GNU Linux-libre 4.4.288-gnu1
[releases.git] / arch / x86 / kvm / svm.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * AMD SVM support
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8  *
9  * Authors:
10  *   Yaniv Kamay  <yaniv@qumranet.com>
11  *   Avi Kivity   <avi@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17 #include <linux/kvm_host.h>
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "kvm_cache_regs.h"
22 #include "x86.h"
23 #include "cpuid.h"
24 #include "pmu.h"
25
26 #include <linux/module.h>
27 #include <linux/mod_devicetable.h>
28 #include <linux/kernel.h>
29 #include <linux/vmalloc.h>
30 #include <linux/highmem.h>
31 #include <linux/sched.h>
32 #include <linux/trace_events.h>
33 #include <linux/slab.h>
34
35 #include <asm/perf_event.h>
36 #include <asm/tlbflush.h>
37 #include <asm/desc.h>
38 #include <asm/debugreg.h>
39 #include <asm/kvm_para.h>
40 #include <asm/microcode.h>
41 #include <asm/spec-ctrl.h>
42
43 #include <asm/virtext.h>
44 #include "trace.h"
45
46 #define __ex(x) __kvm_handle_fault_on_reboot(x)
47
48 MODULE_AUTHOR("Qumranet");
49 MODULE_LICENSE("GPL");
50
51 static const struct x86_cpu_id svm_cpu_id[] = {
52         X86_FEATURE_MATCH(X86_FEATURE_SVM),
53         {}
54 };
55 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
56
57 #define IOPM_ALLOC_ORDER 2
58 #define MSRPM_ALLOC_ORDER 1
59
60 #define SEG_TYPE_LDT 2
61 #define SEG_TYPE_BUSY_TSS16 3
62
63 #define SVM_FEATURE_NPT            (1 <<  0)
64 #define SVM_FEATURE_LBRV           (1 <<  1)
65 #define SVM_FEATURE_SVML           (1 <<  2)
66 #define SVM_FEATURE_NRIP           (1 <<  3)
67 #define SVM_FEATURE_TSC_RATE       (1 <<  4)
68 #define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
69 #define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
70 #define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
71 #define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
72
73 #define NESTED_EXIT_HOST        0       /* Exit handled on host level */
74 #define NESTED_EXIT_DONE        1       /* Exit caused nested vmexit  */
75 #define NESTED_EXIT_CONTINUE    2       /* Further checks needed      */
76
77 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
78
79 #define TSC_RATIO_RSVD          0xffffff0000000000ULL
80 #define TSC_RATIO_MIN           0x0000000000000001ULL
81 #define TSC_RATIO_MAX           0x000000ffffffffffULL
82
83 static bool erratum_383_found __read_mostly;
84
85 static const u32 host_save_user_msrs[] = {
86 #ifdef CONFIG_X86_64
87         MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
88         MSR_FS_BASE,
89 #endif
90         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
91 };
92
93 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
94
95 struct kvm_vcpu;
96
97 struct nested_state {
98         struct vmcb *hsave;
99         u64 hsave_msr;
100         u64 vm_cr_msr;
101         u64 vmcb;
102
103         /* These are the merged vectors */
104         u32 *msrpm;
105
106         /* gpa pointers to the real vectors */
107         u64 vmcb_msrpm;
108         u64 vmcb_iopm;
109
110         /* A VMEXIT is required but not yet emulated */
111         bool exit_required;
112
113         /* cache for intercepts of the guest */
114         u32 intercept_cr;
115         u32 intercept_dr;
116         u32 intercept_exceptions;
117         u64 intercept;
118
119         /* Nested Paging related state */
120         u64 nested_cr3;
121 };
122
123 #define MSRPM_OFFSETS   16
124 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
125
126 /*
127  * Set osvw_len to higher value when updated Revision Guides
128  * are published and we know what the new status bits are
129  */
130 static uint64_t osvw_len = 4, osvw_status;
131
132 struct vcpu_svm {
133         struct kvm_vcpu vcpu;
134         struct vmcb *vmcb;
135         unsigned long vmcb_pa;
136         struct svm_cpu_data *svm_data;
137         uint64_t asid_generation;
138         uint64_t sysenter_esp;
139         uint64_t sysenter_eip;
140
141         u64 next_rip;
142
143         u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
144         struct {
145                 u16 fs;
146                 u16 gs;
147                 u16 ldt;
148                 u64 gs_base;
149         } host;
150
151         u64 spec_ctrl;
152         /*
153          * Contains guest-controlled bits of VIRT_SPEC_CTRL, which will be
154          * translated into the appropriate L2_CFG bits on the host to
155          * perform speculative control.
156          */
157         u64 virt_spec_ctrl;
158
159         u32 *msrpm;
160
161         ulong nmi_iret_rip;
162
163         struct nested_state nested;
164
165         bool nmi_singlestep;
166
167         unsigned int3_injected;
168         unsigned long int3_rip;
169         u32 apf_reason;
170
171         /* cached guest cpuid flags for faster access */
172         bool nrips_enabled      : 1;
173 };
174
175 static DEFINE_PER_CPU(u64, current_tsc_ratio);
176 #define TSC_RATIO_DEFAULT       0x0100000000ULL
177
178 #define MSR_INVALID                     0xffffffffU
179
180 static const struct svm_direct_access_msrs {
181         u32 index;   /* Index of the MSR */
182         bool always; /* True if intercept is always on */
183 } direct_access_msrs[] = {
184         { .index = MSR_STAR,                            .always = true  },
185         { .index = MSR_IA32_SYSENTER_CS,                .always = true  },
186 #ifdef CONFIG_X86_64
187         { .index = MSR_GS_BASE,                         .always = true  },
188         { .index = MSR_FS_BASE,                         .always = true  },
189         { .index = MSR_KERNEL_GS_BASE,                  .always = true  },
190         { .index = MSR_LSTAR,                           .always = true  },
191         { .index = MSR_CSTAR,                           .always = true  },
192         { .index = MSR_SYSCALL_MASK,                    .always = true  },
193 #endif
194         { .index = MSR_IA32_SPEC_CTRL,                  .always = false },
195         { .index = MSR_IA32_PRED_CMD,                   .always = false },
196         { .index = MSR_IA32_LASTBRANCHFROMIP,           .always = false },
197         { .index = MSR_IA32_LASTBRANCHTOIP,             .always = false },
198         { .index = MSR_IA32_LASTINTFROMIP,              .always = false },
199         { .index = MSR_IA32_LASTINTTOIP,                .always = false },
200         { .index = MSR_INVALID,                         .always = false },
201 };
202
203 /* enable NPT for AMD64 and X86 with PAE */
204 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
205 static bool npt_enabled = true;
206 #else
207 static bool npt_enabled;
208 #endif
209
210 /* allow nested paging (virtualized MMU) for all guests */
211 static int npt = true;
212 module_param(npt, int, S_IRUGO);
213
214 /* allow nested virtualization in KVM/SVM */
215 static int nested = true;
216 module_param(nested, int, S_IRUGO);
217
218 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
219 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
220 static void svm_complete_interrupts(struct vcpu_svm *svm);
221
222 static int nested_svm_exit_handled(struct vcpu_svm *svm);
223 static int nested_svm_intercept(struct vcpu_svm *svm);
224 static int nested_svm_vmexit(struct vcpu_svm *svm);
225 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
226                                       bool has_error_code, u32 error_code);
227
228 enum {
229         VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
230                             pause filter count */
231         VMCB_PERM_MAP,   /* IOPM Base and MSRPM Base */
232         VMCB_ASID,       /* ASID */
233         VMCB_INTR,       /* int_ctl, int_vector */
234         VMCB_NPT,        /* npt_en, nCR3, gPAT */
235         VMCB_CR,         /* CR0, CR3, CR4, EFER */
236         VMCB_DR,         /* DR6, DR7 */
237         VMCB_DT,         /* GDT, IDT */
238         VMCB_SEG,        /* CS, DS, SS, ES, CPL */
239         VMCB_CR2,        /* CR2 only */
240         VMCB_LBR,        /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
241         VMCB_DIRTY_MAX,
242 };
243
244 /* TPR and CR2 are always written before VMRUN */
245 #define VMCB_ALWAYS_DIRTY_MASK  ((1U << VMCB_INTR) | (1U << VMCB_CR2))
246
247 static inline void mark_all_dirty(struct vmcb *vmcb)
248 {
249         vmcb->control.clean = 0;
250 }
251
252 static inline void mark_all_clean(struct vmcb *vmcb)
253 {
254         vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
255                                & ~VMCB_ALWAYS_DIRTY_MASK;
256 }
257
258 static inline void mark_dirty(struct vmcb *vmcb, int bit)
259 {
260         vmcb->control.clean &= ~(1 << bit);
261 }
262
263 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
264 {
265         return container_of(vcpu, struct vcpu_svm, vcpu);
266 }
267
268 static void recalc_intercepts(struct vcpu_svm *svm)
269 {
270         struct vmcb_control_area *c, *h;
271         struct nested_state *g;
272
273         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
274
275         if (!is_guest_mode(&svm->vcpu))
276                 return;
277
278         c = &svm->vmcb->control;
279         h = &svm->nested.hsave->control;
280         g = &svm->nested;
281
282         c->intercept_cr = h->intercept_cr | g->intercept_cr;
283         c->intercept_dr = h->intercept_dr | g->intercept_dr;
284         c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
285         c->intercept = h->intercept | g->intercept;
286 }
287
288 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
289 {
290         if (is_guest_mode(&svm->vcpu))
291                 return svm->nested.hsave;
292         else
293                 return svm->vmcb;
294 }
295
296 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
297 {
298         struct vmcb *vmcb = get_host_vmcb(svm);
299
300         vmcb->control.intercept_cr |= (1U << bit);
301
302         recalc_intercepts(svm);
303 }
304
305 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
306 {
307         struct vmcb *vmcb = get_host_vmcb(svm);
308
309         vmcb->control.intercept_cr &= ~(1U << bit);
310
311         recalc_intercepts(svm);
312 }
313
314 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
315 {
316         struct vmcb *vmcb = get_host_vmcb(svm);
317
318         return vmcb->control.intercept_cr & (1U << bit);
319 }
320
321 static inline void set_dr_intercepts(struct vcpu_svm *svm)
322 {
323         struct vmcb *vmcb = get_host_vmcb(svm);
324
325         vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
326                 | (1 << INTERCEPT_DR1_READ)
327                 | (1 << INTERCEPT_DR2_READ)
328                 | (1 << INTERCEPT_DR3_READ)
329                 | (1 << INTERCEPT_DR4_READ)
330                 | (1 << INTERCEPT_DR5_READ)
331                 | (1 << INTERCEPT_DR6_READ)
332                 | (1 << INTERCEPT_DR7_READ)
333                 | (1 << INTERCEPT_DR0_WRITE)
334                 | (1 << INTERCEPT_DR1_WRITE)
335                 | (1 << INTERCEPT_DR2_WRITE)
336                 | (1 << INTERCEPT_DR3_WRITE)
337                 | (1 << INTERCEPT_DR4_WRITE)
338                 | (1 << INTERCEPT_DR5_WRITE)
339                 | (1 << INTERCEPT_DR6_WRITE)
340                 | (1 << INTERCEPT_DR7_WRITE);
341
342         recalc_intercepts(svm);
343 }
344
345 static inline void clr_dr_intercepts(struct vcpu_svm *svm)
346 {
347         struct vmcb *vmcb = get_host_vmcb(svm);
348
349         vmcb->control.intercept_dr = 0;
350
351         recalc_intercepts(svm);
352 }
353
354 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
355 {
356         struct vmcb *vmcb = get_host_vmcb(svm);
357
358         vmcb->control.intercept_exceptions |= (1U << bit);
359
360         recalc_intercepts(svm);
361 }
362
363 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
364 {
365         struct vmcb *vmcb = get_host_vmcb(svm);
366
367         vmcb->control.intercept_exceptions &= ~(1U << bit);
368
369         recalc_intercepts(svm);
370 }
371
372 static inline void set_intercept(struct vcpu_svm *svm, int bit)
373 {
374         struct vmcb *vmcb = get_host_vmcb(svm);
375
376         vmcb->control.intercept |= (1ULL << bit);
377
378         recalc_intercepts(svm);
379 }
380
381 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
382 {
383         struct vmcb *vmcb = get_host_vmcb(svm);
384
385         vmcb->control.intercept &= ~(1ULL << bit);
386
387         recalc_intercepts(svm);
388 }
389
390 static inline void enable_gif(struct vcpu_svm *svm)
391 {
392         svm->vcpu.arch.hflags |= HF_GIF_MASK;
393 }
394
395 static inline void disable_gif(struct vcpu_svm *svm)
396 {
397         svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
398 }
399
400 static inline bool gif_set(struct vcpu_svm *svm)
401 {
402         return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
403 }
404
405 static unsigned long iopm_base;
406
407 struct kvm_ldttss_desc {
408         u16 limit0;
409         u16 base0;
410         unsigned base1:8, type:5, dpl:2, p:1;
411         unsigned limit1:4, zero0:3, g:1, base2:8;
412         u32 base3;
413         u32 zero1;
414 } __attribute__((packed));
415
416 struct svm_cpu_data {
417         int cpu;
418
419         u64 asid_generation;
420         u32 max_asid;
421         u32 next_asid;
422         struct kvm_ldttss_desc *tss_desc;
423
424         struct page *save_area;
425         struct vmcb *current_vmcb;
426 };
427
428 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
429
430 struct svm_init_data {
431         int cpu;
432         int r;
433 };
434
435 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
436
437 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
438 #define MSRS_RANGE_SIZE 2048
439 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
440
441 static u32 svm_msrpm_offset(u32 msr)
442 {
443         u32 offset;
444         int i;
445
446         for (i = 0; i < NUM_MSR_MAPS; i++) {
447                 if (msr < msrpm_ranges[i] ||
448                     msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
449                         continue;
450
451                 offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
452                 offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
453
454                 /* Now we have the u8 offset - but need the u32 offset */
455                 return offset / 4;
456         }
457
458         /* MSR not in any range */
459         return MSR_INVALID;
460 }
461
462 #define MAX_INST_SIZE 15
463
464 static inline void clgi(void)
465 {
466         asm volatile (__ex(SVM_CLGI));
467 }
468
469 static inline void stgi(void)
470 {
471         asm volatile (__ex(SVM_STGI));
472 }
473
474 static inline void invlpga(unsigned long addr, u32 asid)
475 {
476         asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
477 }
478
479 static int get_npt_level(void)
480 {
481 #ifdef CONFIG_X86_64
482         return PT64_ROOT_LEVEL;
483 #else
484         return PT32E_ROOT_LEVEL;
485 #endif
486 }
487
488 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
489 {
490         vcpu->arch.efer = efer;
491         if (!npt_enabled && !(efer & EFER_LMA))
492                 efer &= ~EFER_LME;
493
494         to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
495         mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
496 }
497
498 static int is_external_interrupt(u32 info)
499 {
500         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
501         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
502 }
503
504 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
505 {
506         struct vcpu_svm *svm = to_svm(vcpu);
507         u32 ret = 0;
508
509         if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
510                 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
511         return ret;
512 }
513
514 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
515 {
516         struct vcpu_svm *svm = to_svm(vcpu);
517
518         if (mask == 0)
519                 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
520         else
521                 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
522
523 }
524
525 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
526 {
527         struct vcpu_svm *svm = to_svm(vcpu);
528
529         if (svm->vmcb->control.next_rip != 0) {
530                 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
531                 svm->next_rip = svm->vmcb->control.next_rip;
532         }
533
534         if (!svm->next_rip) {
535                 if (emulate_instruction(vcpu, EMULTYPE_SKIP) !=
536                                 EMULATE_DONE)
537                         printk(KERN_DEBUG "%s: NOP\n", __func__);
538                 return;
539         }
540         if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
541                 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
542                        __func__, kvm_rip_read(vcpu), svm->next_rip);
543
544         kvm_rip_write(vcpu, svm->next_rip);
545         svm_set_interrupt_shadow(vcpu, 0);
546 }
547
548 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
549                                 bool has_error_code, u32 error_code,
550                                 bool reinject)
551 {
552         struct vcpu_svm *svm = to_svm(vcpu);
553
554         /*
555          * If we are within a nested VM we'd better #VMEXIT and let the guest
556          * handle the exception
557          */
558         if (!reinject &&
559             nested_svm_check_exception(svm, nr, has_error_code, error_code))
560                 return;
561
562         if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
563                 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
564
565                 /*
566                  * For guest debugging where we have to reinject #BP if some
567                  * INT3 is guest-owned:
568                  * Emulate nRIP by moving RIP forward. Will fail if injection
569                  * raises a fault that is not intercepted. Still better than
570                  * failing in all cases.
571                  */
572                 skip_emulated_instruction(&svm->vcpu);
573                 rip = kvm_rip_read(&svm->vcpu);
574                 svm->int3_rip = rip + svm->vmcb->save.cs.base;
575                 svm->int3_injected = rip - old_rip;
576         }
577
578         svm->vmcb->control.event_inj = nr
579                 | SVM_EVTINJ_VALID
580                 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
581                 | SVM_EVTINJ_TYPE_EXEPT;
582         svm->vmcb->control.event_inj_err = error_code;
583 }
584
585 static void svm_init_erratum_383(void)
586 {
587         u32 low, high;
588         int err;
589         u64 val;
590
591         if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
592                 return;
593
594         /* Use _safe variants to not break nested virtualization */
595         val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
596         if (err)
597                 return;
598
599         val |= (1ULL << 47);
600
601         low  = lower_32_bits(val);
602         high = upper_32_bits(val);
603
604         native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
605
606         erratum_383_found = true;
607 }
608
609 static void svm_init_osvw(struct kvm_vcpu *vcpu)
610 {
611         /*
612          * Guests should see errata 400 and 415 as fixed (assuming that
613          * HLT and IO instructions are intercepted).
614          */
615         vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
616         vcpu->arch.osvw.status = osvw_status & ~(6ULL);
617
618         /*
619          * By increasing VCPU's osvw.length to 3 we are telling the guest that
620          * all osvw.status bits inside that length, including bit 0 (which is
621          * reserved for erratum 298), are valid. However, if host processor's
622          * osvw_len is 0 then osvw_status[0] carries no information. We need to
623          * be conservative here and therefore we tell the guest that erratum 298
624          * is present (because we really don't know).
