GNU Linux-libre 4.9-gnu1
[releases.git] / arch / x86 / mm / init_64.c
1 /*
2  *  linux/arch/x86_64/mm/init.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Copyright (C) 2000  Pavel Machek <pavel@ucw.cz>
6  *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7  */
8
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/proc_fs.h>
26 #include <linux/pci.h>
27 #include <linux/pfn.h>
28 #include <linux/poison.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/memory.h>
31 #include <linux/memory_hotplug.h>
32 #include <linux/memremap.h>
33 #include <linux/nmi.h>
34 #include <linux/gfp.h>
35 #include <linux/kcore.h>
36
37 #include <asm/processor.h>
38 #include <asm/bios_ebda.h>
39 #include <asm/uaccess.h>
40 #include <asm/pgtable.h>
41 #include <asm/pgalloc.h>
42 #include <asm/dma.h>
43 #include <asm/fixmap.h>
44 #include <asm/e820.h>
45 #include <asm/apic.h>
46 #include <asm/tlb.h>
47 #include <asm/mmu_context.h>
48 #include <asm/proto.h>
49 #include <asm/smp.h>
50 #include <asm/sections.h>
51 #include <asm/kdebug.h>
52 #include <asm/numa.h>
53 #include <asm/cacheflush.h>
54 #include <asm/init.h>
55 #include <asm/uv/uv.h>
56 #include <asm/setup.h>
57
58 #include "mm_internal.h"
59
60 #include "ident_map.c"
61
62 /*
63  * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
64  * physical space so we can cache the place of the first one and move
65  * around without checking the pgd every time.
66  */
67
68 pteval_t __supported_pte_mask __read_mostly = ~0;
69 EXPORT_SYMBOL_GPL(__supported_pte_mask);
70
71 int force_personality32;
72
73 /*
74  * noexec32=on|off
75  * Control non executable heap for 32bit processes.
76  * To control the stack too use noexec=off
77  *
78  * on   PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
79  * off  PROT_READ implies PROT_EXEC
80  */
81 static int __init nonx32_setup(char *str)
82 {
83         if (!strcmp(str, "on"))
84                 force_personality32 &= ~READ_IMPLIES_EXEC;
85         else if (!strcmp(str, "off"))
86                 force_personality32 |= READ_IMPLIES_EXEC;
87         return 1;
88 }
89 __setup("noexec32=", nonx32_setup);
90
91 /*
92  * When memory was added/removed make sure all the processes MM have
93  * suitable PGD entries in the local PGD level page.
94  */
95 void sync_global_pgds(unsigned long start, unsigned long end, int removed)
96 {
97         unsigned long address;
98
99         for (address = start; address <= end; address += PGDIR_SIZE) {
100                 const pgd_t *pgd_ref = pgd_offset_k(address);
101                 struct page *page;
102
103                 /*
104                  * When it is called after memory hot remove, pgd_none()
105                  * returns true. In this case (removed == 1), we must clear
106                  * the PGD entries in the local PGD level page.
107                  */
108                 if (pgd_none(*pgd_ref) && !removed)
109                         continue;
110
111                 spin_lock(&pgd_lock);
112                 list_for_each_entry(page, &pgd_list, lru) {
113                         pgd_t *pgd;
114                         spinlock_t *pgt_lock;
115
116                         pgd = (pgd_t *)page_address(page) + pgd_index(address);
117                         /* the pgt_lock only for Xen */
118                         pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
119                         spin_lock(pgt_lock);
120
121                         if (!pgd_none(*pgd_ref) && !pgd_none(*pgd))
122                                 BUG_ON(pgd_page_vaddr(*pgd)
123                                        != pgd_page_vaddr(*pgd_ref));
124
125                         if (removed) {
126                                 if (pgd_none(*pgd_ref) && !pgd_none(*pgd))
127                                         pgd_clear(pgd);
128                         } else {
129                                 if (pgd_none(*pgd))
130                                         set_pgd(pgd, *pgd_ref);
131                         }
132
133                         spin_unlock(pgt_lock);
134                 }
135                 spin_unlock(&pgd_lock);
136         }
137 }
138
139 /*
140  * NOTE: This function is marked __ref because it calls __init function
141  * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
142  */
143 static __ref void *spp_getpage(void)
144 {
145         void *ptr;
146
147         if (after_bootmem)
148                 ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
149         else
150                 ptr = alloc_bootmem_pages(PAGE_SIZE);
151
152         if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
153                 panic("set_pte_phys: cannot allocate page data %s\n",
154                         after_bootmem ? "after bootmem" : "");
155         }
156
157         pr_debug("spp_getpage %p\n", ptr);
158
159         return ptr;
160 }
161
162 static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr)
163 {
164         if (pgd_none(*pgd)) {
165                 pud_t *pud = (pud_t *)spp_getpage();
166                 pgd_populate(&init_mm, pgd, pud);
167                 if (pud != pud_offset(pgd, 0))
168                         printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
169                                pud, pud_offset(pgd, 0));
170         }
171         return pud_offset(pgd, vaddr);
172 }
173
174 static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
175 {
176         if (pud_none(*pud)) {
177                 pmd_t *pmd = (pmd_t *) spp_getpage();
178                 pud_populate(&init_mm, pud, pmd);
179                 if (pmd != pmd_offset(pud, 0))
180                         printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
181                                pmd, pmd_offset(pud, 0));
182         }
183         return pmd_offset(pud, vaddr);
184 }
185
186 static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
187 {
188         if (pmd_none(*pmd)) {
189                 pte_t *pte = (pte_t *) spp_getpage();
190                 pmd_populate_kernel(&init_mm, pmd, pte);
191                 if (pte != pte_offset_kernel(pmd, 0))
192                         printk(KERN_ERR "PAGETABLE BUG #02!\n");
193         }
194         return pte_offset_kernel(pmd, vaddr);
195 }
196
197 void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
198 {
199         pud_t *pud;
200         pmd_t *pmd;
201         pte_t *pte;
202
203         pud = pud_page + pud_index(vaddr);
204         pmd = fill_pmd(pud, vaddr);
205         pte = fill_pte(pmd, vaddr);
206
207         set_pte(pte, new_pte);
208
209         /*
210          * It's enough to flush this one mapping.
