GNU Linux-libre 4.19.264-gnu1
[releases.git] / arch / x86 / math-emu / errors.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*---------------------------------------------------------------------------+
3  |  errors.c                                                                 |
4  |                                                                           |
5  |  The error handling functions for wm-FPU-emu                              |
6  |                                                                           |
7  | Copyright (C) 1992,1993,1994,1996                                         |
8  |                  W. Metzenthen, 22 Parker St, Ormond, Vic 3163, Australia |
9  |                  E-mail   billm@jacobi.maths.monash.edu.au                |
10  |                                                                           |
11  |                                                                           |
12  +---------------------------------------------------------------------------*/
13
14 /*---------------------------------------------------------------------------+
15  | Note:                                                                     |
16  |    The file contains code which accesses user memory.                     |
17  |    Emulator static data may change when user memory is accessed, due to   |
18  |    other processes using the emulator while swapping is in progress.      |
19  +---------------------------------------------------------------------------*/
20
21 #include <linux/signal.h>
22
23 #include <linux/uaccess.h>
24
25 #include "fpu_emu.h"
26 #include "fpu_system.h"
27 #include "exception.h"
28 #include "status_w.h"
29 #include "control_w.h"
30 #include "reg_constant.h"
31 #include "version.h"
32
33 /* */
34 #undef PRINT_MESSAGES
35 /* */
36
37 #if 0
38 void Un_impl(void)
39 {
40         u_char byte1, FPU_modrm;
41         unsigned long address = FPU_ORIG_EIP;
42
43         RE_ENTRANT_CHECK_OFF;
44         /* No need to check access_ok(), we have previously fetched these bytes. */
45         printk("Unimplemented FPU Opcode at eip=%p : ", (void __user *)address);
46         if (FPU_CS == __USER_CS) {
47                 while (1) {
48                         FPU_get_user(byte1, (u_char __user *) address);
49                         if ((byte1 & 0xf8) == 0xd8)
50                                 break;
51                         printk("[%02x]", byte1);
52                         address++;
53                 }
54                 printk("%02x ", byte1);
55                 FPU_get_user(FPU_modrm, 1 + (u_char __user *) address);
56
57                 if (FPU_modrm >= 0300)
58                         printk("%02x (%02x+%d)\n", FPU_modrm, FPU_modrm & 0xf8,
59                                FPU_modrm & 7);
60                 else
61                         printk("/%d\n", (FPU_modrm >> 3) & 7);
62         } else {
63                 printk("cs selector = %04x\n", FPU_CS);
64         }
65
66         RE_ENTRANT_CHECK_ON;
67
68         EXCEPTION(EX_Invalid);
69
70 }
71 #endif /*  0  */
72
73 /*
74    Called for opcodes which are illegal and which are known to result in a
75    SIGILL with a real 80486.
76    */
77 void FPU_illegal(void)
78 {
79         math_abort(FPU_info, SIGILL);
80 }
81
82 void FPU_printall(void)
83 {
84         int i;
85         static const char *tag_desc[] = { "Valid", "Zero", "ERROR", "Empty",
86                 "DeNorm", "Inf", "NaN"
87         };
88         u_char byte1, FPU_modrm;
89         unsigned long address = FPU_ORIG_EIP;
90
91         RE_ENTRANT_CHECK_OFF;
92         /* No need to check access_ok(), we have previously fetched these bytes. */
93         printk("At %p:", (void *)address);
94         if (FPU_CS == __USER_CS) {
95 #define MAX_PRINTED_BYTES 20
96                 for (i = 0; i < MAX_PRINTED_BYTES; i++) {
97                         FPU_get_user(byte1, (u_char __user *) address);
98                         if ((byte1 & 0xf8) == 0xd8) {
99                                 printk(" %02x", byte1);
100                                 break;
101                         }
102                         printk(" [%02x]", byte1);
103                         address++;
104                 }
105                 if (i == MAX_PRINTED_BYTES)
106                         printk(" [more..]\n");
107                 else {
108                         FPU_get_user(FPU_modrm, 1 + (u_char __user *) address);
109
110                         if (FPU_modrm >= 0300)
111                                 printk(" %02x (%02x+%d)\n", FPU_modrm,
112                                        FPU_modrm & 0xf8, FPU_modrm & 7);
113                         else
114                                 printk(" /%d, mod=%d rm=%d\n",
115                                        (FPU_modrm >> 3) & 7,
116                                        (FPU_modrm >> 6) & 3, FPU_modrm & 7);
117                 }
118         } else {