625          */
626         if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
627                 vcpu->arch.osvw.status |= 1;
628 }
629
630 static int has_svm(void)
631 {
632         const char *msg;
633
634         if (!cpu_has_svm(&msg)) {
635                 printk(KERN_INFO "has_svm: %s\n", msg);
636                 return 0;
637         }
638
639         return 1;
640 }
641
642 static void svm_hardware_disable(void)
643 {
644         /* Make sure we clean up behind us */
645         if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
646                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
647
648         cpu_svm_disable();
649
650         amd_pmu_disable_virt();
651 }
652
653 static int svm_hardware_enable(void)
654 {
655
656         struct svm_cpu_data *sd;
657         uint64_t efer;
658         struct desc_ptr gdt_descr;
659         struct desc_struct *gdt;
660         int me = raw_smp_processor_id();
661
662         rdmsrl(MSR_EFER, efer);
663         if (efer & EFER_SVME)
664                 return -EBUSY;
665
666         if (!has_svm()) {
667                 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
668                 return -EINVAL;
669         }
670         sd = per_cpu(svm_data, me);
671         if (!sd) {
672                 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
673                 return -EINVAL;
674         }
675
676         sd->asid_generation = 1;
677         sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
678         sd->next_asid = sd->max_asid + 1;
679
680         native_store_gdt(&gdt_descr);
681         gdt = (struct desc_struct *)gdt_descr.address;
682         sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
683
684         wrmsrl(MSR_EFER, efer | EFER_SVME);
685
686         wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
687
688         if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
689                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
690                 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
691         }
692
693
694         /*
695          * Get OSVW bits.
696          *
697          * Note that it is possible to have a system with mixed processor
698          * revisions and therefore different OSVW bits. If bits are not the same
699          * on different processors then choose the worst case (i.e. if erratum
700          * is present on one processor and not on another then assume that the
701          * erratum is present everywhere).
702          */
703         if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
704                 uint64_t len, status = 0;
705                 int err;
706
707                 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
708                 if (!err)
709                         status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
710                                                       &err);
711
712                 if (err)
713                         osvw_status = osvw_len = 0;
714                 else {
715                         if (len < osvw_len)
716                                 osvw_len = len;
717                         osvw_status |= status;
718                         osvw_status &= (1ULL << osvw_len) - 1;
719                 }
720         } else
721                 osvw_status = osvw_len = 0;
722
723         svm_init_erratum_383();
724
725         amd_pmu_enable_virt();
726
727         return 0;
728 }
729
730 static void svm_cpu_uninit(int cpu)
731 {
732         struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
733
734         if (!sd)
735                 return;
736
737         per_cpu(svm_data, raw_smp_processor_id()) = NULL;
738         __free_page(sd->save_area);
739         kfree(sd);
740 }
741
742 static int svm_cpu_init(int cpu)
743 {
744         struct svm_cpu_data *sd;
745         int r;
746
747         sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
748         if (!sd)
749                 return -ENOMEM;
750         sd->cpu = cpu;
751         sd->save_area = alloc_page(GFP_KERNEL);
752         r = -ENOMEM;
753         if (!sd->save_area)
754                 goto err_1;
755
756         per_cpu(svm_data, cpu) = sd;
757
758         return 0;
759
760 err_1:
761         kfree(sd);
762         return r;
763
764 }
765
766 static bool valid_msr_intercept(u32 index)
767 {
768         int i;
769
770         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
771                 if (direct_access_msrs[i].index == index)
772                         return true;
773
774         return false;
775 }
776
777 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, unsigned msr)
778 {
779         u8 bit_write;
780         unsigned long tmp;
781         u32 offset;
782         u32 *msrpm;
783
784         msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
785                                       to_svm(vcpu)->msrpm;
786
787         offset    = svm_msrpm_offset(msr);
788         bit_write = 2 * (msr & 0x0f) + 1;
789         tmp       = msrpm[offset];
790
791         BUG_ON(offset == MSR_INVALID);
792
793         return !!test_bit(bit_write,  &tmp);
794 }
795
796 static void set_msr_interception(u32 *msrpm, unsigned msr,
797                                  int read, int write)
798 {
799         u8 bit_read, bit_write;
800         unsigned long tmp;
801         u32 offset;
802
803         /*
804          * If this warning triggers extend the direct_access_msrs list at the
805          * beginning of the file
806          */
807         WARN_ON(!valid_msr_intercept(msr));
808
809         offset    = svm_msrpm_offset(msr);
810         bit_read  = 2 * (msr & 0x0f);
811         bit_write = 2 * (msr & 0x0f) + 1;
812         tmp       = msrpm[offset];
813
814         BUG_ON(offset == MSR_INVALID);
815
816         read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
817         write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
818
819         msrpm[offset] = tmp;
820 }
821
822 static void svm_vcpu_init_msrpm(u32 *msrpm)
823 {
824         int i;
825
826         memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
827
828         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
829                 if (!direct_access_msrs[i].always)
830                         continue;
831
832                 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
833         }
834 }
835
836 static void add_msr_offset(u32 offset)
837 {
838         int i;
839
840         for (i = 0; i < MSRPM_OFFSETS; ++i) {
841
842                 /* Offset already in list? */
843                 if (msrpm_offsets[i] == offset)
844                         return;
845
846                 /* Slot used by another offset? */
847                 if (msrpm_offsets[i] != MSR_INVALID)
848                         continue;
849
850                 /* Add offset to list */
851                 msrpm_offsets[i] = offset;
852
853                 return;
854         }
855
856         /*
857          * If this BUG triggers the msrpm_offsets table has an overflow. Just
858          * increase MSRPM_OFFSETS in this case.
859          */
860         BUG();
861 }
862
863 static void init_msrpm_offsets(void)
864 {
865         int i;
866
867         memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
868
869         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
870                 u32 offset;
871
872                 offset = svm_msrpm_offset(direct_access_msrs[i].index);
873                 BUG_ON(offset == MSR_INVALID);
874
875                 add_msr_offset(offset);
876         }
877 }
878
879 static void svm_enable_lbrv(struct vcpu_svm *svm)
880 {
881         u32 *msrpm = svm->msrpm;
882
883         svm->vmcb->control.lbr_ctl = 1;
884         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
885         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
886         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
887         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
888 }
889
890 static void svm_disable_lbrv(struct vcpu_svm *svm)
891 {
892         u32 *msrpm = svm->msrpm;
893
894         svm->vmcb->control.lbr_ctl = 0;
895         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
896         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
897         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
898         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
899 }
900
901 static __init int svm_hardware_setup(void)
902 {
903         int cpu;
904         struct page *iopm_pages;
905         void *iopm_va;
906         int r;
907
908         iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
909
910         if (!iopm_pages)
911                 return -ENOMEM;
912
913         iopm_va = page_address(iopm_pages);
914         memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
915         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
916
917         init_msrpm_offsets();
918
919         if (boot_cpu_has(X86_FEATURE_NX))
920                 kvm_enable_efer_bits(EFER_NX);
921
922         if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
923                 kvm_enable_efer_bits(EFER_FFXSR);
924
925         if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
926                 kvm_has_tsc_control = true;
927                 kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
928                 kvm_tsc_scaling_ratio_frac_bits = 32;
929         }
930
931         if (nested) {
932                 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
933                 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
934         }
935
936         for_each_possible_cpu(cpu) {
937                 r = svm_cpu_init(cpu);
938                 if (r)
939                         goto err;
940         }
941
942         if (!boot_cpu_has(X86_FEATURE_NPT))
943                 npt_enabled = false;
944
945         if (npt_enabled && !npt) {
946                 printk(KERN_INFO "kvm: Nested Paging disabled\n");
947                 npt_enabled = false;
948         }
949
950         if (npt_enabled) {
951                 printk(KERN_INFO "kvm: Nested Paging enabled\n");
952                 kvm_enable_tdp();
953         } else
954                 kvm_disable_tdp();
955
956         return 0;
957
958 err:
959         __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
960         iopm_base = 0;
961         return r;
962 }
963
964 static __exit void svm_hardware_unsetup(void)
965 {
966         int cpu;
967
968         for_each_possible_cpu(cpu)
969                 svm_cpu_uninit(cpu);
970
971         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
972         iopm_base = 0;
973 }
974
975 static void init_seg(struct vmcb_seg *seg)
976 {
977         seg->selector = 0;
978         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
979                       SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
980         seg->limit = 0xffff;
981         seg->base = 0;
982 }
983
984 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
985 {
986         seg->selector = 0;
987         seg->attrib = SVM_SELECTOR_P_MASK | type;
988         seg->limit = 0xffff;
989         seg->base = 0;
990 }
991
992 static u64 svm_read_tsc_offset(struct kvm_vcpu *vcpu)
993 {
994         struct vcpu_svm *svm = to_svm(vcpu);
995
996         return svm->vmcb->control.tsc_offset;
997 }
998
999 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1000 {
1001         struct vcpu_svm *svm = to_svm(vcpu);
1002         u64 g_tsc_offset = 0;
1003
1004         if (is_guest_mode(vcpu)) {
1005                 g_tsc_offset = svm->vmcb->control.tsc_offset -
1006                                svm->nested.hsave->control.tsc_offset;
1007                 svm->nested.hsave->control.tsc_offset = offset;
1008         } else
1009                 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1010                                            svm->vmcb->control.tsc_offset,
1011                                            offset);
1012
1013         svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1014
1015         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1016 }
1017
1018 static void svm_adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, s64 adjustment)
1019 {
1020         struct vcpu_svm *svm = to_svm(vcpu);
1021
1022         svm->vmcb->control.tsc_offset += adjustment;
1023         if (is_guest_mode(vcpu))
1024                 svm->nested.hsave->control.tsc_offset += adjustment;
1025         else
1026                 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1027                                      svm->vmcb->control.tsc_offset - adjustment,
1028                                      svm->vmcb->control.tsc_offset);
1029
1030         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1031 }
1032
1033 static void init_vmcb(struct vcpu_svm *svm)
1034 {
1035         struct vmcb_control_area *control = &svm->vmcb->control;
1036         struct vmcb_save_area *save = &svm->vmcb->save;
1037
1038         svm->vcpu.fpu_active = 1;
1039         svm->vcpu.arch.hflags = 0;
1040
1041         set_cr_intercept(svm, INTERCEPT_CR0_READ);
1042         set_cr_intercept(svm, INTERCEPT_CR3_READ);
1043         set_cr_intercept(svm, INTERCEPT_CR4_READ);
1044         set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1045         set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1046         set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1047         set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1048
1049         set_dr_intercepts(svm);
1050
1051         set_exception_intercept(svm, PF_VECTOR);
1052         set_exception_intercept(svm, UD_VECTOR);
1053         set_exception_intercept(svm, MC_VECTOR);
1054         set_exception_intercept(svm, AC_VECTOR);
1055         set_exception_intercept(svm, DB_VECTOR);
1056
1057         set_intercept(svm, INTERCEPT_INTR);
1058         set_intercept(svm, INTERCEPT_NMI);
1059         set_intercept(svm, INTERCEPT_SMI);
1060         set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1061         set_intercept(svm, INTERCEPT_RDPMC);
1062         set_intercept(svm, INTERCEPT_CPUID);
1063         set_intercept(svm, INTERCEPT_INVD);
1064         set_intercept(svm, INTERCEPT_HLT);
1065         set_intercept(svm, INTERCEPT_INVLPG);
1066         set_intercept(svm, INTERCEPT_INVLPGA);
1067         set_intercept(svm, INTERCEPT_IOIO_PROT);
1068         set_intercept(svm, INTERCEPT_MSR_PROT);
1069         set_intercept(svm, INTERCEPT_TASK_SWITCH);
1070         set_intercept(svm, INTERCEPT_SHUTDOWN);
1071         set_intercept(svm, INTERCEPT_VMRUN);
1072         set_intercept(svm, INTERCEPT_VMMCALL);
1073         set_intercept(svm, INTERCEPT_VMLOAD);
1074         set_intercept(svm, INTERCEPT_VMSAVE);
1075         set_intercept(svm, INTERCEPT_STGI);
1076         set_intercept(svm, INTERCEPT_CLGI);
1077         set_intercept(svm, INTERCEPT_SKINIT);
1078         set_intercept(svm, INTERCEPT_WBINVD);
1079         set_intercept(svm, INTERCEPT_MONITOR);
1080         set_intercept(svm, INTERCEPT_MWAIT);
1081         set_intercept(svm, INTERCEPT_XSETBV);
1082
1083         control->iopm_base_pa = iopm_base;
1084         control->msrpm_base_pa = __pa(svm->msrpm);
1085         control->int_ctl = V_INTR_MASKING_MASK;
1086
1087         init_seg(&save->es);
1088         init_seg(&save->ss);
1089         init_seg(&save->ds);
1090         init_seg(&save->fs);
1091         init_seg(&save->gs);
1092
1093         save->cs.selector = 0xf000;
1094         save->cs.base = 0xffff0000;
1095         /* Executable/Readable Code Segment */
1096         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1097                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1098         save->cs.limit = 0xffff;
1099
1100         save->gdtr.limit = 0xffff;
1101         save->idtr.limit = 0xffff;
1102
1103         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1104         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1105
1106         svm_set_efer(&svm->vcpu, 0);
1107         save->dr6 = 0xffff0ff0;
1108         kvm_set_rflags(&svm->vcpu, 2);
1109         save->rip = 0x0000fff0;
1110         svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1111
1112         /*
1113          * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1114          * It also updates the guest-visible cr0 value.
1115          */
1116         svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1117         kvm_mmu_reset_context(&svm->vcpu);
1118
1119         save->cr4 = X86_CR4_PAE;
1120         /* rdx = ?? */
1121
1122         if (npt_enabled) {
1123                 /* Setup VMCB for Nested Paging */
1124                 control->nested_ctl = 1;
1125                 clr_intercept(svm, INTERCEPT_INVLPG);
1126                 clr_exception_intercept(svm, PF_VECTOR);
1127                 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1128                 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1129                 save->g_pat = svm->vcpu.arch.pat;
1130                 save->cr3 = 0;
1131                 save->cr4 = 0;
1132         }
1133         svm->asid_generation = 0;
1134
1135         svm->nested.vmcb = 0;
1136         svm->vcpu.arch.hflags = 0;
1137
1138         if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1139                 control->pause_filter_count = 3000;
1140                 set_intercept(svm, INTERCEPT_PAUSE);
1141         }
1142
1143         mark_all_dirty(svm->vmcb);
1144
1145         enable_gif(svm);
1146 }
1147
1148 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1149 {
1150         struct vcpu_svm *svm = to_svm(vcpu);
1151         u32 dummy;
1152         u32 eax = 1;
1153
1154         svm->spec_ctrl = 0;
1155         svm->virt_spec_ctrl = 0;
1156
1157         if (!init_event) {
1158                 svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
1159                                            MSR_IA32_APICBASE_ENABLE;
1160                 if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
1161                         svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1162         }
1163         init_vmcb(svm);
1164
1165         kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy);
1166         kvm_register_write(vcpu, VCPU_REGS_RDX, eax);
1167 }
1168
1169 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
1170 {
1171         struct vcpu_svm *svm;
1172         struct page *page;
1173         struct page *msrpm_pages;
1174         struct page *hsave_page;
1175         struct page *nested_msrpm_pages;
1176         int err;
1177
1178         svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1179         if (!svm) {
1180                 err = -ENOMEM;
1181                 goto out;
1182         }
1183
1184         err = kvm_vcpu_init(&svm->vcpu, kvm, id);
1185         if (err)
1186                 goto free_svm;
1187
1188         err = -ENOMEM;
1189         page = alloc_page(GFP_KERNEL);
1190         if (!page)
1191                 goto uninit;
1192
1193         msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1194         if (!msrpm_pages)
1195                 goto free_page1;
1196
1197         nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1198         if (!nested_msrpm_pages)
1199                 goto free_page2;
1200
1201         hsave_page = alloc_page(GFP_KERNEL);
1202         if (!hsave_page)
1203                 goto free_page3;
1204
1205         svm->nested.hsave = page_address(hsave_page);
1206
1207         svm->msrpm = page_address(msrpm_pages);
1208         svm_vcpu_init_msrpm(svm->msrpm);
1209
1210         svm->nested.msrpm = page_address(nested_msrpm_pages);
1211         svm_vcpu_init_msrpm(svm->nested.msrpm);
1212
1213         svm->vmcb = page_address(page);
1214         clear_page(svm->vmcb);
1215         svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
1216         svm->asid_generation = 0;
1217         init_vmcb(svm);
1218
1219         svm_init_osvw(&svm->vcpu);
1220
1221         return &svm->vcpu;
1222
1223 free_page3:
1224         __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1225 free_page2:
1226         __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1227 free_page1:
1228         __free_page(page);
1229 uninit:
1230         kvm_vcpu_uninit(&svm->vcpu);
1231 free_svm:
1232         kmem_cache_free(kvm_vcpu_cache, svm);
1233 out:
1234         return ERR_PTR(err);
1235 }
1236
1237 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1238 {
1239         struct vcpu_svm *svm = to_svm(vcpu);
1240
1241         __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
1242         __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1243         __free_page(virt_to_page(svm->nested.hsave));
1244         __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1245         kvm_vcpu_uninit(vcpu);
1246         kmem_cache_free(kvm_vcpu_cache, svm);
1247         /*
1248          * The vmcb page can be recycled, causing a false negative in
1249          * svm_vcpu_load(). So do a full IBPB now.
