GNU Linux-libre 4.14.266-gnu1
[releases.git] / arch / x86 / mm / init_64.c
1 /*
2  *  linux/arch/x86_64/mm/init.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Copyright (C) 2000  Pavel Machek <pavel@ucw.cz>
6  *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7  */
8
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/proc_fs.h>
26 #include <linux/pci.h>
27 #include <linux/pfn.h>
28 #include <linux/poison.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/memory.h>
31 #include <linux/memory_hotplug.h>
32 #include <linux/memremap.h>
33 #include <linux/nmi.h>
34 #include <linux/gfp.h>
35 #include <linux/kcore.h>
36
37 #include <asm/processor.h>
38 #include <asm/bios_ebda.h>
39 #include <linux/uaccess.h>
40 #include <asm/pgtable.h>
41 #include <asm/pgalloc.h>
42 #include <asm/dma.h>
43 #include <asm/fixmap.h>
44 #include <asm/e820/api.h>
45 #include <asm/apic.h>
46 #include <asm/tlb.h>
47 #include <asm/mmu_context.h>
48 #include <asm/proto.h>
49 #include <asm/smp.h>
50 #include <asm/sections.h>
51 #include <asm/kdebug.h>
52 #include <asm/numa.h>
53 #include <asm/set_memory.h>
54 #include <asm/init.h>
55 #include <asm/uv/uv.h>
56 #include <asm/setup.h>
57
58 #include "mm_internal.h"
59
60 #include "ident_map.c"
61
62 /*
63  * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
64  * physical space so we can cache the place of the first one and move
65  * around without checking the pgd every time.
66  */
67
68 pteval_t __supported_pte_mask __read_mostly = ~0;
69 EXPORT_SYMBOL_GPL(__supported_pte_mask);
70
71 int force_personality32;
72
73 /*
74  * noexec32=on|off
75  * Control non executable heap for 32bit processes.
76  * To control the stack too use noexec=off
77  *
78  * on   PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
79  * off  PROT_READ implies PROT_EXEC
80  */
81 static int __init nonx32_setup(char *str)
82 {
83         if (!strcmp(str, "on"))
84                 force_personality32 &= ~READ_IMPLIES_EXEC;
85         else if (!strcmp(str, "off"))
86                 force_personality32 |= READ_IMPLIES_EXEC;
87         return 1;
88 }
89 __setup("noexec32=", nonx32_setup);
90
91 /*
92  * When memory was added make sure all the processes MM have
93  * suitable PGD entries in the local PGD level page.
94  */
95 #ifdef CONFIG_X86_5LEVEL
96 void sync_global_pgds(unsigned long start, unsigned long end)
97 {
98         unsigned long addr;
99
100         for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
101                 const pgd_t *pgd_ref = pgd_offset_k(addr);
102                 struct page *page;
103
104                 /* Check for overflow */
105                 if (addr < start)
106                         break;
107
108                 if (pgd_none(*pgd_ref))
109                         continue;
110
111                 spin_lock(&pgd_lock);
112                 list_for_each_entry(page, &pgd_list, lru) {
113                         pgd_t *pgd;
114                         spinlock_t *pgt_lock;
115
116                         pgd = (pgd_t *)page_address(page) + pgd_index(addr);
117                         /* the pgt_lock only for Xen */
118                         pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
119                         spin_lock(pgt_lock);
120
121                         if (!pgd_none(*pgd_ref) && !pgd_none(*pgd))
122                                 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
123
124                         if (pgd_none(*pgd))
125                                 set_pgd(pgd, *pgd_ref);
126
127                         spin_unlock(pgt_lock);
128                 }
129                 spin_unlock(&pgd_lock);
130         }
131 }
132 #else
133 void sync_global_pgds(unsigned long start, unsigned long end)
134 {
135         unsigned long addr;
136
137         for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
138                 pgd_t *pgd_ref = pgd_offset_k(addr);
139                 const p4d_t *p4d_ref;
140                 struct page *page;
141
142                 /*
143                  * With folded p4d, pgd_none() is always false, we need to
144                  * handle synchonization on p4d level.
145                  */
146                 BUILD_BUG_ON(pgd_none(*pgd_ref));
147                 p4d_ref = p4d_offset(pgd_ref, addr);
148
149                 if (p4d_none(*p4d_ref))
150                         continue;
151
152                 spin_lock(&pgd_lock);
153                 list_for_each_entry(page, &pgd_list, lru) {
154                         pgd_t *pgd;
155                         p4d_t *p4d;
156                         spinlock_t *pgt_lock;
157
158                         pgd = (pgd_t *)page_address(page) + pgd_index(addr);
159                         p4d = p4d_offset(pgd, addr);
160                         /* the pgt_lock only for Xen */
161                         pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
162                         spin_lock(pgt_lock);
163
164                         if (!p4d_none(*p4d_ref) && !p4d_none(*p4d))
165                                 BUG_ON(p4d_page_vaddr(*p4d)
166                                        != p4d_page_vaddr(*p4d_ref));
167
168                         if (p4d_none(*p4d))
169                                 set_p4d(p4d, *p4d_ref);
170
171                         spin_unlock(pgt_lock);
172                 }
173                 spin_unlock(&pgd_lock);
174         }
175 }
176 #endif
177
178 /*
179  * NOTE: This function is marked __ref because it calls __init function
180  * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
181  */
182 static __ref void *spp_getpage(void)
183 {
184         void *ptr;
185
186         if (after_bootmem)
187                 ptr = (void *) get_zeroed_page(GFP_ATOMIC);
188         else
189                 ptr = alloc_bootmem_pages(PAGE_SIZE);
190
191         if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
192                 panic("set_pte_phys: cannot allocate page data %s\n",
193                         after_bootmem ? "after bootmem" : "");
194         }
195
196         pr_debug("spp_getpage %p\n", ptr);
197
198         return ptr;
199 }
200
201 static p4d_t *fill_p4d(pgd_t *pgd, unsigned long vaddr)
202 {
203         if (pgd_none(*pgd)) {
204                 p4d_t *p4d = (p4d_t *)spp_getpage();
205                 pgd_populate(&init_mm, pgd, p4d);
206                 if (p4d != p4d_offset(pgd, 0))
207                         printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
208                                p4d, p4d_offset(pgd, 0));
209         }
210         return p4d_offset(pgd, vaddr);
211 }
212
213 static pud_t *fill_pud(p4d_t *p4d, unsigned long vaddr)
214 {
215         if (p4d_none(*p4d)) {
216                 pud_t *pud = (pud_t *)spp_getpage();
217                 p4d_populate(&init_mm, p4d, pud);
218                 if (pud != pud_offset(p4d, 0))
219                         printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
220                                pud, pud_offset(p4d, 0));
221         }
222         return pud_offset(p4d, vaddr);
223 }
224
225 static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
226 {
227         if (pud_none(*pud)) {
228                 pmd_t *pmd = (pmd_t *) spp_getpage();
229                 pud_populate(&init_mm, pud, pmd);
230                 if (pmd != pmd_offset(pud, 0))
231                         printk(KERN_ERR "PAGETABLE BUG #02! %p <-> %p\n",
232                                pmd, pmd_offset(pud, 0));
233         }
234         return pmd_offset(pud, vaddr);
235 }
236
237 static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
238 {
239         if (pmd_none(*pmd)) {
240                 pte_t *pte = (pte_t *) spp_getpage();
241                 pmd_populate_kernel(&init_mm, pmd, pte);
242                 if (pte != pte_offset_kernel(pmd, 0))
243                         printk(KERN_ERR "PAGETABLE BUG #03!\n");
244         }
245         return pte_offset_kernel(pmd, vaddr);
246 }
247
248 static void __set_pte_vaddr(pud_t *pud, unsigned long vaddr, pte_t new_pte)
249 {
250         pmd_t *pmd = fill_pmd(pud, vaddr);
251         pte_t *pte = fill_pte(pmd, vaddr);
252
253         set_pte(pte, new_pte);
254
255         /*
256          * It's enough to flush this one mapping.