119                 printk("%04x\n", FPU_CS);
120         }
121
122         partial_status = status_word();
123
124 #ifdef DEBUGGING
125         if (partial_status & SW_Backward)
126                 printk("SW: backward compatibility\n");
127         if (partial_status & SW_C3)
128                 printk("SW: condition bit 3\n");
129         if (partial_status & SW_C2)
130                 printk("SW: condition bit 2\n");
131         if (partial_status & SW_C1)
132                 printk("SW: condition bit 1\n");
133         if (partial_status & SW_C0)
134                 printk("SW: condition bit 0\n");
135         if (partial_status & SW_Summary)
136                 printk("SW: exception summary\n");
137         if (partial_status & SW_Stack_Fault)
138                 printk("SW: stack fault\n");
139         if (partial_status & SW_Precision)
140                 printk("SW: loss of precision\n");
141         if (partial_status & SW_Underflow)
142                 printk("SW: underflow\n");
143         if (partial_status & SW_Overflow)
144                 printk("SW: overflow\n");
145         if (partial_status & SW_Zero_Div)
146                 printk("SW: divide by zero\n");
147         if (partial_status & SW_Denorm_Op)
148                 printk("SW: denormalized operand\n");
149         if (partial_status & SW_Invalid)
150                 printk("SW: invalid operation\n");
151 #endif /* DEBUGGING */
152
153         printk(" SW: b=%d st=%d es=%d sf=%d cc=%d%d%d%d ef=%d%d%d%d%d%d\n", partial_status & 0x8000 ? 1 : 0,    /* busy */
154                (partial_status & 0x3800) >> 11, /* stack top pointer */
155                partial_status & 0x80 ? 1 : 0,   /* Error summary status */
156                partial_status & 0x40 ? 1 : 0,   /* Stack flag */
157                partial_status & SW_C3 ? 1 : 0, partial_status & SW_C2 ? 1 : 0,  /* cc */
158                partial_status & SW_C1 ? 1 : 0, partial_status & SW_C0 ? 1 : 0,  /* cc */
159                partial_status & SW_Precision ? 1 : 0,
160                partial_status & SW_Underflow ? 1 : 0,
161                partial_status & SW_Overflow ? 1 : 0,
162                partial_status & SW_Zero_Div ? 1 : 0,
163                partial_status & SW_Denorm_Op ? 1 : 0,
164                partial_status & SW_Invalid ? 1 : 0);
165
166         printk(" CW: ic=%d rc=%d%d pc=%d%d iem=%d     ef=%d%d%d%d%d%d\n",
167                control_word & 0x1000 ? 1 : 0,
168                (control_word & 0x800) >> 11, (control_word & 0x400) >> 10,
169                (control_word & 0x200) >> 9, (control_word & 0x100) >> 8,
170                control_word & 0x80 ? 1 : 0,
171                control_word & SW_Precision ? 1 : 0,
172                control_word & SW_Underflow ? 1 : 0,
173                control_word & SW_Overflow ? 1 : 0,
174                control_word & SW_Zero_Div ? 1 : 0,
175                control_word & SW_Denorm_Op ? 1 : 0,
176                control_word & SW_Invalid ? 1 : 0);
177
178         for (i = 0; i < 8; i++) {
179                 FPU_REG *r = &st(i);
180                 u_char tagi = FPU_gettagi(i);
181                 switch (tagi) {
182                 case TAG_Empty:
183                         continue;
184                         break;
185                 case TAG_Zero:
186                 case TAG_Special:
187                         tagi = FPU_Special(r);
188                 case TAG_Valid:
189                         printk("st(%d)  %c .%04lx %04lx %04lx %04lx e%+-6d ", i,
190                                getsign(r) ? '-' : '+',
191                                (long)(r->sigh >> 16),
192                                (long)(r->sigh & 0xFFFF),
193                                (long)(r->sigl >> 16),
194                                (long)(r->sigl & 0xFFFF),
195                                exponent(r) - EXP_BIAS + 1);
196                         break;
197                 default:
198                         printk("Whoops! Error in errors.c: tag%d is %d ", i,
199                                tagi);
200                         continue;
201                         break;
202                 }
203                 printk("%s\n", tag_desc[(int)(unsigned)tagi]);
204         }
205
206         RE_ENTRANT_CHECK_ON;
207
208 }
209
210 static struct {
211         int type;
212         const char *name;
213 } exception_names[] = {
214         {
215         EX_StackOver, "stack overflow"}, {
216         EX_StackUnder, "stack underflow"}, {
217         EX_Precision, "loss of precision"}, {
218         EX_Underflow, "underflow"}, {
219         EX_Overflow, "overflow"}, {
220         EX_ZeroDiv, "divide by zero"}, {
221         EX_Denormal, "denormalized operand"}, {
222         EX_Invalid, "invalid operation"}, {
223         EX_INTERNAL, "INTERNAL BUG in " FPU_VERSION}, {
224         0, NULL}
225 };
226
227 /*
228  EX_INTERNAL is always given with a code which indicates where the
229  error was detected.