211          * (PGE mappings get flushed as well)
212          */
213         __flush_tlb_one(vaddr);
214 }
215
216 void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
217 {
218         pgd_t *pgd;
219         pud_t *pud_page;
220
221         pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
222
223         pgd = pgd_offset_k(vaddr);
224         if (pgd_none(*pgd)) {
225                 printk(KERN_ERR
226                         "PGD FIXMAP MISSING, it should be setup in head.S!\n");
227                 return;
228         }
229         pud_page = (pud_t*)pgd_page_vaddr(*pgd);
230         set_pte_vaddr_pud(pud_page, vaddr, pteval);
231 }
232
233 pmd_t * __init populate_extra_pmd(unsigned long vaddr)
234 {
235         pgd_t *pgd;
236         pud_t *pud;
237
238         pgd = pgd_offset_k(vaddr);
239         pud = fill_pud(pgd, vaddr);
240         return fill_pmd(pud, vaddr);
241 }
242
243 pte_t * __init populate_extra_pte(unsigned long vaddr)
244 {
245         pmd_t *pmd;
246
247         pmd = populate_extra_pmd(vaddr);
248         return fill_pte(pmd, vaddr);
249 }
250
251 /*
252  * Create large page table mappings for a range of physical addresses.
253  */
254 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
255                                         enum page_cache_mode cache)
256 {
257         pgd_t *pgd;
258         pud_t *pud;
259         pmd_t *pmd;
260         pgprot_t prot;
261
262         pgprot_val(prot) = pgprot_val(PAGE_KERNEL_LARGE) |
263                 pgprot_val(pgprot_4k_2_large(cachemode2pgprot(cache)));
264         BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
265         for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
266                 pgd = pgd_offset_k((unsigned long)__va(phys));
267                 if (pgd_none(*pgd)) {
268                         pud = (pud_t *) spp_getpage();
269                         set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
270                                                 _PAGE_USER));
271                 }
272                 pud = pud_offset(pgd, (unsigned long)__va(phys));
273                 if (pud_none(*pud)) {
274                         pmd = (pmd_t *) spp_getpage();
275                         set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
276                                                 _PAGE_USER));
277                 }
278                 pmd = pmd_offset(pud, phys);
279                 BUG_ON(!pmd_none(*pmd));
280                 set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
281         }
282 }
283
284 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
285 {
286         __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_WB);
287 }
288
289 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
290 {
291         __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_UC);
292 }
293
294 /*
295  * The head.S code sets up the kernel high mapping:
296  *
297  *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
298  *
299  * phys_base holds the negative offset to the kernel, which is added
300  * to the compile time generated pmds. This results in invalid pmds up
301  * to the point where we hit the physaddr 0 mapping.
302  *
303  * We limit the mappings to the region from _text to _brk_end.  _brk_end
304  * is rounded up to the 2MB boundary. This catches the invalid pmds as
305  * well, as they are located before _text:
306  */
307 void __init cleanup_highmap(void)
308 {
309         unsigned long vaddr = __START_KERNEL_map;
310         unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE;
311         unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
312         pmd_t *pmd = level2_kernel_pgt;
313
314         /*
315          * Native path, max_pfn_mapped is not set yet.
316          * Xen has valid max_pfn_mapped set in
317          *      arch/x86/xen/mmu.c:xen_setup_kernel_pagetable().
318          */
319         if (max_pfn_mapped)
320                 vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
321
322         for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
323                 if (pmd_none(*pmd))
324                         continue;
325                 if (vaddr < (unsigned long) _text || vaddr > end)
326                         set_pmd(pmd, __pmd(0));
327         }
328 }
329
330 /*
331  * Create PTE level page table mapping for physical addresses.
332  * It returns the last physical address mapped.
333  */
334 static unsigned long __meminit
335 phys_pte_init(pte_t *pte_page, unsigned long paddr, unsigned long paddr_end,
336               pgprot_t prot)
337 {
338         unsigned long pages = 0, paddr_next;
339         unsigned long paddr_last = paddr_end;
340         pte_t *pte;
341         int i;
342
343         pte = pte_page + pte_index(paddr);
344         i = pte_index(paddr);
345
346         for (; i < PTRS_PER_PTE; i++, paddr = paddr_next, pte++) {
347                 paddr_next = (paddr & PAGE_MASK) + PAGE_SIZE;
348                 if (paddr >= paddr_end) {
349                         if (!after_bootmem &&
350                             !e820_any_mapped(paddr & PAGE_MASK, paddr_next,
351                                              E820_RAM) &&
352                             !e820_any_mapped(paddr & PAGE_MASK, paddr_next,
353                                              E820_RESERVED_KERN))
354                                 set_pte(pte, __pte(0));
355                         continue;
356                 }
357
358                 /*
359                  * We will re-use the existing mapping.
360                  * Xen for example has some special requirements, like mapping
361                  * pagetable pages as RO. So assume someone who pre-setup
362                  * these mappings are more intelligent.
