GNU Linux-libre 4.19.286-gnu1
[releases.git] / arch / x86 / mm / pageattr.c
1 /*
2  * Copyright 2002 Andi Kleen, SuSE Labs.
3  * Thanks to Ben LaHaise for precious feedback.
4  */
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/sched.h>
8 #include <linux/mm.h>
9 #include <linux/interrupt.h>
10 #include <linux/seq_file.h>
11 #include <linux/debugfs.h>
12 #include <linux/pfn.h>
13 #include <linux/percpu.h>
14 #include <linux/gfp.h>
15 #include <linux/pci.h>
16 #include <linux/vmalloc.h>
17
18 #include <asm/e820/api.h>
19 #include <asm/processor.h>
20 #include <asm/tlbflush.h>
21 #include <asm/sections.h>
22 #include <asm/setup.h>
23 #include <linux/uaccess.h>
24 #include <asm/pgalloc.h>
25 #include <asm/proto.h>
26 #include <asm/pat.h>
27 #include <asm/set_memory.h>
28
29 /*
30  * The current flushing context - we pass it instead of 5 arguments:
31  */
32 struct cpa_data {
33         unsigned long   *vaddr;
34         pgd_t           *pgd;
35         pgprot_t        mask_set;
36         pgprot_t        mask_clr;
37         unsigned long   numpages;
38         int             flags;
39         unsigned long   pfn;
40         unsigned        force_split : 1;
41         int             curpage;
42         struct page     **pages;
43 };
44
45 /*
46  * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
47  * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
48  * entries change the page attribute in parallel to some other cpu
49  * splitting a large page entry along with changing the attribute.
50  */
51 static DEFINE_SPINLOCK(cpa_lock);
52
53 #define CPA_FLUSHTLB 1
54 #define CPA_ARRAY 2
55 #define CPA_PAGES_ARRAY 4
56 #define CPA_NO_CHECK_ALIAS 8 /* Do not search for aliases */
57
58 #ifdef CONFIG_PROC_FS
59 static unsigned long direct_pages_count[PG_LEVEL_NUM];
60
61 void update_page_count(int level, unsigned long pages)
62 {
63         /* Protect against CPA */
64         spin_lock(&pgd_lock);
65         direct_pages_count[level] += pages;
66         spin_unlock(&pgd_lock);
67 }
68
69 static void split_page_count(int level)
70 {
71         if (direct_pages_count[level] == 0)
72                 return;
73
74         direct_pages_count[level]--;
75         direct_pages_count[level - 1] += PTRS_PER_PTE;
76 }
77
78 void arch_report_meminfo(struct seq_file *m)
79 {
80         seq_printf(m, "DirectMap4k:    %8lu kB\n",
81                         direct_pages_count[PG_LEVEL_4K] << 2);
82 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
83         seq_printf(m, "DirectMap2M:    %8lu kB\n",
84                         direct_pages_count[PG_LEVEL_2M] << 11);
85 #else
86         seq_printf(m, "DirectMap4M:    %8lu kB\n",
87                         direct_pages_count[PG_LEVEL_2M] << 12);
88 #endif
89         if (direct_gbpages)
90                 seq_printf(m, "DirectMap1G:    %8lu kB\n",
91                         direct_pages_count[PG_LEVEL_1G] << 20);
92 }
93 #else
94 static inline void split_page_count(int level) { }
95 #endif
96
97 static inline int
98 within(unsigned long addr, unsigned long start, unsigned long end)
99 {
100         return addr >= start && addr < end;
101 }
102
103 static inline int
104 within_inclusive(unsigned long addr, unsigned long start, unsigned long end)
105 {
106         return addr >= start && addr <= end;
107 }
108
109 #ifdef CONFIG_X86_64
110
111 static inline unsigned long highmap_start_pfn(void)
112 {
113         return __pa_symbol(_text) >> PAGE_SHIFT;
114 }
115
116 static inline unsigned long highmap_end_pfn(void)
117 {
118         /* Do not reference physical address outside the kernel. */
119         return __pa_symbol(roundup(_brk_end, PMD_SIZE) - 1) >> PAGE_SHIFT;
120 }
121
122 static bool __cpa_pfn_in_highmap(unsigned long pfn)
123 {
124         /*
125          * Kernel text has an alias mapping at a high address, known
126          * here as "highmap".
