GNU Linux-libre 4.4.288-gnu1
[releases.git] / arch / x86 / kernel / kvm.c
1 /*
2  * KVM paravirt_ops implementation
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  *
18  * Copyright (C) 2007, Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
19  * Copyright IBM Corporation, 2007
20  *   Authors: Anthony Liguori <aliguori@us.ibm.com>
21  */
22
23 #include <linux/context_tracking.h>
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/kvm_para.h>
27 #include <linux/cpu.h>
28 #include <linux/mm.h>
29 #include <linux/highmem.h>
30 #include <linux/hardirq.h>
31 #include <linux/notifier.h>
32 #include <linux/reboot.h>
33 #include <linux/hash.h>
34 #include <linux/sched.h>
35 #include <linux/slab.h>
36 #include <linux/kprobes.h>
37 #include <linux/debugfs.h>
38 #include <linux/nmi.h>
39 #include <asm/timer.h>
40 #include <asm/cpu.h>
41 #include <asm/traps.h>
42 #include <asm/desc.h>
43 #include <asm/tlbflush.h>
44 #include <asm/idle.h>
45 #include <asm/apic.h>
46 #include <asm/apicdef.h>
47 #include <asm/hypervisor.h>
48 #include <asm/kvm_guest.h>
49
50 static int kvmapf = 1;
51
52 static int parse_no_kvmapf(char *arg)
53 {
54         kvmapf = 0;
55         return 0;
56 }
57
58 early_param("no-kvmapf", parse_no_kvmapf);
59
60 static int steal_acc = 1;
61 static int parse_no_stealacc(char *arg)
62 {
63         steal_acc = 0;
64         return 0;
65 }
66
67 early_param("no-steal-acc", parse_no_stealacc);
68
69 static int kvmclock_vsyscall = 1;
70 static int parse_no_kvmclock_vsyscall(char *arg)
71 {
72         kvmclock_vsyscall = 0;
73         return 0;
74 }
75
76 early_param("no-kvmclock-vsyscall", parse_no_kvmclock_vsyscall);
77
78 static DEFINE_PER_CPU(struct kvm_vcpu_pv_apf_data, apf_reason) __aligned(64);
79 static DEFINE_PER_CPU(struct kvm_steal_time, steal_time) __aligned(64);
80 static int has_steal_clock = 0;
81
82 /*
83  * No need for any "IO delay" on KVM
84  */
85 static void kvm_io_delay(void)
86 {
87 }
88
89 #define KVM_TASK_SLEEP_HASHBITS 8
90 #define KVM_TASK_SLEEP_HASHSIZE (1<<KVM_TASK_SLEEP_HASHBITS)
91
92 struct kvm_task_sleep_node {
93         struct hlist_node link;
94         wait_queue_head_t wq;
95         u32 token;
96         int cpu;
97         bool halted;
98 };
99
100 static struct kvm_task_sleep_head {
101         spinlock_t lock;
102         struct hlist_head list;
103 } async_pf_sleepers[KVM_TASK_SLEEP_HASHSIZE];
104
105 static struct kvm_task_sleep_node *_find_apf_task(struct kvm_task_sleep_head *b,
106                                                   u32 token)
107 {
108         struct hlist_node *p;
109
110         hlist_for_each(p, &b->list) {
111                 struct kvm_task_sleep_node *n =
112                         hlist_entry(p, typeof(*n), link);
113                 if (n->token == token)
114                         return n;
115         }
116
117         return NULL;
118 }
119
120 void kvm_async_pf_task_wait(u32 token)
121 {
122         u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS);
123         struct kvm_task_sleep_head *b = &async_pf_sleepers[key];
124         struct kvm_task_sleep_node n, *e;
125         DEFINE_WAIT(wait);
126
127         rcu_irq_enter();
128
129         spin_lock(&b->lock);
130         e = _find_apf_task(b, token);
131         if (e) {
132                 /* dummy entry exist -> wake up was delivered ahead of PF */
133                 hlist_del(&e->link);
134                 kfree(e);
135                 spin_unlock(&b->lock);
136
137                 rcu_irq_exit();
138                 return;
139         }
140
141         n.token = token;
142         n.cpu = smp_processor_id();
143         n.halted = is_idle_task(current) || preempt_count() > 1;
144         init_waitqueue_head(&n.wq);
145         hlist_add_head(&n.link, &b->list);
146         spin_unlock(&b->lock);
147
148         for (;;) {
149                 if (!n.halted)
150                         prepare_to_wait(&n.wq, &wait, TASK_UNINTERRUPTIBLE);
151                 if (hlist_unhashed(&n.link))
152                         break;
153
154                 rcu_irq_exit();
155
156                 if (!n.halted) {
157                         local_irq_enable();
158                         schedule();
159                         local_irq_disable();
160                 } else {
161                         /*
162                          * We cannot reschedule. So halt.