363                  */
364                 if (!pte_none(*pte)) {
365                         if (!after_bootmem)
366                                 pages++;
367                         continue;
368                 }
369
370                 if (0)
371                         pr_info("   pte=%p addr=%lx pte=%016lx\n", pte, paddr,
372                                 pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL).pte);
373                 pages++;
374                 set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, prot));
375                 paddr_last = (paddr & PAGE_MASK) + PAGE_SIZE;
376         }
377
378         update_page_count(PG_LEVEL_4K, pages);
379
380         return paddr_last;
381 }
382
383 /*
384  * Create PMD level page table mapping for physical addresses. The virtual
385  * and physical address have to be aligned at this level.
386  * It returns the last physical address mapped.
387  */
388 static unsigned long __meminit
389 phys_pmd_init(pmd_t *pmd_page, unsigned long paddr, unsigned long paddr_end,
390               unsigned long page_size_mask, pgprot_t prot)
391 {
392         unsigned long pages = 0, paddr_next;
393         unsigned long paddr_last = paddr_end;
394
395         int i = pmd_index(paddr);
396
397         for (; i < PTRS_PER_PMD; i++, paddr = paddr_next) {
398                 pmd_t *pmd = pmd_page + pmd_index(paddr);
399                 pte_t *pte;
400                 pgprot_t new_prot = prot;
401
402                 paddr_next = (paddr & PMD_MASK) + PMD_SIZE;
403                 if (paddr >= paddr_end) {
404                         if (!after_bootmem &&
405                             !e820_any_mapped(paddr & PMD_MASK, paddr_next,
406                                              E820_RAM) &&
407                             !e820_any_mapped(paddr & PMD_MASK, paddr_next,
408                                              E820_RESERVED_KERN))
409                                 set_pmd(pmd, __pmd(0));
410                         continue;
411                 }
412
413                 if (!pmd_none(*pmd)) {
414                         if (!pmd_large(*pmd)) {
415                                 spin_lock(&init_mm.page_table_lock);
416                                 pte = (pte_t *)pmd_page_vaddr(*pmd);
417                                 paddr_last = phys_pte_init(pte, paddr,
418                                                            paddr_end, prot);
419                                 spin_unlock(&init_mm.page_table_lock);
420                                 continue;
421                         }
422                         /*
423                          * If we are ok with PG_LEVEL_2M mapping, then we will
424                          * use the existing mapping,
425                          *
426                          * Otherwise, we will split the large page mapping but
427                          * use the same existing protection bits except for
428                          * large page, so that we don't violate Intel's TLB
429                          * Application note (317080) which says, while changing
430                          * the page sizes, new and old translations should
431                          * not differ with respect to page frame and
432                          * attributes.
433                          */
434                         if (page_size_mask & (1 << PG_LEVEL_2M)) {
435                                 if (!after_bootmem)
436                                         pages++;
437                                 paddr_last = paddr_next;
438                                 continue;
439                         }
440                         new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
441                 }
442
443                 if (page_size_mask & (1<<PG_LEVEL_2M)) {
444                         pages++;
445                         spin_lock(&init_mm.page_table_lock);
446                         set_pte((pte_t *)pmd,
447                                 pfn_pte((paddr & PMD_MASK) >> PAGE_SHIFT,
448                                         __pgprot(pgprot_val(prot) | _PAGE_PSE)));
449                         spin_unlock(&init_mm.page_table_lock);
450                         paddr_last = paddr_next;
451                         continue;
452                 }
453
454                 pte = alloc_low_page();
455                 paddr_last = phys_pte_init(pte, paddr, paddr_end, new_prot);
456
457                 spin_lock(&init_mm.page_table_lock);
458                 pmd_populate_kernel(&init_mm, pmd, pte);
459                 spin_unlock(&init_mm.page_table_lock);
460         }
461         update_page_count(PG_LEVEL_2M, pages);
462         return paddr_last;
463 }
464
465 /*
466  * Create PUD level page table mapping for physical addresses. The virtual
467  * and physical address do not have to be aligned at this level. KASLR can
468  * randomize virtual addresses up to this level.
469  * It returns the last physical address mapped.
470  */
471 static unsigned long __meminit
472 phys_pud_init(pud_t *pud_page, unsigned long paddr, unsigned long paddr_end,
473               unsigned long page_size_mask)
474 {
475         unsigned long pages = 0, paddr_next;
476         unsigned long paddr_last = paddr_end;
477         unsigned long vaddr = (unsigned long)__va(paddr);
478         int i = pud_index(vaddr);
479
480         for (; i < PTRS_PER_PUD; i++, paddr = paddr_next) {
481                 pud_t *pud;
482                 pmd_t *pmd;
483                 pgprot_t prot = PAGE_KERNEL;
484
485                 vaddr = (unsigned long)__va(paddr);
486                 pud = pud_page + pud_index(vaddr);
487                 paddr_next = (paddr & PUD_MASK) + PUD_SIZE;
488
489                 if (paddr >= paddr_end) {
490                         if (!after_bootmem &&
491                             !e820_any_mapped(paddr & PUD_MASK, paddr_next,
492                                              E820_RAM) &&
493                             !e820_any_mapped(paddr & PUD_MASK, paddr_next,
494                                              E820_RESERVED_KERN))
495                                 set_pud(pud, __pud(0));
496                         continue;
497                 }
498
499                 if (!pud_none(*pud)) {
500                         if (!pud_large(*pud)) {
501                                 pmd = pmd_offset(pud, 0);
502                                 paddr_last = phys_pmd_init(pmd, paddr,
503                                                            paddr_end,
504                                                            page_size_mask,
505                                                            prot);
506                                 __flush_tlb_all();
507                                 continue;
508                         }
509                         /*
510                          * If we are ok with PG_LEVEL_1G mapping, then we will
511                          * use the existing mapping.