1250          */
1251         indirect_branch_prediction_barrier();
1252 }
1253
1254 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1255 {
1256         struct vcpu_svm *svm = to_svm(vcpu);
1257         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
1258         int i;
1259
1260         if (unlikely(cpu != vcpu->cpu)) {
1261                 svm->asid_generation = 0;
1262                 mark_all_dirty(svm->vmcb);
1263         }
1264
1265 #ifdef CONFIG_X86_64
1266         rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1267 #endif
1268         savesegment(fs, svm->host.fs);
1269         savesegment(gs, svm->host.gs);
1270         svm->host.ldt = kvm_read_ldt();
1271
1272         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1273                 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1274
1275         if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1276                 u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
1277                 if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
1278                         __this_cpu_write(current_tsc_ratio, tsc_ratio);
1279                         wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
1280                 }
1281         }
1282         if (sd->current_vmcb != svm->vmcb) {
1283                 sd->current_vmcb = svm->vmcb;
1284                 indirect_branch_prediction_barrier();
1285         }
1286 }
1287
1288 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1289 {
1290         struct vcpu_svm *svm = to_svm(vcpu);
1291         int i;
1292
1293         ++vcpu->stat.host_state_reload;
1294         kvm_load_ldt(svm->host.ldt);
1295 #ifdef CONFIG_X86_64
1296         loadsegment(fs, svm->host.fs);
1297         wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gs);
1298         load_gs_index(svm->host.gs);
1299 #else
1300 #ifdef CONFIG_X86_32_LAZY_GS
1301         loadsegment(gs, svm->host.gs);
1302 #endif
1303 #endif
1304         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1305                 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1306 }
1307
1308 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1309 {
1310         return to_svm(vcpu)->vmcb->save.rflags;
1311 }
1312
1313 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1314 {
1315        /*
1316         * Any change of EFLAGS.VM is accompained by a reload of SS
1317         * (caused by either a task switch or an inter-privilege IRET),
1318         * so we do not need to update the CPL here.
1319         */
1320         to_svm(vcpu)->vmcb->save.rflags = rflags;
1321 }
1322
1323 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1324 {
1325         switch (reg) {
1326         case VCPU_EXREG_PDPTR:
1327                 BUG_ON(!npt_enabled);
1328                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1329                 break;
1330         default:
1331                 BUG();
1332         }
1333 }
1334
1335 static void svm_set_vintr(struct vcpu_svm *svm)
1336 {
1337         set_intercept(svm, INTERCEPT_VINTR);
1338 }
1339
1340 static void svm_clear_vintr(struct vcpu_svm *svm)
1341 {
1342         clr_intercept(svm, INTERCEPT_VINTR);
1343 }
1344
1345 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1346 {
1347         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1348
1349         switch (seg) {
1350         case VCPU_SREG_CS: return &save->cs;
1351         case VCPU_SREG_DS: return &save->ds;
1352         case VCPU_SREG_ES: return &save->es;
1353         case VCPU_SREG_FS: return &save->fs;
1354         case VCPU_SREG_GS: return &save->gs;
1355         case VCPU_SREG_SS: return &save->ss;
1356         case VCPU_SREG_TR: return &save->tr;
1357         case VCPU_SREG_LDTR: return &save->ldtr;
1358         }
1359         BUG();
1360         return NULL;
1361 }
1362
1363 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1364 {
1365         struct vmcb_seg *s = svm_seg(vcpu, seg);
1366
1367         return s->base;
1368 }
1369
1370 static void svm_get_segment(struct kvm_vcpu *vcpu,
1371                             struct kvm_segment *var, int seg)
1372 {
1373         struct vmcb_seg *s = svm_seg(vcpu, seg);
1374
1375         var->base = s->base;
1376         var->limit = s->limit;
1377         var->selector = s->selector;
1378         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1379         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1380         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1381         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1382         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1383         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1384         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1385
1386         /*
1387          * AMD CPUs circa 2014 track the G bit for all segments except CS.
1388          * However, the SVM spec states that the G bit is not observed by the
1389          * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1390          * So let's synthesize a legal G bit for all segments, this helps
1391          * running KVM nested. It also helps cross-vendor migration, because
1392          * Intel's vmentry has a check on the 'G' bit.
1393          */
1394         var->g = s->limit > 0xfffff;
1395
1396         /*
1397          * AMD's VMCB does not have an explicit unusable field, so emulate it
1398          * for cross vendor migration purposes by "not present"
1399          */
1400         var->unusable = !var->present || (var->type == 0);
1401
1402         switch (seg) {
1403         case VCPU_SREG_TR:
1404                 /*
1405                  * Work around a bug where the busy flag in the tr selector
1406                  * isn't exposed
1407                  */
1408                 var->type |= 0x2;
1409                 break;
1410         case VCPU_SREG_DS:
1411         case VCPU_SREG_ES:
1412         case VCPU_SREG_FS:
1413         case VCPU_SREG_GS:
1414                 /*
1415                  * The accessed bit must always be set in the segment
1416                  * descriptor cache, although it can be cleared in the
1417                  * descriptor, the cached bit always remains at 1. Since
1418                  * Intel has a check on this, set it here to support
1419                  * cross-vendor migration.
1420                  */
1421                 if (!var->unusable)
1422                         var->type |= 0x1;
1423                 break;
1424         case VCPU_SREG_SS:
1425                 /*
1426                  * On AMD CPUs sometimes the DB bit in the segment
1427                  * descriptor is left as 1, although the whole segment has
1428                  * been made unusable. Clear it here to pass an Intel VMX
1429                  * entry check when cross vendor migrating.
1430                  */
1431                 if (var->unusable)
1432                         var->db = 0;
1433                 /* This is symmetric with svm_set_segment() */
1434                 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1435                 break;
1436         }
1437 }
1438
1439 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1440 {
1441         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1442
1443         return save->cpl;
1444 }
1445
1446 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1447 {
1448         struct vcpu_svm *svm = to_svm(vcpu);
1449
1450         dt->size = svm->vmcb->save.idtr.limit;
1451         dt->address = svm->vmcb->save.idtr.base;
1452 }
1453
1454 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1455 {
1456         struct vcpu_svm *svm = to_svm(vcpu);
1457
1458         svm->vmcb->save.idtr.limit = dt->size;
1459         svm->vmcb->save.idtr.base = dt->address ;
1460         mark_dirty(svm->vmcb, VMCB_DT);
1461 }
1462
1463 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1464 {
1465         struct vcpu_svm *svm = to_svm(vcpu);
1466
1467         dt->size = svm->vmcb->save.gdtr.limit;
1468         dt->address = svm->vmcb->save.gdtr.base;
1469 }
1470
1471 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1472 {
1473         struct vcpu_svm *svm = to_svm(vcpu);
1474
1475         svm->vmcb->save.gdtr.limit = dt->size;
1476         svm->vmcb->save.gdtr.base = dt->address ;
1477         mark_dirty(svm->vmcb, VMCB_DT);
1478 }
1479
1480 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1481 {
1482 }
1483
1484 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
1485 {
1486 }
1487
1488 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1489 {
1490 }
1491
1492 static void update_cr0_intercept(struct vcpu_svm *svm)
1493 {
1494         ulong gcr0 = svm->vcpu.arch.cr0;
1495         u64 *hcr0 = &svm->vmcb->save.cr0;
1496
1497         if (!svm->vcpu.fpu_active)
1498                 *hcr0 |= SVM_CR0_SELECTIVE_MASK;
1499         else
1500                 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1501                         | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1502
1503         mark_dirty(svm->vmcb, VMCB_CR);
1504
1505         if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
1506                 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1507                 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1508         } else {
1509                 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1510                 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1511         }
1512 }
1513
1514 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1515 {
1516         struct vcpu_svm *svm = to_svm(vcpu);
1517
1518 #ifdef CONFIG_X86_64
1519         if (vcpu->arch.efer & EFER_LME) {
1520                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1521                         vcpu->arch.efer |= EFER_LMA;
1522                         svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1523                 }
1524
1525                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1526                         vcpu->arch.efer &= ~EFER_LMA;
1527                         svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1528                 }
1529         }
1530 #endif
1531         vcpu->arch.cr0 = cr0;
1532
1533         if (!npt_enabled)
1534                 cr0 |= X86_CR0_PG | X86_CR0_WP;
1535
1536         if (!vcpu->fpu_active)
1537                 cr0 |= X86_CR0_TS;
1538         /*
1539          * re-enable caching here because the QEMU bios
1540          * does not do it - this results in some delay at
1541          * reboot
1542          */
1543         if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1544                 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1545         svm->vmcb->save.cr0 = cr0;
1546         mark_dirty(svm->vmcb, VMCB_CR);
1547         update_cr0_intercept(svm);
1548 }
1549
1550 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1551 {
1552         unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1553         unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1554
1555         if (cr4 & X86_CR4_VMXE)
1556                 return 1;
1557
1558         if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1559                 svm_flush_tlb(vcpu);
1560
1561         vcpu->arch.cr4 = cr4;
1562         if (!npt_enabled)
1563                 cr4 |= X86_CR4_PAE;
1564         cr4 |= host_cr4_mce;
1565         to_svm(vcpu)->vmcb->save.cr4 = cr4;
1566         mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1567         return 0;
1568 }
1569
1570 static void svm_set_segment(struct kvm_vcpu *vcpu,
1571                             struct kvm_segment *var, int seg)
1572 {
1573         struct vcpu_svm *svm = to_svm(vcpu);
1574         struct vmcb_seg *s = svm_seg(vcpu, seg);
1575
1576         s->base = var->base;
1577         s->limit = var->limit;
1578         s->selector = var->selector;
1579         s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1580         s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1581         s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1582         s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
1583         s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1584         s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1585         s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1586         s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1587
1588         /*
1589          * This is always accurate, except if SYSRET returned to a segment
1590          * with SS.DPL != 3.  Intel does not have this quirk, and always
1591          * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1592          * would entail passing the CPL to userspace and back.
1593          */
1594         if (seg == VCPU_SREG_SS)
1595                 /* This is symmetric with svm_get_segment() */
1596                 svm->vmcb->save.cpl = (var->dpl & 3);
1597
1598         mark_dirty(svm->vmcb, VMCB_SEG);
1599 }
1600
1601 static void update_bp_intercept(struct kvm_vcpu *vcpu)
1602 {
1603         struct vcpu_svm *svm = to_svm(vcpu);
1604
1605         clr_exception_intercept(svm, BP_VECTOR);
1606
1607         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1608                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1609                         set_exception_intercept(svm, BP_VECTOR);
1610         } else
1611                 vcpu->guest_debug = 0;
1612 }
1613
1614 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1615 {
1616         if (sd->next_asid > sd->max_asid) {
1617                 ++sd->asid_generation;
1618                 sd->next_asid = 1;
1619                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1620         }
1621
1622         svm->asid_generation = sd->asid_generation;
1623         svm->vmcb->control.asid = sd->next_asid++;
1624
1625         mark_dirty(svm->vmcb, VMCB_ASID);
1626 }
1627
1628 static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
1629 {
1630         return to_svm(vcpu)->vmcb->save.dr6;
1631 }
1632
1633 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
1634 {
1635         struct vcpu_svm *svm = to_svm(vcpu);
1636
1637         svm->vmcb->save.dr6 = value;
1638         mark_dirty(svm->vmcb, VMCB_DR);
1639 }
1640
1641 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1642 {
1643         struct vcpu_svm *svm = to_svm(vcpu);
1644
1645         get_debugreg(vcpu->arch.db[0], 0);
1646         get_debugreg(vcpu->arch.db[1], 1);
1647         get_debugreg(vcpu->arch.db[2], 2);
1648         get_debugreg(vcpu->arch.db[3], 3);
1649         vcpu->arch.dr6 = svm_get_dr6(vcpu);
1650         vcpu->arch.dr7 = svm->vmcb->save.dr7;
1651
1652         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1653         set_dr_intercepts(svm);
1654 }
1655
1656 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1657 {
1658         struct vcpu_svm *svm = to_svm(vcpu);
1659
1660         svm->vmcb->save.dr7 = value;
1661         mark_dirty(svm->vmcb, VMCB_DR);
1662 }
1663
1664 static int pf_interception(struct vcpu_svm *svm)
1665 {
1666         u64 fault_address = svm->vmcb->control.exit_info_2;
1667         u32 error_code;
1668         int r = 1;
1669
1670         switch (svm->apf_reason) {
1671         default:
1672                 error_code = svm->vmcb->control.exit_info_1;
1673
1674                 trace_kvm_page_fault(fault_address, error_code);
1675                 if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1676                         kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1677                 r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
1678                         svm->vmcb->control.insn_bytes,
1679                         svm->vmcb->control.insn_len);
1680                 break;
1681         case KVM_PV_REASON_PAGE_NOT_PRESENT:
1682                 svm->apf_reason = 0;
1683                 local_irq_disable();
1684                 kvm_async_pf_task_wait(fault_address);
1685                 local_irq_enable();
1686                 break;
1687         case KVM_PV_REASON_PAGE_READY:
1688                 svm->apf_reason = 0;
1689                 local_irq_disable();
1690                 kvm_async_pf_task_wake(fault_address);
1691                 local_irq_enable();
1692                 break;
1693         }
1694         return r;
1695 }
1696
1697 static int db_interception(struct vcpu_svm *svm)
1698 {
1699         struct kvm_run *kvm_run = svm->vcpu.run;
1700
1701         if (!(svm->vcpu.guest_debug &
1702               (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1703                 !svm->nmi_singlestep) {
1704                 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1705                 return 1;
1706         }
1707
1708         if (svm->nmi_singlestep) {
1709                 svm->nmi_singlestep = false;
1710                 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1711                         svm->vmcb->save.rflags &=
1712                                 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1713         }
1714
1715         if (svm->vcpu.guest_debug &
1716             (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1717                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1718                 kvm_run->debug.arch.pc =
1719                         svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1720                 kvm_run->debug.arch.exception = DB_VECTOR;
1721                 return 0;
1722         }
1723
1724         return 1;
1725 }
1726
1727 static int bp_interception(struct vcpu_svm *svm)
1728 {
1729         struct kvm_run *kvm_run = svm->vcpu.run;
1730
1731         kvm_run->exit_reason = KVM_EXIT_DEBUG;
1732         kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1733         kvm_run->debug.arch.exception = BP_VECTOR;
1734         return 0;
1735 }
1736
1737 static int ud_interception(struct vcpu_svm *svm)
1738 {
1739         int er;
1740
1741         er = emulate_instruction(&svm->vcpu, EMULTYPE_TRAP_UD);
1742         if (er == EMULATE_USER_EXIT)
1743                 return 0;
1744         if (er != EMULATE_DONE)
1745                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1746         return 1;
1747 }
1748
1749 static int ac_interception(struct vcpu_svm *svm)
1750 {
1751         kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
1752         return 1;
1753 }
1754
1755 static void svm_fpu_activate(struct kvm_vcpu *vcpu)
1756 {
1757         struct vcpu_svm *svm = to_svm(vcpu);
1758
1759         clr_exception_intercept(svm, NM_VECTOR);
1760
1761         svm->vcpu.fpu_active = 1;
1762         update_cr0_intercept(svm);
1763 }
1764
1765 static int nm_interception(struct vcpu_svm *svm)
1766 {
1767         svm_fpu_activate(&svm->vcpu);
1768         return 1;
1769 }
1770
1771 static bool is_erratum_383(void)
1772 {
1773         int err, i;
1774         u64 value;
1775
1776         if (!erratum_383_found)
1777                 return false;
1778
1779         value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1780         if (err)
1781                 return false;
1782
1783         /* Bit 62 may or may not be set for this mce */
1784         value &= ~(1ULL << 62);
1785
1786         if (value != 0xb600000000010015ULL)
1787                 return false;
1788
1789         /* Clear MCi_STATUS registers */
1790         for (i = 0; i < 6; ++i)
1791                 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1792
1793         value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1794         if (!err) {
1795                 u32 low, high;
1796
1797                 value &= ~(1ULL << 2);
1798                 low    = lower_32_bits(value);
1799                 high   = upper_32_bits(value);
1800
1801                 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1802         }
1803
1804         /* Flush tlb to evict multi-match entries */
1805         __flush_tlb_all();
1806
1807         return true;
1808 }
1809
1810 static void svm_handle_mce(struct vcpu_svm *svm)
1811 {
1812         if (is_erratum_383()) {
1813                 /*
1814                  * Erratum 383 triggered. Guest state is corrupt so kill the
1815                  * guest.
1816                  */
1817                 pr_err("KVM: Guest triggered AMD Erratum 383\n");
1818
1819                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
1820
1821                 return;
1822         }
1823
1824         /*
1825          * On an #MC intercept the MCE handler is not called automatically in
1826          * the host. So do it by hand here.
1827          */
1828         asm volatile (
1829                 "int $0x12\n");
1830         /* not sure if we ever come back to this point */
1831
1832         return;
1833 }
1834
1835 static int mc_interception(struct vcpu_svm *svm)
1836 {
1837         return 1;
1838 }
1839
1840 static int shutdown_interception(struct vcpu_svm *svm)
1841 {
1842         struct kvm_run *kvm_run = svm->vcpu.run;
1843
1844         /*
1845          * VMCB is undefined after a SHUTDOWN intercept
1846          * so reinitialize it.
1847          */
1848         clear_page(svm->vmcb);
1849         init_vmcb(svm);
1850
1851         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1852         return 0;
1853 }
1854
1855 static int io_interception(struct vcpu_svm *svm)
1856 {
1857         struct kvm_vcpu *vcpu = &svm->vcpu;
1858         u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1859         int size, in, string;
1860         unsigned port;
1861
1862         ++svm->vcpu.stat.io_exits;
1863         string = (io_info & SVM_IOIO_STR_MASK) != 0;
1864         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1865         if (string || in)
1866                 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
1867
1868         port = io_info >> 16;
1869         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1870         svm->next_rip = svm->vmcb->control.exit_info_2;
1871         skip_emulated_instruction(&svm->vcpu);
1872
1873         return kvm_fast_pio_out(vcpu, size, port);
1874 }
1875
1876 static int nmi_interception(struct vcpu_svm *svm)
1877 {
1878         return 1;
1879 }
1880
1881 static int intr_interception(struct vcpu_svm *svm)
1882 {
1883         ++svm->vcpu.stat.irq_exits;
1884         return 1;
1885 }
1886
1887 static int nop_on_interception(struct vcpu_svm *svm)
1888 {
1889         return 1;
1890 }
1891
1892 static int halt_interception(struct vcpu_svm *svm)
1893 {
1894         svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1895         return kvm_emulate_halt(&svm->vcpu);
1896 }
1897
1898 static int vmmcall_interception(struct vcpu_svm *svm)
1899 {
1900         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1901         kvm_emulate_hypercall(&svm->vcpu);
1902         return 1;
1903 }
1904
1905 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
1906 {
1907         struct vcpu_svm *svm = to_svm(vcpu);
1908
1909         return svm->nested.nested_cr3;
1910 }
1911
1912 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
1913 {
1914         struct vcpu_svm *svm = to_svm(vcpu);
1915         u64 cr3 = svm->nested.nested_cr3;
1916         u64 pdpte;
1917         int ret;
1918
1919         ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(cr3), &pdpte,
1920                                        offset_in_page(cr3) + index * 8, 8);
1921         if (ret)
1922                 return 0;
1923         return pdpte;
1924 }
1925
1926 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
1927                                    unsigned long root)
1928 {
1929         struct vcpu_svm *svm = to_svm(vcpu);
1930
1931         svm->vmcb->control.nested_cr3 = root;
1932         mark_dirty(svm->vmcb, VMCB_NPT);
1933         svm_flush_tlb(vcpu);
1934 }
1935
1936 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
1937                                        struct x86_exception *fault)
1938 {
1939         struct vcpu_svm *svm = to_svm(vcpu);
1940
1941         if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
1942                 /*
1943                  * TODO: track the cause of the nested page fault, and
1944                  * correctly fill in the high bits of exit_info_1.