163                          */
164                         native_safe_halt();
165                         local_irq_disable();
166                 }
167
168                 rcu_irq_enter();
169         }
170         if (!n.halted)
171                 finish_wait(&n.wq, &wait);
172
173         rcu_irq_exit();
174         return;
175 }
176 EXPORT_SYMBOL_GPL(kvm_async_pf_task_wait);
177
178 static void apf_task_wake_one(struct kvm_task_sleep_node *n)
179 {
180         hlist_del_init(&n->link);
181         if (n->halted)
182                 smp_send_reschedule(n->cpu);
183         else if (waitqueue_active(&n->wq))
184                 wake_up(&n->wq);
185 }
186
187 static void apf_task_wake_all(void)
188 {
189         int i;
190
191         for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++) {
192                 struct hlist_node *p, *next;
193                 struct kvm_task_sleep_head *b = &async_pf_sleepers[i];
194                 spin_lock(&b->lock);
195                 hlist_for_each_safe(p, next, &b->list) {
196                         struct kvm_task_sleep_node *n =
197                                 hlist_entry(p, typeof(*n), link);
198                         if (n->cpu == smp_processor_id())
199                                 apf_task_wake_one(n);
200                 }
201                 spin_unlock(&b->lock);
202         }
203 }
204
205 void kvm_async_pf_task_wake(u32 token)
206 {
207         u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS);
208         struct kvm_task_sleep_head *b = &async_pf_sleepers[key];
209         struct kvm_task_sleep_node *n;
210
211         if (token == ~0) {
212                 apf_task_wake_all();
213                 return;
214         }
215
216 again:
217         spin_lock(&b->lock);
218         n = _find_apf_task(b, token);
219         if (!n) {
220                 /*
221                  * async PF was not yet handled.
222                  * Add dummy entry for the token.
223                  */
224                 n = kzalloc(sizeof(*n), GFP_ATOMIC);
225                 if (!n) {
226                         /*
227                          * Allocation failed! Busy wait while other cpu
228                          * handles async PF.
229                          */
230                         spin_unlock(&b->lock);
231                         cpu_relax();
232                         goto again;
233                 }
234                 n->token = token;
235                 n->cpu = smp_processor_id();
236                 init_waitqueue_head(&n->wq);
237                 hlist_add_head(&n->link, &b->list);
238         } else
239                 apf_task_wake_one(n);
240         spin_unlock(&b->lock);
241         return;
242 }
243 EXPORT_SYMBOL_GPL(kvm_async_pf_task_wake);
244
245 u32 kvm_read_and_reset_pf_reason(void)
246 {
247         u32 reason = 0;
248
249         if (__this_cpu_read(apf_reason.enabled)) {
250                 reason = __this_cpu_read(apf_reason.reason);
251                 __this_cpu_write(apf_reason.reason, 0);
252         }
253
254         return reason;
255 }
256 EXPORT_SYMBOL_GPL(kvm_read_and_reset_pf_reason);
257 NOKPROBE_SYMBOL(kvm_read_and_reset_pf_reason);
258
259 dotraplinkage void
260 do_async_page_fault(struct pt_regs *regs, unsigned long error_code)
261 {
262         enum ctx_state prev_state;
263
264         switch (kvm_read_and_reset_pf_reason()) {
265         default:
266                 trace_do_page_fault(regs, error_code);
267                 break;
268         case KVM_PV_REASON_PAGE_NOT_PRESENT:
269                 /* page is swapped out by the host. */
270                 prev_state = exception_enter();
271                 exit_idle();
272                 kvm_async_pf_task_wait((u32)read_cr2());
273                 exception_exit(prev_state);
274                 break;
275         case KVM_PV_REASON_PAGE_READY:
276                 rcu_irq_enter();
277                 exit_idle();
278                 kvm_async_pf_task_wake((u32)read_cr2());
279                 rcu_irq_exit();
280                 break;
281         }
282 }
283 NOKPROBE_SYMBOL(do_async_page_fault);
284
285 static void __init paravirt_ops_setup(void)
286 {
287         pv_info.name = "KVM";
288
289         /*
290          * KVM isn't paravirt in the sense of paravirt_enabled.  A KVM
291          * guest kernel works like a bare metal kernel with additional
292          * features, and paravirt_enabled is about features that are
293          * missing.