257          * (PGE mappings get flushed as well)
258          */
259         __flush_tlb_one_kernel(vaddr);
260 }
261
262 void set_pte_vaddr_p4d(p4d_t *p4d_page, unsigned long vaddr, pte_t new_pte)
263 {
264         p4d_t *p4d = p4d_page + p4d_index(vaddr);
265         pud_t *pud = fill_pud(p4d, vaddr);
266
267         __set_pte_vaddr(pud, vaddr, new_pte);
268 }
269
270 void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
271 {
272         pud_t *pud = pud_page + pud_index(vaddr);
273
274         __set_pte_vaddr(pud, vaddr, new_pte);
275 }
276
277 void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
278 {
279         pgd_t *pgd;
280         p4d_t *p4d_page;
281
282         pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
283
284         pgd = pgd_offset_k(vaddr);
285         if (pgd_none(*pgd)) {
286                 printk(KERN_ERR
287                         "PGD FIXMAP MISSING, it should be setup in head.S!\n");
288                 return;
289         }
290
291         p4d_page = p4d_offset(pgd, 0);
292         set_pte_vaddr_p4d(p4d_page, vaddr, pteval);
293 }
294
295 pmd_t * __init populate_extra_pmd(unsigned long vaddr)
296 {
297         pgd_t *pgd;
298         p4d_t *p4d;
299         pud_t *pud;
300
301         pgd = pgd_offset_k(vaddr);
302         p4d = fill_p4d(pgd, vaddr);
303         pud = fill_pud(p4d, vaddr);
304         return fill_pmd(pud, vaddr);
305 }
306
307 pte_t * __init populate_extra_pte(unsigned long vaddr)
308 {
309         pmd_t *pmd;
310
311         pmd = populate_extra_pmd(vaddr);
312         return fill_pte(pmd, vaddr);
313 }
314
315 /*
316  * Create large page table mappings for a range of physical addresses.
317  */
318 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
319                                         enum page_cache_mode cache)
320 {
321         pgd_t *pgd;
322         p4d_t *p4d;
323         pud_t *pud;
324         pmd_t *pmd;
325         pgprot_t prot;
326
327         pgprot_val(prot) = pgprot_val(PAGE_KERNEL_LARGE) |
328                 pgprot_val(pgprot_4k_2_large(cachemode2pgprot(cache)));
329         BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
330         for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
331                 pgd = pgd_offset_k((unsigned long)__va(phys));
332                 if (pgd_none(*pgd)) {
333                         p4d = (p4d_t *) spp_getpage();
334                         set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE |
335                                                 _PAGE_USER));
336                 }
337                 p4d = p4d_offset(pgd, (unsigned long)__va(phys));
338                 if (p4d_none(*p4d)) {
339                         pud = (pud_t *) spp_getpage();
340                         set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE |
341                                                 _PAGE_USER));
342                 }
343                 pud = pud_offset(p4d, (unsigned long)__va(phys));
344                 if (pud_none(*pud)) {
345                         pmd = (pmd_t *) spp_getpage();
346                         set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
347                                                 _PAGE_USER));
348                 }
349                 pmd = pmd_offset(pud, phys);
350                 BUG_ON(!pmd_none(*pmd));
351                 set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
352         }
353 }
354
355 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
356 {
357         __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_WB);
358 }
359
360 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
361 {
362         __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_UC);
363 }
364
365 /*
366  * The head.S code sets up the kernel high mapping:
367  *
368  *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
369  *
370  * phys_base holds the negative offset to the kernel, which is added
371  * to the compile time generated pmds. This results in invalid pmds up
372  * to the point where we hit the physaddr 0 mapping.
373  *
374  * We limit the mappings to the region from _text to _brk_end.  _brk_end
375  * is rounded up to the 2MB boundary. This catches the invalid pmds as
376  * well, as they are located before _text:
377  */
378 void __init cleanup_highmap(void)
379 {
380         unsigned long vaddr = __START_KERNEL_map;
381         unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE;
382         unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
383         pmd_t *pmd = level2_kernel_pgt;
384
385         /*
386          * Native path, max_pfn_mapped is not set yet.
387          * Xen has valid max_pfn_mapped set in
388          *      arch/x86/xen/mmu.c:xen_setup_kernel_pagetable().
389          */
390         if (max_pfn_mapped)
391                 vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
392
393         for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
394                 if (pmd_none(*pmd))
395                         continue;
396                 if (vaddr < (unsigned long) _text || vaddr > end)
397                         set_pmd(pmd, __pmd(0));
398         }
399 }
400
401 /*
402  * Create PTE level page table mapping for physical addresses.
403  * It returns the last physical address mapped.
