr, u64 misc)
830 {
831         struct mce m;
832
833         mce_setup(&m);
834
835         m.status = status;
836         m.misc   = misc;
837         m.bank   = bank;
838         m.tsc    = rdtsc();
839
840         if (m.status & MCI_STATUS_ADDRV) {
841                 m.addr = addr;
842
843                 /*
844                  * Extract [55:<lsb>] where lsb is the least significant
845                  * *valid* bit of the address bits.
846                  */
847                 if (mce_flags.smca) {
848                         u8 lsb = (m.addr >> 56) & 0x3f;
849
850                         m.addr &= GENMASK_ULL(55, lsb);
851                 }
852         }
853
854         if (mce_flags.smca) {
855                 rdmsrl(MSR_AMD64_SMCA_MCx_IPID(bank), m.ipid);
856
857                 if (m.status & MCI_STATUS_SYNDV)
858                         rdmsrl(MSR_AMD64_SMCA_MCx_SYND(bank), m.synd);
859         }
860
861         mce_log(&m);
862 }
863
864 asmlinkage __visible void __irq_entry smp_deferred_error_interrupt(struct pt_regs *regs)
865 {
866         entering_irq();
867         trace_deferred_error_apic_entry(DEFERRED_ERROR_VECTOR);
868         inc_irq_stat(irq_deferred_error_count);
869         deferred_error_int_vector();
870         trace_deferred_error_apic_exit(DEFERRED_ERROR_VECTOR);
871         exiting_ack_irq();
872 }
873
874 /*
875  * Returns true if the logged error is deferred. False, otherwise.
876  */
877 static inline bool
878 _log_error_bank(unsigned int bank, u32 msr_stat, u32 msr_addr, u64 misc)
879 {
880         u64 status, addr = 0;
881
882         rdmsrl(msr_stat, status);
883         if (!(status & MCI_STATUS_VAL))
884                 return false;
885
886         if (status & MCI_STATUS_ADDRV)
887                 rdmsrl(msr_addr, addr);
888
889         __log_error(bank, status, addr, misc);
890
891         wrmsrl(msr_stat, 0);
892
893         return status & MCI_STATUS_DEFERRED;
894 }
895
896 /*
897  * We have three scenarios for checking for Deferred errors:
898  *
899  * 1) Non-SMCA systems check MCA_STATUS and log error if found.
900  * 2) SMCA systems check MCA_STATUS. If error is found then log it and also
901  *    clear MCA_DESTAT.
902  * 3) SMCA systems check MCA_DESTAT, if error was not found in MCA_STATUS, and
903  *    log it.
904  */
905 static void log_error_deferred(unsigned int bank)
906 {
907         bool defrd;
908
909         defrd = _log_error_bank(bank, msr_ops.status(bank),
910                                         msr_ops.addr(bank), 0);
911
912         if (!mce_flags.smca)
913                 return;
914
915         /* Clear MCA_DESTAT if we logged the deferred error from MCA_STATUS. */
916         if (defrd) {
917                 wrmsrl(MSR_AMD64_SMCA_MCx_DESTAT(bank), 0);
918                 return;
919         }
920
921         /*
922          * Only deferred errors are logged in MCA_DE{STAT,ADDR} so just check
923          * for a valid error.
924          */
925         _log_error_bank(bank, MSR_AMD64_SMCA_MCx_DESTAT(bank),
926                               MSR_AMD64_SMCA_MCx_DEADDR(bank), 0);
927 }
928
929 /* APIC interrupt handler for deferred errors */
930 static void amd_deferred_error_interrupt(void)
931 {
932         unsigned int bank;
933
934         for (bank = 0; bank < mca_cfg.banks; ++bank)
935                 log_error_deferred(bank);
936 }
937
938 static void log_error_thresholding(unsigned int bank, u64 misc)
939 {
940         _log_error_bank(bank, msr_ops.status(bank), msr_ops.addr(bank), misc);
941 }
942
943 static void log_and_reset_block(struct threshold_block *block)
944 {
945         struct thresh_restart tr;
946         u32 low = 0, high = 0;
947
948         if (!block)
949                 return;
950
951         if (rdmsr_safe(block->address, &low, &high))
952                 return;
953
954         if (!(high & MASK_OVERFLOW_HI))
955                 return;
956
957         /* Log the MCE which caused the threshold event. */
958         log_error_thresholding(block->bank, ((u64)high << 32) | low);
959
960         /* Reset threshold block after logging error. */
961         memset(&tr, 0, sizeof(tr));
962         tr.b = block;
963         threshold_restart_bank(&tr);
964 }
965
966 /*
967  * Threshold interrupt handler will service THRESHOLD_APIC_VECTOR. The interrupt
968  * goes off when error_count reaches threshold_limit.