1945                  */
1946                 svm->vmcb->control.exit_code = SVM_EXIT_NPF;
1947                 svm->vmcb->control.exit_code_hi = 0;
1948                 svm->vmcb->control.exit_info_1 = (1ULL << 32);
1949                 svm->vmcb->control.exit_info_2 = fault->address;
1950         }
1951
1952         svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
1953         svm->vmcb->control.exit_info_1 |= fault->error_code;
1954
1955         /*
1956          * The present bit is always zero for page structure faults on real
1957          * hardware.
1958          */
1959         if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
1960                 svm->vmcb->control.exit_info_1 &= ~1;
1961
1962         nested_svm_vmexit(svm);
1963 }
1964
1965 static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
1966 {
1967         WARN_ON(mmu_is_nested(vcpu));
1968         kvm_init_shadow_mmu(vcpu);
1969         vcpu->arch.mmu.set_cr3           = nested_svm_set_tdp_cr3;
1970         vcpu->arch.mmu.get_cr3           = nested_svm_get_tdp_cr3;
1971         vcpu->arch.mmu.get_pdptr         = nested_svm_get_tdp_pdptr;
1972         vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
1973         vcpu->arch.mmu.shadow_root_level = get_npt_level();
1974         reset_shadow_zero_bits_mask(vcpu, &vcpu->arch.mmu);
1975         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
1976 }
1977
1978 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
1979 {
1980         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
1981 }
1982
1983 static int nested_svm_check_permissions(struct vcpu_svm *svm)
1984 {
1985         if (!(svm->vcpu.arch.efer & EFER_SVME)
1986             || !is_paging(&svm->vcpu)) {
1987                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1988                 return 1;
1989         }
1990
1991         if (svm->vmcb->save.cpl) {
1992                 kvm_inject_gp(&svm->vcpu, 0);
1993                 return 1;
1994         }
1995
1996        return 0;
1997 }
1998
1999 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
2000                                       bool has_error_code, u32 error_code)
2001 {
2002         int vmexit;
2003
2004         if (!is_guest_mode(&svm->vcpu))
2005                 return 0;
2006
2007         svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
2008         svm->vmcb->control.exit_code_hi = 0;
2009         svm->vmcb->control.exit_info_1 = error_code;
2010         svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
2011
2012         vmexit = nested_svm_intercept(svm);
2013         if (vmexit == NESTED_EXIT_DONE)
2014                 svm->nested.exit_required = true;
2015
2016         return vmexit;
2017 }
2018
2019 /* This function returns true if it is save to enable the irq window */
2020 static inline bool nested_svm_intr(struct vcpu_svm *svm)
2021 {
2022         if (!is_guest_mode(&svm->vcpu))
2023                 return true;
2024
2025         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2026                 return true;
2027
2028         if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
2029                 return false;
2030
2031         /*
2032          * if vmexit was already requested (by intercepted exception
2033          * for instance) do not overwrite it with "external interrupt"
2034          * vmexit.
2035          */
2036         if (svm->nested.exit_required)
2037                 return false;
2038
2039         svm->vmcb->control.exit_code   = SVM_EXIT_INTR;
2040         svm->vmcb->control.exit_info_1 = 0;
2041         svm->vmcb->control.exit_info_2 = 0;
2042
2043         if (svm->nested.intercept & 1ULL) {
2044                 /*
2045                  * The #vmexit can't be emulated here directly because this
2046                  * code path runs with irqs and preemption disabled. A
2047                  * #vmexit emulation might sleep. Only signal request for
2048                  * the #vmexit here.
2049                  */
2050                 svm->nested.exit_required = true;
2051                 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
2052                 return false;
2053         }
2054
2055         return true;
2056 }
2057
2058 /* This function returns true if it is save to enable the nmi window */
2059 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
2060 {
2061         if (!is_guest_mode(&svm->vcpu))
2062                 return true;
2063
2064         if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
2065                 return true;
2066
2067         svm->vmcb->control.exit_code = SVM_EXIT_NMI;
2068         svm->nested.exit_required = true;
2069
2070         return false;
2071 }
2072
2073 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
2074 {
2075         struct page *page;
2076
2077         might_sleep();
2078
2079         page = kvm_vcpu_gfn_to_page(&svm->vcpu, gpa >> PAGE_SHIFT);
2080         if (is_error_page(page))
2081                 goto error;
2082
2083         *_page = page;
2084
2085         return kmap(page);
2086
2087 error:
2088         kvm_inject_gp(&svm->vcpu, 0);
2089
2090         return NULL;
2091 }
2092
2093 static void nested_svm_unmap(struct page *page)
2094 {
2095         kunmap(page);
2096         kvm_release_page_dirty(page);
2097 }
2098
2099 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
2100 {
2101         unsigned port, size, iopm_len;
2102         u16 val, mask;
2103         u8 start_bit;
2104         u64 gpa;
2105
2106         if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
2107                 return NESTED_EXIT_HOST;
2108
2109         port = svm->vmcb->control.exit_info_1 >> 16;
2110         size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
2111                 SVM_IOIO_SIZE_SHIFT;
2112         gpa  = svm->nested.vmcb_iopm + (port / 8);
2113         start_bit = port % 8;
2114         iopm_len = (start_bit + size > 8) ? 2 : 1;
2115         mask = (0xf >> (4 - size)) << start_bit;
2116         val = 0;
2117
2118         if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
2119                 return NESTED_EXIT_DONE;
2120
2121         return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2122 }
2123
2124 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
2125 {
2126         u32 offset, msr, value;
2127         int write, mask;
2128
2129         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2130                 return NESTED_EXIT_HOST;
2131
2132         msr    = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2133         offset = svm_msrpm_offset(msr);
2134         write  = svm->vmcb->control.exit_info_1 & 1;
2135         mask   = 1 << ((2 * (msr & 0xf)) + write);
2136
2137         if (offset == MSR_INVALID)
2138                 return NESTED_EXIT_DONE;
2139
2140         /* Offset is in 32 bit units but need in 8 bit units */
2141         offset *= 4;
2142
2143         if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4))
2144                 return NESTED_EXIT_DONE;
2145
2146         return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2147 }
2148
2149 static int nested_svm_exit_special(struct vcpu_svm *svm)
2150 {
2151         u32 exit_code = svm->vmcb->control.exit_code;
2152
2153         switch (exit_code) {
2154         case SVM_EXIT_INTR:
2155         case SVM_EXIT_NMI:
2156         case SVM_EXIT_EXCP_BASE + MC_VECTOR:
2157                 return NESTED_EXIT_HOST;
2158         case SVM_EXIT_NPF:
2159                 /* For now we are always handling NPFs when using them */
2160                 if (npt_enabled)
2161                         return NESTED_EXIT_HOST;
2162                 break;
2163         case SVM_EXIT_EXCP_BASE + PF_VECTOR:
2164                 /* When we're shadowing, trap PFs, but not async PF */
2165                 if (!npt_enabled && svm->apf_reason == 0)
2166                         return NESTED_EXIT_HOST;
2167                 break;
2168         case SVM_EXIT_EXCP_BASE + NM_VECTOR:
2169                 nm_interception(svm);
2170                 break;
2171         default:
2172                 break;
2173         }
2174
2175         return NESTED_EXIT_CONTINUE;
2176 }
2177
2178 /*
2179  * If this function returns true, this #vmexit was already handled
2180  */
2181 static int nested_svm_intercept(struct vcpu_svm *svm)
2182 {
2183         u32 exit_code = svm->vmcb->control.exit_code;
2184         int vmexit = NESTED_EXIT_HOST;
2185
2186         switch (exit_code) {
2187         case SVM_EXIT_MSR:
2188                 vmexit = nested_svm_exit_handled_msr(svm);
2189                 break;
2190         case SVM_EXIT_IOIO:
2191                 vmexit = nested_svm_intercept_ioio(svm);
2192                 break;
2193         case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
2194                 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
2195                 if (svm->nested.intercept_cr & bit)
2196                         vmexit = NESTED_EXIT_DONE;
2197                 break;
2198         }
2199         case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
2200                 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
2201                 if (svm->nested.intercept_dr & bit)
2202                         vmexit = NESTED_EXIT_DONE;
2203                 break;
2204         }
2205         case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
2206                 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
2207                 if (svm->nested.intercept_exceptions & excp_bits)
2208                         vmexit = NESTED_EXIT_DONE;
2209                 /* async page fault always cause vmexit */
2210                 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
2211                          svm->apf_reason != 0)
2212                         vmexit = NESTED_EXIT_DONE;
2213                 break;
2214         }
2215         case SVM_EXIT_ERR: {
2216                 vmexit = NESTED_EXIT_DONE;
2217                 break;
2218         }
2219         default: {
2220                 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
2221                 if (svm->nested.intercept & exit_bits)
2222                         vmexit = NESTED_EXIT_DONE;
2223         }
2224         }
2225
2226         return vmexit;
2227 }
2228
2229 static int nested_svm_exit_handled(struct vcpu_svm *svm)
2230 {
2231         int vmexit;
2232
2233         vmexit = nested_svm_intercept(svm);
2234
2235         if (vmexit == NESTED_EXIT_DONE)
2236                 nested_svm_vmexit(svm);
2237
2238         return vmexit;
2239 }
2240
2241 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
2242 {
2243         struct vmcb_control_area *dst  = &dst_vmcb->control;
2244         struct vmcb_control_area *from = &from_vmcb->control;
2245
2246         dst->intercept_cr         = from->intercept_cr;
2247         dst->intercept_dr         = from->intercept_dr;
2248         dst->intercept_exceptions = from->intercept_exceptions;
2249         dst->intercept            = from->intercept;
2250         dst->iopm_base_pa         = from->iopm_base_pa;
2251         dst->msrpm_base_pa        = from->msrpm_base_pa;
2252         dst->tsc_offset           = from->tsc_offset;
2253         /* asid not copied, it is handled manually for svm->vmcb.  */
2254         dst->tlb_ctl              = from->tlb_ctl;
2255         dst->int_ctl              = from->int_ctl;
2256         dst->int_vector           = from->int_vector;
2257         dst->int_state            = from->int_state;
2258         dst->exit_code            = from->exit_code;
2259         dst->exit_code_hi         = from->exit_code_hi;
2260         dst->exit_info_1          = from->exit_info_1;
2261         dst->exit_info_2          = from->exit_info_2;
2262         dst->exit_int_info        = from->exit_int_info;
2263         dst->exit_int_info_err    = from->exit_int_info_err;
2264         dst->nested_ctl           = from->nested_ctl;
2265         dst->event_inj            = from->event_inj;
2266         dst->event_inj_err        = from->event_inj_err;
2267         dst->nested_cr3           = from->nested_cr3;
2268         dst->lbr_ctl              = from->lbr_ctl;
2269 }
2270
2271 static int nested_svm_vmexit(struct vcpu_svm *svm)
2272 {
2273         struct vmcb *nested_vmcb;
2274         struct vmcb *hsave = svm->nested.hsave;
2275         struct vmcb *vmcb = svm->vmcb;
2276         struct page *page;
2277
2278         trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
2279                                        vmcb->control.exit_info_1,
2280                                        vmcb->control.exit_info_2,
2281                                        vmcb->control.exit_int_info,
2282                                        vmcb->control.exit_int_info_err,
2283                                        KVM_ISA_SVM);
2284
2285         nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
2286         if (!nested_vmcb)
2287                 return 1;
2288
2289         /* Exit Guest-Mode */
2290         leave_guest_mode(&svm->vcpu);
2291         svm->nested.vmcb = 0;
2292
2293         /* Give the current vmcb to the guest */
2294         disable_gif(svm);
2295
2296         nested_vmcb->save.es     = vmcb->save.es;
2297         nested_vmcb->save.cs     = vmcb->save.cs;
2298         nested_vmcb->save.ss     = vmcb->save.ss;
2299         nested_vmcb->save.ds     = vmcb->save.ds;
2300         nested_vmcb->save.gdtr   = vmcb->save.gdtr;
2301         nested_vmcb->save.idtr   = vmcb->save.idtr;
2302         nested_vmcb->save.efer   = svm->vcpu.arch.efer;
2303         nested_vmcb->save.cr0    = kvm_read_cr0(&svm->vcpu);
2304         nested_vmcb->save.cr3    = kvm_read_cr3(&svm->vcpu);
2305         nested_vmcb->save.cr2    = vmcb->save.cr2;
2306         nested_vmcb->save.cr4    = svm->vcpu.arch.cr4;
2307         nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
2308         nested_vmcb->save.rip    = vmcb->save.rip;
2309         nested_vmcb->save.rsp    = vmcb->save.rsp;
2310         nested_vmcb->save.rax    = vmcb->save.rax;
2311         nested_vmcb->save.dr7    = vmcb->save.dr7;
2312         nested_vmcb->save.dr6    = vmcb->save.dr6;
2313         nested_vmcb->save.cpl    = vmcb->save.cpl;
2314
2315         nested_vmcb->control.int_ctl           = vmcb->control.int_ctl;
2316         nested_vmcb->control.int_vector        = vmcb->control.int_vector;
2317         nested_vmcb->control.int_state         = vmcb->control.int_state;
2318         nested_vmcb->control.exit_code         = vmcb->control.exit_code;
2319         nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi;
2320         nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1;
2321         nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2;
2322         nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info;
2323         nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2324
2325         if (svm->nrips_enabled)
2326                 nested_vmcb->control.next_rip  = vmcb->control.next_rip;
2327
2328         /*
2329          * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2330          * to make sure that we do not lose injected events. So check event_inj
2331          * here and copy it to exit_int_info if it is valid.
2332          * Exit_int_info and event_inj can't be both valid because the case
2333          * below only happens on a VMRUN instruction intercept which has
2334          * no valid exit_int_info set.
2335          */
2336         if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2337                 struct vmcb_control_area *nc = &nested_vmcb->control;
2338
2339                 nc->exit_int_info     = vmcb->control.event_inj;
2340                 nc->exit_int_info_err = vmcb->control.event_inj_err;
2341         }
2342
2343         nested_vmcb->control.tlb_ctl           = 0;
2344         nested_vmcb->control.event_inj         = 0;
2345         nested_vmcb->control.event_inj_err     = 0;
2346
2347         /* We always set V_INTR_MASKING and remember the old value in hflags */
2348         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2349                 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2350
2351         /* Restore the original control entries */
2352         copy_vmcb_control_area(vmcb, hsave);
2353
2354         kvm_clear_exception_queue(&svm->vcpu);
2355         kvm_clear_interrupt_queue(&svm->vcpu);
2356
2357         svm->nested.nested_cr3 = 0;
2358
2359         /* Restore selected save entries */
2360         svm->vmcb->save.es = hsave->save.es;
2361         svm->vmcb->save.cs = hsave->save.cs;
2362         svm->vmcb->save.ss = hsave->save.ss;
2363         svm->vmcb->save.ds = hsave->save.ds;
2364         svm->vmcb->save.gdtr = hsave->save.gdtr;
2365         svm->vmcb->save.idtr = hsave->save.idtr;
2366         kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
2367         svm_set_efer(&svm->vcpu, hsave->save.efer);
2368         svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2369         svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2370         if (npt_enabled) {
2371                 svm->vmcb->save.cr3 = hsave->save.cr3;
2372                 svm->vcpu.arch.cr3 = hsave->save.cr3;
2373         } else {
2374                 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2375         }
2376         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2377         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2378         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2379         svm->vmcb->save.dr7 = 0;
2380         svm->vmcb->save.cpl = 0;
2381         svm->vmcb->control.exit_int_info = 0;
2382
2383         mark_all_dirty(svm->vmcb);
2384
2385         nested_svm_unmap(page);
2386
2387         nested_svm_uninit_mmu_context(&svm->vcpu);
2388         kvm_mmu_reset_context(&svm->vcpu);
2389         kvm_mmu_load(&svm->vcpu);
2390
2391         /*
2392          * Drop what we picked up for L2 via svm_complete_interrupts() so it
2393          * doesn't end up in L1.