230
231  Internal error types:
232        0x14   in fpu_etc.c
233        0x1nn  in a *.c file:
234               0x101  in reg_add_sub.c
235               0x102  in reg_mul.c
236               0x104  in poly_atan.c
237               0x105  in reg_mul.c
238               0x107  in fpu_trig.c
239               0x108  in reg_compare.c
240               0x109  in reg_compare.c
241               0x110  in reg_add_sub.c
242               0x111  in fpe_entry.c
243               0x112  in fpu_trig.c
244               0x113  in errors.c
245               0x115  in fpu_trig.c
246               0x116  in fpu_trig.c
247               0x117  in fpu_trig.c
248               0x118  in fpu_trig.c
249               0x119  in fpu_trig.c
250               0x120  in poly_atan.c
251               0x121  in reg_compare.c
252               0x122  in reg_compare.c
253               0x123  in reg_compare.c
254               0x125  in fpu_trig.c
255               0x126  in fpu_entry.c
256               0x127  in poly_2xm1.c
257               0x128  in fpu_entry.c
258               0x129  in fpu_entry.c
259               0x130  in get_address.c
260               0x131  in get_address.c
261               0x132  in get_address.c
262               0x133  in get_address.c
263               0x140  in load_store.c
264               0x141  in load_store.c
265               0x150  in poly_sin.c
266               0x151  in poly_sin.c
267               0x160  in reg_ld_str.c
268               0x161  in reg_ld_str.c
269               0x162  in reg_ld_str.c
270               0x163  in reg_ld_str.c
271               0x164  in reg_ld_str.c
272               0x170  in fpu_tags.c
273               0x171  in fpu_tags.c
274               0x172  in fpu_tags.c
275               0x180  in reg_convert.c
276        0x2nn  in an *.S file:
277               0x201  in reg_u_add.S
278               0x202  in reg_u_div.S
279               0x203  in reg_u_div.S
280               0x204  in reg_u_div.S
281               0x205  in reg_u_mul.S
282               0x206  in reg_u_sub.S
283               0x207  in wm_sqrt.S
284               0x208  in reg_div.S
285               0x209  in reg_u_sub.S
286               0x210  in reg_u_sub.S
287               0x211  in reg_u_sub.S
288               0x212  in reg_u_sub.S
289               0x213  in wm_sqrt.S
290               0x214  in wm_sqrt.S
291               0x215  in wm_sqrt.S
292               0x220  in reg_norm.S
293               0x221  in reg_norm.S
294               0x230  in reg_round.S
295               0x231  in reg_round.S
296               0x232  in reg_round.S
297               0x233  in reg_round.S
298               0x234  in reg_round.S
299               0x235  in reg_round.S
300               0x236  in reg_round.S
301               0x240  in div_Xsig.S
302               0x241  in div_Xsig.S
303               0x242  in div_Xsig.S
304  */
305
306 asmlinkage __visible void FPU_exception(int n)
307 {
308         int i, int_type;
309
310         int_type = 0;           /* Needed only to stop compiler warnings */
311         if (n & EX_INTERNAL) {
312                 int_type = n - EX_INTERNAL;
313                 n = EX_INTERNAL;
314                 /* Set lots of exception bits! */
315                 partial_status |= (SW_Exc_Mask | SW_Summary | SW_Backward);
316         } else {
317                 /* Extract only the bits which we use to set the status word */
318                 n &= (SW_Exc_Mask);
319                 /* Set the corresponding exception bit */
320                 partial_status |= n;
321                 /* Set summary bits iff exception isn't masked */
322                 if (partial_status & ~control_word & CW_Exceptions)
323                         partial_status |= (SW_Summary | SW_Backward);
324                 if (n & (SW_Stack_Fault | EX_Precision)) {
325                         if (!(n & SW_C1))
326                                 /* This bit distinguishes over- from underflow for a stack fault,
327                                    and roundup from round-down for precision loss. */