969  */
970 static void amd_threshold_interrupt(void)
971 {
972         struct threshold_block *first_block = NULL, *block = NULL, *tmp = NULL;
973         unsigned int bank, cpu = smp_processor_id();
974
975         for (bank = 0; bank < mca_cfg.banks; ++bank) {
976                 if (!(per_cpu(bank_map, cpu) & (1 << bank)))
977                         continue;
978
979                 first_block = per_cpu(threshold_banks, cpu)[bank]->blocks;
980                 if (!first_block)
981                         continue;
982
983                 /*
984                  * The first block is also the head of the list. Check it first
985                  * before iterating over the rest.
986                  */
987                 log_and_reset_block(first_block);
988                 list_for_each_entry_safe(block, tmp, &first_block->miscj, miscj)
989                         log_and_reset_block(block);
990         }
991 }
992
993 /*
994  * Sysfs Interface
995  */
996
997 struct threshold_attr {
998         struct attribute attr;
999         ssize_t (*show) (struct threshold_block *, char *);
1000         ssize_t (*store) (struct threshold_block *, const char *, size_t count);
1001 };
1002
1003 #define SHOW_FIELDS(name)                                               \
1004 static ssize_t show_ ## name(struct threshold_block *b, char *buf)      \
1005 {                                                                       \
1006         return sprintf(buf, "%lu\n", (unsigned long) b->name);          \
1007 }
1008 SHOW_FIELDS(interrupt_enable)
1009 SHOW_FIELDS(threshold_limit)
1010
1011 static ssize_t
1012 store_interrupt_enable(struct threshold_block *b, const char *buf, size_t size)
1013 {
1014         struct thresh_restart tr;
1015         unsigned long new;
1016
1017         if (!b->interrupt_capable)
1018                 return -EINVAL;
1019
1020         if (kstrtoul(buf, 0, &new) < 0)
1021                 return -EINVAL;
1022
1023         b->interrupt_enable = !!new;
1024
1025         memset(&tr, 0, sizeof(tr));
1026         tr.b            = b;
1027
1028         smp_call_function_single(b->cpu, threshold_restart_bank, &tr, 1);
1029
1030         return size;
1031 }
1032
1033 static ssize_t
1034 store_threshold_limit(struct threshold_block *b, const char *buf, size_t size)
1035 {
1036         struct thresh_restart tr;
1037         unsigned long new;
1038
1039         if (kstrtoul(buf, 0, &new) < 0)
1040                 return -EINVAL;
1041
1042         if (new > THRESHOLD_MAX)
1043                 new = THRESHOLD_MAX;
1044         if (new < 1)
1045                 new = 1;
1046
1047         memset(&tr, 0, sizeof(tr));
1048         tr.old_limit = b->threshold_limit;
1049         b->threshold_limit = new;
1050         tr.b = b;
1051
1052         smp_call_function_single(b->cpu, threshold_restart_bank, &tr, 1);
1053
1054         return size;
1055 }
1056
1057 static ssize_t show_error_count(struct threshold_block *b, char *buf)
1058 {
1059         u32 lo, hi;
1060
1061         rdmsr_on_cpu(b->cpu, b->address, &lo, &hi);
1062
1063         return sprintf(buf, "%u\n", ((hi & THRESHOLD_MAX) -
1064                                      (THRESHOLD_MAX - b->threshold_limit)));
1065 }
1066
1067 static struct threshold_attr error_count = {
1068         .attr = {.name = __stringify(error_count), .mode = 0444 },
1069         .show = show_error_count,
1070 };
1071
1072 #define RW_ATTR(val)                                                    \
1073 static struct threshold_attr val = {                                    \
1074         .attr   = {.name = __stringify(val), .mode = 0644 },            \
1075         .show   = show_## val,                                          \
1076         .store  = store_## val,                                         \
1077 };
1078
1079 RW_ATTR(interrupt_enable);
1080 RW_ATTR(threshold_limit);
1081
1082 static struct attribute *default_attrs[] = {
1083         &threshold_limit.attr,
1084         &error_count.attr,
1085         NULL,   /* possibly interrupt_enable if supported, see below */
1086         NULL,
1087 };
1088
1089 #define to_block(k)     container_of(k, struct threshold_block, kobj)
1090 #define to_attr(a)      container_of(a, struct threshold_attr, attr)
1091
1092 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
1093 {
1094         struct threshold_block *b = to_block(kobj);
1095         struct threshold_attr *a = to_attr(attr);
1096         ssize_t ret;
1097
1098         ret = a->show ? a->show(b, buf) : -EIO;
1099
1100         return ret;
1101 }
1102
1103 static ssize_t store(struct kobject *kobj, struct attribute *attr,