404  */
405 static unsigned long __meminit
406 phys_pte_init(pte_t *pte_page, unsigned long paddr, unsigned long paddr_end,
407               pgprot_t prot)
408 {
409         unsigned long pages = 0, paddr_next;
410         unsigned long paddr_last = paddr_end;
411         pte_t *pte;
412         int i;
413
414         pte = pte_page + pte_index(paddr);
415         i = pte_index(paddr);
416
417         for (; i < PTRS_PER_PTE; i++, paddr = paddr_next, pte++) {
418                 paddr_next = (paddr & PAGE_MASK) + PAGE_SIZE;
419                 if (paddr >= paddr_end) {
420                         if (!after_bootmem &&
421                             !e820__mapped_any(paddr & PAGE_MASK, paddr_next,
422                                              E820_TYPE_RAM) &&
423                             !e820__mapped_any(paddr & PAGE_MASK, paddr_next,
424                                              E820_TYPE_RESERVED_KERN))
425                                 set_pte(pte, __pte(0));
426                         continue;
427                 }
428
429                 /*
430                  * We will re-use the existing mapping.
431                  * Xen for example has some special requirements, like mapping
432                  * pagetable pages as RO. So assume someone who pre-setup
433                  * these mappings are more intelligent.
434                  */
435                 if (!pte_none(*pte)) {
436                         if (!after_bootmem)
437                                 pages++;
438                         continue;
439                 }
440
441                 if (0)
442                         pr_info("   pte=%p addr=%lx pte=%016lx\n", pte, paddr,
443                                 pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL).pte);
444                 pages++;
445                 set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, prot));
446                 paddr_last = (paddr & PAGE_MASK) + PAGE_SIZE;
447         }
448
449         update_page_count(PG_LEVEL_4K, pages);
450
451         return paddr_last;
452 }
453
454 /*
455  * Create PMD level page table mapping for physical addresses. The virtual
456  * and physical address have to be aligned at this level.
457  * It returns the last physical address mapped.
458  */
459 static unsigned long __meminit
460 phys_pmd_init(pmd_t *pmd_page, unsigned long paddr, unsigned long paddr_end,
461               unsigned long page_size_mask, pgprot_t prot)
462 {
463         unsigned long pages = 0, paddr_next;
464         unsigned long paddr_last = paddr_end;
465
466         int i = pmd_index(paddr);
467
468         for (; i < PTRS_PER_PMD; i++, paddr = paddr_next) {
469                 pmd_t *pmd = pmd_page + pmd_index(paddr);
470                 pte_t *pte;
471                 pgprot_t new_prot = prot;
472
473                 paddr_next = (paddr & PMD_MASK) + PMD_SIZE;
474                 if (paddr >= paddr_end) {
475                         if (!after_bootmem &&
476                             !e820__mapped_any(paddr & PMD_MASK, paddr_next,
477                                              E820_TYPE_RAM) &&
478                             !e820__mapped_any(paddr & PMD_MASK, paddr_next,
479                                              E820_TYPE_RESERVED_KERN))
480                                 set_pmd(pmd, __pmd(0));
481                         continue;
482                 }
483
484                 if (!pmd_none(*pmd)) {
485                         if (!pmd_large(*pmd)) {
486                                 spin_lock(&init_mm.page_table_lock);
487                                 pte = (pte_t *)pmd_page_vaddr(*pmd);
488                                 paddr_last = phys_pte_init(pte, paddr,
489                                                            paddr_end, prot);
490                                 spin_unlock(&init_mm.page_table_lock);
491                                 continue;
492                         }
493                         /*
494                          * If we are ok with PG_LEVEL_2M mapping, then we will
495                          * use the existing mapping,
496                          *
497                          * Otherwise, we will split the large page mapping but
498                          * use the same existing protection bits except for
499                          * large page, so that we don't violate Intel's TLB
500                          * Application note (317080) which says, while changing
501                          * the page sizes, new and old translations should
502                          * not differ with respect to page frame and
503                          * attributes.
504                          */
505                         if (page_size_mask & (1 << PG_LEVEL_2M)) {
506                                 if (!after_bootmem)
507                                         pages++;
508                                 paddr_last = paddr_next;
509                                 continue;
510                         }
511                         new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
512                 }
513
514                 if (page_size_mask & (1<<PG_LEVEL_2M)) {
515                         pages++;
516                         spin_lock(&init_mm.page_table_lock);
517                         set_pte((pte_t *)pmd,
518                                 pfn_pte((paddr & PMD_MASK) >> PAGE_SHIFT,
519                                         __pgprot(pgprot_val(prot) | _PAGE_PSE)));
520                         spin_unlock(&init_mm.page_table_lock);
521                         paddr_last = paddr_next;
522                         continue;
523                 }
524
525                 pte = alloc_low_page();
526                 paddr_last = phys_pte_init(pte, paddr, paddr_end, new_prot);
527
528                 spin_lock(&init_mm.page_table_lock);
529                 pmd_populate_kernel(&init_mm, pmd, pte);
530                 spin_unlock(&init_mm.page_table_lock);
531         }
532         update_page_count(PG_LEVEL_2M, pages);
533         return paddr_last;
534 }
535
536 /*
537  * Create PUD level page table mapping for physical addresses. The virtual
538  * and physical address do not have to be aligned at this level. KASLR can
539  * randomize virtual addresses up to this level.
540  * It returns the last physical address mapped.
541  */
542 static unsigned long __meminit
543 phys_pud_init(pud_t *pud_page, unsigned long paddr, unsigned long paddr_end,
544               unsigned long page_size_mask)
545 {
546         unsigned long pages = 0, paddr_next;
547         unsigned long paddr_last = paddr_end;
548         unsigned long vaddr = (unsigned long)__va(paddr);
549         int i = pud_index(vaddr);
550
551         for (; i < PTRS_PER_PUD; i++, paddr = paddr_next) {
552                 pud_t *pud;
553                 pmd_t *pmd;
554                 pgprot_t prot = PAGE_KERNEL;
555
556                 vaddr = (unsigned long)__va(paddr);
557                 pud = pud_page + pud_index(vaddr);
558                 paddr_next = (paddr & PUD_MASK) + PUD_SIZE;
559
560                 if (paddr >= paddr_end) {
561                         if (!after_bootmem &&
562                             !e820__mapped_any(paddr & PUD_MASK, paddr_next,
563                                              E820_TYPE_RAM) &&
564                             !e820__mapped_any(paddr & PUD_MASK, paddr_next,
565                                              E820_TYPE_RESERVED_KERN))
566                                 set_pud(pud, __pud(0));
567                         continue;
568                 }
569
570                 if (!pud_none(*pud)) {
571                         if (!pud_large(*pud)) {
572                                 pmd = pmd_offset(pud, 0);
573                                 paddr_last = phys_pmd_init(pmd, paddr,
574                                                            paddr_end,
575                                                            page_size_mask,
576                                                            prot);
577                                 continue;
578                         }
579                         /*
580                          * If we are ok with PG_LEVEL_1G mapping, then we will
581                          * use the existing mapping.