2394          */
2395         svm->vcpu.arch.nmi_injected = false;
2396         kvm_clear_exception_queue(&svm->vcpu);
2397         kvm_clear_interrupt_queue(&svm->vcpu);
2398
2399         return 0;
2400 }
2401
2402 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2403 {
2404         /*
2405          * This function merges the msr permission bitmaps of kvm and the
2406          * nested vmcb. It is optimized in that it only merges the parts where
2407          * the kvm msr permission bitmap may contain zero bits
2408          */
2409         int i;
2410
2411         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2412                 return true;
2413
2414         for (i = 0; i < MSRPM_OFFSETS; i++) {
2415                 u32 value, p;
2416                 u64 offset;
2417
2418                 if (msrpm_offsets[i] == 0xffffffff)
2419                         break;
2420
2421                 p      = msrpm_offsets[i];
2422                 offset = svm->nested.vmcb_msrpm + (p * 4);
2423
2424                 if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4))
2425                         return false;
2426
2427                 svm->nested.msrpm[p] = svm->msrpm[p] | value;
2428         }
2429
2430         svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
2431
2432         return true;
2433 }
2434
2435 static bool nested_vmcb_checks(struct vmcb *vmcb)
2436 {
2437         if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2438                 return false;
2439
2440         if (vmcb->control.asid == 0)
2441                 return false;
2442
2443         if (vmcb->control.nested_ctl && !npt_enabled)
2444                 return false;
2445
2446         return true;
2447 }
2448
2449 static bool nested_svm_vmrun(struct vcpu_svm *svm)
2450 {
2451         struct vmcb *nested_vmcb;
2452         struct vmcb *hsave = svm->nested.hsave;
2453         struct vmcb *vmcb = svm->vmcb;
2454         struct page *page;
2455         u64 vmcb_gpa;
2456
2457         vmcb_gpa = svm->vmcb->save.rax;
2458
2459         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2460         if (!nested_vmcb)
2461                 return false;
2462
2463         if (!nested_vmcb_checks(nested_vmcb)) {
2464                 nested_vmcb->control.exit_code    = SVM_EXIT_ERR;
2465                 nested_vmcb->control.exit_code_hi = 0;
2466                 nested_vmcb->control.exit_info_1  = 0;
2467                 nested_vmcb->control.exit_info_2  = 0;
2468
2469                 nested_svm_unmap(page);
2470
2471                 return false;
2472         }
2473
2474         trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
2475                                nested_vmcb->save.rip,
2476                                nested_vmcb->control.int_ctl,
2477                                nested_vmcb->control.event_inj,
2478                                nested_vmcb->control.nested_ctl);
2479
2480         trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
2481                                     nested_vmcb->control.intercept_cr >> 16,
2482                                     nested_vmcb->control.intercept_exceptions,
2483                                     nested_vmcb->control.intercept);
2484
2485         /* Clear internal status */
2486         kvm_clear_exception_queue(&svm->vcpu);
2487         kvm_clear_interrupt_queue(&svm->vcpu);
2488
2489         /*
2490          * Save the old vmcb, so we don't need to pick what we save, but can
2491          * restore everything when a VMEXIT occurs
2492          */
2493         hsave->save.es     = vmcb->save.es;
2494         hsave->save.cs     = vmcb->save.cs;
2495         hsave->save.ss     = vmcb->save.ss;
2496         hsave->save.ds     = vmcb->save.ds;
2497         hsave->save.gdtr   = vmcb->save.gdtr;
2498         hsave->save.idtr   = vmcb->save.idtr;
2499         hsave->save.efer   = svm->vcpu.arch.efer;
2500         hsave->save.cr0    = kvm_read_cr0(&svm->vcpu);
2501         hsave->save.cr4    = svm->vcpu.arch.cr4;
2502         hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
2503         hsave->save.rip    = kvm_rip_read(&svm->vcpu);
2504         hsave->save.rsp    = vmcb->save.rsp;
2505         hsave->save.rax    = vmcb->save.rax;
2506         if (npt_enabled)
2507                 hsave->save.cr3    = vmcb->save.cr3;
2508         else
2509                 hsave->save.cr3    = kvm_read_cr3(&svm->vcpu);
2510
2511         copy_vmcb_control_area(hsave, vmcb);
2512
2513         if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
2514                 svm->vcpu.arch.hflags |= HF_HIF_MASK;
2515         else
2516                 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2517
2518         if (nested_vmcb->control.nested_ctl) {
2519                 kvm_mmu_unload(&svm->vcpu);
2520                 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
2521                 nested_svm_init_mmu_context(&svm->vcpu);
2522         }
2523
2524         /* Load the nested guest state */
2525         svm->vmcb->save.es = nested_vmcb->save.es;
2526         svm->vmcb->save.cs = nested_vmcb->save.cs;
2527         svm->vmcb->save.ss = nested_vmcb->save.ss;
2528         svm->vmcb->save.ds = nested_vmcb->save.ds;
2529         svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2530         svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2531         kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
2532         svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2533         svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2534         svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2535         if (npt_enabled) {
2536                 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2537                 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2538         } else
2539                 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2540
2541         /* Guest paging mode is active - reset mmu */
2542         kvm_mmu_reset_context(&svm->vcpu);
2543
2544         svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2545         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2546         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2547         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2548
2549         /* In case we don't even reach vcpu_run, the fields are not updated */
2550         svm->vmcb->save.rax = nested_vmcb->save.rax;
2551         svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2552         svm->vmcb->save.rip = nested_vmcb->save.rip;
2553         svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
2554         svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
2555         svm->vmcb->save.cpl = nested_vmcb->save.cpl;
2556
2557         svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
2558         svm->nested.vmcb_iopm  = nested_vmcb->control.iopm_base_pa  & ~0x0fffULL;
2559
2560         /* cache intercepts */
2561         svm->nested.intercept_cr         = nested_vmcb->control.intercept_cr;
2562         svm->nested.intercept_dr         = nested_vmcb->control.intercept_dr;
2563         svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
2564         svm->nested.intercept            = nested_vmcb->control.intercept;
2565
2566         svm_flush_tlb(&svm->vcpu);
2567         svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl &
2568                         (V_TPR_MASK | V_IRQ_INJECTION_BITS_MASK);
2569
2570         svm->vmcb->control.int_ctl |= V_INTR_MASKING_MASK;
2571
2572         if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
2573                 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
2574         else
2575                 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
2576
2577         if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
2578                 /* We only want the cr8 intercept bits of the guest */
2579                 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
2580                 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2581         }
2582
2583         /* We don't want to see VMMCALLs from a nested guest */
2584         clr_intercept(svm, INTERCEPT_VMMCALL);
2585
2586         svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
2587         svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
2588         svm->vmcb->control.int_state = nested_vmcb->control.int_state;
2589         svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
2590         svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
2591         svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
2592
2593         nested_svm_unmap(page);
2594
2595         /* Enter Guest-Mode */
2596         enter_guest_mode(&svm->vcpu);
2597
2598         /*
2599          * Merge guest and host intercepts - must be called  with vcpu in
2600          * guest-mode to take affect here
2601          */
2602         recalc_intercepts(svm);
2603
2604         svm->nested.vmcb = vmcb_gpa;
2605
2606         enable_gif(svm);
2607
2608         mark_all_dirty(svm->vmcb);
2609
2610         return true;
2611 }
2612
2613 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
2614 {
2615         to_vmcb->save.fs = from_vmcb->save.fs;
2616         to_vmcb->save.gs = from_vmcb->save.gs;
2617         to_vmcb->save.tr = from_vmcb->save.tr;
2618         to_vmcb->save.ldtr = from_vmcb->save.ldtr;
2619         to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
2620         to_vmcb->save.star = from_vmcb->save.star;
2621         to_vmcb->save.lstar = from_vmcb->save.lstar;
2622         to_vmcb->save.cstar = from_vmcb->save.cstar;
2623         to_vmcb->save.sfmask = from_vmcb->save.sfmask;
2624         to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
2625         to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
2626         to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
2627 }
2628
2629 static int vmload_interception(struct vcpu_svm *svm)
2630 {
2631         struct vmcb *nested_vmcb;
2632         struct page *page;
2633
2634         if (nested_svm_check_permissions(svm))
2635                 return 1;
2636
2637         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2638         if (!nested_vmcb)
2639                 return 1;
2640
2641         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2642         skip_emulated_instruction(&svm->vcpu);
2643
2644         nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2645         nested_svm_unmap(page);
2646
2647         return 1;
2648 }
2649
2650 static int vmsave_interception(struct vcpu_svm *svm)
2651 {
2652         struct vmcb *nested_vmcb;
2653         struct page *page;
2654
2655         if (nested_svm_check_permissions(svm))
2656                 return 1;
2657
2658         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2659         if (!nested_vmcb)
2660                 return 1;
2661
2662         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2663         skip_emulated_instruction(&svm->vcpu);
2664
2665         nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2666         nested_svm_unmap(page);
2667
2668         return 1;
2669 }
2670
2671 static int vmrun_interception(struct vcpu_svm *svm)
2672 {
2673         if (nested_svm_check_permissions(svm))
2674                 return 1;
2675
2676         /* Save rip after vmrun instruction */
2677         kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
2678
2679         if (!nested_svm_vmrun(svm))
2680                 return 1;
2681
2682         if (!nested_svm_vmrun_msrpm(svm))
2683                 goto failed;
2684
2685         return 1;
2686
2687 failed:
2688
2689         svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
2690         svm->vmcb->control.exit_code_hi = 0;
2691         svm->vmcb->control.exit_info_1  = 0;
2692         svm->vmcb->control.exit_info_2  = 0;
2693
2694         nested_svm_vmexit(svm);
2695
2696         return 1;
2697 }
2698
2699 static int stgi_interception(struct vcpu_svm *svm)
2700 {
2701         if (nested_svm_check_permissions(svm))
2702                 return 1;
2703
2704         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2705         skip_emulated_instruction(&svm->vcpu);
2706         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2707
2708         enable_gif(svm);
2709
2710         return 1;
2711 }
2712
2713 static int clgi_interception(struct vcpu_svm *svm)
2714 {
2715         if (nested_svm_check_permissions(svm))
2716                 return 1;
2717
2718         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2719         skip_emulated_instruction(&svm->vcpu);
2720
2721         disable_gif(svm);
2722
2723         /* After a CLGI no interrupts should come */
2724         svm_clear_vintr(svm);
2725         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2726
2727         mark_dirty(svm->vmcb, VMCB_INTR);
2728
2729         return 1;
2730 }
2731
2732 static int invlpga_interception(struct vcpu_svm *svm)
2733 {
2734         struct kvm_vcpu *vcpu = &svm->vcpu;
2735
2736         trace_kvm_invlpga(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RCX),
2737                           kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
2738
2739         /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2740         kvm_mmu_invlpg(vcpu, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
2741
2742         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2743         skip_emulated_instruction(&svm->vcpu);
2744         return 1;
2745 }
2746
2747 static int skinit_interception(struct vcpu_svm *svm)
2748 {
2749         trace_kvm_skinit(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
2750
2751         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2752         return 1;
2753 }
2754
2755 static int wbinvd_interception(struct vcpu_svm *svm)
2756 {
2757         kvm_emulate_wbinvd(&svm->vcpu);
2758         return 1;
2759 }
2760
2761 static int xsetbv_interception(struct vcpu_svm *svm)
2762 {
2763         u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
2764         u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
2765
2766         if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
2767                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2768                 skip_emulated_instruction(&svm->vcpu);
2769         }
2770
2771         return 1;
2772 }
2773
2774 static int task_switch_interception(struct vcpu_svm *svm)
2775 {
2776         u16 tss_selector;
2777         int reason;
2778         int int_type = svm->vmcb->control.exit_int_info &
2779                 SVM_EXITINTINFO_TYPE_MASK;
2780         int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2781         uint32_t type =
2782                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2783         uint32_t idt_v =
2784                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2785         bool has_error_code = false;
2786         u32 error_code = 0;
2787
2788         tss_selector = (u16)svm->vmcb->control.exit_info_1;
2789
2790         if (svm->vmcb->control.exit_info_2 &
2791             (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2792                 reason = TASK_SWITCH_IRET;
2793         else if (svm->vmcb->control.exit_info_2 &
2794                  (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2795                 reason = TASK_SWITCH_JMP;
2796         else if (idt_v)
2797                 reason = TASK_SWITCH_GATE;
2798         else
2799                 reason = TASK_SWITCH_CALL;
2800
2801         if (reason == TASK_SWITCH_GATE) {
2802                 switch (type) {
2803                 case SVM_EXITINTINFO_TYPE_NMI:
2804                         svm->vcpu.arch.nmi_injected = false;
2805                         break;
2806                 case SVM_EXITINTINFO_TYPE_EXEPT:
2807                         if (svm->vmcb->control.exit_info_2 &
2808                             (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2809                                 has_error_code = true;
2810                                 error_code =
2811                                         (u32)svm->vmcb->control.exit_info_2;
2812                         }
2813                         kvm_clear_exception_queue(&svm->vcpu);
2814                         break;
2815                 case SVM_EXITINTINFO_TYPE_INTR:
2816                         kvm_clear_interrupt_queue(&svm->vcpu);
2817                         break;
2818                 default:
2819                         break;
2820                 }
2821         }
2822
2823         if (reason != TASK_SWITCH_GATE ||
2824             int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2825             (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2826              (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2827                 skip_emulated_instruction(&svm->vcpu);
2828
2829         if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2830                 int_vec = -1;
2831
2832         if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
2833                                 has_error_code, error_code) == EMULATE_FAIL) {
2834                 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2835                 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
2836                 svm->vcpu.run->internal.ndata = 0;
2837                 return 0;
2838         }
2839         return 1;
2840 }
2841
2842 static int cpuid_interception(struct vcpu_svm *svm)
2843 {
2844         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2845         kvm_emulate_cpuid(&svm->vcpu);
2846         return 1;
2847 }
2848
2849 static int iret_interception(struct vcpu_svm *svm)
2850 {
2851         ++svm->vcpu.stat.nmi_window_exits;
2852         clr_intercept(svm, INTERCEPT_IRET);
2853         svm->vcpu.arch.hflags |= HF_IRET_MASK;
2854         svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
2855         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2856         return 1;
2857 }
2858
2859 static int invlpg_interception(struct vcpu_svm *svm)
2860 {
2861         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2862                 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2863
2864         kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
2865         skip_emulated_instruction(&svm->vcpu);
2866         return 1;
2867 }
2868
2869 static int emulate_on_interception(struct vcpu_svm *svm)
2870 {
2871         return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2872 }
2873
2874 static int rdpmc_interception(struct vcpu_svm *svm)
2875 {
2876         int err;
2877
2878         if (!static_cpu_has(X86_FEATURE_NRIPS))
2879                 return emulate_on_interception(svm);
2880
2881         err = kvm_rdpmc(&svm->vcpu);
2882         kvm_complete_insn_gp(&svm->vcpu, err);
2883
2884         return 1;
2885 }
2886
2887 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
2888                                             unsigned long val)
2889 {
2890         unsigned long cr0 = svm->vcpu.arch.cr0;
2891         bool ret = false;
2892         u64 intercept;
2893
2894         intercept = svm->nested.intercept;
2895
2896         if (!is_guest_mode(&svm->vcpu) ||
2897             (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
2898                 return false;
2899
2900         cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2901         val &= ~SVM_CR0_SELECTIVE_MASK;
2902
2903         if (cr0 ^ val) {
2904                 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2905                 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2906         }
2907
2908         return ret;
2909 }
2910
2911 #define CR_VALID (1ULL << 63)
2912
2913 static int cr_interception(struct vcpu_svm *svm)
2914 {
2915         int reg, cr;
2916         unsigned long val;
2917         int err;
2918
2919         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2920                 return emulate_on_interception(svm);
2921
2922         if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2923                 return emulate_on_interception(svm);
2924
2925         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2926         if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2927                 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2928         else
2929                 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2930
2931         err = 0;
2932         if (cr >= 16) { /* mov to cr */
2933                 cr -= 16;
2934                 val = kvm_register_readl(&svm->vcpu, reg);
2935                 switch (cr) {
2936                 case 0:
2937                         if (!check_selective_cr0_intercepted(svm, val))
2938                                 err = kvm_set_cr0(&svm->vcpu, val);
2939                         else
2940                                 return 1;
2941
2942                         break;
2943                 case 3:
2944                         err = kvm_set_cr3(&svm->vcpu, val);
2945                         break;
2946                 case 4:
2947                         err = kvm_set_cr4(&svm->vcpu, val);
2948                         break;
2949                 case 8:
2950                         err = kvm_set_cr8(&svm->vcpu, val);
2951                         break;
2952                 default:
2953                         WARN(1, "unhandled write to CR%d", cr);
2954                         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2955                         return 1;
2956                 }
2957         } else { /* mov from cr */
2958                 switch (cr) {
2959                 case 0:
2960                         val = kvm_read_cr0(&svm->vcpu);
2961                         break;
2962                 case 2:
2963                         val = svm->vcpu.arch.cr2;
2964                         break;
2965                 case 3:
2966                         val = kvm_read_cr3(&svm->vcpu);
2967                         break;
2968                 case 4:
2969                         val = kvm_read_cr4(&svm->vcpu);
2970                         break;
2971                 case 8:
2972                         val = kvm_get_cr8(&svm->vcpu);
2973                         break;
2974                 default:
2975                         WARN(1, "unhandled read from CR%d", cr);
2976                         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2977                         return 1;
2978                 }
2979                 kvm_register_writel(&svm->vcpu, reg, val);
2980         }
2981         kvm_complete_insn_gp(&svm->vcpu, err);
2982
2983         return 1;
2984 }
2985
2986 static int dr_interception(struct vcpu_svm *svm)
2987 {
2988         int reg, dr;
2989         unsigned long val;
2990
2991         if (svm->vcpu.guest_debug == 0) {
2992                 /*
2993                  * No more DR vmexits; force a reload of the debug registers
2994                  * and reenter on this instruction.  The next vmexit will
2995                  * retrieve the full state of the debug registers.