1104                      const char *buf, size_t count)
1105 {
1106         struct threshold_block *b = to_block(kobj);
1107         struct threshold_attr *a = to_attr(attr);
1108         ssize_t ret;
1109
1110         ret = a->store ? a->store(b, buf, count) : -EIO;
1111
1112         return ret;
1113 }
1114
1115 static const struct sysfs_ops threshold_ops = {
1116         .show                   = show,
1117         .store                  = store,
1118 };
1119
1120 static void threshold_block_release(struct kobject *kobj);
1121
1122 static struct kobj_type threshold_ktype = {
1123         .sysfs_ops              = &threshold_ops,
1124         .default_attrs          = default_attrs,
1125         .release                = threshold_block_release,
1126 };
1127
1128 static const char *get_name(unsigned int bank, struct threshold_block *b)
1129 {
1130         enum smca_bank_types bank_type;
1131
1132         if (!mce_flags.smca) {
1133                 if (b && bank == 4)
1134                         return bank4_names(b);
1135
1136                 return th_names[bank];
1137         }
1138
1139         bank_type = smca_get_bank_type(bank);
1140         if (bank_type >= N_SMCA_BANK_TYPES)
1141                 return NULL;
1142
1143         if (b && bank_type == SMCA_UMC) {
1144                 if (b->block < ARRAY_SIZE(smca_umc_block_names))
1145                         return smca_umc_block_names[b->block];
1146                 return NULL;
1147         }
1148
1149         if (smca_banks[bank].hwid->count == 1)
1150                 return smca_get_name(bank_type);
1151
1152         snprintf(buf_mcatype, MAX_MCATYPE_NAME_LEN,
1153                  "%s_%x", smca_get_name(bank_type),
1154                           smca_banks[bank].sysfs_id);
1155         return buf_mcatype;
1156 }
1157
1158 static int allocate_threshold_blocks(unsigned int cpu, struct threshold_bank *tb,
1159                                      unsigned int bank, unsigned int block,
1160                                      u32 address)
1161 {
1162         struct threshold_block *b = NULL;
1163         u32 low, high;
1164         int err;
1165
1166         if ((bank >= mca_cfg.banks) || (block >= NR_BLOCKS))
1167                 return 0;
1168
1169         if (rdmsr_safe_on_cpu(cpu, address, &low, &high))
1170                 return 0;
1171
1172         if (!(high & MASK_VALID_HI)) {
1173                 if (block)
1174                         goto recurse;
1175                 else
1176                         return 0;
1177         }
1178
1179         if (!(high & MASK_CNTP_HI)  ||
1180              (high & MASK_LOCKED_HI))
1181                 goto recurse;
1182
1183         b = kzalloc(sizeof(struct threshold_block), GFP_KERNEL);
1184         if (!b)
1185                 return -ENOMEM;
1186
1187         b->block                = block;
1188         b->bank                 = bank;
1189         b->cpu                  = cpu;
1190         b->address              = address;
1191         b->interrupt_enable     = 0;
1192         b->interrupt_capable    = lvt_interrupt_supported(bank, high);
1193         b->threshold_limit      = THRESHOLD_MAX;
1194
1195         if (b->interrupt_capable) {
1196                 threshold_ktype.default_attrs[2] = &interrupt_enable.attr;
1197                 b->interrupt_enable = 1;
1198         } else {
1199                 threshold_ktype.default_attrs[2] = NULL;
1200         }
1201
1202         INIT_LIST_HEAD(&b->miscj);
1203
1204         if (tb->blocks)
1205                 list_add(&b->miscj, &tb->blocks->miscj);
1206         else
1207                 tb->blocks = b;
1208
1209         err = kobject_init_and_add(&b->kobj, &threshold_ktype, tb->kobj, get_name(bank, b));
1210         if (err)
1211                 goto out_free;
1212 recurse:
1213         address = get_block_address(address, low, high, bank, ++block);
1214         if (!address)
1215                 return 0;
1216
1217         err = allocate_threshold_blocks(cpu, tb, bank, block, address);
1218         if (err)
1219                 goto out_free;
1220
1221         if (b)
1222                 kobject_uevent(&b->kobj, KOBJ_ADD);
1223
1224         return err;
1225
1226 out_free:
1227         if (b) {
1228                 kobject_put(&b->kobj);
1229                 list_del(&b->miscj);
1230                 kfree(b);
1231         }
1232         return err;
1233 }
1234
1235 static int __threshold_add_blocks(struct threshold_bank *b)
1236 {
1237         struct list_head *head = &b->blocks->miscj;
1238         struct threshold_block *pos = NULL;
1239         struct threshold_block *tmp = NULL;