582                          *
583                          * Otherwise, we will split the gbpage mapping but use
584                          * the same existing protection  bits except for large
585                          * page, so that we don't violate Intel's TLB
586                          * Application note (317080) which says, while changing
587                          * the page sizes, new and old translations should
588                          * not differ with respect to page frame and
589                          * attributes.
590                          */
591                         if (page_size_mask & (1 << PG_LEVEL_1G)) {
592                                 if (!after_bootmem)
593                                         pages++;
594                                 paddr_last = paddr_next;
595                                 continue;
596                         }
597                         prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
598                 }
599
600                 if (page_size_mask & (1<<PG_LEVEL_1G)) {
601                         pages++;
602                         spin_lock(&init_mm.page_table_lock);
603                         set_pte((pte_t *)pud,
604                                 pfn_pte((paddr & PUD_MASK) >> PAGE_SHIFT,
605                                         PAGE_KERNEL_LARGE));
606                         spin_unlock(&init_mm.page_table_lock);
607                         paddr_last = paddr_next;
608                         continue;
609                 }
610
611                 pmd = alloc_low_page();
612                 paddr_last = phys_pmd_init(pmd, paddr, paddr_end,
613                                            page_size_mask, prot);
614
615                 spin_lock(&init_mm.page_table_lock);
616                 pud_populate(&init_mm, pud, pmd);
617                 spin_unlock(&init_mm.page_table_lock);
618         }
619
620         update_page_count(PG_LEVEL_1G, pages);
621
622         return paddr_last;
623 }
624
625 static unsigned long __meminit
626 phys_p4d_init(p4d_t *p4d_page, unsigned long paddr, unsigned long paddr_end,
627               unsigned long page_size_mask)
628 {
629         unsigned long paddr_next, paddr_last = paddr_end;
630         unsigned long vaddr = (unsigned long)__va(paddr);
631         int i = p4d_index(vaddr);
632
633         if (!IS_ENABLED(CONFIG_X86_5LEVEL))
634                 return phys_pud_init((pud_t *) p4d_page, paddr, paddr_end, page_size_mask);
635
636         for (; i < PTRS_PER_P4D; i++, paddr = paddr_next) {
637                 p4d_t *p4d;
638                 pud_t *pud;
639
640                 vaddr = (unsigned long)__va(paddr);
641                 p4d = p4d_page + p4d_index(vaddr);
642                 paddr_next = (paddr & P4D_MASK) + P4D_SIZE;
643
644                 if (paddr >= paddr_end) {
645                         if (!after_bootmem &&
646                             !e820__mapped_any(paddr & P4D_MASK, paddr_next,
647                                              E820_TYPE_RAM) &&
648                             !e820__mapped_any(paddr & P4D_MASK, paddr_next,
649                                              E820_TYPE_RESERVED_KERN))
650                                 set_p4d(p4d, __p4d(0));
651                         continue;
652                 }
653
654                 if (!p4d_none(*p4d)) {
655                         pud = pud_offset(p4d, 0);
656                         paddr_last = phys_pud_init(pud, paddr,
657                                         paddr_end,
658                                         page_size_mask);
659                         continue;
660                 }
661
662                 pud = alloc_low_page();
663                 paddr_last = phys_pud_init(pud, paddr, paddr_end,
664                                            page_size_mask);
665
666                 spin_lock(&init_mm.page_table_lock);
667                 p4d_populate(&init_mm, p4d, pud);
668                 spin_unlock(&init_mm.page_table_lock);
669         }
670
671         return paddr_last;
672 }
673
674 /*
675  * Create page table mapping for the physical memory for specific physical
676  * addresses. The virtual and physical addresses have to be aligned on PMD level
677  * down. It returns the last physical address mapped.
678  */
679 unsigned long __meminit
680 kernel_physical_mapping_init(unsigned long paddr_start,
681                              unsigned long paddr_end,
682                              unsigned long page_size_mask)
683 {
684         bool pgd_changed = false;
685         unsigned long vaddr, vaddr_start, vaddr_end, vaddr_next, paddr_last;
686
687         paddr_last = paddr_end;
688         vaddr = (unsigned long)__va(paddr_start);
689         vaddr_end = (unsigned long)__va(paddr_end);
690         vaddr_start = vaddr;
691
692         for (; vaddr < vaddr_end; vaddr = vaddr_next) {
693                 pgd_t *pgd = pgd_offset_k(vaddr);
694                 p4d_t *p4d;
695
696                 vaddr_next = (vaddr & PGDIR_MASK) + PGDIR_SIZE;
697
698                 if (pgd_val(*pgd)) {
699                         p4d = (p4d_t *)pgd_page_vaddr(*pgd);
700                         paddr_last = phys_p4d_init(p4d, __pa(vaddr),
701                                                    __pa(vaddr_end),
702                                                    page_size_mask);
703                         continue;
704                 }
705
706                 p4d = alloc_low_page();
707                 paddr_last = phys_p4d_init(p4d, __pa(vaddr), __pa(vaddr_end),
708                                            page_size_mask);
709
710                 spin_lock(&init_mm.page_table_lock);
711                 if (IS_ENABLED(CONFIG_X86_5LEVEL))
712                         pgd_populate(&init_mm, pgd, p4d);
713                 else
714                         p4d_populate(&init_mm, p4d_offset(pgd, vaddr), (pud_t *) p4d);
715                 spin_unlock(&init_mm.page_table_lock);
716                 pgd_changed = true;
717         }
718
719         if (pgd_changed)
720                 sync_global_pgds(vaddr_start, vaddr_end - 1);
721
722         return paddr_last;
723 }
724
725 #ifndef CONFIG_NUMA
726 void __init initmem_init(void)
727 {
728         memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0);
729 }
730 #endif
731
732 void __init paging_init(void)
733 {
734         sparse_memory_present_with_active_regions(MAX_NUMNODES);
735         sparse_init();
736
737         /*
738          * clear the default setting with node 0
739          * note: don't use nodes_clear here, that is really clearing when
740          *       numa support is not compiled in, and later node_set_state
741          *       will not set it back.
742          */
743         node_clear_state(0, N_MEMORY);
744         if (N_MEMORY != N_NORMAL_MEMORY)
745                 node_clear_state(0, N_NORMAL_MEMORY);
746
747         zone_sizes_init();
748 }
749
750 /*
751  * Memory hotplug specific functions
752  */
753 #ifdef CONFIG_MEMORY_HOTPLUG
754 /*
755  * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
756  * updating.