2996                  */
2997                 clr_dr_intercepts(svm);
2998                 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2999                 return 1;
3000         }
3001
3002         if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
3003                 return emulate_on_interception(svm);
3004
3005         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3006         dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
3007
3008         if (dr >= 16) { /* mov to DRn */
3009                 if (!kvm_require_dr(&svm->vcpu, dr - 16))
3010                         return 1;
3011                 val = kvm_register_readl(&svm->vcpu, reg);
3012                 kvm_set_dr(&svm->vcpu, dr - 16, val);
3013         } else {
3014                 if (!kvm_require_dr(&svm->vcpu, dr))
3015                         return 1;
3016                 kvm_get_dr(&svm->vcpu, dr, &val);
3017                 kvm_register_writel(&svm->vcpu, reg, val);
3018         }
3019
3020         skip_emulated_instruction(&svm->vcpu);
3021
3022         return 1;
3023 }
3024
3025 static int cr8_write_interception(struct vcpu_svm *svm)
3026 {
3027         struct kvm_run *kvm_run = svm->vcpu.run;
3028         int r;
3029
3030         u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
3031         /* instruction emulation calls kvm_set_cr8() */
3032         r = cr_interception(svm);
3033         if (lapic_in_kernel(&svm->vcpu))
3034                 return r;
3035         if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
3036                 return r;
3037         kvm_run->exit_reason = KVM_EXIT_SET_TPR;
3038         return 0;
3039 }
3040
3041 static u64 svm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
3042 {
3043         struct vmcb *vmcb = get_host_vmcb(to_svm(vcpu));
3044         return vmcb->control.tsc_offset + host_tsc;
3045 }
3046
3047 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3048 {
3049         struct vcpu_svm *svm = to_svm(vcpu);
3050
3051         switch (msr_info->index) {
3052         case MSR_IA32_TSC: {
3053                 msr_info->data = svm->vmcb->control.tsc_offset +
3054                         kvm_scale_tsc(vcpu, rdtsc());
3055
3056                 break;
3057         }
3058         case MSR_STAR:
3059                 msr_info->data = svm->vmcb->save.star;
3060                 break;
3061 #ifdef CONFIG_X86_64
3062         case MSR_LSTAR:
3063                 msr_info->data = svm->vmcb->save.lstar;
3064                 break;
3065         case MSR_CSTAR:
3066                 msr_info->data = svm->vmcb->save.cstar;
3067                 break;
3068         case MSR_KERNEL_GS_BASE:
3069                 msr_info->data = svm->vmcb->save.kernel_gs_base;
3070                 break;
3071         case MSR_SYSCALL_MASK:
3072                 msr_info->data = svm->vmcb->save.sfmask;
3073                 break;
3074 #endif
3075         case MSR_IA32_SYSENTER_CS:
3076                 msr_info->data = svm->vmcb->save.sysenter_cs;
3077                 break;
3078         case MSR_IA32_SYSENTER_EIP:
3079                 msr_info->data = svm->sysenter_eip;
3080                 break;
3081         case MSR_IA32_SYSENTER_ESP:
3082                 msr_info->data = svm->sysenter_esp;
3083                 break;
3084         /*
3085          * Nobody will change the following 5 values in the VMCB so we can
3086          * safely return them on rdmsr. They will always be 0 until LBRV is
3087          * implemented.
3088          */
3089         case MSR_IA32_DEBUGCTLMSR:
3090                 msr_info->data = svm->vmcb->save.dbgctl;
3091                 break;
3092         case MSR_IA32_LASTBRANCHFROMIP:
3093                 msr_info->data = svm->vmcb->save.br_from;
3094                 break;
3095         case MSR_IA32_LASTBRANCHTOIP:
3096                 msr_info->data = svm->vmcb->save.br_to;
3097                 break;
3098         case MSR_IA32_LASTINTFROMIP:
3099                 msr_info->data = svm->vmcb->save.last_excp_from;
3100                 break;
3101         case MSR_IA32_LASTINTTOIP:
3102                 msr_info->data = svm->vmcb->save.last_excp_to;
3103                 break;
3104         case MSR_VM_HSAVE_PA:
3105                 msr_info->data = svm->nested.hsave_msr;
3106                 break;
3107         case MSR_VM_CR:
3108                 msr_info->data = svm->nested.vm_cr_msr;
3109                 break;
3110         case MSR_IA32_SPEC_CTRL:
3111                 if (!msr_info->host_initiated &&
3112                     !guest_cpuid_has_spec_ctrl(vcpu))
3113                         return 1;
3114
3115                 msr_info->data = svm->spec_ctrl;
3116                 break;
3117         case MSR_AMD64_VIRT_SPEC_CTRL:
3118                 if (!msr_info->host_initiated &&
3119                     !guest_cpuid_has_virt_ssbd(vcpu))
3120                         return 1;
3121
3122                 msr_info->data = svm->virt_spec_ctrl;
3123                 break;
3124         case MSR_IA32_UCODE_REV:
3125                 msr_info->data = 0x01000065;
3126                 break;
3127         default:
3128                 return kvm_get_msr_common(vcpu, msr_info);
3129         }
3130         return 0;
3131 }
3132
3133 static int rdmsr_interception(struct vcpu_svm *svm)
3134 {
3135         u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3136         struct msr_data msr_info;
3137
3138         msr_info.index = ecx;
3139         msr_info.host_initiated = false;
3140         if (svm_get_msr(&svm->vcpu, &msr_info)) {
3141                 trace_kvm_msr_read_ex(ecx);
3142                 kvm_inject_gp(&svm->vcpu, 0);
3143         } else {
3144                 trace_kvm_msr_read(ecx, msr_info.data);
3145
3146                 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX,
3147                                    msr_info.data & 0xffffffff);
3148                 kvm_register_write(&svm->vcpu, VCPU_REGS_RDX,
3149                                    msr_info.data >> 32);
3150                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3151                 skip_emulated_instruction(&svm->vcpu);
3152         }
3153         return 1;
3154 }
3155
3156 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
3157 {
3158         struct vcpu_svm *svm = to_svm(vcpu);
3159         int svm_dis, chg_mask;
3160
3161         if (data & ~SVM_VM_CR_VALID_MASK)
3162                 return 1;
3163
3164         chg_mask = SVM_VM_CR_VALID_MASK;
3165
3166         if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
3167                 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
3168
3169         svm->nested.vm_cr_msr &= ~chg_mask;
3170         svm->nested.vm_cr_msr |= (data & chg_mask);
3171
3172         svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
3173
3174         /* check for svm_disable while efer.svme is set */
3175         if (svm_dis && (vcpu->arch.efer & EFER_SVME))
3176                 return 1;
3177
3178         return 0;
3179 }
3180
3181 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
3182 {
3183         struct vcpu_svm *svm = to_svm(vcpu);
3184
3185         u32 ecx = msr->index;
3186         u64 data = msr->data;
3187         switch (ecx) {
3188         case MSR_IA32_CR_PAT:
3189                 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
3190                         return 1;
3191                 vcpu->arch.pat = data;
3192                 svm->vmcb->save.g_pat = data;
3193                 mark_dirty(svm->vmcb, VMCB_NPT);
3194                 break;
3195         case MSR_IA32_TSC:
3196                 kvm_write_tsc(vcpu, msr);
3197                 break;
3198         case MSR_IA32_SPEC_CTRL:
3199                 if (!msr->host_initiated &&
3200                     !guest_cpuid_has_spec_ctrl(vcpu))
3201                         return 1;
3202
3203                 /* The STIBP bit doesn't fault even if it's not advertised */
3204                 if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD))
3205                         return 1;
3206
3207                 svm->spec_ctrl = data;
3208
3209                 if (!data)
3210                         break;
3211
3212                 /*
3213                  * For non-nested:
3214                  * When it's written (to non-zero) for the first time, pass
3215                  * it through.
3216                  *
3217                  * For nested:
3218                  * The handling of the MSR bitmap for L2 guests is done in
3219                  * nested_svm_vmrun_msrpm.
3220                  * We update the L1 MSR bit as well since it will end up
3221                  * touching the MSR anyway now.
3222                  */
3223                 set_msr_interception(svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
3224                 break;
3225         case MSR_IA32_PRED_CMD:
3226                 if (!msr->host_initiated &&
3227                     !guest_cpuid_has_ibpb(vcpu))
3228                         return 1;
3229
3230                 if (data & ~PRED_CMD_IBPB)
3231                         return 1;
3232
3233                 if (!data)
3234                         break;
3235
3236                 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
3237                 if (is_guest_mode(vcpu))
3238                         break;
3239                 set_msr_interception(svm->msrpm, MSR_IA32_PRED_CMD, 0, 1);
3240                 break;
3241         case MSR_AMD64_VIRT_SPEC_CTRL:
3242                 if (!msr->host_initiated &&
3243                     !guest_cpuid_has_virt_ssbd(vcpu))
3244                         return 1;
3245
3246                 if (data & ~SPEC_CTRL_SSBD)
3247                         return 1;
3248
3249                 svm->virt_spec_ctrl = data;
3250                 break;
3251         case MSR_STAR:
3252                 svm->vmcb->save.star = data;
3253                 break;
3254 #ifdef CONFIG_X86_64
3255         case MSR_LSTAR:
3256                 svm->vmcb->save.lstar = data;
3257                 break;
3258         case MSR_CSTAR:
3259                 svm->vmcb->save.cstar = data;
3260                 break;
3261         case MSR_KERNEL_GS_BASE:
3262                 svm->vmcb->save.kernel_gs_base = data;
3263                 break;
3264         case MSR_SYSCALL_MASK:
3265                 svm->vmcb->save.sfmask = data;
3266                 break;
3267 #endif
3268         case MSR_IA32_SYSENTER_CS:
3269                 svm->vmcb->save.sysenter_cs = data;
3270                 break;
3271         case MSR_IA32_SYSENTER_EIP:
3272                 svm->sysenter_eip = data;
3273                 svm->vmcb->save.sysenter_eip = data;
3274                 break;
3275         case MSR_IA32_SYSENTER_ESP:
3276                 svm->sysenter_esp = data;
3277                 svm->vmcb->save.sysenter_esp = data;
3278                 break;
3279         case MSR_IA32_DEBUGCTLMSR:
3280                 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
3281                         vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3282                                     __func__, data);
3283                         break;
3284                 }
3285                 if (data & DEBUGCTL_RESERVED_BITS)
3286                         return 1;
3287
3288                 svm->vmcb->save.dbgctl = data;
3289                 mark_dirty(svm->vmcb, VMCB_LBR);
3290                 if (data & (1ULL<<0))
3291                         svm_enable_lbrv(svm);
3292                 else
3293                         svm_disable_lbrv(svm);
3294                 break;
3295         case MSR_VM_HSAVE_PA:
3296                 svm->nested.hsave_msr = data;
3297                 break;
3298         case MSR_VM_CR:
3299                 return svm_set_vm_cr(vcpu, data);
3300         case MSR_VM_IGNNE:
3301                 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
3302                 break;
3303         default:
3304                 return kvm_set_msr_common(vcpu, msr);
3305         }
3306         return 0;
3307 }
3308
3309 static int wrmsr_interception(struct vcpu_svm *svm)
3310 {
3311         struct msr_data msr;
3312         u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3313         u64 data = kvm_read_edx_eax(&svm->vcpu);
3314
3315         msr.data = data;
3316         msr.index = ecx;
3317         msr.host_initiated = false;
3318
3319         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3320         if (kvm_set_msr(&svm->vcpu, &msr)) {
3321                 trace_kvm_msr_write_ex(ecx, data);
3322                 kvm_inject_gp(&svm->vcpu, 0);
3323         } else {
3324                 trace_kvm_msr_write(ecx, data);
3325                 skip_emulated_instruction(&svm->vcpu);
3326         }
3327         return 1;
3328 }
3329
3330 static int msr_interception(struct vcpu_svm *svm)
3331 {
3332         if (svm->vmcb->control.exit_info_1)
3333                 return wrmsr_interception(svm);
3334         else
3335                 return rdmsr_interception(svm);
3336 }
3337
3338 static int interrupt_window_interception(struct vcpu_svm *svm)
3339 {
3340         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3341         svm_clear_vintr(svm);
3342         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3343         mark_dirty(svm->vmcb, VMCB_INTR);
3344         ++svm->vcpu.stat.irq_window_exits;
3345         return 1;
3346 }
3347
3348 static int pause_interception(struct vcpu_svm *svm)
3349 {
3350         kvm_vcpu_on_spin(&(svm->vcpu));
3351         return 1;
3352 }
3353
3354 static int nop_interception(struct vcpu_svm *svm)
3355 {
3356         skip_emulated_instruction(&(svm->vcpu));
3357         return 1;
3358 }
3359
3360 static int monitor_interception(struct vcpu_svm *svm)
3361 {
3362         printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
3363         return nop_interception(svm);
3364 }
3365
3366 static int mwait_interception(struct vcpu_svm *svm)
3367 {
3368         printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
3369         return nop_interception(svm);
3370 }
3371
3372 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
3373         [SVM_EXIT_READ_CR0]                     = cr_interception,
3374         [SVM_EXIT_READ_CR3]                     = cr_interception,
3375         [SVM_EXIT_READ_CR4]                     = cr_interception,
3376         [SVM_EXIT_READ_CR8]                     = cr_interception,
3377         [SVM_EXIT_CR0_SEL_WRITE]                = cr_interception,
3378         [SVM_EXIT_WRITE_CR0]                    = cr_interception,
3379         [SVM_EXIT_WRITE_CR3]                    = cr_interception,
3380         [SVM_EXIT_WRITE_CR4]                    = cr_interception,
3381         [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
3382         [SVM_EXIT_READ_DR0]                     = dr_interception,
3383         [SVM_EXIT_READ_DR1]                     = dr_interception,
3384         [SVM_EXIT_READ_DR2]                     = dr_interception,
3385         [SVM_EXIT_READ_DR3]                     = dr_interception,
3386         [SVM_EXIT_READ_DR4]                     = dr_interception,
3387         [SVM_EXIT_READ_DR5]                     = dr_interception,
3388         [SVM_EXIT_READ_DR6]                     = dr_interception,
3389         [SVM_EXIT_READ_DR7]                     = dr_interception,
3390         [SVM_EXIT_WRITE_DR0]                    = dr_interception,
3391         [SVM_EXIT_WRITE_DR1]                    = dr_interception,
3392         [SVM_EXIT_WRITE_DR2]                    = dr_interception,
3393         [SVM_EXIT_WRITE_DR3]                    = dr_interception,
3394         [SVM_EXIT_WRITE_DR4]                    = dr_interception,
3395         [SVM_EXIT_WRITE_DR5]                    = dr_interception,
3396         [SVM_EXIT_WRITE_DR6]                    = dr_interception,
3397         [SVM_EXIT_WRITE_DR7]                    = dr_interception,
3398         [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
3399         [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
3400         [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
3401         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
3402         [SVM_EXIT_EXCP_BASE + NM_VECTOR]        = nm_interception,
3403         [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
3404         [SVM_EXIT_EXCP_BASE + AC_VECTOR]        = ac_interception,
3405         [SVM_EXIT_INTR]                         = intr_interception,
3406         [SVM_EXIT_NMI]                          = nmi_interception,
3407         [SVM_EXIT_SMI]                          = nop_on_interception,
3408         [SVM_EXIT_INIT]                         = nop_on_interception,
3409         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
3410         [SVM_EXIT_RDPMC]                        = rdpmc_interception,
3411         [SVM_EXIT_CPUID]                        = cpuid_interception,
3412         [SVM_EXIT_IRET]                         = iret_interception,
3413         [SVM_EXIT_INVD]                         = emulate_on_interception,
3414         [SVM_EXIT_PAUSE]                        = pause_interception,
3415         [SVM_EXIT_HLT]                          = halt_interception,
3416         [SVM_EXIT_INVLPG]                       = invlpg_interception,
3417         [SVM_EXIT_INVLPGA]                      = invlpga_interception,
3418         [SVM_EXIT_IOIO]                         = io_interception,
3419         [SVM_EXIT_MSR]                          = msr_interception,
3420         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
3421         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
3422         [SVM_EXIT_VMRUN]                        = vmrun_interception,
3423         [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
3424         [SVM_EXIT_VMLOAD]                       = vmload_interception,
3425         [SVM_EXIT_VMSAVE]                       = vmsave_interception,
3426         [SVM_EXIT_STGI]                         = stgi_interception,
3427         [SVM_EXIT_CLGI]                         = clgi_interception,
3428         [SVM_EXIT_SKINIT]                       = skinit_interception,
3429         [SVM_EXIT_WBINVD]                       = wbinvd_interception,
3430         [SVM_EXIT_MONITOR]                      = monitor_interception,
3431         [SVM_EXIT_MWAIT]                        = mwait_interception,
3432         [SVM_EXIT_XSETBV]                       = xsetbv_interception,
3433         [SVM_EXIT_NPF]                          = pf_interception,
3434         [SVM_EXIT_RSM]                          = emulate_on_interception,
3435 };
3436
3437 static void dump_vmcb(struct kvm_vcpu *vcpu)
3438 {
3439         struct vcpu_svm *svm = to_svm(vcpu);
3440         struct vmcb_control_area *control = &svm->vmcb->control;
3441         struct vmcb_save_area *save = &svm->vmcb->save;
3442
3443         pr_err("VMCB Control Area:\n");
3444         pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
3445         pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
3446         pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
3447         pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
3448         pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
3449         pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
3450         pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3451         pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3452         pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3453         pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3454         pr_err("%-20s%d\n", "asid:", control->asid);
3455         pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3456         pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3457         pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3458         pr_err("%-20s%08x\n", "int_state:", control->int_state);
3459         pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3460         pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3461         pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3462         pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3463         pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3464         pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3465         pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3466         pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3467         pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3468         pr_err("%-20s%lld\n", "lbr_ctl:", control->lbr_ctl);
3469         pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3470         pr_err("VMCB State Save Area:\n");
3471         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3472                "es:",
3473                save->es.selector, save->es.attrib,
3474                save->es.limit, save->es.base);
3475         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3476                "cs:",
3477                save->cs.selector, save->cs.attrib,
3478                save->cs.limit, save->cs.base);
3479         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3480                "ss:",
3481                save->ss.selector, save->ss.attrib,
3482                save->ss.limit, save->ss.base);
3483         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3484                "ds:",
3485                save->ds.selector, save->ds.attrib,
3486                save->ds.limit, save->ds.base);
3487         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3488                "fs:",
3489                save->fs.selector, save->fs.attrib,
3490                save->fs.limit, save->fs.base);
3491         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3492                "gs:",
3493                save->gs.selector, save->gs.attrib,
3494                save->gs.limit, save->gs.base);
3495         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3496                "gdtr:",
3497                save->gdtr.selector, save->gdtr.attrib,
3498                save->gdtr.limit, save->gdtr.base);
3499         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3500                "ldtr:",
3501                save->ldtr.selector, save->ldtr.attrib,
3502                save->ldtr.limit, save->ldtr.base);