127          */
128         return within_inclusive(pfn, highmap_start_pfn(), highmap_end_pfn());
129 }
130
131 #else
132
133 static bool __cpa_pfn_in_highmap(unsigned long pfn)
134 {
135         /* There is no highmap on 32-bit */
136         return false;
137 }
138
139 #endif
140
141 /*
142  * Flushing functions
143  */
144
145 /**
146  * clflush_cache_range - flush a cache range with clflush
147  * @vaddr:      virtual start address
148  * @size:       number of bytes to flush
149  *
150  * clflushopt is an unordered instruction which needs fencing with mfence or
151  * sfence to avoid ordering issues.
152  */
153 void clflush_cache_range(void *vaddr, unsigned int size)
154 {
155         const unsigned long clflush_size = boot_cpu_data.x86_clflush_size;
156         void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1));
157         void *vend = vaddr + size;
158
159         if (p >= vend)
160                 return;
161
162         mb();
163
164         for (; p < vend; p += clflush_size)
165                 clflushopt(p);
166
167         mb();
168 }
169 EXPORT_SYMBOL_GPL(clflush_cache_range);
170
171 void arch_invalidate_pmem(void *addr, size_t size)
172 {
173         clflush_cache_range(addr, size);
174 }
175 EXPORT_SYMBOL_GPL(arch_invalidate_pmem);
176
177 static void __cpa_flush_all(void *arg)
178 {
179         unsigned long cache = (unsigned long)arg;
180
181         /*
182          * Flush all to work around Errata in early athlons regarding
183          * large page flushing.
184          */
185         __flush_tlb_all();
186
187         if (cache && boot_cpu_data.x86 >= 4)
188                 wbinvd();
189 }
190
191 static void cpa_flush_all(unsigned long cache)
192 {
193         BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
194
195         on_each_cpu(__cpa_flush_all, (void *) cache, 1);
196 }
197
198 static void __cpa_flush_range(void *arg)
199 {
200         /*
201          * We could optimize that further and do individual per page
202          * tlb invalidates for a low number of pages. Caveat: we must
203          * flush the high aliases on 64bit as well.
204          */
205         __flush_tlb_all();
206 }
207
208 static void cpa_flush_range(unsigned long start, int numpages, int cache)
209 {
210         unsigned int i, level;
211         unsigned long addr;
212
213         BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
214         WARN_ON(PAGE_ALIGN(start) != start);
215
216         on_each_cpu(__cpa_flush_range, NULL, 1);
217
218         if (!cache)
219                 return;
220
221         /*
222          * We only need to flush on one CPU,
223          * clflush is a MESI-coherent instruction that
224          * will cause all other CPUs to flush the same
225          * cachelines:
226          */
227         for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
228                 pte_t *pte = lookup_address(addr, &level);
229
230                 /*
231                  * Only flush present addresses:
232                  */
233                 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
234                         clflush_cache_range((void *) addr, PAGE_SIZE);
235         }
236 }
237
238 static void cpa_flush_array(unsigned long *start, int numpages, int cache,
239                             int in_flags, struct page **pages)
240 {
241         unsigned int i, level;
242 #ifdef CONFIG_PREEMPT
243         /*
244          * Avoid wbinvd() because it causes latencies on all CPUs,
245          * regardless of any CPU isolation that may be in effect.
246          *
247          * This should be extended for CAT enabled systems independent of
248          * PREEMPT because wbinvd() does not respect the CAT partitions and
249          * this is exposed to unpriviledged users through the graphics
250          * subsystem.