512                          *
513                          * Otherwise, we will split the gbpage mapping but use
514                          * the same existing protection  bits except for large
515                          * page, so that we don't violate Intel's TLB
516                          * Application note (317080) which says, while changing
517                          * the page sizes, new and old translations should
518                          * not differ with respect to page frame and
519                          * attributes.
520                          */
521                         if (page_size_mask & (1 << PG_LEVEL_1G)) {
522                                 if (!after_bootmem)
523                                         pages++;
524                                 paddr_last = paddr_next;
525                                 continue;
526                         }
527                         prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
528                 }
529
530                 if (page_size_mask & (1<<PG_LEVEL_1G)) {
531                         pages++;
532                         spin_lock(&init_mm.page_table_lock);
533                         set_pte((pte_t *)pud,
534                                 pfn_pte((paddr & PUD_MASK) >> PAGE_SHIFT,
535                                         PAGE_KERNEL_LARGE));
536                         spin_unlock(&init_mm.page_table_lock);
537                         paddr_last = paddr_next;
538                         continue;
539                 }
540
541                 pmd = alloc_low_page();
542                 paddr_last = phys_pmd_init(pmd, paddr, paddr_end,
543                                            page_size_mask, prot);
544
545                 spin_lock(&init_mm.page_table_lock);
546                 pud_populate(&init_mm, pud, pmd);
547                 spin_unlock(&init_mm.page_table_lock);
548         }
549         __flush_tlb_all();
550
551         update_page_count(PG_LEVEL_1G, pages);
552
553         return paddr_last;
554 }
555
556 /*
557  * Create page table mapping for the physical memory for specific physical
558  * addresses. The virtual and physical addresses have to be aligned on PMD level
559  * down. It returns the last physical address mapped.
560  */
561 unsigned long __meminit
562 kernel_physical_mapping_init(unsigned long paddr_start,
563                              unsigned long paddr_end,
564                              unsigned long page_size_mask)
565 {
566         bool pgd_changed = false;
567         unsigned long vaddr, vaddr_start, vaddr_end, vaddr_next, paddr_last;
568
569         paddr_last = paddr_end;
570         vaddr = (unsigned long)__va(paddr_start);
571         vaddr_end = (unsigned long)__va(paddr_end);
572         vaddr_start = vaddr;
573
574         for (; vaddr < vaddr_end; vaddr = vaddr_next) {
575                 pgd_t *pgd = pgd_offset_k(vaddr);
576                 pud_t *pud;
577
578                 vaddr_next = (vaddr & PGDIR_MASK) + PGDIR_SIZE;
579
580                 if (pgd_val(*pgd)) {
581                         pud = (pud_t *)pgd_page_vaddr(*pgd);
582                         paddr_last = phys_pud_init(pud, __pa(vaddr),
583                                                    __pa(vaddr_end),
584                                                    page_size_mask);
585                         continue;
586                 }
587
588                 pud = alloc_low_page();
589                 paddr_last = phys_pud_init(pud, __pa(vaddr), __pa(vaddr_end),
590                                            page_size_mask);
591
592                 spin_lock(&init_mm.page_table_lock);
593                 pgd_populate(&init_mm, pgd, pud);
594                 spin_unlock(&init_mm.page_table_lock);
595                 pgd_changed = true;
596         }
597
598         if (pgd_changed)
599                 sync_global_pgds(vaddr_start, vaddr_end - 1, 0);
600
601         __flush_tlb_all();
602
603         return paddr_last;
604 }
605
606 #ifndef CONFIG_NUMA
607 void __init initmem_init(void)
608 {
609         memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0);
610 }
611 #endif
612
613 void __init paging_init(void)
614 {
615         sparse_memory_present_with_active_regions(MAX_NUMNODES);
616         sparse_init();
617
618         /*
619          * clear the default setting with node 0
620          * note: don't use nodes_clear here, that is really clearing when
621          *       numa support is not compiled in, and later node_set_state
622          *       will not set it back.
623          */
624         node_clear_state(0, N_MEMORY);
625         if (N_MEMORY != N_NORMAL_MEMORY)
626                 node_clear_state(0, N_NORMAL_MEMORY);
627
628         zone_sizes_init();
629 }
630
631 /*
632  * Memory hotplug specific functions
633  */
634 #ifdef CONFIG_MEMORY_HOTPLUG
635 /*
636  * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
637  * updating.
638  */
639 static void  update_end_of_memory_vars(u64 start, u64 size)
640 {
641         unsigned long end_pfn = PFN_UP(start + size);
642
643         if (end_pfn > max_pfn) {
644                 max_pfn = end_pfn;
645                 max_low_pfn = end_pfn;
646                 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
647         }
648 }
649
650 /*
651  * Memory is added always to NORMAL zone. This means you will never get
652  * additional DMA/DMA32 memory.