3503         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3504                "idtr:",
3505                save->idtr.selector, save->idtr.attrib,
3506                save->idtr.limit, save->idtr.base);
3507         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3508                "tr:",
3509                save->tr.selector, save->tr.attrib,
3510                save->tr.limit, save->tr.base);
3511         pr_err("cpl:            %d                efer:         %016llx\n",
3512                 save->cpl, save->efer);
3513         pr_err("%-15s %016llx %-13s %016llx\n",
3514                "cr0:", save->cr0, "cr2:", save->cr2);
3515         pr_err("%-15s %016llx %-13s %016llx\n",
3516                "cr3:", save->cr3, "cr4:", save->cr4);
3517         pr_err("%-15s %016llx %-13s %016llx\n",
3518                "dr6:", save->dr6, "dr7:", save->dr7);
3519         pr_err("%-15s %016llx %-13s %016llx\n",
3520                "rip:", save->rip, "rflags:", save->rflags);
3521         pr_err("%-15s %016llx %-13s %016llx\n",
3522                "rsp:", save->rsp, "rax:", save->rax);
3523         pr_err("%-15s %016llx %-13s %016llx\n",
3524                "star:", save->star, "lstar:", save->lstar);
3525         pr_err("%-15s %016llx %-13s %016llx\n",
3526                "cstar:", save->cstar, "sfmask:", save->sfmask);
3527         pr_err("%-15s %016llx %-13s %016llx\n",
3528                "kernel_gs_base:", save->kernel_gs_base,
3529                "sysenter_cs:", save->sysenter_cs);
3530         pr_err("%-15s %016llx %-13s %016llx\n",
3531                "sysenter_esp:", save->sysenter_esp,
3532                "sysenter_eip:", save->sysenter_eip);
3533         pr_err("%-15s %016llx %-13s %016llx\n",
3534                "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3535         pr_err("%-15s %016llx %-13s %016llx\n",
3536                "br_from:", save->br_from, "br_to:", save->br_to);
3537         pr_err("%-15s %016llx %-13s %016llx\n",
3538                "excp_from:", save->last_excp_from,
3539                "excp_to:", save->last_excp_to);
3540 }
3541
3542 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
3543 {
3544         struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3545
3546         *info1 = control->exit_info_1;
3547         *info2 = control->exit_info_2;
3548 }
3549
3550 static int handle_exit(struct kvm_vcpu *vcpu)
3551 {
3552         struct vcpu_svm *svm = to_svm(vcpu);
3553         struct kvm_run *kvm_run = vcpu->run;
3554         u32 exit_code = svm->vmcb->control.exit_code;
3555
3556         trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
3557
3558         if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
3559                 vcpu->arch.cr0 = svm->vmcb->save.cr0;
3560         if (npt_enabled)
3561                 vcpu->arch.cr3 = svm->vmcb->save.cr3;
3562
3563         if (unlikely(svm->nested.exit_required)) {
3564                 nested_svm_vmexit(svm);
3565                 svm->nested.exit_required = false;
3566
3567                 return 1;
3568         }
3569
3570         if (is_guest_mode(vcpu)) {
3571                 int vmexit;
3572
3573                 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
3574                                         svm->vmcb->control.exit_info_1,
3575                                         svm->vmcb->control.exit_info_2,
3576                                         svm->vmcb->control.exit_int_info,
3577                                         svm->vmcb->control.exit_int_info_err,
3578                                         KVM_ISA_SVM);
3579
3580                 vmexit = nested_svm_exit_special(svm);
3581
3582                 if (vmexit == NESTED_EXIT_CONTINUE)
3583                         vmexit = nested_svm_exit_handled(svm);
3584
3585                 if (vmexit == NESTED_EXIT_DONE)
3586                         return 1;
3587         }
3588
3589         svm_complete_interrupts(svm);
3590
3591         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3592                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3593                 kvm_run->fail_entry.hardware_entry_failure_reason
3594                         = svm->vmcb->control.exit_code;
3595                 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
3596                 dump_vmcb(vcpu);
3597                 return 0;
3598         }
3599
3600         if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3601             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3602             exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3603             exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3604                 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
3605                        "exit_code 0x%x\n",
3606                        __func__, svm->vmcb->control.exit_int_info,
3607                        exit_code);
3608
3609         if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
3610             || !svm_exit_handlers[exit_code]) {
3611                 WARN_ONCE(1, "svm: unexpected exit reason 0x%x\n", exit_code);
3612                 kvm_queue_exception(vcpu, UD_VECTOR);
3613                 return 1;
3614         }
3615
3616         return svm_exit_handlers[exit_code](svm);
3617 }
3618
3619 static void reload_tss(struct kvm_vcpu *vcpu)
3620 {
3621         int cpu = raw_smp_processor_id();
3622
3623         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3624         sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3625         load_TR_desc();
3626 }
3627
3628 static void pre_svm_run(struct vcpu_svm *svm)
3629 {
3630         int cpu = raw_smp_processor_id();
3631
3632         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3633
3634         /* FIXME: handle wraparound of asid_generation */
3635         if (svm->asid_generation != sd->asid_generation)
3636                 new_asid(svm, sd);
3637 }
3638
3639 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3640 {
3641         struct vcpu_svm *svm = to_svm(vcpu);
3642
3643         svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3644         vcpu->arch.hflags |= HF_NMI_MASK;
3645         set_intercept(svm, INTERCEPT_IRET);
3646         ++vcpu->stat.nmi_injections;
3647 }
3648
3649 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
3650 {
3651         struct vmcb_control_area *control;
3652
3653         control = &svm->vmcb->control;
3654         control->int_vector = irq;
3655         control->int_ctl &= ~V_INTR_PRIO_MASK;
3656         control->int_ctl |= V_IRQ_MASK |
3657                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
3658         mark_dirty(svm->vmcb, VMCB_INTR);
3659 }
3660
3661 static void svm_set_irq(struct kvm_vcpu *vcpu)
3662 {
3663         struct vcpu_svm *svm = to_svm(vcpu);
3664
3665         BUG_ON(!(gif_set(svm)));
3666
3667         trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3668         ++vcpu->stat.irq_injections;
3669
3670         svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3671                 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3672 }
3673
3674 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3675 {
3676         struct vcpu_svm *svm = to_svm(vcpu);
3677
3678         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3679                 return;
3680
3681         clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3682
3683         if (irr == -1)
3684                 return;
3685
3686         if (tpr >= irr)
3687                 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3688 }
3689
3690 static void svm_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
3691 {
3692         return;
3693 }
3694
3695 static int svm_cpu_uses_apicv(struct kvm_vcpu *vcpu)
3696 {
3697         return 0;
3698 }
3699
3700 static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu)
3701 {
3702         return;
3703 }
3704
3705 static void svm_sync_pir_to_irr(struct kvm_vcpu *vcpu)
3706 {
3707         return;
3708 }
3709
3710 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
3711 {
3712         struct vcpu_svm *svm = to_svm(vcpu);
3713         struct vmcb *vmcb = svm->vmcb;
3714         int ret;
3715         ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
3716               !(svm->vcpu.arch.hflags & HF_NMI_MASK);
3717         ret = ret && gif_set(svm) && nested_svm_nmi(svm);
3718
3719         return ret;
3720 }
3721
3722 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3723 {
3724         struct vcpu_svm *svm = to_svm(vcpu);
3725
3726         return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3727 }
3728
3729 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3730 {
3731         struct vcpu_svm *svm = to_svm(vcpu);
3732
3733         if (masked) {
3734                 svm->vcpu.arch.hflags |= HF_NMI_MASK;
3735                 set_intercept(svm, INTERCEPT_IRET);
3736         } else {
3737                 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3738                 clr_intercept(svm, INTERCEPT_IRET);
3739         }
3740 }
3741
3742 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
3743 {
3744         struct vcpu_svm *svm = to_svm(vcpu);
3745         struct vmcb *vmcb = svm->vmcb;
3746         int ret;
3747
3748         if (!gif_set(svm) ||
3749              (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
3750                 return 0;
3751
3752         ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
3753
3754         if (is_guest_mode(vcpu))
3755                 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
3756
3757         return ret;
3758 }
3759
3760 static void enable_irq_window(struct kvm_vcpu *vcpu)
3761 {
3762         struct vcpu_svm *svm = to_svm(vcpu);
3763
3764         /*
3765          * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3766          * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3767          * get that intercept, this function will be called again though and
3768          * we'll get the vintr intercept.
3769          */
3770         if (gif_set(svm) && nested_svm_intr(svm)) {
3771                 svm_set_vintr(svm);
3772                 svm_inject_irq(svm, 0x0);
3773         }
3774 }
3775
3776 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3777 {
3778         struct vcpu_svm *svm = to_svm(vcpu);
3779
3780         if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3781             == HF_NMI_MASK)
3782                 return; /* IRET will cause a vm exit */
3783
3784         /*
3785          * Something prevents NMI from been injected. Single step over possible
3786          * problem (IRET or exception injection or interrupt shadow)
3787          */
3788         svm->nmi_singlestep = true;
3789         svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3790 }
3791
3792 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3793 {
3794         return 0;
3795 }
3796
3797 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
3798 {
3799         struct vcpu_svm *svm = to_svm(vcpu);
3800
3801         if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3802                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3803         else
3804                 svm->asid_generation--;
3805 }
3806
3807 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3808 {
3809 }
3810
3811 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3812 {
3813         struct vcpu_svm *svm = to_svm(vcpu);
3814
3815         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3816                 return;
3817
3818         if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
3819                 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3820                 kvm_set_cr8(vcpu, cr8);
3821         }
3822 }
3823
3824 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3825 {
3826         struct vcpu_svm *svm = to_svm(vcpu);
3827         u64 cr8;
3828
3829         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3830                 return;
3831
3832         cr8 = kvm_get_cr8(vcpu);
3833         svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3834         svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3835 }
3836
3837 static void svm_complete_interrupts(struct vcpu_svm *svm)
3838 {
3839         u8 vector;
3840         int type;
3841         u32 exitintinfo = svm->vmcb->control.exit_int_info;
3842         unsigned int3_injected = svm->int3_injected;
3843
3844         svm->int3_injected = 0;
3845
3846         /*
3847          * If we've made progress since setting HF_IRET_MASK, we've
3848          * executed an IRET and can allow NMI injection.
3849          */
3850         if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
3851             && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
3852                 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3853                 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3854         }
3855
3856         svm->vcpu.arch.nmi_injected = false;
3857         kvm_clear_exception_queue(&svm->vcpu);
3858         kvm_clear_interrupt_queue(&svm->vcpu);
3859
3860         if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3861                 return;
3862
3863         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3864
3865         vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3866         type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3867
3868         switch (type) {
3869         case SVM_EXITINTINFO_TYPE_NMI:
3870                 svm->vcpu.arch.nmi_injected = true;
3871                 break;
3872         case SVM_EXITINTINFO_TYPE_EXEPT:
3873                 /*
3874                  * In case of software exceptions, do not reinject the vector,
3875                  * but re-execute the instruction instead. Rewind RIP first
3876                  * if we emulated INT3 before.
3877                  */
3878                 if (kvm_exception_is_soft(vector)) {
3879                         if (vector == BP_VECTOR && int3_injected &&
3880                             kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3881                                 kvm_rip_write(&svm->vcpu,
3882                                               kvm_rip_read(&svm->vcpu) -
3883                                               int3_injected);
3884                         break;
3885                 }
3886                 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3887                         u32 err = svm->vmcb->control.exit_int_info_err;
3888                         kvm_requeue_exception_e(&svm->vcpu, vector, err);
3889
3890                 } else
3891                         kvm_requeue_exception(&svm->vcpu, vector);
3892                 break;
3893         case SVM_EXITINTINFO_TYPE_INTR:
3894                 kvm_queue_interrupt(&svm->vcpu, vector, false);
3895                 break;
3896         default:
3897                 break;
3898         }
3899 }
3900
3901 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3902 {
3903         struct vcpu_svm *svm = to_svm(vcpu);
3904         struct vmcb_control_area *control = &svm->vmcb->control;
3905
3906         control->exit_int_info = control->event_inj;
3907         control->exit_int_info_err = control->event_inj_err;
3908         control->event_inj = 0;
3909         svm_complete_interrupts(svm);
3910 }
3911
3912 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
3913 {
3914         struct vcpu_svm *svm = to_svm(vcpu);
3915
3916         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3917         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3918         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3919
3920         /*
3921          * A vmexit emulation is required before the vcpu can be executed
3922          * again.
3923          */
3924         if (unlikely(svm->nested.exit_required))
3925                 return;
3926
3927         pre_svm_run(svm);
3928
3929         sync_lapic_to_cr8(vcpu);
3930
3931         svm->vmcb->save.cr2 = vcpu->arch.cr2;
3932
3933         clgi();
3934
3935         /*
3936          * If this vCPU has touched SPEC_CTRL, restore the guest's value if
3937          * it's non-zero. Since vmentry is serialising on affected CPUs, there
3938          * is no need to worry about the conditional branch over the wrmsr
3939          * being speculatively taken.
3940          */
3941         x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl);
3942
3943         local_irq_enable();
3944
3945         asm volatile (
3946                 "push %%" _ASM_BP "; \n\t"
3947                 "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
3948                 "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
3949                 "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
3950                 "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
3951                 "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
3952                 "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
3953 #ifdef CONFIG_X86_64
3954                 "mov %c[r8](%[svm]),  %%r8  \n\t"
3955                 "mov %c[r9](%[svm]),  %%r9  \n\t"
3956                 "mov %c[r10](%[svm]), %%r10 \n\t"
3957                 "mov %c[r11](%[svm]), %%r11 \n\t"
3958                 "mov %c[r12](%[svm]), %%r12 \n\t"
3959                 "mov %c[r13](%[svm]), %%r13 \n\t"
3960                 "mov %c[r14](%[svm]), %%r14 \n\t"
3961                 "mov %c[r15](%[svm]), %%r15 \n\t"
3962 #endif
3963
3964                 /* Enter guest mode */
3965                 "push %%" _ASM_AX " \n\t"
3966                 "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
3967                 __ex(SVM_VMLOAD) "\n\t"
3968                 __ex(SVM_VMRUN) "\n\t"
3969                 __ex(SVM_VMSAVE) "\n\t"
3970                 "pop %%" _ASM_AX " \n\t"
3971
3972                 /* Save guest registers, load host registers */
3973                 "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
3974                 "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
3975                 "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
3976                 "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
3977                 "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
3978                 "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
3979 #ifdef CONFIG_X86_64
3980                 "mov %%r8,  %c[r8](%[svm]) \n\t"
3981                 "mov %%r9,  %c[r9](%[svm]) \n\t"
3982                 "mov %%r10, %c[r10](%[svm]) \n\t"
3983                 "mov %%r11, %c[r11](%[svm]) \n\t"
3984                 "mov %%r12, %c[r12](%[svm]) \n\t"
3985                 "mov %%r13, %c[r13](%[svm]) \n\t"
3986                 "mov %%r14, %c[r14](%[svm]) \n\t"
3987                 "mov %%r15, %c[r15](%[svm]) \n\t"
3988 #endif
3989                 /*
3990                 * Clear host registers marked as clobbered to prevent
3991                 * speculative use.
3992                 */
3993                 "xor %%" _ASM_BX ", %%" _ASM_BX " \n\t"
3994                 "xor %%" _ASM_CX ", %%" _ASM_CX " \n\t"
3995                 "xor %%" _ASM_DX ", %%" _ASM_DX " \n\t"
3996                 "xor %%" _ASM_SI ", %%" _ASM_SI " \n\t"
3997                 "xor %%" _ASM_DI ", %%" _ASM_DI " \n\t"
3998 #ifdef CONFIG_X86_64
3999                 "xor %%r8, %%r8 \n\t"
4000                 "xor %%r9, %%r9 \n\t"
4001                 "xor %%r10, %%r10 \n\t"
4002                 "xor %%r11, %%r11 \n\t"
4003                 "xor %%r12, %%r12 \n\t"
4004                 "xor %%r13, %%r13 \n\t"
4005                 "xor %%r14, %%r14 \n\t"
4006                 "xor %%r15, %%r15 \n\t"
4007 #endif
4008                 "pop %%" _ASM_BP
4009                 :
4010                 : [svm]"a"(svm),
4011                   [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
4012                   [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
4013                   [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
4014                   [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
4015                   [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
4016                   [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
4017                   [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
4018 #ifdef CONFIG_X86_64
4019                   , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
4020                   [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
4021                   [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
4022                   [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
4023                   [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
4024                   [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
4025                   [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
4026                   [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
4027 #endif
4028                 : "cc", "memory"
4029 #ifdef CONFIG_X86_64
4030                 , "rbx", "rcx", "rdx", "rsi", "rdi"
4031                 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
4032 #else
4033                 , "ebx", "ecx", "edx", "esi", "edi"
4034 #endif
4035                 );
4036
4037         /* Eliminate branch target predictions from guest mode */
4038         vmexit_fill_RSB();
4039
4040 #ifdef CONFIG_X86_64
4041         wrmsrl(MSR_GS_BASE, svm->host.gs_base);
4042 #else
4043         loadsegment(fs, svm->host.fs);
4044 #ifndef CONFIG_X86_32_LAZY_GS
4045         loadsegment(gs, svm->host.gs);
4046 #endif
4047 #endif
4048
4049         /*
4050          * We do not use IBRS in the kernel. If this vCPU has used the
4051          * SPEC_CTRL MSR it may have left it on; save the value and
4052          * turn it off. This is much more efficient than blindly adding
4053          * it to the atomic save/restore list. Especially as the former
4054          * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
4055          *
4056          * For non-nested case:
4057          * If the L01 MSR bitmap does not intercept the MSR, then we need to
4058          * save it.
4059          *
4060          * For nested case:
4061          * If the L02 MSR bitmap does not intercept the MSR, then we need to
4062          * save it.