251          */
252         unsigned long do_wbinvd = 0;
253 #else
254         unsigned long do_wbinvd = cache && numpages >= 1024; /* 4M threshold */
255 #endif
256
257         BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
258
259         on_each_cpu(__cpa_flush_all, (void *) do_wbinvd, 1);
260
261         if (!cache || do_wbinvd)
262                 return;
263
264         /*
265          * We only need to flush on one CPU,
266          * clflush is a MESI-coherent instruction that
267          * will cause all other CPUs to flush the same
268          * cachelines:
269          */
270         for (i = 0; i < numpages; i++) {
271                 unsigned long addr;
272                 pte_t *pte;
273
274                 if (in_flags & CPA_PAGES_ARRAY)
275                         addr = (unsigned long)page_address(pages[i]);
276                 else
277                         addr = start[i];
278
279                 pte = lookup_address(addr, &level);
280
281                 /*
282                  * Only flush present addresses:
283                  */
284                 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
285                         clflush_cache_range((void *)addr, PAGE_SIZE);
286         }
287 }
288
289 /*
290  * Certain areas of memory on x86 require very specific protection flags,
291  * for example the BIOS area or kernel text. Callers don't always get this
292  * right (again, ioremap() on BIOS memory is not uncommon) so this function
293  * checks and fixes these known static required protection bits.
294  */
295 static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
296                                    unsigned long pfn)
297 {
298         pgprot_t forbidden = __pgprot(0);
299
300         /*
301          * The BIOS area between 640k and 1Mb needs to be executable for
302          * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
303          */
304 #ifdef CONFIG_PCI_BIOS
305         if (pcibios_enabled && within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
306                 pgprot_val(forbidden) |= _PAGE_NX;
307 #endif
308
309         /*
310          * The kernel text needs to be executable for obvious reasons
311          * Does not cover __inittext since that is gone later on. On
312          * 64bit we do not enforce !NX on the low mapping
313          */
314         if (within(address, (unsigned long)_text, (unsigned long)_etext))
315                 pgprot_val(forbidden) |= _PAGE_NX;
316
317         /*
318          * The .rodata section needs to be read-only. Using the pfn
319          * catches all aliases.  This also includes __ro_after_init,
320          * so do not enforce until kernel_set_to_readonly is true.
321          */
322         if (kernel_set_to_readonly &&
323             within(pfn, __pa_symbol(__start_rodata) >> PAGE_SHIFT,
324                    __pa_symbol(__end_rodata) >> PAGE_SHIFT))
325                 pgprot_val(forbidden) |= _PAGE_RW;
326
327 #if defined(CONFIG_X86_64)
328         /*
329          * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
330          * kernel text mappings for the large page aligned text, rodata sections
331          * will be always read-only. For the kernel identity mappings covering
332          * the holes caused by this alignment can be anything that user asks.
333          *
334          * This will preserve the large page mappings for kernel text/data
335          * at no extra cost.
336          */
337         if (kernel_set_to_readonly &&
338             within(address, (unsigned long)_text,
339                    (unsigned long)__end_rodata_hpage_align)) {
340                 unsigned int level;
341
342                 /*
343                  * Don't enforce the !RW mapping for the kernel text mapping,
344                  * if the current mapping is already using small page mapping.
345                  * No need to work hard to preserve large page mappings in this
346                  * case.
347                  *
348                  * This also fixes the Linux Xen paravirt guest boot failure
349                  * (because of unexpected read-only mappings for kernel identity
350                  * mappings). In this paravirt guest case, the kernel text
351                  * mapping and the kernel identity mapping share the same
352                  * page-table pages. Thus we can't really use different
353                  * protections for the kernel text and identity mappings. Also,
354                  * these shared mappings are made of small page mappings.
355                  * Thus this don't enforce !RW mapping for small page kernel
356                  * text mapping logic will help Linux Xen parvirt guest boot
357                  * as well.