757  */
758 static void update_end_of_memory_vars(u64 start, u64 size)
759 {
760         unsigned long end_pfn = PFN_UP(start + size);
761
762         if (end_pfn > max_pfn) {
763                 max_pfn = end_pfn;
764                 max_low_pfn = end_pfn;
765                 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
766         }
767 }
768
769 int add_pages(int nid, unsigned long start_pfn,
770               unsigned long nr_pages, bool want_memblock)
771 {
772         int ret;
773
774         ret = __add_pages(nid, start_pfn, nr_pages, want_memblock);
775         WARN_ON_ONCE(ret);
776
777         /* update max_pfn, max_low_pfn and high_memory */
778         update_end_of_memory_vars(start_pfn << PAGE_SHIFT,
779                                   nr_pages << PAGE_SHIFT);
780
781         return ret;
782 }
783
784 int arch_add_memory(int nid, u64 start, u64 size, bool want_memblock)
785 {
786         unsigned long start_pfn = start >> PAGE_SHIFT;
787         unsigned long nr_pages = size >> PAGE_SHIFT;
788
789         init_memory_mapping(start, start + size);
790
791         return add_pages(nid, start_pfn, nr_pages, want_memblock);
792 }
793 EXPORT_SYMBOL_GPL(arch_add_memory);
794
795 #define PAGE_INUSE 0xFD
796
797 static void __meminit free_pagetable(struct page *page, int order)
798 {
799         unsigned long magic;
800         unsigned int nr_pages = 1 << order;
801         struct vmem_altmap *altmap = to_vmem_altmap((unsigned long) page);
802
803         if (altmap) {
804                 vmem_altmap_free(altmap, nr_pages);
805                 return;
806         }
807
808         /* bootmem page has reserved flag */
809         if (PageReserved(page)) {
810                 __ClearPageReserved(page);
811
812                 magic = (unsigned long)page->freelist;
813                 if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) {
814                         while (nr_pages--)
815                                 put_page_bootmem(page++);
816                 } else
817                         while (nr_pages--)
818                                 free_reserved_page(page++);
819         } else
820                 free_pages((unsigned long)page_address(page), order);
821 }
822
823 static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
824 {
825         pte_t *pte;
826         int i;
827
828         for (i = 0; i < PTRS_PER_PTE; i++) {
829                 pte = pte_start + i;
830                 if (!pte_none(*pte))
831                         return;
832         }
833
834         /* free a pte talbe */
835         free_pagetable(pmd_page(*pmd), 0);
836         spin_lock(&init_mm.page_table_lock);
837         pmd_clear(pmd);
838         spin_unlock(&init_mm.page_table_lock);
839 }
840
841 static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud)
842 {
843         pmd_t *pmd;
844         int i;
845
846         for (i = 0; i < PTRS_PER_PMD; i++) {
847                 pmd = pmd_start + i;
848                 if (!pmd_none(*pmd))
849                         return;
850         }
851
852         /* free a pmd talbe */
853         free_pagetable(pud_page(*pud), 0);
854         spin_lock(&init_mm.page_table_lock);
855         pud_clear(pud);
856         spin_unlock(&init_mm.page_table_lock);
857 }
858
859 static void __meminit free_pud_table(pud_t *pud_start, p4d_t *p4d)
860 {
861         pud_t *pud;
862         int i;
863
864         for (i = 0; i < PTRS_PER_PUD; i++) {
865                 pud = pud_start + i;
866                 if (!pud_none(*pud))
867                         return;
868         }
869
870         /* free a pud talbe */
871         free_pagetable(p4d_page(*p4d), 0);
872         spin_lock(&init_mm.page_table_lock);
873         p4d_clear(p4d);
874         spin_unlock(&init_mm.page_table_lock);
875 }
876
877 static void __meminit
878 remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end,
879                  bool direct)
880 {
881         unsigned long next, pages = 0;
882         pte_t *pte;
883         void *page_addr;
884         phys_addr_t phys_addr;
885
886         pte = pte_start + pte_index(addr);
887         for (; addr < end; addr = next, pte++) {
888                 next = (addr + PAGE_SIZE) & PAGE_MASK;
889                 if (next > end)
890                         next = end;
891
892                 if (!pte_present(*pte))
893                         continue;
894
895                 /*
896                  * We mapped [0,1G) memory as identity mapping when
897                  * initializing, in arch/x86/kernel/head_64.S. These
898                  * pagetables cannot be removed.
899                  */
900                 phys_addr = pte_val(*pte) + (addr & PAGE_MASK);
901                 if (phys_addr < (phys_addr_t)0x40000000)
902                         return;
903
904                 if (PAGE_ALIGNED(addr) && PAGE_ALIGNED(next)) {
905                         /*
906                          * Do not free direct mapping pages since they were
907                          * freed when offlining, or simplely not in use.
908                          */
909                         if (!direct)
910                                 free_pagetable(pte_page(*pte), 0);
911
912                         spin_lock(&init_mm.page_table_lock);
913                         pte_clear(&init_mm, addr, pte);
914                         spin_unlock(&init_mm.page_table_lock);
915
916                         /* For non-direct mapping, pages means nothing. */
917                         pages++;
918                 } else {
919                         /*
920                          * If we are here, we are freeing vmemmap pages since
921                          * direct mapped memory ranges to be freed are aligned.
922                          *
923                          * If we are not removing the whole page, it means
924                          * other page structs in this page are being used and
925                          * we canot remove them. So fill the unused page_structs
926                          * with 0xFD, and remove the page when it is wholly
927                          * filled with 0xFD.