653  */
654 int arch_add_memory(int nid, u64 start, u64 size, bool for_device)
655 {
656         struct pglist_data *pgdat = NODE_DATA(nid);
657         struct zone *zone = pgdat->node_zones +
658                 zone_for_memory(nid, start, size, ZONE_NORMAL, for_device);
659         unsigned long start_pfn = start >> PAGE_SHIFT;
660         unsigned long nr_pages = size >> PAGE_SHIFT;
661         int ret;
662
663         init_memory_mapping(start, start + size);
664
665         ret = __add_pages(nid, zone, start_pfn, nr_pages);
666         WARN_ON_ONCE(ret);
667
668         /* update max_pfn, max_low_pfn and high_memory */
669         update_end_of_memory_vars(start, size);
670
671         return ret;
672 }
673 EXPORT_SYMBOL_GPL(arch_add_memory);
674
675 #define PAGE_INUSE 0xFD
676
677 static void __meminit free_pagetable(struct page *page, int order)
678 {
679         unsigned long magic;
680         unsigned int nr_pages = 1 << order;
681         struct vmem_altmap *altmap = to_vmem_altmap((unsigned long) page);
682
683         if (altmap) {
684                 vmem_altmap_free(altmap, nr_pages);
685                 return;
686         }
687
688         /* bootmem page has reserved flag */
689         if (PageReserved(page)) {
690                 __ClearPageReserved(page);
691
692                 magic = (unsigned long)page->lru.next;
693                 if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) {
694                         while (nr_pages--)
695                                 put_page_bootmem(page++);
696                 } else
697                         while (nr_pages--)
698                                 free_reserved_page(page++);
699         } else
700                 free_pages((unsigned long)page_address(page), order);
701 }
702
703 static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
704 {
705         pte_t *pte;
706         int i;
707
708         for (i = 0; i < PTRS_PER_PTE; i++) {
709                 pte = pte_start + i;
710                 if (!pte_none(*pte))
711                         return;
712         }
713
714         /* free a pte talbe */
715         free_pagetable(pmd_page(*pmd), 0);
716         spin_lock(&init_mm.page_table_lock);
717         pmd_clear(pmd);
718         spin_unlock(&init_mm.page_table_lock);
719 }
720
721 static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud)
722 {
723         pmd_t *pmd;
724         int i;
725
726         for (i = 0; i < PTRS_PER_PMD; i++) {
727                 pmd = pmd_start + i;
728                 if (!pmd_none(*pmd))
729                         return;
730         }
731
732         /* free a pmd talbe */
733         free_pagetable(pud_page(*pud), 0);
734         spin_lock(&init_mm.page_table_lock);
735         pud_clear(pud);
736         spin_unlock(&init_mm.page_table_lock);
737 }
738
739 static void __meminit
740 remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end,
741                  bool direct)
742 {
743         unsigned long next, pages = 0;
744         pte_t *pte;
745         void *page_addr;
746         phys_addr_t phys_addr;
747
748         pte = pte_start + pte_index(addr);
749         for (; addr < end; addr = next, pte++) {
750                 next = (addr + PAGE_SIZE) & PAGE_MASK;
751                 if (next > end)
752                         next = end;
753
754                 if (!pte_present(*pte))
755                         continue;
756
757                 /*
758                  * We mapped [0,1G) memory as identity mapping when
759                  * initializing, in arch/x86/kernel/head_64.S. These
760                  * pagetables cannot be removed.
761                  */
762                 phys_addr = pte_val(*pte) + (addr & PAGE_MASK);
763                 if (phys_addr < (phys_addr_t)0x40000000)
764                         return;
765
766                 if (PAGE_ALIGNED(addr) && PAGE_ALIGNED(next)) {
767                         /*
768                          * Do not free direct mapping pages since they were
769                          * freed when offlining, or simplely not in use.
770                          */
771                         if (!direct)
772                                 free_pagetable(pte_page(*pte), 0);
773
774                         spin_lock(&init_mm.page_table_lock);
775                         pte_clear(&init_mm, addr, pte);
776                         spin_unlock(&init_mm.page_table_lock);
777
778                         /* For non-direct mapping, pages means nothing. */
779                         pages++;
780                 } else {
781                         /*
782                          * If we are here, we are freeing vmemmap pages since
783                          * direct mapped memory ranges to be freed are aligned.
784                          *
785                          * If we are not removing the whole page, it means
786                          * other page structs in this page are being used and
787                          * we canot remove them. So fill the unused page_structs
788                          * with 0xFD, and remove the page when it is wholly
789                          * filled with 0xFD.
790                          */
791                         memset((void *)addr, PAGE_INUSE, next - addr);
792
793                         page_addr = page_address(pte_page(*pte));
794                         if (!memchr_inv(page_addr, PAGE_INUSE, PAGE_SIZE)) {
795                                 free_pagetable(pte_page(*pte), 0);
796
797                                 spin_lock(&init_mm.page_table_lock);
798                                 pte_clear(&init_mm, addr, pte);
799                                 spin_unlock(&init_mm.page_table_lock);
800                         }
801                 }
802         }
803
804         /* Call free_pte_table() in remove_pmd_table(). */
805         flush_tlb_all();
806         if (direct)
807                 update_page_count(PG_LEVEL_4K, -pages);
808 }
809
810 static void __meminit
811 remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end,
812                  bool direct)
813 {
814         unsigned long next, pages = 0;
815         pte_t *pte_base;
816         pmd_t *pmd;
817         void *page_addr;
818
819         pmd = pmd_start + pmd_index(addr);
820         for (; addr < end; addr = next, pmd++) {
821                 next = pmd_addr_end(addr, end);
822
823                 if (!pmd_present(*pmd))
824                         continue;
825
826                 if (pmd_large(*pmd)) {
827                         if (IS_ALIGNED(addr, PMD_SIZE) &&
828                             IS_ALIGNED(next, PMD_SIZE)) {
829                                 if (!direct)
830                                         free_pagetable(pmd_page(*pmd),
831                                                        get_order(PMD_SIZE));
832
833                                 spin_lock(&init_mm.page_table_lock);
834                                 pmd_clear(pmd);
835                                 spin_unlock(&init_mm.page_table_lock);
836                                 pages++;
837                         } else {
838                                 /* If here, we are freeing vmemmap pages. */
839                                 memset((void *)addr, PAGE_INUSE, next - addr);
840
841                                 page_addr = page_address(pmd_page(*pmd));