328                                 partial_status &= ~SW_C1;
329                 }
330         }
331
332         RE_ENTRANT_CHECK_OFF;
333         if ((~control_word & n & CW_Exceptions) || (n == EX_INTERNAL)) {
334                 /* Get a name string for error reporting */
335                 for (i = 0; exception_names[i].type; i++)
336                         if ((exception_names[i].type & n) ==
337                             exception_names[i].type)
338                                 break;
339
340                 if (exception_names[i].type) {
341 #ifdef PRINT_MESSAGES
342                         printk("FP Exception: %s!\n", exception_names[i].name);
343 #endif /* PRINT_MESSAGES */
344                 } else
345                         printk("FPU emulator: Unknown Exception: 0x%04x!\n", n);
346
347                 if (n == EX_INTERNAL) {
348                         printk("FPU emulator: Internal error type 0x%04x\n",
349                                int_type);
350                         FPU_printall();
351                 }
352 #ifdef PRINT_MESSAGES
353                 else
354                         FPU_printall();
355 #endif /* PRINT_MESSAGES */
356
357                 /*
358                  * The 80486 generates an interrupt on the next non-control FPU
359                  * instruction. So we need some means of flagging it.
360                  * We use the ES (Error Summary) bit for this.
361                  */
362         }
363         RE_ENTRANT_CHECK_ON;
364
365 #ifdef __DEBUG__
366         math_abort(FPU_info, SIGFPE);
367 #endif /* __DEBUG__ */
368
369 }
370
371 /* Real operation attempted on a NaN. */
372 /* Returns < 0 if the exception is unmasked */
373 int real_1op_NaN(FPU_REG *a)
374 {
375         int signalling, isNaN;
376
377         isNaN = (exponent(a) == EXP_OVER) && (a->sigh & 0x80000000);
378
379         /* The default result for the case of two "equal" NaNs (signs may
380            differ) is chosen to reproduce 80486 behaviour */
381         signalling = isNaN && !(a->sigh & 0x40000000);
382
383         if (!signalling) {
384                 if (!isNaN) {   /* pseudo-NaN, or other unsupported? */
385                         if (control_word & CW_Invalid) {
386                                 /* Masked response */
387                                 reg_copy(&CONST_QNaN, a);
388                         }
389                         EXCEPTION(EX_Invalid);
390                         return (!(control_word & CW_Invalid) ? FPU_Exception :
391                                 0) | TAG_Special;
392                 }
393                 return TAG_Special;
394         }
395
396         if (control_word & CW_Invalid) {
397                 /* The masked response */
398                 if (!(a->sigh & 0x80000000)) {  /* pseudo-NaN ? */
399                         reg_copy(&CONST_QNaN, a);
400                 }
401                 /* ensure a Quiet NaN */
402                 a->sigh |= 0x40000000;
403         }
404
405         EXCEPTION(EX_Invalid);
406
407         return (!(control_word & CW_Invalid) ? FPU_Exception : 0) | TAG_Special;
408 }
409
410 /* Real operation attempted on two operands, one a NaN. */
411 /* Returns < 0 if the exception is unmasked */
412 int real_2op_NaN(FPU_REG const *b, u_char tagb,
413                  int deststnr, FPU_REG const *defaultNaN)
414 {
415         FPU_REG *dest = &st(deststnr);
416         FPU_REG const *a = dest;
417         u_char taga = FPU_gettagi(deststnr);
418         FPU_REG const *x;
419         int signalling, unsupported;
420
421         if (taga == TAG_Special)
422                 taga = FPU_Special(a);
423         if (tagb == TAG_Special)
424                 tagb = FPU_Special(b);
425
426         /* TW_NaN is also used for unsupported data types. */
427         unsupported = ((taga == TW_NaN)
428                        && !((exponent(a) == EXP_OVER)
429                             && (a->sigh & 0x80000000)))
430             || ((tagb == TW_NaN)
431                 && !((exponent(b) == EXP_OVER) && (b->sigh & 0x80000000)));