928                          */
929                         memset((void *)addr, PAGE_INUSE, next - addr);
930
931                         page_addr = page_address(pte_page(*pte));
932                         if (!memchr_inv(page_addr, PAGE_INUSE, PAGE_SIZE)) {
933                                 free_pagetable(pte_page(*pte), 0);
934
935                                 spin_lock(&init_mm.page_table_lock);
936                                 pte_clear(&init_mm, addr, pte);
937                                 spin_unlock(&init_mm.page_table_lock);
938                         }
939                 }
940         }
941
942         /* Call free_pte_table() in remove_pmd_table(). */
943         flush_tlb_all();
944         if (direct)
945                 update_page_count(PG_LEVEL_4K, -pages);
946 }
947
948 static void __meminit
949 remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end,
950                  bool direct)
951 {
952         unsigned long next, pages = 0;
953         pte_t *pte_base;
954         pmd_t *pmd;
955         void *page_addr;
956
957         pmd = pmd_start + pmd_index(addr);
958         for (; addr < end; addr = next, pmd++) {
959                 next = pmd_addr_end(addr, end);
960
961                 if (!pmd_present(*pmd))
962                         continue;
963
964                 if (pmd_large(*pmd)) {
965                         if (IS_ALIGNED(addr, PMD_SIZE) &&
966                             IS_ALIGNED(next, PMD_SIZE)) {
967                                 if (!direct)
968                                         free_pagetable(pmd_page(*pmd),
969                                                        get_order(PMD_SIZE));
970
971                                 spin_lock(&init_mm.page_table_lock);
972                                 pmd_clear(pmd);
973                                 spin_unlock(&init_mm.page_table_lock);
974                                 pages++;
975                         } else {
976                                 /* If here, we are freeing vmemmap pages. */
977                                 memset((void *)addr, PAGE_INUSE, next - addr);
978
979                                 page_addr = page_address(pmd_page(*pmd));
980                                 if (!memchr_inv(page_addr, PAGE_INUSE,
981                                                 PMD_SIZE)) {
982                                         free_pagetable(pmd_page(*pmd),
983                                                        get_order(PMD_SIZE));
984
985                                         spin_lock(&init_mm.page_table_lock);
986                                         pmd_clear(pmd);
987                                         spin_unlock(&init_mm.page_table_lock);
988                                 }
989                         }
990
991                         continue;
992                 }
993
994                 pte_base = (pte_t *)pmd_page_vaddr(*pmd);
995                 remove_pte_table(pte_base, addr, next, direct);
996                 free_pte_table(pte_base, pmd);
997         }
998
999         /* Call free_pmd_table() in remove_pud_table(). */
1000         if (direct)
1001                 update_page_count(PG_LEVEL_2M, -pages);
1002 }
1003
1004 static void __meminit
1005 remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end,
1006                  bool direct)
1007 {
1008         unsigned long next, pages = 0;
1009         pmd_t *pmd_base;
1010         pud_t *pud;
1011         void *page_addr;
1012
1013         pud = pud_start + pud_index(addr);
1014         for (; addr < end; addr = next, pud++) {
1015                 next = pud_addr_end(addr, end);
1016
1017                 if (!pud_present(*pud))
1018                         continue;
1019
1020                 if (pud_large(*pud)) {
1021                         if (IS_ALIGNED(addr, PUD_SIZE) &&
1022                             IS_ALIGNED(next, PUD_SIZE)) {
1023                                 if (!direct)
1024                                         free_pagetable(pud_page(*pud),
1025                                                        get_order(PUD_SIZE));
1026
1027                                 spin_lock(&init_mm.page_table_lock);
1028                                 pud_clear(pud);
1029                                 spin_unlock(&init_mm.page_table_lock);
1030                                 pages++;
1031                         } else {
1032                                 /* If here, we are freeing vmemmap pages. */
1033                                 memset((void *)addr, PAGE_INUSE, next - addr);
1034
1035                                 page_addr = page_address(pud_page(*pud));
1036                                 if (!memchr_inv(page_addr, PAGE_INUSE,
1037                                                 PUD_SIZE)) {
1038                                         free_pagetable(pud_page(*pud),
1039                                                        get_order(PUD_SIZE));
1040
1041                                         spin_lock(&init_mm.page_table_lock);
1042                                         pud_clear(pud);
1043                                         spin_unlock(&init_mm.page_table_lock);
1044                                 }
1045                         }
1046
1047                         continue;
1048                 }
1049
1050                 pmd_base = pmd_offset(pud, 0);
1051                 remove_pmd_table(pmd_base, addr, next, direct);
1052                 free_pmd_table(pmd_base, pud);
1053         }
1054
1055         if (direct)
1056                 update_page_count(PG_LEVEL_1G, -pages);
1057 }
1058
1059 static void __meminit
1060 remove_p4d_table(p4d_t *p4d_start, unsigned long addr, unsigned long end,
1061                  bool direct)
1062 {
1063         unsigned long next, pages = 0;
1064         pud_t *pud_base;
1065         p4d_t *p4d;
1066
1067         p4d = p4d_start + p4d_index(addr);
1068         for (; addr < end; addr = next, p4d++) {
1069                 next = p4d_addr_end(addr, end);
1070
1071                 if (!p4d_present(*p4d))
1072                         continue;
1073
1074                 BUILD_BUG_ON(p4d_large(*p4d));
1075
1076                 pud_base = pud_offset(p4d, 0);
1077                 remove_pud_table(pud_base, addr, next, direct);
1078                 /*
1079                  * For 4-level page tables we do not want to free PUDs, but in the
1080                  * 5-level case we should free them. This code will have to change
1081                  * to adapt for boot-time switching between 4 and 5 level page tables.