842                                 if (!memchr_inv(page_addr, PAGE_INUSE,
843                                                 PMD_SIZE)) {
844                                         free_pagetable(pmd_page(*pmd),
845                                                        get_order(PMD_SIZE));
846
847                                         spin_lock(&init_mm.page_table_lock);
848                                         pmd_clear(pmd);
849                                         spin_unlock(&init_mm.page_table_lock);
850                                 }
851                         }
852
853                         continue;
854                 }
855
856                 pte_base = (pte_t *)pmd_page_vaddr(*pmd);
857                 remove_pte_table(pte_base, addr, next, direct);
858                 free_pte_table(pte_base, pmd);
859         }
860
861         /* Call free_pmd_table() in remove_pud_table(). */
862         if (direct)
863                 update_page_count(PG_LEVEL_2M, -pages);
864 }
865
866 static void __meminit
867 remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end,
868                  bool direct)
869 {
870         unsigned long next, pages = 0;
871         pmd_t *pmd_base;
872         pud_t *pud;
873         void *page_addr;
874
875         pud = pud_start + pud_index(addr);
876         for (; addr < end; addr = next, pud++) {
877                 next = pud_addr_end(addr, end);
878
879                 if (!pud_present(*pud))
880                         continue;
881
882                 if (pud_large(*pud)) {
883                         if (IS_ALIGNED(addr, PUD_SIZE) &&
884                             IS_ALIGNED(next, PUD_SIZE)) {
885                                 if (!direct)
886                                         free_pagetable(pud_page(*pud),
887                                                        get_order(PUD_SIZE));
888
889                                 spin_lock(&init_mm.page_table_lock);
890                                 pud_clear(pud);
891                                 spin_unlock(&init_mm.page_table_lock);
892                                 pages++;
893                         } else {
894                                 /* If here, we are freeing vmemmap pages. */
895                                 memset((void *)addr, PAGE_INUSE, next - addr);
896
897                                 page_addr = page_address(pud_page(*pud));
898                                 if (!memchr_inv(page_addr, PAGE_INUSE,
899                                                 PUD_SIZE)) {
900                                         free_pagetable(pud_page(*pud),
901                                                        get_order(PUD_SIZE));
902
903                                         spin_lock(&init_mm.page_table_lock);
904                                         pud_clear(pud);
905                                         spin_unlock(&init_mm.page_table_lock);
906                                 }
907                         }
908
909                         continue;
910                 }
911
912                 pmd_base = (pmd_t *)pud_page_vaddr(*pud);
913                 remove_pmd_table(pmd_base, addr, next, direct);
914                 free_pmd_table(pmd_base, pud);
915         }
916
917         if (direct)
918                 update_page_count(PG_LEVEL_1G, -pages);
919 }
920
921 /* start and end are both virtual address. */
922 static void __meminit
923 remove_pagetable(unsigned long start, unsigned long end, bool direct)
924 {
925         unsigned long next;
926         unsigned long addr;
927         pgd_t *pgd;
928         pud_t *pud;
929
930         for (addr = start; addr < end; addr = next) {
931                 next = pgd_addr_end(addr, end);
932
933                 pgd = pgd_offset_k(addr);
934                 if (!pgd_present(*pgd))
935                         continue;
936
937                 pud = (pud_t *)pgd_page_vaddr(*pgd);
938                 remove_pud_table(pud, addr, next, direct);
939         }
940
941         flush_tlb_all();
942 }
943
944 void __ref vmemmap_free(unsigned long start, unsigned long end)
945 {
946         remove_pagetable(start, end, false);
947 }
948
949 #ifdef CONFIG_MEMORY_HOTREMOVE
950 static void __meminit
951 kernel_physical_mapping_remove(unsigned long start, unsigned long end)
952 {
953         start = (unsigned long)__va(start);
954         end = (unsigned long)__va(end);
955
956         remove_pagetable(start, end, true);
957 }
958
959 int __ref arch_remove_memory(u64 start, u64 size)
960 {
961         unsigned long start_pfn = start >> PAGE_SHIFT;
962         unsigned long nr_pages = size >> PAGE_SHIFT;
963         struct page *page = pfn_to_page(start_pfn);
964         struct vmem_altmap *altmap;
965         struct zone *zone;
966         int ret;
967
968         /* With altmap the first mapped page is offset from @start */
969         altmap = to_vmem_altmap((unsigned long) page);
970         if (altmap)
971                 page += vmem_altmap_offset(altmap);
972         zone = page_zone(page);
973         ret = __remove_pages(zone, start_pfn, nr_pages);
974         WARN_ON_ONCE(ret);
975         kernel_physical_mapping_remove(start, start + size);
976
977         return ret;
978 }
979 #endif
980 #endif /* CONFIG_MEMORY_HOTPLUG */
981
982 static struct kcore_list kcore_vsyscall;
983
984 static void __init register_page_bootmem_info(void)
985 {
986 #ifdef CONFIG_NUMA
987         int i;
988
989         for_each_online_node(i)
990                 register_page_bootmem_info_node(NODE_DATA(i));
991 #endif
992 }
993
994 void __init mem_init(void)
995 {
996         pci_iommu_alloc();
997
998         /* clear_bss() already clear the empty_zero_page */
999
1000         register_page_bootmem_info();
1001
1002         /* this will put all memory onto the freelists */
1003         free_all_bootmem();
1004         after_bootmem = 1;
1005
1006         /* Register memory areas for /proc/kcore */
1007         kclist_add(&kcore_vsyscall, (void *)VSYSCALL_ADDR,
1008                          PAGE_SIZE, KCORE_OTHER);
1009
1010         mem_init_print_info(NULL);
1011 }
1012
1013 const int rodata_test_data = 0xC3;
1014 EXPORT_SYMBOL_GPL(rodata_test_data);
1015
1016 int kernel_set_to_readonly;
1017
1018 void set_kernel_text_rw(void)
1019 {
1020         unsigned long start = PFN_ALIGN(_text);
1021         unsigned long end = PFN_ALIGN(__stop___ex_table);
1022
1023         if (!kernel_set_to_readonly)
1024                 return;
1025
1026         pr_debug("Set kernel text: %lx - %lx for read write\n",
1027                  start, end);
1028
1029         /*
1030          * Make the kernel identity mapping for text RW. Kernel text
1031          * mapping will always be RO. Refer to the comment in
1032          * static_protections() in pageattr.c
1033          */
1034         set_memory_rw(start, (end - start) >> PAGE_SHIFT);
1035 }
1036
1037 void set_kernel_text_ro(void)
1038 {
1039         unsigned long start = PFN_ALIGN(_text);
1040         unsigned long end = PFN_ALIGN(__stop___ex_table);
1041
1042         if (!kernel_set_to_readonly)
1043                 return;
1044
1045         pr_debug("Set kernel text: %lx - %lx for read only\n",
1046                  start, end);
1047
1048         /*
1049          * Set the kernel identity mapping for text RO.