358                  */
359                 if (lookup_address(address, &level) && (level != PG_LEVEL_4K))
360                         pgprot_val(forbidden) |= _PAGE_RW;
361         }
362 #endif
363
364         prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
365
366         return prot;
367 }
368
369 /*
370  * Lookup the page table entry for a virtual address in a specific pgd.
371  * Return a pointer to the entry and the level of the mapping.
372  */
373 pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
374                              unsigned int *level)
375 {
376         p4d_t *p4d;
377         pud_t *pud;
378         pmd_t *pmd;
379
380         *level = PG_LEVEL_NONE;
381
382         if (pgd_none(*pgd))
383                 return NULL;
384
385         p4d = p4d_offset(pgd, address);
386         if (p4d_none(*p4d))
387                 return NULL;
388
389         *level = PG_LEVEL_512G;
390         if (p4d_large(*p4d) || !p4d_present(*p4d))
391                 return (pte_t *)p4d;
392
393         pud = pud_offset(p4d, address);
394         if (pud_none(*pud))
395                 return NULL;
396
397         *level = PG_LEVEL_1G;
398         if (pud_large(*pud) || !pud_present(*pud))
399                 return (pte_t *)pud;
400
401         pmd = pmd_offset(pud, address);
402         if (pmd_none(*pmd))
403                 return NULL;
404
405         *level = PG_LEVEL_2M;
406         if (pmd_large(*pmd) || !pmd_present(*pmd))
407                 return (pte_t *)pmd;
408
409         *level = PG_LEVEL_4K;
410
411         return pte_offset_kernel(pmd, address);
412 }
413
414 /*
415  * Lookup the page table entry for a virtual address. Return a pointer
416  * to the entry and the level of the mapping.
417  *
418  * Note: We return pud and pmd either when the entry is marked large
419  * or when the present bit is not set. Otherwise we would return a
420  * pointer to a nonexisting mapping.
421  */
422 pte_t *lookup_address(unsigned long address, unsigned int *level)
423 {
424         return lookup_address_in_pgd(pgd_offset_k(address), address, level);
425 }
426 EXPORT_SYMBOL_GPL(lookup_address);
427
428 static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
429                                   unsigned int *level)
430 {
431         if (cpa->pgd)
432                 return lookup_address_in_pgd(cpa->pgd + pgd_index(address),
433                                                address, level);
434
435         return lookup_address(address, level);
436 }
437
438 /*
439  * Lookup the PMD entry for a virtual address. Return a pointer to the entry
440  * or NULL if not present.
441  */
442 pmd_t *lookup_pmd_address(unsigned long address)
443 {
444         pgd_t *pgd;
445         p4d_t *p4d;
446         pud_t *pud;
447
448         pgd = pgd_offset_k(address);
449         if (pgd_none(*pgd))
450                 return NULL;
451
452         p4d = p4d_offset(pgd, address);
453         if (p4d_none(*p4d) || p4d_large(*p4d) || !p4d_present(*p4d))
454                 return NULL;
455
456         pud = pud_offset(p4d, address);
457         if (pud_none(*pud) || pud_large(*pud) || !pud_present(*pud))
458                 return NULL;
459
460         return pmd_offset(pud, address);
461 }
462
463 /*
464  * This is necessary because __pa() does not work on some
465  * kinds of memory, like vmalloc() or the alloc_remap()
466  * areas on 32-bit NUMA systems.  The percpu areas can
467  * end up in this kind of memory, for instance.
468  *
469  * This could be optimized, but it is only intended to be
470  * used at inititalization time, and keeping it
471  * unoptimized should increase the testing coverage for
472  * the more obscure platforms.
473  */
474 phys_addr_t slow_virt_to_phys(void *__virt_addr)
475 {
476         unsigned long virt_addr = (unsigned long)__virt_addr;
477         phys_addr_t phys_addr;
478         unsigned long offset;
479         enum pg_level level;
480         pte_t *pte;
481
482         pte = lookup_address(virt_addr, &level);
483         BUG_ON(!pte);
484
485         /*
486          * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t
487          * before being left-shifted PAGE_SHIFT bits -- this trick is to
488          * make 32-PAE kernel work correctly.