294          */
295         pv_info.paravirt_enabled = 0;
296
297         if (kvm_para_has_feature(KVM_FEATURE_NOP_IO_DELAY))
298                 pv_cpu_ops.io_delay = kvm_io_delay;
299
300 #ifdef CONFIG_X86_IO_APIC
301         no_timer_check = 1;
302 #endif
303 }
304
305 static void kvm_register_steal_time(void)
306 {
307         int cpu = smp_processor_id();
308         struct kvm_steal_time *st = &per_cpu(steal_time, cpu);
309
310         if (!has_steal_clock)
311                 return;
312
313         memset(st, 0, sizeof(*st));
314
315         wrmsrl(MSR_KVM_STEAL_TIME, (slow_virt_to_phys(st) | KVM_MSR_ENABLED));
316         pr_info("kvm-stealtime: cpu %d, msr %llx\n",
317                 cpu, (unsigned long long) slow_virt_to_phys(st));
318 }
319
320 static DEFINE_PER_CPU(unsigned long, kvm_apic_eoi) = KVM_PV_EOI_DISABLED;
321
322 static void kvm_guest_apic_eoi_write(u32 reg, u32 val)
323 {
324         /**
325          * This relies on __test_and_clear_bit to modify the memory
326          * in a way that is atomic with respect to the local CPU.
327          * The hypervisor only accesses this memory from the local CPU so
328          * there's no need for lock or memory barriers.
329          * An optimization barrier is implied in apic write.
330          */
331         if (__test_and_clear_bit(KVM_PV_EOI_BIT, this_cpu_ptr(&kvm_apic_eoi)))
332                 return;
333         apic_write(APIC_EOI, APIC_EOI_ACK);
334 }
335
336 static void kvm_guest_cpu_init(void)
337 {
338         if (!kvm_para_available())
339                 return;
340
341         if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF) && kvmapf) {
342                 u64 pa = slow_virt_to_phys(this_cpu_ptr(&apf_reason));
343
344 #ifdef CONFIG_PREEMPT
345                 pa |= KVM_ASYNC_PF_SEND_ALWAYS;
346 #endif
347                 wrmsrl(MSR_KVM_ASYNC_PF_EN, pa | KVM_ASYNC_PF_ENABLED);
348                 __this_cpu_write(apf_reason.enabled, 1);
349                 printk(KERN_INFO"KVM setup async PF for cpu %d\n",
350                        smp_processor_id());
351         }
352
353         if (kvm_para_has_feature(KVM_FEATURE_PV_EOI)) {
354                 unsigned long pa;
355                 /* Size alignment is implied but just to make it explicit. */
356                 BUILD_BUG_ON(__alignof__(kvm_apic_eoi) < 4);
357                 __this_cpu_write(kvm_apic_eoi, 0);
358                 pa = slow_virt_to_phys(this_cpu_ptr(&kvm_apic_eoi))
359                         | KVM_MSR_ENABLED;
360                 wrmsrl(MSR_KVM_PV_EOI_EN, pa);
361         }
362
363         if (has_steal_clock)
364                 kvm_register_steal_time();
365 }
366
367 static void kvm_pv_disable_apf(void)
368 {
369         if (!__this_cpu_read(apf_reason.enabled))
370                 return;
371
372         wrmsrl(MSR_KVM_ASYNC_PF_EN, 0);
373         __this_cpu_write(apf_reason.enabled, 0);
374
375         printk(KERN_INFO"Unregister pv shared memory for cpu %d\n",
376                smp_processor_id());
377 }
378
379 static void kvm_pv_guest_cpu_reboot(void *unused)
380 {
381         /*
382          * We disable PV EOI before we load a new kernel by kexec,
383          * since MSR_KVM_PV_EOI_EN stores a pointer into old kernel's memory.
384          * New kernel can re-enable when it boots.