4063          */
4064         if (!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL))
4065                 svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
4066
4067         reload_tss(vcpu);
4068
4069         local_irq_disable();
4070
4071         x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl);
4072
4073         vcpu->arch.cr2 = svm->vmcb->save.cr2;
4074         vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
4075         vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
4076         vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
4077
4078         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4079                 kvm_before_handle_nmi(&svm->vcpu);
4080
4081         stgi();
4082
4083         /* Any pending NMI will happen here */
4084
4085         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4086                 kvm_after_handle_nmi(&svm->vcpu);
4087
4088         sync_cr8_to_lapic(vcpu);
4089
4090         svm->next_rip = 0;
4091
4092         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
4093
4094         /* if exit due to PF check for async PF */
4095         if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
4096                 svm->apf_reason = kvm_read_and_reset_pf_reason();
4097
4098         if (npt_enabled) {
4099                 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
4100                 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
4101         }
4102
4103         /*
4104          * We need to handle MC intercepts here before the vcpu has a chance to
4105          * change the physical cpu
4106          */
4107         if (unlikely(svm->vmcb->control.exit_code ==
4108                      SVM_EXIT_EXCP_BASE + MC_VECTOR))
4109                 svm_handle_mce(svm);
4110
4111         mark_all_clean(svm->vmcb);
4112 }
4113
4114 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
4115 {
4116         struct vcpu_svm *svm = to_svm(vcpu);
4117
4118         svm->vmcb->save.cr3 = root;
4119         mark_dirty(svm->vmcb, VMCB_CR);
4120         svm_flush_tlb(vcpu);
4121 }
4122
4123 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
4124 {
4125         struct vcpu_svm *svm = to_svm(vcpu);
4126
4127         svm->vmcb->control.nested_cr3 = root;
4128         mark_dirty(svm->vmcb, VMCB_NPT);
4129
4130         /* Also sync guest cr3 here in case we live migrate */
4131         svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
4132         mark_dirty(svm->vmcb, VMCB_CR);
4133
4134         svm_flush_tlb(vcpu);
4135 }
4136
4137 static int is_disabled(void)
4138 {
4139         u64 vm_cr;
4140
4141         rdmsrl(MSR_VM_CR, vm_cr);
4142         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
4143                 return 1;
4144
4145         return 0;
4146 }
4147
4148 static void
4149 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4150 {
4151         /*
4152          * Patch in the VMMCALL instruction:
4153          */
4154         hypercall[0] = 0x0f;
4155         hypercall[1] = 0x01;
4156         hypercall[2] = 0xd9;
4157 }
4158
4159 static void svm_check_processor_compat(void *rtn)
4160 {
4161         *(int *)rtn = 0;
4162 }
4163
4164 static bool svm_cpu_has_accelerated_tpr(void)
4165 {
4166         return false;
4167 }
4168
4169 static bool svm_has_emulated_msr(int index)
4170 {
4171         switch (index) {
4172         case MSR_IA32_MCG_EXT_CTL:
4173                 return false;
4174         default:
4175                 break;
4176         }
4177
4178         return true;
4179 }
4180
4181 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
4182 {
4183         return 0;
4184 }
4185
4186 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
4187 {
4188         struct vcpu_svm *svm = to_svm(vcpu);
4189
4190         /* Update nrips enabled cache */
4191         svm->nrips_enabled = !!guest_cpuid_has_nrips(&svm->vcpu);
4192 }
4193
4194 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
4195 {
4196         switch (func) {
4197         case 0x80000001:
4198                 if (nested)
4199                         entry->ecx |= (1 << 2); /* Set SVM bit */
4200                 break;
4201         case 0x8000000A:
4202                 entry->eax = 1; /* SVM revision 1 */
4203                 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
4204                                    ASID emulation to nested SVM */
4205                 entry->ecx = 0; /* Reserved */
4206                 entry->edx = 0; /* Per default do not support any
4207                                    additional features */
4208
4209                 /* Support next_rip if host supports it */
4210                 if (boot_cpu_has(X86_FEATURE_NRIPS))
4211                         entry->edx |= SVM_FEATURE_NRIP;
4212
4213                 /* Support NPT for the guest if enabled */
4214                 if (npt_enabled)
4215                         entry->edx |= SVM_FEATURE_NPT;
4216
4217                 break;
4218         }
4219 }
4220
4221 static int svm_get_lpage_level(void)
4222 {
4223         return PT_PDPE_LEVEL;
4224 }
4225
4226 static bool svm_rdtscp_supported(void)
4227 {
4228         return false;
4229 }
4230
4231 static bool svm_invpcid_supported(void)
4232 {
4233         return false;
4234 }
4235
4236 static bool svm_mpx_supported(void)
4237 {
4238         return false;
4239 }
4240
4241 static bool svm_xsaves_supported(void)
4242 {
4243         return false;
4244 }
4245
4246 static bool svm_has_wbinvd_exit(void)
4247 {
4248         return true;
4249 }
4250
4251 static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
4252 {
4253         struct vcpu_svm *svm = to_svm(vcpu);
4254
4255         set_exception_intercept(svm, NM_VECTOR);
4256         update_cr0_intercept(svm);
4257 }
4258
4259 #define PRE_EX(exit)  { .exit_code = (exit), \
4260                         .stage = X86_ICPT_PRE_EXCEPT, }
4261 #define POST_EX(exit) { .exit_code = (exit), \
4262                         .stage = X86_ICPT_POST_EXCEPT, }
4263 #define POST_MEM(exit) { .exit_code = (exit), \
4264                         .stage = X86_ICPT_POST_MEMACCESS, }
4265
4266 static const struct __x86_intercept {
4267         u32 exit_code;
4268         enum x86_intercept_stage stage;
4269 } x86_intercept_map[] = {
4270         [x86_intercept_cr_read]         = POST_EX(SVM_EXIT_READ_CR0),
4271         [x86_intercept_cr_write]        = POST_EX(SVM_EXIT_WRITE_CR0),
4272         [x86_intercept_clts]            = POST_EX(SVM_EXIT_WRITE_CR0),
4273         [x86_intercept_lmsw]            = POST_EX(SVM_EXIT_WRITE_CR0),
4274         [x86_intercept_smsw]            = POST_EX(SVM_EXIT_READ_CR0),
4275         [x86_intercept_dr_read]         = POST_EX(SVM_EXIT_READ_DR0),
4276         [x86_intercept_dr_write]        = POST_EX(SVM_EXIT_WRITE_DR0),
4277         [x86_intercept_sldt]            = POST_EX(SVM_EXIT_LDTR_READ),
4278         [x86_intercept_str]             = POST_EX(SVM_EXIT_TR_READ),
4279         [x86_intercept_lldt]            = POST_EX(SVM_EXIT_LDTR_WRITE),
4280         [x86_intercept_ltr]             = POST_EX(SVM_EXIT_TR_WRITE),
4281         [x86_intercept_sgdt]            = POST_EX(SVM_EXIT_GDTR_READ),
4282         [x86_intercept_sidt]            = POST_EX(SVM_EXIT_IDTR_READ),
4283         [x86_intercept_lgdt]            = POST_EX(SVM_EXIT_GDTR_WRITE),
4284         [x86_intercept_lidt]            = POST_EX(SVM_EXIT_IDTR_WRITE),
4285         [x86_intercept_vmrun]           = POST_EX(SVM_EXIT_VMRUN),
4286         [x86_intercept_vmmcall]         = POST_EX(SVM_EXIT_VMMCALL),
4287         [x86_intercept_vmload]          = POST_EX(SVM_EXIT_VMLOAD),
4288         [x86_intercept_vmsave]          = POST_EX(SVM_EXIT_VMSAVE),
4289         [x86_intercept_stgi]            = POST_EX(SVM_EXIT_STGI),
4290         [x86_intercept_clgi]            = POST_EX(SVM_EXIT_CLGI),
4291         [x86_intercept_skinit]          = POST_EX(SVM_EXIT_SKINIT),
4292         [x86_intercept_invlpga]         = POST_EX(SVM_EXIT_INVLPGA),
4293         [x86_intercept_rdtscp]          = POST_EX(SVM_EXIT_RDTSCP),
4294         [x86_intercept_monitor]         = POST_MEM(SVM_EXIT_MONITOR),
4295         [x86_intercept_mwait]           = POST_EX(SVM_EXIT_MWAIT),
4296         [x86_intercept_invlpg]          = POST_EX(SVM_EXIT_INVLPG),
4297         [x86_intercept_invd]            = POST_EX(SVM_EXIT_INVD),
4298         [x86_intercept_wbinvd]          = POST_EX(SVM_EXIT_WBINVD),
4299         [x86_intercept_wrmsr]           = POST_EX(SVM_EXIT_MSR),
4300         [x86_intercept_rdtsc]           = POST_EX(SVM_EXIT_RDTSC),
4301         [x86_intercept_rdmsr]           = POST_EX(SVM_EXIT_MSR),
4302         [x86_intercept_rdpmc]           = POST_EX(SVM_EXIT_RDPMC),
4303         [x86_intercept_cpuid]           = PRE_EX(SVM_EXIT_CPUID),
4304         [x86_intercept_rsm]             = PRE_EX(SVM_EXIT_RSM),
4305         [x86_intercept_pause]           = PRE_EX(SVM_EXIT_PAUSE),
4306         [x86_intercept_pushf]           = PRE_EX(SVM_EXIT_PUSHF),
4307         [x86_intercept_popf]            = PRE_EX(SVM_EXIT_POPF),
4308         [x86_intercept_intn]            = PRE_EX(SVM_EXIT_SWINT),
4309         [x86_intercept_iret]            = PRE_EX(SVM_EXIT_IRET),
4310         [x86_intercept_icebp]           = PRE_EX(SVM_EXIT_ICEBP),
4311         [x86_intercept_hlt]             = POST_EX(SVM_EXIT_HLT),
4312         [x86_intercept_in]              = POST_EX(SVM_EXIT_IOIO),
4313         [x86_intercept_ins]             = POST_EX(SVM_EXIT_IOIO),
4314         [x86_intercept_out]             = POST_EX(SVM_EXIT_IOIO),
4315         [x86_intercept_outs]            = POST_EX(SVM_EXIT_IOIO),
4316 };
4317
4318 #undef PRE_EX
4319 #undef POST_EX
4320 #undef POST_MEM
4321
4322 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4323                                struct x86_instruction_info *info,
4324                                enum x86_intercept_stage stage)
4325 {
4326         struct vcpu_svm *svm = to_svm(vcpu);
4327         int vmexit, ret = X86EMUL_CONTINUE;
4328         struct __x86_intercept icpt_info;
4329         struct vmcb *vmcb = svm->vmcb;
4330
4331         if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4332                 goto out;
4333
4334         icpt_info = x86_intercept_map[info->intercept];
4335
4336         if (stage != icpt_info.stage)
4337                 goto out;
4338
4339         switch (icpt_info.exit_code) {
4340         case SVM_EXIT_READ_CR0:
4341                 if (info->intercept == x86_intercept_cr_read)
4342                         icpt_info.exit_code += info->modrm_reg;
4343                 break;
4344         case SVM_EXIT_WRITE_CR0: {
4345                 unsigned long cr0, val;
4346                 u64 intercept;
4347
4348                 if (info->intercept == x86_intercept_cr_write)
4349                         icpt_info.exit_code += info->modrm_reg;
4350
4351                 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4352                     info->intercept == x86_intercept_clts)
4353                         break;
4354
4355                 intercept = svm->nested.intercept;
4356
4357                 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
4358                         break;
4359
4360                 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4361                 val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
4362
4363                 if (info->intercept == x86_intercept_lmsw) {
4364                         cr0 &= 0xfUL;
4365                         val &= 0xfUL;
4366                         /* lmsw can't clear PE - catch this here */
4367                         if (cr0 & X86_CR0_PE)
4368                                 val |= X86_CR0_PE;
4369                 }
4370
4371                 if (cr0 ^ val)
4372                         icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4373
4374                 break;
4375         }
4376         case SVM_EXIT_READ_DR0:
4377         case SVM_EXIT_WRITE_DR0:
4378                 icpt_info.exit_code += info->modrm_reg;
4379                 break;
4380         case SVM_EXIT_MSR:
4381                 if (info->intercept == x86_intercept_wrmsr)
4382                         vmcb->control.exit_info_1 = 1;
4383                 else
4384                         vmcb->control.exit_info_1 = 0;
4385                 break;
4386         case SVM_EXIT_PAUSE:
4387                 /*
4388                  * We get this for NOP only, but pause
4389                  * is rep not, check this here
4390                  */
4391                 if (info->rep_prefix != REPE_PREFIX)
4392                         goto out;
4393         case SVM_EXIT_IOIO: {
4394                 u64 exit_info;
4395                 u32 bytes;
4396
4397                 if (info->intercept == x86_intercept_in ||
4398                     info->intercept == x86_intercept_ins) {
4399                         exit_info = ((info->src_val & 0xffff) << 16) |
4400                                 SVM_IOIO_TYPE_MASK;
4401                         bytes = info->dst_bytes;
4402                 } else {
4403                         exit_info = (info->dst_val & 0xffff) << 16;
4404                         bytes = info->src_bytes;
4405                 }
4406
4407                 if (info->intercept == x86_intercept_outs ||
4408                     info->intercept == x86_intercept_ins)
4409                         exit_info |= SVM_IOIO_STR_MASK;
4410
4411                 if (info->rep_prefix)
4412                         exit_info |= SVM_IOIO_REP_MASK;
4413
4414                 bytes = min(bytes, 4u);
4415
4416                 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4417
4418                 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4419
4420                 vmcb->control.exit_info_1 = exit_info;
4421                 vmcb->control.exit_info_2 = info->next_rip;
4422
4423                 break;
4424         }
4425         default:
4426                 break;
4427         }
4428
4429         /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4430         if (static_cpu_has(X86_FEATURE_NRIPS))
4431                 vmcb->control.next_rip  = info->next_rip;
4432         vmcb->control.exit_code = icpt_info.exit_code;
4433         vmexit = nested_svm_exit_handled(svm);
4434
4435         ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4436                                            : X86EMUL_CONTINUE;
4437
4438 out:
4439         return ret;
4440 }
4441
4442 static void svm_handle_external_intr(struct kvm_vcpu *vcpu)
4443 {
4444         local_irq_enable();
4445 }
4446
4447 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
4448 {
4449 }
4450
4451 static struct kvm_x86_ops svm_x86_ops = {
4452         .cpu_has_kvm_support = has_svm,
4453         .disabled_by_bios = is_disabled,
4454         .hardware_setup = svm_hardware_setup,
4455         .hardware_unsetup = svm_hardware_unsetup,
4456         .check_processor_compatibility = svm_check_processor_compat,
4457         .hardware_enable = svm_hardware_enable,
4458         .hardware_disable = svm_hardware_disable,
4459         .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
4460         .has_emulated_msr = svm_has_emulated_msr,
4461
4462         .vcpu_create = svm_create_vcpu,
4463         .vcpu_free = svm_free_vcpu,
4464         .vcpu_reset = svm_vcpu_reset,
4465
4466         .prepare_guest_switch = svm_prepare_guest_switch,
4467         .vcpu_load = svm_vcpu_load,
4468         .vcpu_put = svm_vcpu_put,
4469
4470         .update_bp_intercept = update_bp_intercept,
4471         .get_msr = svm_get_msr,
4472         .set_msr = svm_set_msr,
4473         .get_segment_base = svm_get_segment_base,
4474         .get_segment = svm_get_segment,
4475         .set_segment = svm_set_segment,
4476         .get_cpl = svm_get_cpl,
4477         .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
4478         .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
4479         .decache_cr3 = svm_decache_cr3,
4480         .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
4481         .set_cr0 = svm_set_cr0,
4482         .set_cr3 = svm_set_cr3,
4483         .set_cr4 = svm_set_cr4,
4484         .set_efer = svm_set_efer,
4485         .get_idt = svm_get_idt,
4486         .set_idt = svm_set_idt,
4487         .get_gdt = svm_get_gdt,
4488         .set_gdt = svm_set_gdt,
4489         .get_dr6 = svm_get_dr6,
4490         .set_dr6 = svm_set_dr6,
4491         .set_dr7 = svm_set_dr7,
4492         .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4493         .cache_reg = svm_cache_reg,
4494         .get_rflags = svm_get_rflags,
4495         .set_rflags = svm_set_rflags,
4496         .fpu_activate = svm_fpu_activate,
4497         .fpu_deactivate = svm_fpu_deactivate,
4498
4499         .tlb_flush = svm_flush_tlb,
4500
4501         .run = svm_vcpu_run,
4502         .handle_exit = handle_exit,
4503         .skip_emulated_instruction = skip_emulated_instruction,
4504         .set_interrupt_shadow = svm_set_interrupt_shadow,
4505         .get_interrupt_shadow = svm_get_interrupt_shadow,
4506         .patch_hypercall = svm_patch_hypercall,
4507         .set_irq = svm_set_irq,
4508         .set_nmi = svm_inject_nmi,
4509         .queue_exception = svm_queue_exception,
4510         .cancel_injection = svm_cancel_injection,
4511         .interrupt_allowed = svm_interrupt_allowed,
4512         .nmi_allowed = svm_nmi_allowed,
4513         .get_nmi_mask = svm_get_nmi_mask,
4514         .set_nmi_mask = svm_set_nmi_mask,
4515         .enable_nmi_window = enable_nmi_window,
4516         .enable_irq_window = enable_irq_window,
4517         .update_cr8_intercept = update_cr8_intercept,
4518         .set_virtual_x2apic_mode = svm_set_virtual_x2apic_mode,
4519         .cpu_uses_apicv = svm_cpu_uses_apicv,
4520         .load_eoi_exitmap = svm_load_eoi_exitmap,
4521         .sync_pir_to_irr = svm_sync_pir_to_irr,
4522
4523         .set_tss_addr = svm_set_tss_addr,
4524         .get_tdp_level = get_npt_level,
4525         .get_mt_mask = svm_get_mt_mask,
4526
4527         .get_exit_info = svm_get_exit_info,
4528
4529         .get_lpage_level = svm_get_lpage_level,
4530
4531         .cpuid_update = svm_cpuid_update,
4532
4533         .rdtscp_supported = svm_rdtscp_supported,
4534         .invpcid_supported = svm_invpcid_supported,
4535         .mpx_supported = svm_mpx_supported,
4536         .xsaves_supported = svm_xsaves_supported,
4537
4538         .set_supported_cpuid = svm_set_supported_cpuid,
4539
4540         .has_wbinvd_exit = svm_has_wbinvd_exit,
4541
4542         .read_tsc_offset = svm_read_tsc_offset,
4543         .write_tsc_offset = svm_write_tsc_offset,
4544         .adjust_tsc_offset_guest = svm_adjust_tsc_offset_guest,
4545         .read_l1_tsc = svm_read_l1_tsc,
4546
4547         .set_tdp_cr3 = set_tdp_cr3,
4548
4549         .check_intercept = svm_check_intercept,
4550         .handle_external_intr = svm_handle_external_intr,
4551
4552         .sched_in = svm_sched_in,
4553
4554         .pmu_ops = &amd_pmu_ops,
4555 };
4556
4557 static int __init svm_init(void)
4558 {
4559         return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
4560                         __alignof__(struct vcpu_svm), THIS_MODULE);
4561 }
4562
4563 static void __exit svm_exit(void)
4564 {
4565         kvm_exit();
4566 }
4567
4568 module_init(svm_init)
4569 module_exit(svm_exit)