489          */
490         switch (level) {
491         case PG_LEVEL_1G:
492                 phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT;
493                 offset = virt_addr & ~PUD_PAGE_MASK;
494                 break;
495         case PG_LEVEL_2M:
496                 phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT;
497                 offset = virt_addr & ~PMD_PAGE_MASK;
498                 break;
499         default:
500                 phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
501                 offset = virt_addr & ~PAGE_MASK;
502         }
503
504         return (phys_addr_t)(phys_addr | offset);
505 }
506 EXPORT_SYMBOL_GPL(slow_virt_to_phys);
507
508 /*
509  * Set the new pmd in all the pgds we know about:
510  */
511 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
512 {
513         /* change init_mm */
514         set_pte_atomic(kpte, pte);
515 #ifdef CONFIG_X86_32
516         if (!SHARED_KERNEL_PMD) {
517                 struct page *page;
518
519                 list_for_each_entry(page, &pgd_list, lru) {
520                         pgd_t *pgd;
521                         p4d_t *p4d;
522                         pud_t *pud;
523                         pmd_t *pmd;
524
525                         pgd = (pgd_t *)page_address(page) + pgd_index(address);
526                         p4d = p4d_offset(pgd, address);
527                         pud = pud_offset(p4d, address);
528                         pmd = pmd_offset(pud, address);
529                         set_pte_atomic((pte_t *)pmd, pte);
530                 }
531         }
532 #endif
533 }
534
535 static pgprot_t pgprot_clear_protnone_bits(pgprot_t prot)
536 {
537         /*
538          * _PAGE_GLOBAL means "global page" for present PTEs.
539          * But, it is also used to indicate _PAGE_PROTNONE
540          * for non-present PTEs.
541          *
542          * This ensures that a _PAGE_GLOBAL PTE going from
543          * present to non-present is not confused as
544          * _PAGE_PROTNONE.
545          */
546         if (!(pgprot_val(prot) & _PAGE_PRESENT))
547                 pgprot_val(prot) &= ~_PAGE_GLOBAL;
548
549         return prot;
550 }
551
552 static int
553 try_preserve_large_page(pte_t *kpte, unsigned long address,
554                         struct cpa_data *cpa)
555 {
556         unsigned long nextpage_addr, numpages, pmask, psize, addr, pfn, old_pfn;
557         pte_t new_pte, old_pte, *tmp;
558         pgprot_t old_prot, new_prot, req_prot;
559         int i, do_split = 1;
560         enum pg_level level;
561
562         if (cpa->force_split)
563                 return 1;
564
565         spin_lock(&pgd_lock);
566         /*
567          * Check for races, another CPU might have split this page
568          * up already:
569          */
570         tmp = _lookup_address_cpa(cpa, address, &level);
571         if (tmp != kpte)
572                 goto out_unlock;
573
574         switch (level) {
575         case PG_LEVEL_2M:
576                 old_prot = pmd_pgprot(*(pmd_t *)kpte);
577                 old_pfn = pmd_pfn(*(pmd_t *)kpte);
578                 break;
579         case PG_LEVEL_1G:
580                 old_prot = pud_pgprot(*(pud_t *)kpte);
581                 old_pfn = pud_pfn(*(pud_t *)kpte);
582                 break;
583         default:
584                 do_split = -EINVAL;
585                 goto out_unlock;
586         }
587
588         psize = page_level_size(level);
589         pmask = page_level_mask(level);
590
591         /*
592          * Calculate the number of pages, which fit into this large
593          * page starting at address:
594          */
595         nextpage_addr = (address + psize) & pmask;
596         numpages = (nextpage_addr - address) >> PAGE_SHIFT;
597         if (numpages < cpa->numpages)
598                 cpa->numpages = numpages;
599
600         /*
601          * We are safe now. Check whether the new pgprot is the same:
602          * Convert protection attributes to 4k-format, as cpa->mask* are set
603          * up accordingly.