385          */
386         if (kvm_para_has_feature(KVM_FEATURE_PV_EOI))
387                 wrmsrl(MSR_KVM_PV_EOI_EN, 0);
388         kvm_pv_disable_apf();
389         kvm_disable_steal_time();
390 }
391
392 static int kvm_pv_reboot_notify(struct notifier_block *nb,
393                                 unsigned long code, void *unused)
394 {
395         if (code == SYS_RESTART)
396                 on_each_cpu(kvm_pv_guest_cpu_reboot, NULL, 1);
397         return NOTIFY_DONE;
398 }
399
400 static struct notifier_block kvm_pv_reboot_nb = {
401         .notifier_call = kvm_pv_reboot_notify,
402 };
403
404 static u64 kvm_steal_clock(int cpu)
405 {
406         u64 steal;
407         struct kvm_steal_time *src;
408         int version;
409
410         src = &per_cpu(steal_time, cpu);
411         do {
412                 version = src->version;
413                 rmb();
414                 steal = src->steal;
415                 rmb();
416         } while ((version & 1) || (version != src->version));
417
418         return steal;
419 }
420
421 void kvm_disable_steal_time(void)
422 {
423         if (!has_steal_clock)
424                 return;
425
426         wrmsr(MSR_KVM_STEAL_TIME, 0, 0);
427 }
428
429 #ifdef CONFIG_SMP
430 static void __init kvm_smp_prepare_boot_cpu(void)
431 {
432         kvm_guest_cpu_init();
433         native_smp_prepare_boot_cpu();
434         kvm_spinlock_init();
435 }
436
437 static void kvm_guest_cpu_online(void *dummy)
438 {
439         kvm_guest_cpu_init();
440 }
441
442 static void kvm_guest_cpu_offline(void *dummy)
443 {
444         kvm_disable_steal_time();
445         if (kvm_para_has_feature(KVM_FEATURE_PV_EOI))
446                 wrmsrl(MSR_KVM_PV_EOI_EN, 0);
447         kvm_pv_disable_apf();
448         apf_task_wake_all();
449 }
450
451 static int kvm_cpu_notify(struct notifier_block *self, unsigned long action,
452                           void *hcpu)
453 {
454         int cpu = (unsigned long)hcpu;
455         switch (action) {
456         case CPU_ONLINE:
457         case CPU_DOWN_FAILED:
458         case CPU_ONLINE_FROZEN:
459                 smp_call_function_single(cpu, kvm_guest_cpu_online, NULL, 0);
460                 break;
461         case CPU_DOWN_PREPARE:
462         case CPU_DOWN_PREPARE_FROZEN:
463                 smp_call_function_single(cpu, kvm_guest_cpu_offline, NULL, 1);
464                 break;
465         default:
466                 break;
467         }
468         return NOTIFY_OK;
469 }
470
471 static struct notifier_block kvm_cpu_notifier = {
472         .notifier_call  = kvm_cpu_notify,
473 };
474 #endif
475
476 static void __init kvm_apf_trap_init(void)
477 {
478         set_intr_gate(14, async_page_fault);
479 }
480
481 void __init kvm_guest_init(void)
482 {
483         int i;
484
485         if (!kvm_para_available())
486                 return;
487
488         paravirt_ops_setup();
489         register_reboot_notifier(&kvm_pv_reboot_nb);
490         for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++)
491                 spin_lock_init(&async_pf_sleepers[i].lock);
492         if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF))
493                 x86_init.irqs.trap_init = kvm_apf_trap_init;
494
495         if (kvm_para_has_feature(KVM_FEATURE_STEAL_TIME)) {
496                 has_steal_clock = 1;
497                 pv_time_ops.steal_clock = kvm_steal_clock;
498         }
499
500         if (kvm_para_has_feature(KVM_FEATURE_PV_EOI))
501                 apic_set_eoi_write(kvm_guest_apic_eoi_write);
502
503         if (kvmclock_vsyscall)
504                 kvm_setup_vsyscall_timeinfo();
505
506 #ifdef CONFIG_SMP
507         smp_ops.smp_prepare_boot_cpu = kvm_smp_prepare_boot_cpu;
508         register_cpu_notifier(&kvm_cpu_notifier);
509 #else
510         kvm_guest_cpu_init();
511 #endif
512
513         /*
514          * Hard lockup detection is enabled by default. Disable it, as guests
515          * can get false positives too easily, for example if the host is
516          * overcommitted.