1050          */
1051         set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1052 }
1053
1054 void mark_rodata_ro(void)
1055 {
1056         unsigned long start = PFN_ALIGN(_text);
1057         unsigned long rodata_start = PFN_ALIGN(__start_rodata);
1058         unsigned long end = (unsigned long) &__end_rodata_hpage_align;
1059         unsigned long text_end = PFN_ALIGN(&__stop___ex_table);
1060         unsigned long rodata_end = PFN_ALIGN(&__end_rodata);
1061         unsigned long all_end;
1062
1063         printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
1064                (end - start) >> 10);
1065         set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1066
1067         kernel_set_to_readonly = 1;
1068
1069         /*
1070          * The rodata/data/bss/brk section (but not the kernel text!)
1071          * should also be not-executable.
1072          *
1073          * We align all_end to PMD_SIZE because the existing mapping
1074          * is a full PMD. If we would align _brk_end to PAGE_SIZE we
1075          * split the PMD and the reminder between _brk_end and the end
1076          * of the PMD will remain mapped executable.
1077          *
1078          * Any PMD which was setup after the one which covers _brk_end
1079          * has been zapped already via cleanup_highmem().
1080          */
1081         all_end = roundup((unsigned long)_brk_end, PMD_SIZE);
1082         set_memory_nx(text_end, (all_end - text_end) >> PAGE_SHIFT);
1083
1084         rodata_test();
1085
1086 #ifdef CONFIG_CPA_DEBUG
1087         printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
1088         set_memory_rw(start, (end-start) >> PAGE_SHIFT);
1089
1090         printk(KERN_INFO "Testing CPA: again\n");
1091         set_memory_ro(start, (end-start) >> PAGE_SHIFT);
1092 #endif
1093
1094         free_init_pages("unused kernel",
1095                         (unsigned long) __va(__pa_symbol(text_end)),
1096                         (unsigned long) __va(__pa_symbol(rodata_start)));
1097         free_init_pages("unused kernel",
1098                         (unsigned long) __va(__pa_symbol(rodata_end)),
1099                         (unsigned long) __va(__pa_symbol(_sdata)));
1100
1101         debug_checkwx();
1102 }
1103
1104 int kern_addr_valid(unsigned long addr)
1105 {
1106         unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
1107         pgd_t *pgd;
1108         pud_t *pud;
1109         pmd_t *pmd;
1110         pte_t *pte;
1111
1112         if (above != 0 && above != -1UL)
1113                 return 0;
1114
1115         pgd = pgd_offset_k(addr);
1116         if (pgd_none(*pgd))
1117                 return 0;
1118
1119         pud = pud_offset(pgd, addr);
1120         if (pud_none(*pud))
1121                 return 0;
1122
1123         if (pud_large(*pud))
1124                 return pfn_valid(pud_pfn(*pud));
1125
1126         pmd = pmd_offset(pud, addr);
1127         if (pmd_none(*pmd))
1128                 return 0;
1129
1130         if (pmd_large(*pmd))
1131                 return pfn_valid(pmd_pfn(*pmd));
1132
1133         pte = pte_offset_kernel(pmd, addr);
1134         if (pte_none(*pte))
1135                 return 0;
1136
1137         return pfn_valid(pte_pfn(*pte));
1138 }
1139
1140 static unsigned long probe_memory_block_size(void)
1141 {
1142         unsigned long bz = MIN_MEMORY_BLOCK_SIZE;
1143
1144         /* if system is UV or has 64GB of RAM or more, use large blocks */
1145         if (is_uv_system() || ((max_pfn << PAGE_SHIFT) >= (64UL << 30)))
1146                 bz = 2UL << 30; /* 2GB */
1147
1148         pr_info("x86/mm: Memory block size: %ldMB\n", bz >> 20);
1149
1150         return bz;
1151 }
1152
1153 static unsigned long memory_block_size_probed;
1154 unsigned long memory_block_size_bytes(void)
1155 {
1156         if (!memory_block_size_probed)
1157                 memory_block_size_probed = probe_memory_block_size();
1158
1159         return memory_block_size_probed;
1160 }
1161
1162 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1163 /*
1164  * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1165  */
1166 static long __meminitdata addr_start, addr_end;
1167 static void __meminitdata *p_start, *p_end;
1168 static int __meminitdata node_start;
1169
1170 static int __meminit vmemmap_populate_hugepages(unsigned long start,
1171                 unsigned long end, int node, struct vmem_altmap *altmap)
1172 {
1173         unsigned long addr;
1174         unsigned long next;
1175         pgd_t *pgd;
1176         pud_t *pud;
1177         pmd_t *pmd;
1178
1179         for (addr = start; addr < end; addr = next) {
1180                 next = pmd_addr_end(addr, end);
1181
1182                 pgd = vmemmap_pgd_populate(addr, node);
1183                 if (!pgd)
1184                         return -ENOMEM;
1185
1186                 pud = vmemmap_pud_populate(pgd, addr, node);
1187                 if (!pud)
1188                         return -ENOMEM;
1189
1190                 pmd = pmd_offset(pud, addr);
1191                 if (pmd_none(*pmd)) {
1192                         void *p;
1193
1194                         p = __vmemmap_alloc_block_buf(PMD_SIZE, node, altmap);
1195                         if (p) {
1196                                 pte_t entry;
1197