432         if (unsupported) {
433                 if (control_word & CW_Invalid) {
434                         /* Masked response */
435                         FPU_copy_to_regi(&CONST_QNaN, TAG_Special, deststnr);
436                 }
437                 EXCEPTION(EX_Invalid);
438                 return (!(control_word & CW_Invalid) ? FPU_Exception : 0) |
439                     TAG_Special;
440         }
441
442         if (taga == TW_NaN) {
443                 x = a;
444                 if (tagb == TW_NaN) {
445                         signalling = !(a->sigh & b->sigh & 0x40000000);
446                         if (significand(b) > significand(a))
447                                 x = b;
448                         else if (significand(b) == significand(a)) {
449                                 /* The default result for the case of two "equal" NaNs (signs may
450                                    differ) is chosen to reproduce 80486 behaviour */
451                                 x = defaultNaN;
452                         }
453                 } else {
454                         /* return the quiet version of the NaN in a */
455                         signalling = !(a->sigh & 0x40000000);
456                 }
457         } else
458 #ifdef PARANOID
459         if (tagb == TW_NaN)
460 #endif /* PARANOID */
461         {
462                 signalling = !(b->sigh & 0x40000000);
463                 x = b;
464         }
465 #ifdef PARANOID
466         else {
467                 signalling = 0;
468                 EXCEPTION(EX_INTERNAL | 0x113);
469                 x = &CONST_QNaN;
470         }
471 #endif /* PARANOID */
472
473         if ((!signalling) || (control_word & CW_Invalid)) {
474                 if (!x)
475                         x = b;
476
477                 if (!(x->sigh & 0x80000000))    /* pseudo-NaN ? */
478                         x = &CONST_QNaN;
479
480                 FPU_copy_to_regi(x, TAG_Special, deststnr);
481
482                 if (!signalling)
483                         return TAG_Special;
484
485                 /* ensure a Quiet NaN */
486                 dest->sigh |= 0x40000000;
487         }
488
489         EXCEPTION(EX_Invalid);
490
491         return (!(control_word & CW_Invalid) ? FPU_Exception : 0) | TAG_Special;
492 }
493
494 /* Invalid arith operation on Valid registers */
495 /* Returns < 0 if the exception is unmasked */
496 asmlinkage __visible int arith_invalid(int deststnr)
497 {
498
499         EXCEPTION(EX_Invalid);
500
501         if (control_word & CW_Invalid) {
502                 /* The masked response */
503                 FPU_copy_to_regi(&CONST_QNaN, TAG_Special, deststnr);
504         }
505
506         return (!(control_word & CW_Invalid) ? FPU_Exception : 0) | TAG_Valid;
507
508 }
509
510 /* Divide a finite number by zero */
511 asmlinkage __visible int FPU_divide_by_zero(int deststnr, u_char sign)
512 {
513         FPU_REG *dest = &st(deststnr);
514         int tag = TAG_Valid;
515
516         if (control_word & CW_ZeroDiv) {
517                 /* The masked response */
518                 FPU_copy_to_regi(&CONST_INF, TAG_Special, deststnr);
519                 setsign(dest, sign);
520                 tag = TAG_Special;
521         }
522
523         EXCEPTION(EX_ZeroDiv);
524
525         return (!(control_word & CW_ZeroDiv) ? FPU_Exception : 0) | tag;
526
527 }
528
529 /* This may be called often, so keep it lean */
530 int set_precision_flag(int flags)
531 {
532         if (control_word & CW_Precision) {
533                 partial_status &= ~(SW_C1 & flags);
534                 partial_status |= flags;        /* The masked response */
535                 return 0;
536         } else {
537                 EXCEPTION(flags);
538                 return 1;
539         }
540 }
541
542 /* This may be called often, so keep it lean */
543 asmlinkage __visible void set_precision_flag_up(void)
544 {
545         if (control_word & CW_Precision)
546                 partial_status |= (SW_Precision | SW_C1);       /* The masked response */