604          */
605         old_pte = *kpte;
606         /* Clear PSE (aka _PAGE_PAT) and move PAT bit to correct position */
607         req_prot = pgprot_large_2_4k(old_prot);
608
609         pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
610         pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
611
612         /*
613          * req_prot is in format of 4k pages. It must be converted to large
614          * page format: the caching mode includes the PAT bit located at
615          * different bit positions in the two formats.
616          */
617         req_prot = pgprot_4k_2_large(req_prot);
618         req_prot = pgprot_clear_protnone_bits(req_prot);
619         if (pgprot_val(req_prot) & _PAGE_PRESENT)
620                 pgprot_val(req_prot) |= _PAGE_PSE;
621
622         /*
623          * old_pfn points to the large page base pfn. So we need
624          * to add the offset of the virtual address:
625          */
626         pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT);
627         cpa->pfn = pfn;
628
629         new_prot = static_protections(req_prot, address, pfn);
630
631         /*
632          * We need to check the full range, whether
633          * static_protection() requires a different pgprot for one of
634          * the pages in the range we try to preserve:
635          */
636         addr = address & pmask;
637         pfn = old_pfn;
638         for (i = 0; i < (psize >> PAGE_SHIFT); i++, addr += PAGE_SIZE, pfn++) {
639                 pgprot_t chk_prot = static_protections(req_prot, addr, pfn);
640
641                 if (pgprot_val(chk_prot) != pgprot_val(new_prot))
642                         goto out_unlock;
643         }
644
645         /*
646          * If there are no changes, return. maxpages has been updated
647          * above:
648          */
649         if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
650                 do_split = 0;
651                 goto out_unlock;
652         }
653
654         /*
655          * We need to change the attributes. Check, whether we can
656          * change the large page in one go. We request a split, when
657          * the address is not aligned and the number of pages is
658          * smaller than the number of pages in the large page. Note
659          * that we limited the number of possible pages already to
660          * the number of pages in the large page.
661          */
662         if (address == (address & pmask) && cpa->numpages == (psize >> PAGE_SHIFT)) {
663                 /*
664                  * The address is aligned and the number of pages
665                  * covers the full page.
666                  */
667                 new_pte = pfn_pte(old_pfn, new_prot);
668                 __set_pmd_pte(kpte, address, new_pte);
669                 cpa->flags |= CPA_FLUSHTLB;
670                 do_split = 0;
671         }
672
673 out_unlock:
674         spin_unlock(&pgd_lock);
675
676         return do_split;
677 }
678
679 static int
680 __split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address,
681                    struct page *base)
682 {
683         pte_t *pbase = (pte_t *)page_address(base);
684         unsigned long ref_pfn, pfn, pfninc = 1;
685         unsigned int i, level;
686         pte_t *tmp;
687         pgprot_t ref_prot;
688
689         spin_lock(&pgd_lock);
690         /*
691          * Check for races, another CPU might have split this page
692          * up for us already:
693          */
694         tmp = _lookup_address_cpa(cpa, address, &level);
695         if (tmp != kpte) {
696                 spin_unlock(&pgd_lock);
697                 return 1;
698         }
699
700         paravirt_alloc_pte(&init_mm, page_to_pfn(base));
701
702         switch (level) {
703         case PG_LEVEL_2M:
704                 ref_prot = pmd_pgprot(*(pmd_t *)kpte);
705                 /*
706                  * Clear PSE (aka _PAGE_PAT) and move
707                  * PAT bit to correct position.
708                  */
709                 ref_prot = pgprot_large_2_4k(ref_prot);
710
711                 ref_pfn = pmd_pfn(*(pmd_t *)kpte);
712                 break;
713
714         case PG_LEVEL_1G:
715                 ref_prot = pud_pgprot(*(pud_t *)kpte);
716                 ref_pfn = pud_pfn(*(pud_t *)kpte);
717                 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
718
719                 /*
720                  * Clear the PSE flags if the PRESENT flag is not set
721                  * otherwise pmd_present/pmd_huge will return true
722                  * even on a non present pmd.