517          */
518         hardlockup_detector_disable();
519 }
520
521 static noinline uint32_t __kvm_cpuid_base(void)
522 {
523         if (boot_cpu_data.cpuid_level < 0)
524                 return 0;       /* So we don't blow up on old processors */
525
526         if (cpu_has_hypervisor)
527                 return hypervisor_cpuid_base("KVMKVMKVM\0\0\0", 0);
528
529         return 0;
530 }
531
532 static inline uint32_t kvm_cpuid_base(void)
533 {
534         static int kvm_cpuid_base = -1;
535
536         if (kvm_cpuid_base == -1)
537                 kvm_cpuid_base = __kvm_cpuid_base();
538
539         return kvm_cpuid_base;
540 }
541
542 bool kvm_para_available(void)
543 {
544         return kvm_cpuid_base() != 0;
545 }
546 EXPORT_SYMBOL_GPL(kvm_para_available);
547
548 unsigned int kvm_arch_para_features(void)
549 {
550         return cpuid_eax(kvm_cpuid_base() | KVM_CPUID_FEATURES);
551 }
552
553 static uint32_t __init kvm_detect(void)
554 {
555         return kvm_cpuid_base();
556 }
557
558 const struct hypervisor_x86 x86_hyper_kvm __refconst = {
559         .name                   = "KVM",
560         .detect                 = kvm_detect,
561         .x2apic_available       = kvm_para_available,
562 };
563 EXPORT_SYMBOL_GPL(x86_hyper_kvm);
564
565 static __init int activate_jump_labels(void)
566 {
567         if (has_steal_clock) {
568                 static_key_slow_inc(&paravirt_steal_enabled);
569                 if (steal_acc)
570                         static_key_slow_inc(&paravirt_steal_rq_enabled);
571         }
572
573         return 0;
574 }
575 arch_initcall(activate_jump_labels);
576
577 #ifdef CONFIG_PARAVIRT_SPINLOCKS
578
579 /* Kick a cpu by its apicid. Used to wake up a halted vcpu */
580 static void kvm_kick_cpu(int cpu)
581 {
582         int apicid;
583         unsigned long flags = 0;
584
585         apicid = per_cpu(x86_cpu_to_apicid, cpu);
586         kvm_hypercall2(KVM_HC_KICK_CPU, flags, apicid);
587 }
588
589
590 #ifdef CONFIG_QUEUED_SPINLOCKS
591
592 #include <asm/qspinlock.h>
593
594 static void kvm_wait(u8 *ptr, u8 val)
595 {
596         unsigned long flags;
597
598         if (in_nmi())
599                 return;
600
601         local_irq_save(flags);
602
603         if (READ_ONCE(*ptr) != val)
604                 goto out;
605
606         /*
607          * halt until it's our turn and kicked. Note that we do safe halt
608          * for irq enabled case to avoid hang when lock info is overwritten
609          * in irq spinlock slowpath and no spurious interrupt occur to save us.