1240         int err = 0;
1241
1242         err = kobject_add(&b->blocks->kobj, b->kobj, b->blocks->kobj.name);
1243         if (err)
1244                 return err;
1245
1246         list_for_each_entry_safe(pos, tmp, head, miscj) {
1247
1248                 err = kobject_add(&pos->kobj, b->kobj, pos->kobj.name);
1249                 if (err) {
1250                         list_for_each_entry_safe_reverse(pos, tmp, head, miscj)
1251                                 kobject_del(&pos->kobj);
1252
1253                         return err;
1254                 }
1255         }
1256         return err;
1257 }
1258
1259 static int threshold_create_bank(unsigned int cpu, unsigned int bank)
1260 {
1261         struct device *dev = per_cpu(mce_device, cpu);
1262         struct amd_northbridge *nb = NULL;
1263         struct threshold_bank *b = NULL;
1264         const char *name = get_name(bank, NULL);
1265         int err = 0;
1266
1267         if (!dev)
1268                 return -ENODEV;
1269
1270         if (is_shared_bank(bank)) {
1271                 nb = node_to_amd_nb(amd_get_nb_id(cpu));
1272
1273                 /* threshold descriptor already initialized on this node? */
1274                 if (nb && nb->bank4) {
1275                         /* yes, use it */
1276                         b = nb->bank4;
1277                         err = kobject_add(b->kobj, &dev->kobj, name);
1278                         if (err)
1279                                 goto out;
1280
1281                         per_cpu(threshold_banks, cpu)[bank] = b;
1282                         refcount_inc(&b->cpus);
1283
1284                         err = __threshold_add_blocks(b);
1285
1286                         goto out;
1287                 }
1288         }
1289
1290         b = kzalloc(sizeof(struct threshold_bank), GFP_KERNEL);
1291         if (!b) {
1292                 err = -ENOMEM;
1293                 goto out;
1294         }
1295
1296         b->kobj = kobject_create_and_add(name, &dev->kobj);
1297         if (!b->kobj) {
1298                 err = -EINVAL;
1299                 goto out_free;
1300         }
1301
1302         if (is_shared_bank(bank)) {
1303                 refcount_set(&b->cpus, 1);
1304
1305                 /* nb is already initialized, see above */
1306                 if (nb) {
1307                         WARN_ON(nb->bank4);
1308                         nb->bank4 = b;
1309                 }
1310         }
1311
1312         err = allocate_threshold_blocks(cpu, b, bank, 0, msr_ops.misc(bank));
1313         if (err)
1314                 goto out_free;
1315
1316         per_cpu(threshold_banks, cpu)[bank] = b;
1317
1318         return 0;
1319
1320  out_free:
1321         kfree(b);
1322
1323  out:
1324         return err;
1325 }
1326
1327 static void threshold_block_release(struct kobject *kobj)
1328 {
1329         kfree(to_block(kobj));
1330 }
1331
1332 static void deallocate_threshold_block(unsigned int cpu, unsigned int bank)
1333 {
1334         struct threshold_block *pos = NULL;
1335         struct threshold_block *tmp = NULL;
1336         struct threshold_bank *head = per_cpu(threshold_banks, cpu)[bank];
1337
1338         if (!head)
1339                 return;
1340
1341         list_for_each_entry_safe(pos, tmp, &head->blocks->miscj, miscj) {
1342                 list_del(&pos->miscj);
1343                 kobject_put(&pos->kobj);
1344         }
1345
1346         kobject_put(&head->blocks->kobj);
1347 }
1348
1349 static void __threshold_remove_blocks(struct threshold_bank *b)
1350 {
1351         struct threshold_block *pos = NULL;
1352         struct threshold_block *tmp = NULL;
1353
1354         kobject_del(b->kobj);
1355
1356         list_for_each_entry_safe(pos, tmp, &b->blocks->miscj, miscj)
1357                 kobject_del(&pos->kobj);
1358 }
1359
1360 static void threshold_remove_bank(unsigned int cpu, int bank)
1361 {
1362         struct amd_northbridge *nb;
1363         struct threshold_bank *b;
1364
1365         b = per_cpu(threshold_banks, cpu)[bank];
1366         if (!b)
1367                 return;
1368
1369         if (!b->blocks)
1370                 goto free_out;
1371
1372         if (is_shared_bank(bank)) {
1373                 if (!refcount_dec_and_test(&b->cpus)) {
1374                         __threshold_remove_blocks(b);
1375                         per_cpu(threshold_banks, cpu)[bank] = NULL;
1376                         return;
1377                 } else {
1378                         /*
1379                          * the last CPU on this node using the shared bank is
1380                          * going away, remove that bank now.