1198                                 entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1199                                                 PAGE_KERNEL_LARGE);
1200                                 set_pmd(pmd, __pmd(pte_val(entry)));
1201
1202                                 /* check to see if we have contiguous blocks */
1203                                 if (p_end != p || node_start != node) {
1204                                         if (p_start)
1205                                                 pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1206                                                        addr_start, addr_end-1, p_start, p_end-1, node_start);
1207                                         addr_start = addr;
1208                                         node_start = node;
1209                                         p_start = p;
1210                                 }
1211
1212                                 addr_end = addr + PMD_SIZE;
1213                                 p_end = p + PMD_SIZE;
1214                                 continue;
1215                         } else if (altmap)
1216                                 return -ENOMEM; /* no fallback */
1217                 } else if (pmd_large(*pmd)) {
1218                         vmemmap_verify((pte_t *)pmd, node, addr, next);
1219                         continue;
1220                 }
1221                 pr_warn_once("vmemmap: falling back to regular page backing\n");
1222                 if (vmemmap_populate_basepages(addr, next, node))
1223                         return -ENOMEM;
1224         }
1225         return 0;
1226 }
1227
1228 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
1229 {
1230         struct vmem_altmap *altmap = to_vmem_altmap(start);
1231         int err;
1232
1233         if (boot_cpu_has(X86_FEATURE_PSE))
1234                 err = vmemmap_populate_hugepages(start, end, node, altmap);
1235         else if (altmap) {
1236                 pr_err_once("%s: no cpu support for altmap allocations\n",
1237                                 __func__);
1238                 err = -ENOMEM;
1239         } else
1240                 err = vmemmap_populate_basepages(start, end, node);
1241         if (!err)
1242                 sync_global_pgds(start, end - 1, 0);
1243         return err;
1244 }
1245
1246 #if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) && defined(CONFIG_HAVE_BOOTMEM_INFO_NODE)
1247 void register_page_bootmem_memmap(unsigned long section_nr,
1248                                   struct page *start_page, unsigned long size)
1249 {
1250         unsigned long addr = (unsigned long)start_page;
1251         unsigned long end = (unsigned long)(start_page + size);
1252         unsigned long next;
1253         pgd_t *pgd;
1254         pud_t *pud;
1255         pmd_t *pmd;
1256         unsigned int nr_pages;
1257         struct page *page;
1258
1259         for (; addr < end; addr = next) {
1260                 pte_t *pte = NULL;
1261
1262                 pgd = pgd_offset_k(addr);
1263                 if (pgd_none(*pgd)) {
1264                         next = (addr + PAGE_SIZE) & PAGE_MASK;
1265                         continue;
1266                 }
1267                 get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO);
1268
1269                 pud = pud_offset(pgd, addr);
1270                 if (pud_none(*pud)) {
1271                         next = (addr + PAGE_SIZE) & PAGE_MASK;
1272                         continue;
1273                 }
1274                 get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO);
1275
1276                 if (!boot_cpu_has(X86_FEATURE_PSE)) {
1277                         next = (addr + PAGE_SIZE) & PAGE_MASK;
1278                         pmd = pmd_offset(pud, addr);
1279                         if (pmd_none(*pmd))
1280                                 continue;
1281                         get_page_bootmem(section_nr, pmd_page(*pmd),
1282                                          MIX_SECTION_INFO);
1283
1284                         pte = pte_offset_kernel(pmd, addr);
1285                         if (pte_none(*pte))
1286                                 continue;
1287                         get_page_bootmem(section_nr, pte_page(*pte),
1288                                          SECTION_INFO);
1289                 } else {
1290                         next = pmd_addr_end(addr, end);
1291
1292                         pmd = pmd_offset(pud, addr);
1293                         if (pmd_none(*pmd))
1294                                 continue;
1295
1296                         nr_pages = 1 << (get_order(PMD_SIZE));
1297                         page = pmd_page(*pmd);
1298                         while (nr_pages--)
1299                                 get_page_bootmem(section_nr, page++,
1300                                                  SECTION_INFO);
1301                 }
1302         }
1303 }
1304 #endif
1305
1306 void __meminit vmemmap_populate_print_last(void)
1307 {
1308         if (p_start) {
1309                 pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1310                         addr_start, addr_end-1, p_start, p_end-1, node_start);
1311                 p_start = NULL;
1312                 p_end = NULL;
1313                 node_start = 0;
1314         }
1315 }
1316 #endif