1082                  */
1083                 if (CONFIG_PGTABLE_LEVELS == 5)
1084                         free_pud_table(pud_base, p4d);
1085         }
1086
1087         if (direct)
1088                 update_page_count(PG_LEVEL_512G, -pages);
1089 }
1090
1091 /* start and end are both virtual address. */
1092 static void __meminit
1093 remove_pagetable(unsigned long start, unsigned long end, bool direct)
1094 {
1095         unsigned long next;
1096         unsigned long addr;
1097         pgd_t *pgd;
1098         p4d_t *p4d;
1099
1100         for (addr = start; addr < end; addr = next) {
1101                 next = pgd_addr_end(addr, end);
1102
1103                 pgd = pgd_offset_k(addr);
1104                 if (!pgd_present(*pgd))
1105                         continue;
1106
1107                 p4d = p4d_offset(pgd, 0);
1108                 remove_p4d_table(p4d, addr, next, direct);
1109         }
1110
1111         flush_tlb_all();
1112 }
1113
1114 void __ref vmemmap_free(unsigned long start, unsigned long end)
1115 {
1116         remove_pagetable(start, end, false);
1117 }
1118
1119 #ifdef CONFIG_MEMORY_HOTREMOVE
1120 static void __meminit
1121 kernel_physical_mapping_remove(unsigned long start, unsigned long end)
1122 {
1123         start = (unsigned long)__va(start);
1124         end = (unsigned long)__va(end);
1125
1126         remove_pagetable(start, end, true);
1127 }
1128
1129 int __ref arch_remove_memory(u64 start, u64 size)
1130 {
1131         unsigned long start_pfn = start >> PAGE_SHIFT;
1132         unsigned long nr_pages = size >> PAGE_SHIFT;
1133         struct page *page = pfn_to_page(start_pfn);
1134         struct vmem_altmap *altmap;
1135         struct zone *zone;
1136         int ret;
1137
1138         /* With altmap the first mapped page is offset from @start */
1139         altmap = to_vmem_altmap((unsigned long) page);
1140         if (altmap)
1141                 page += vmem_altmap_offset(altmap);
1142         zone = page_zone(page);
1143         ret = __remove_pages(zone, start_pfn, nr_pages);
1144         WARN_ON_ONCE(ret);
1145         kernel_physical_mapping_remove(start, start + size);
1146
1147         return ret;
1148 }
1149 #endif
1150 #endif /* CONFIG_MEMORY_HOTPLUG */
1151
1152 static struct kcore_list kcore_vsyscall;
1153
1154 static void __init register_page_bootmem_info(void)
1155 {
1156 #ifdef CONFIG_NUMA
1157         int i;
1158
1159         for_each_online_node(i)
1160                 register_page_bootmem_info_node(NODE_DATA(i));
1161 #endif
1162 }
1163
1164 void __init mem_init(void)
1165 {
1166         pci_iommu_alloc();
1167
1168         /* clear_bss() already clear the empty_zero_page */
1169
1170         register_page_bootmem_info();
1171
1172         /* this will put all memory onto the freelists */
1173         free_all_bootmem();
1174         after_bootmem = 1;
1175
1176         /* Register memory areas for /proc/kcore */
1177         kclist_add(&kcore_vsyscall, (void *)VSYSCALL_ADDR, PAGE_SIZE, KCORE_USER);
1178
1179         mem_init_print_info(NULL);
1180 }
1181
1182 int kernel_set_to_readonly;
1183
1184 void set_kernel_text_rw(void)
1185 {
1186         unsigned long start = PFN_ALIGN(_text);
1187         unsigned long end = PFN_ALIGN(__stop___ex_table);
1188
1189         if (!kernel_set_to_readonly)
1190                 return;
1191
1192         pr_debug("Set kernel text: %lx - %lx for read write\n",
1193                  start, end);
1194
1195         /*
1196          * Make the kernel identity mapping for text RW. Kernel text
1197          * mapping will always be RO. Refer to the comment in
1198          * static_protections() in pageattr.c
1199          */
1200         set_memory_rw(start, (end - start) >> PAGE_SHIFT);
1201 }
1202
1203 void set_kernel_text_ro(void)
1204 {
1205         unsigned long start = PFN_ALIGN(_text);
1206         unsigned long end = PFN_ALIGN(__stop___ex_table);
1207
1208         if (!kernel_set_to_readonly)
1209                 return;
1210
1211         pr_debug("Set kernel text: %lx - %lx for read only\n",
1212                  start, end);
1213
1214         /*
1215          * Set the kernel identity mapping for text RO.
1216          */
1217         set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1218 }
1219
1220 void mark_rodata_ro(void)
1221 {
1222         unsigned long start = PFN_ALIGN(_text);
1223         unsigned long rodata_start = PFN_ALIGN(__start_rodata);
1224         unsigned long end = (unsigned long) &__end_rodata_hpage_align;
1225         unsigned long text_end = PFN_ALIGN(&__stop___ex_table);
1226         unsigned long rodata_end = PFN_ALIGN(&__end_rodata);
1227         unsigned long all_end;
1228
1229         printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
1230                (end - start) >> 10);
1231         set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1232
1233         kernel_set_to_readonly = 1;
1234
1235         /*
1236          * The rodata/data/bss/brk section (but not the kernel text!)
1237          * should also be not-executable.
1238          *
1239          * We align all_end to PMD_SIZE because the existing mapping
1240          * is a full PMD. If we would align _brk_end to PAGE_SIZE we
1241          * split the PMD and the reminder between _brk_end and the end
1242          * of the PMD will remain mapped executable.
1243          *
1244          * Any PMD which was setup after the one which covers _brk_end
1245          * has been zapped already via cleanup_highmem().
1246          */
1247         all_end = roundup((unsigned long)_brk_end, PMD_SIZE);
1248         set_memory_nx(text_end, (all_end - text_end) >> PAGE_SHIFT);
1249
1250 #ifdef CONFIG_CPA_DEBUG
1251         printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
1252         set_memory_rw(start, (end-start) >> PAGE_SHIFT);
1253
1254         printk(KERN_INFO "Testing CPA: again\n");
1255         set_memory_ro(start, (end-start) >> PAGE_SHIFT);
1256 #endif
1257
1258         free_init_pages("unused kernel",
1259                         (unsigned long) __va(__pa_symbol(text_end)),
1260                         (unsigned long) __va(__pa_symbol(rodata_start)));
1261         free_init_pages("unused kernel",
1262                         (unsigned long) __va(__pa_symbol(rodata_end)),
1263                         (unsigned long) __va(__pa_symbol(_sdata)));
1264
1265         debug_checkwx();
1266 }
1267
1268 int kern_addr_valid(unsigned long addr)
1269 {
1270         unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
1271         pgd_t *pgd;
1272         p4d_t *p4d;
1273         pud_t *pud;
1274         pmd_t *pmd;
1275         pte_t *pte;
1276
1277         if (above != 0 && above != -1UL)
1278                 return 0;
1279
1280         pgd = pgd_offset_k(addr);
1281         if (pgd_none(*pgd))
1282                 return 0;
1283
1284         p4d = p4d_offset(pgd, addr);
1285         if (!p4d_present(*p4d))
1286                 return 0;
1287
1288         pud = pud_offset(p4d, addr);
1289         if (!pud_present(*pud))
1290                 return 0;
1291
1292         if (pud_large(*pud))
1293                 return pfn_valid(pud_pfn(*pud));
1294
1295         pmd = pmd_offset(pud, addr);
1296         if (!pmd_present(*pmd))
1297                 return 0;
1298
1299         if (pmd_large(*pmd))
1300                 return pfn_valid(pmd_pfn(*pmd));
1301
1302         pte = pte_offset_kernel(pmd, addr);
1303         if (pte_none(*pte))
1304                 return 0;
1305
1306         return pfn_valid(pte_pfn(*pte));
1307 }
1308
1309 static unsigned long probe_memory_block_size(void)
1310 {
1311         unsigned long bz = MIN_MEMORY_BLOCK_SIZE;
1312
1313         /* if system is UV or has 64GB of RAM or more, use large blocks */