610          */
611         if (arch_irqs_disabled_flags(flags))
612                 halt();
613         else
614                 safe_halt();
615
616 out:
617         local_irq_restore(flags);
618 }
619
620 #else /* !CONFIG_QUEUED_SPINLOCKS */
621
622 enum kvm_contention_stat {
623         TAKEN_SLOW,
624         TAKEN_SLOW_PICKUP,
625         RELEASED_SLOW,
626         RELEASED_SLOW_KICKED,
627         NR_CONTENTION_STATS
628 };
629
630 #ifdef CONFIG_KVM_DEBUG_FS
631 #define HISTO_BUCKETS   30
632
633 static struct kvm_spinlock_stats
634 {
635         u32 contention_stats[NR_CONTENTION_STATS];
636         u32 histo_spin_blocked[HISTO_BUCKETS+1];
637         u64 time_blocked;
638 } spinlock_stats;
639
640 static u8 zero_stats;
641
642 static inline void check_zero(void)
643 {
644         u8 ret;
645         u8 old;
646
647         old = READ_ONCE(zero_stats);
648         if (unlikely(old)) {
649                 ret = cmpxchg(&zero_stats, old, 0);
650                 /* This ensures only one fellow resets the stat */
651                 if (ret == old)
652                         memset(&spinlock_stats, 0, sizeof(spinlock_stats));
653         }
654 }
655
656 static inline void add_stats(enum kvm_contention_stat var, u32 val)
657 {
658         check_zero();
659         spinlock_stats.contention_stats[var] += val;
660 }
661
662
663 static inline u64 spin_time_start(void)
664 {
665         return sched_clock();
666 }
667
668 static void __spin_time_accum(u64 delta, u32 *array)
669 {
670         unsigned index;
671
672         index = ilog2(delta);
673         check_zero();
674
675         if (index < HISTO_BUCKETS)
676                 array[index]++;
677         else
678                 array[HISTO_BUCKETS]++;
679 }
680
681 static inline void spin_time_accum_blocked(u64 start)
682 {
683         u32 delta;
684
685         delta = sched_clock() - start;
686         __spin_time_accum(delta, spinlock_stats.histo_spin_blocked);
687         spinlock_stats.time_blocked += delta;
688 }
689
690 static struct dentry *d_spin_debug;
691 static struct dentry *d_kvm_debug;
692
693 static struct dentry *kvm_init_debugfs(void)
694 {
695         d_kvm_debug = debugfs_create_dir("kvm-guest", NULL);
696         if (!d_kvm_debug)
697                 printk(KERN_WARNING "Could not create 'kvm' debugfs directory\n");
698
699         return d_kvm_debug;
700 }
701
702 static int __init kvm_spinlock_debugfs(void)
703 {
704         struct dentry *d_kvm;
705
706         d_kvm = kvm_init_debugfs();
707         if (d_kvm == NULL)
708                 return -ENOMEM;
709
710         d_spin_debug = debugfs_create_dir("spinlocks", d_kvm);
711
712         debugfs_create_u8("zero_stats", 0644, d_spin_debug, &zero_stats);
713
714         debugfs_create_u32("taken_slow", 0444, d_spin_debug,
715                    &spinlock_stats.contention_stats[TAKEN_SLOW]);
716         debugfs_create_u32("taken_slow_pickup", 0444, d_spin_debug,
717                    &spinlock_stats.contention_stats[TAKEN_SLOW_PICKUP]);
718
719         debugfs_create_u32("released_slow", 0444, d_spin_debug,
720                    &spinlock_stats.contention_stats[RELEASED_SLOW]);
721         debugfs_create_u32("released_slow_kicked", 0444, d_spin_debug,
722                    &spinlock_stats.contention_stats[RELEASED_SLOW_KICKED]);
723
724         debugfs_create_u64("time_blocked", 0444, d_spin_debug,
725                            &spinlock_stats.time_blocked);
726
727         debugfs_create_u32_array("histo_blocked", 0444, d_spin_debug,
728                      spinlock_stats.histo_spin_blocked, HISTO_BUCKETS + 1);
729
730         return 0;
731 }
732 fs_initcall(kvm_spinlock_debugfs);
733 #else  /* !CONFIG_KVM_DEBUG_FS */
734 static inline void add_stats(enum kvm_contention_stat var, u32 val)
735 {
736 }
737
738 static inline u64 spin_time_start(void)
739 {
740         return 0;
741 }
742
743 static inline void spin_time_accum_blocked(u64 start)
744 {
745 }
746 #endif  /* CONFIG_KVM_DEBUG_FS */
747
748 struct kvm_lock_waiting {
749         struct arch_spinlock *lock;
750         __ticket_t want;
751 };
752
753 /* cpus 'waiting' on a spinlock to become available */
754 static cpumask_t waiting_cpus;
755
756 /* Track spinlock on which a cpu is waiting */
757 static DEFINE_PER_CPU(struct kvm_lock_waiting, klock_waiting);
758
759 __visible void kvm_lock_spinning(struct arch_spinlock *lock, __ticket_t want)
760 {
761         struct kvm_lock_waiting *w;
762         int cpu;
763         u64 start;
764         unsigned long flags;
765         __ticket_t head;
766
767         if (in_nmi())
768                 return;
769
770         w = this_cpu_ptr(&klock_waiting);
771         cpu = smp_processor_id();
772         start = spin_time_start();
773
774         /*
775          * Make sure an interrupt handler can't upset things in a
776          * partially setup state.
777          */
778         local_irq_save(flags);
779
780         /*
781          * The ordering protocol on this is that the "lock" pointer
782          * may only be set non-NULL if the "want" ticket is correct.