547         else
548                 EXCEPTION(EX_Precision | SW_C1);
549 }
550
551 /* This may be called often, so keep it lean */
552 asmlinkage __visible void set_precision_flag_down(void)
553 {
554         if (control_word & CW_Precision) {      /* The masked response */
555                 partial_status &= ~SW_C1;
556                 partial_status |= SW_Precision;
557         } else
558                 EXCEPTION(EX_Precision);
559 }
560
561 asmlinkage __visible int denormal_operand(void)
562 {
563         if (control_word & CW_Denormal) {       /* The masked response */
564                 partial_status |= SW_Denorm_Op;
565                 return TAG_Special;
566         } else {
567                 EXCEPTION(EX_Denormal);
568                 return TAG_Special | FPU_Exception;
569         }
570 }
571
572 asmlinkage __visible int arith_overflow(FPU_REG *dest)
573 {
574         int tag = TAG_Valid;
575
576         if (control_word & CW_Overflow) {
577                 /* The masked response */
578 /* ###### The response here depends upon the rounding mode */
579                 reg_copy(&CONST_INF, dest);
580                 tag = TAG_Special;
581         } else {
582                 /* Subtract the magic number from the exponent */
583                 addexponent(dest, (-3 * (1 << 13)));
584         }
585
586         EXCEPTION(EX_Overflow);
587         if (control_word & CW_Overflow) {
588                 /* The overflow exception is masked. */
589                 /* By definition, precision is lost.
590                    The roundup bit (C1) is also set because we have
591                    "rounded" upwards to Infinity. */
592                 EXCEPTION(EX_Precision | SW_C1);
593                 return tag;
594         }
595
596         return tag;
597
598 }
599
600 asmlinkage __visible int arith_underflow(FPU_REG *dest)
601 {
602         int tag = TAG_Valid;
603
604         if (control_word & CW_Underflow) {
605                 /* The masked response */
606                 if (exponent16(dest) <= EXP_UNDER - 63) {
607                         reg_copy(&CONST_Z, dest);
608                         partial_status &= ~SW_C1;       /* Round down. */
609                         tag = TAG_Zero;
610                 } else {
611                         stdexp(dest);
612                 }
613         } else {
614                 /* Add the magic number to the exponent. */
615                 addexponent(dest, (3 * (1 << 13)) + EXTENDED_Ebias);
616         }
617
618         EXCEPTION(EX_Underflow);
619         if (control_word & CW_Underflow) {
620                 /* The underflow exception is masked. */
621                 EXCEPTION(EX_Precision);
622                 return tag;
623         }
624
625         return tag;
626
627 }
628
629 void FPU_stack_overflow(void)
630 {
631
632         if (control_word & CW_Invalid) {
633                 /* The masked response */
634                 top--;
635                 FPU_copy_to_reg0(&CONST_QNaN, TAG_Special);
636         }
637
638         EXCEPTION(EX_StackOver);
639
640         return;
641
642 }
643
644 void FPU_stack_underflow(void)
645 {
646
647         if (control_word & CW_Invalid) {
648                 /* The masked response */
649                 FPU_copy_to_reg0(&CONST_QNaN, TAG_Special);
650         }
651
652         EXCEPTION(EX_StackUnder);
653
654         return;
655
656 }
657
658 void FPU_stack_underflow_i(int i)
659 {
660
661         if (control_word & CW_Invalid) {
662                 /* The masked response */
663                 FPU_copy_to_regi(&CONST_QNaN, TAG_Special, i);
664         }
665
666         EXCEPTION(EX_StackUnder);
667
668         return;
669
670 }
671
672 void FPU_stack_underflow_pop(int i)
673 {
674
675         if (control_word & CW_Invalid) {
676                 /* The masked response */
677                 FPU_copy_to_regi(&CONST_QNaN, TAG_Special, i);
678                 FPU_pop();
679         }
680
681         EXCEPTION(EX_StackUnder);
682
683         return;
684
685 }