1314         if (is_uv_system() || ((max_pfn << PAGE_SHIFT) >= (64UL << 30)))
1315                 bz = 2UL << 30; /* 2GB */
1316
1317         pr_info("x86/mm: Memory block size: %ldMB\n", bz >> 20);
1318
1319         return bz;
1320 }
1321
1322 static unsigned long memory_block_size_probed;
1323 unsigned long memory_block_size_bytes(void)
1324 {
1325         if (!memory_block_size_probed)
1326                 memory_block_size_probed = probe_memory_block_size();
1327
1328         return memory_block_size_probed;
1329 }
1330
1331 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1332 /*
1333  * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1334  */
1335 static long __meminitdata addr_start, addr_end;
1336 static void __meminitdata *p_start, *p_end;
1337 static int __meminitdata node_start;
1338
1339 static int __meminit vmemmap_populate_hugepages(unsigned long start,
1340                 unsigned long end, int node, struct vmem_altmap *altmap)
1341 {
1342         unsigned long addr;
1343         unsigned long next;
1344         pgd_t *pgd;
1345         p4d_t *p4d;
1346         pud_t *pud;
1347         pmd_t *pmd;
1348
1349         for (addr = start; addr < end; addr = next) {
1350                 next = pmd_addr_end(addr, end);
1351
1352                 pgd = vmemmap_pgd_populate(addr, node);
1353                 if (!pgd)
1354                         return -ENOMEM;
1355
1356                 p4d = vmemmap_p4d_populate(pgd, addr, node);
1357                 if (!p4d)
1358                         return -ENOMEM;
1359
1360                 pud = vmemmap_pud_populate(p4d, addr, node);
1361                 if (!pud)
1362                         return -ENOMEM;
1363
1364                 pmd = pmd_offset(pud, addr);
1365                 if (pmd_none(*pmd)) {
1366                         void *p;
1367
1368                         p = __vmemmap_alloc_block_buf(PMD_SIZE, node, altmap);
1369                         if (p) {
1370                                 pte_t entry;
1371
1372                                 entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1373                                                 PAGE_KERNEL_LARGE);
1374                                 set_pmd(pmd, __pmd(pte_val(entry)));
1375
1376                                 /* check to see if we have contiguous blocks */
1377                                 if (p_end != p || node_start != node) {
1378                                         if (p_start)
1379                                                 pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1380                                                        addr_start, addr_end-1, p_start, p_end-1, node_start);
1381                                         addr_start = addr;
1382                                         node_start = node;
1383                                         p_start = p;
1384                                 }
1385
1386                                 addr_end = addr + PMD_SIZE;
1387                                 p_end = p + PMD_SIZE;
1388                                 continue;
1389                         } else if (altmap)
1390                                 return -ENOMEM; /* no fallback */
1391                 } else if (pmd_large(*pmd)) {
1392                         vmemmap_verify((pte_t *)pmd, node, addr, next);
1393                         continue;
1394                 }
1395                 pr_warn_once("vmemmap: falling back to regular page backing\n");
1396                 if (vmemmap_populate_basepages(addr, next, node))
1397                         return -ENOMEM;
1398         }
1399         return 0;
1400 }
1401
1402 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
1403 {
1404         struct vmem_altmap *altmap = to_vmem_altmap(start);
1405         int err;
1406
1407         if (boot_cpu_has(X86_FEATURE_PSE))
1408                 err = vmemmap_populate_hugepages(start, end, node, altmap);
1409         else if (altmap) {
1410                 pr_err_once("%s: no cpu support for altmap allocations\n",
1411                                 __func__);
1412                 err = -ENOMEM;
1413         } else
1414                 err = vmemmap_populate_basepages(start, end, node);
1415         if (!err)
1416                 sync_global_pgds(start, end - 1);
1417         return err;
1418 }
1419
1420 #if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) && defined(CONFIG_HAVE_BOOTMEM_INFO_NODE)
1421 void register_page_bootmem_memmap(unsigned long section_nr,
1422                                   struct page *start_page, unsigned long nr_pages)
1423 {
1424         unsigned long addr = (unsigned long)start_page;
1425         unsigned long end = (unsigned long)(start_page + nr_pages);
1426         unsigned long next;
1427         pgd_t *pgd;
1428         p4d_t *p4d;
1429         pud_t *pud;
1430         pmd_t *pmd;
1431         unsigned int nr_pmd_pages;
1432         struct page *page;
1433
1434         for (; addr < end; addr = next) {
1435                 pte_t *pte = NULL;
1436
1437                 pgd = pgd_offset_k(addr);
1438                 if (pgd_none(*pgd)) {
1439                         next = (addr + PAGE_SIZE) & PAGE_MASK;
1440                         continue;
1441                 }
1442                 get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO);
1443
1444                 p4d = p4d_offset(pgd, addr);
1445                 if (p4d_none(*p4d)) {
1446                         next = (addr + PAGE_SIZE) & PAGE_MASK;
1447                         continue;
1448                 }
1449                 get_page_bootmem(section_nr, p4d_page(*p4d), MIX_SECTION_INFO);
1450
1451                 pud = pud_offset(p4d, addr);
1452                 if (pud_none(*pud)) {
1453                         next = (addr + PAGE_SIZE) & PAGE_MASK;
1454                         continue;
1455                 }
1456                 get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO);
1457
1458                 if (!boot_cpu_has(X86_FEATURE_PSE)) {
1459                         next = (addr + PAGE_SIZE) & PAGE_MASK;
1460                         pmd = pmd_offset(pud, addr);
1461                         if (pmd_none(*pmd))
1462                                 continue;
1463                         get_page_bootmem(section_nr, pmd_page(*pmd),
1464                                          MIX_SECTION_INFO);
1465
1466                         pte = pte_offset_kernel(pmd, addr);
1467                         if (pte_none(*pte))
1468                                 continue;
1469                         get_page_bootmem(section_nr, pte_page(*pte),
1470                                          SECTION_INFO);
1471                 } else {
1472                         next = pmd_addr_end(addr, end);
1473
1474                         pmd = pmd_offset(pud, addr);
1475                         if (pmd_none(*pmd))
1476                                 continue;
1477
1478                         nr_pmd_pages = 1 << get_order(PMD_SIZE);
1479                         page = pmd_page(*pmd);
1480                         while (nr_pmd_pages--)
1481                                 get_page_bootmem(section_nr, page++,
1482                                                  SECTION_INFO);
1483                 }
1484         }
1485 }
1486 #endif
1487
1488 void __meminit vmemmap_populate_print_last(void)
1489 {
1490         if (p_start) {
1491                 pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1492                         addr_start, addr_end-1, p_start, p_end-1, node_start);
1493                 p_start = NULL;
1494                 p_end = NULL;
1495                 node_start = 0;
1496         }
1497 }
1498 #endif