723                  */
724                 if (!(pgprot_val(ref_prot) & _PAGE_PRESENT))
725                         pgprot_val(ref_prot) &= ~_PAGE_PSE;
726                 break;
727
728         default:
729                 spin_unlock(&pgd_lock);
730                 return 1;
731         }
732
733         ref_prot = pgprot_clear_protnone_bits(ref_prot);
734
735         /*
736          * Get the target pfn from the original entry:
737          */
738         pfn = ref_pfn;
739         for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
740                 set_pte(&pbase[i], pfn_pte(pfn, ref_prot));
741
742         if (virt_addr_valid(address)) {
743                 unsigned long pfn = PFN_DOWN(__pa(address));
744
745                 if (pfn_range_is_mapped(pfn, pfn + 1))
746                         split_page_count(level);
747         }
748
749         /*
750          * Install the new, split up pagetable.
751          *
752          * We use the standard kernel pagetable protections for the new
753          * pagetable protections, the actual ptes set above control the
754          * primary protection behavior:
755          */
756         __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
757
758         /*
759          * Intel Atom errata AAH41 workaround.
760          *
761          * The real fix should be in hw or in a microcode update, but
762          * we also probabilistically try to reduce the window of having
763          * a large TLB mixed with 4K TLBs while instruction fetches are
764          * going on.
765          */
766         __flush_tlb_all();
767         spin_unlock(&pgd_lock);
768
769         return 0;
770 }
771
772 static int split_large_page(struct cpa_data *cpa, pte_t *kpte,
773                             unsigned long address)
774 {
775         struct page *base;
776
777         if (!debug_pagealloc_enabled())
778                 spin_unlock(&cpa_lock);
779         base = alloc_pages(GFP_KERNEL, 0);
780         if (!debug_pagealloc_enabled())
781                 spin_lock(&cpa_lock);
782         if (!base)
783                 return -ENOMEM;
784
785         if (__split_large_page(cpa, kpte, address, base))
786                 __free_page(base);
787
788         return 0;
789 }
790
791 static bool try_to_free_pte_page(pte_t *pte)
792 {
793         int i;
794
795         for (i = 0; i < PTRS_PER_PTE; i++)
796                 if (!pte_none(pte[i]))
797                         return false;
798
799         free_page((unsigned long)pte);
800         return true;
801 }
802
803 static bool try_to_free_pmd_page(pmd_t *pmd)
804 {
805         int i;
806
807         for (i = 0; i < PTRS_PER_PMD; i++)
808                 if (!pmd_none(pmd[i]))
809                         return false;
810
811         free_page((unsigned long)pmd);
812         return true;
813 }
814
815 static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end)
816 {
817         pte_t *pte = pte_offset_kernel(pmd, start);
818
819         while (start < end) {
820                 set_pte(pte, __pte(0));
821
822                 start += PAGE_SIZE;
823                 pte++;
824         }
825
826         if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) {
827                 pmd_clear(pmd);
828                 return true;
829         }
830         return false;
831 }
832
833 static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd,
834                               unsigned long start, unsigned long end)
835 {
836         if (unmap_pte_range(pmd, start, end))
837                 if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
838                         pud_clear(pud);
839 }
840
841 static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end)
842 {
843         pmd_t *pmd = pmd_offset(pud, start);
844
845         /*
846          * Not on a 2MB page boundary?
847          */
848         if (start & (PMD_SIZE - 1)) {
849                 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
850                 unsigned long pre_end = min_t(unsigned long, end, next_page);
851
852                 __unmap_pmd_range(pud, pmd, start, pre_end);
853
854                 start = pre_end;
855                 pmd++;
856         }
857
858         /*
859          * Try to unmap in 2M chunks.