1381                          */
1382                         nb = node_to_amd_nb(amd_get_nb_id(cpu));
1383                         nb->bank4 = NULL;
1384                 }
1385         }
1386
1387         deallocate_threshold_block(cpu, bank);
1388
1389 free_out:
1390         kobject_del(b->kobj);
1391         kobject_put(b->kobj);
1392         kfree(b);
1393         per_cpu(threshold_banks, cpu)[bank] = NULL;
1394 }
1395
1396 int mce_threshold_remove_device(unsigned int cpu)
1397 {
1398         unsigned int bank;
1399
1400         for (bank = 0; bank < mca_cfg.banks; ++bank) {
1401                 if (!(per_cpu(bank_map, cpu) & (1 << bank)))
1402                         continue;
1403                 threshold_remove_bank(cpu, bank);
1404         }
1405         kfree(per_cpu(threshold_banks, cpu));
1406         per_cpu(threshold_banks, cpu) = NULL;
1407         return 0;
1408 }
1409
1410 /* create dir/files for all valid threshold banks */
1411 int mce_threshold_create_device(unsigned int cpu)
1412 {
1413         unsigned int bank;
1414         struct threshold_bank **bp;
1415         int err = 0;
1416
1417         bp = per_cpu(threshold_banks, cpu);
1418         if (bp)
1419                 return 0;
1420
1421         bp = kcalloc(mca_cfg.banks, sizeof(struct threshold_bank *),
1422                      GFP_KERNEL);
1423         if (!bp)
1424                 return -ENOMEM;
1425
1426         per_cpu(threshold_banks, cpu) = bp;
1427
1428         for (bank = 0; bank < mca_cfg.banks; ++bank) {
1429                 if (!(per_cpu(bank_map, cpu) & (1 << bank)))
1430                         continue;
1431                 err = threshold_create_bank(cpu, bank);
1432                 if (err)
1433                         goto err;
1434         }
1435         return err;
1436 err:
1437         mce_threshold_remove_device(cpu);
1438         return err;
1439 }
1440
1441 static __init int threshold_init_device(void)
1442 {
1443         unsigned lcpu = 0;
1444
1445         /* to hit CPUs online before the notifier is up */
1446         for_each_online_cpu(lcpu) {
1447                 int err = mce_threshold_create_device(lcpu);
1448
1449                 if (err)
1450                         return err;
1451         }
1452
1453         if (thresholding_irq_en)
1454                 mce_threshold_vector = amd_threshold_interrupt;
1455
1456         return 0;
1457 }
1458 /*
1459  * there are 3 funcs which need to be _initcalled in a logic sequence:
1460  * 1. xen_late_init_mcelog
1461  * 2. mcheck_init_device
1462  * 3. threshold_init_device
1463  *
1464  * xen_late_init_mcelog must register xen_mce_chrdev_device before
1465  * native mce_chrdev_device registration if running under xen platform;
1466  *
1467  * mcheck_init_device should be inited before threshold_init_device to
1468  * initialize mce_device, otherwise a NULL ptr dereference will cause panic.
1469  *
1470  * so we use following _initcalls
1471  * 1. device_initcall(xen_late_init_mcelog);
1472  * 2. device_initcall_sync(mcheck_init_device);
1473  * 3. late_initcall(threshold_init_device);
1474  *
1475  * when running under xen, the initcall order is 1,2,3;
1476  * on baremetal, we skip 1 and we do only 2 and 3.
1477  */
1478 late_initcall(threshold_init_device);