783          * If we're updating "want", we must first clear "lock".
784          */
785         w->lock = NULL;
786         smp_wmb();
787         w->want = want;
788         smp_wmb();
789         w->lock = lock;
790
791         add_stats(TAKEN_SLOW, 1);
792
793         /*
794          * This uses set_bit, which is atomic but we should not rely on its
795          * reordering gurantees. So barrier is needed after this call.
796          */
797         cpumask_set_cpu(cpu, &waiting_cpus);
798
799         barrier();
800
801         /*
802          * Mark entry to slowpath before doing the pickup test to make
803          * sure we don't deadlock with an unlocker.
804          */
805         __ticket_enter_slowpath(lock);
806
807         /* make sure enter_slowpath, which is atomic does not cross the read */
808         smp_mb__after_atomic();
809
810         /*
811          * check again make sure it didn't become free while
812          * we weren't looking.
813          */
814         head = READ_ONCE(lock->tickets.head);
815         if (__tickets_equal(head, want)) {
816                 add_stats(TAKEN_SLOW_PICKUP, 1);
817                 goto out;
818         }
819
820         /*
821          * halt until it's our turn and kicked. Note that we do safe halt
822          * for irq enabled case to avoid hang when lock info is overwritten
823          * in irq spinlock slowpath and no spurious interrupt occur to save us.
824          */
825         if (arch_irqs_disabled_flags(flags))
826                 halt();
827         else
828                 safe_halt();
829
830 out:
831         cpumask_clear_cpu(cpu, &waiting_cpus);
832         w->lock = NULL;
833         local_irq_restore(flags);
834         spin_time_accum_blocked(start);
835 }
836 PV_CALLEE_SAVE_REGS_THUNK(kvm_lock_spinning);
837
838 /* Kick vcpu waiting on @lock->head to reach value @ticket */
839 static void kvm_unlock_kick(struct arch_spinlock *lock, __ticket_t ticket)
840 {
841         int cpu;
842
843         add_stats(RELEASED_SLOW, 1);
844         for_each_cpu(cpu, &waiting_cpus) {
845                 const struct kvm_lock_waiting *w = &per_cpu(klock_waiting, cpu);
846                 if (READ_ONCE(w->lock) == lock &&
847                     READ_ONCE(w->want) == ticket) {
848                         add_stats(RELEASED_SLOW_KICKED, 1);
849                         kvm_kick_cpu(cpu);
850                         break;
851                 }
852         }
853 }
854
855 #endif /* !CONFIG_QUEUED_SPINLOCKS */
856
857 /*
858  * Setup pv_lock_ops to exploit KVM_FEATURE_PV_UNHALT if present.
859  */
860 void __init kvm_spinlock_init(void)
861 {
862         if (!kvm_para_available())
863                 return;
864         /* Does host kernel support KVM_FEATURE_PV_UNHALT? */
865         if (!kvm_para_has_feature(KVM_FEATURE_PV_UNHALT))
866                 return;
867
868 #ifdef CONFIG_QUEUED_SPINLOCKS
869         __pv_init_lock_hash();
870         pv_lock_ops.queued_spin_lock_slowpath = __pv_queued_spin_lock_slowpath;
871         pv_lock_ops.queued_spin_unlock = PV_CALLEE_SAVE(__pv_queued_spin_unlock);
872         pv_lock_ops.wait = kvm_wait;
873         pv_lock_ops.kick = kvm_kick_cpu;
874 #else /* !CONFIG_QUEUED_SPINLOCKS */
875         pv_lock_ops.lock_spinning = PV_CALLEE_SAVE(kvm_lock_spinning);
876         pv_lock_ops.unlock_kick = kvm_unlock_kick;
877 #endif
878 }
879
880 static __init int kvm_spinlock_init_jump(void)
881 {
882         if (!kvm_para_available())
883                 return 0;
884         if (!kvm_para_has_feature(KVM_FEATURE_PV_UNHALT))
885                 return 0;
886
887         static_key_slow_inc(&paravirt_ticketlocks_enabled);
888         printk(KERN_INFO "KVM setup paravirtual spinlock\n");
889
890         return 0;
891 }
892 early_initcall(kvm_spinlock_init_jump);
893
894 #endif  /* CONFIG_PARAVIRT_SPINLOCKS */