860          */
861         while (end - start >= PMD_SIZE) {
862                 if (pmd_large(*pmd))
863                         pmd_clear(pmd);
864                 else
865                         __unmap_pmd_range(pud, pmd, start, start + PMD_SIZE);
866
867                 start += PMD_SIZE;
868                 pmd++;
869         }
870
871         /*
872          * 4K leftovers?
873          */
874         if (start < end)
875                 return __unmap_pmd_range(pud, pmd, start, end);
876
877         /*
878          * Try again to free the PMD page if haven't succeeded above.
879          */
880         if (!pud_none(*pud))
881                 if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
882                         pud_clear(pud);
883 }
884
885 static void unmap_pud_range(p4d_t *p4d, unsigned long start, unsigned long end)
886 {
887         pud_t *pud = pud_offset(p4d, start);
888
889         /*
890          * Not on a GB page boundary?
891          */
892         if (start & (PUD_SIZE - 1)) {
893                 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
894                 unsigned long pre_end   = min_t(unsigned long, end, next_page);
895
896                 unmap_pmd_range(pud, start, pre_end);
897
898                 start = pre_end;
899                 pud++;
900         }
901
902         /*
903          * Try to unmap in 1G chunks?
904          */
905         while (end - start >= PUD_SIZE) {
906
907                 if (pud_large(*pud))
908                         pud_clear(pud);
909                 else
910                         unmap_pmd_range(pud, start, start + PUD_SIZE);
911
912                 start += PUD_SIZE;
913                 pud++;
914         }
915
916         /*
917          * 2M leftovers?
918          */
919         if (start < end)
920                 unmap_pmd_range(pud, start, end);
921
922         /*
923          * No need to try to free the PUD page because we'll free it in
924          * populate_pgd's error path
925          */
926 }
927
928 static int alloc_pte_page(pmd_t *pmd)
929 {
930         pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
931         if (!pte)
932                 return -1;
933
934         set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
935         return 0;
936 }
937
938 static int alloc_pmd_page(pud_t *pud)
939 {
940         pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
941         if (!pmd)
942                 return -1;
943
944         set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
945         return 0;
946 }
947
948 static void populate_pte(struct cpa_data *cpa,
949                          unsigned long start, unsigned long end,
950                          unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
951 {
952         pte_t *pte;
953
954         pte = pte_offset_kernel(pmd, start);
955
956         pgprot = pgprot_clear_protnone_bits(pgprot);
957
958         while (num_pages-- && start < end) {
959                 set_pte(pte, pfn_pte(cpa->pfn, pgprot));
960
961                 start    += PAGE_SIZE;
962                 cpa->pfn++;
963                 pte++;
964         }
965 }
966
967 static long populate_pmd(struct cpa_data *cpa,
968                          unsigned long start, unsigned long end,
969                          unsigned num_pages, pud_t *pud, pgprot_t pgprot)
970 {
971         long cur_pages = 0;
972         pmd_t *pmd;
973         pgprot_t pmd_pgprot;
974
975         /*
976          * Not on a 2M boundary?
977          */
978         if (start & (PMD_SIZE - 1)) {
979                 unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
980                 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
981
982                 pre_end   = min_t(unsigned long, pre_end, next_page);
983                 cur_pages = (pre_end - start) >> PAGE_SHIFT;
984                 cur_pages = min_t(unsigned int, num_pages, cur_pages);
985
986                 /*
987                  * Need a PTE page?
988                  */
989                 pmd = pmd_offset(pud, start);
990                 if (pmd_none(*pmd))
991                         if (alloc_pte_page(pmd))
992                                 return -1;
993
994                 populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);
995
996                 start = pre_end;
997         }
998
999         /*
1000          * We mapped them all?
1001          */
1002         if (num_pages == cur_pages)
1003                 return cur_pages;
1004
1005         pmd_pgprot = pgprot_4k_2_large(pgprot);
1006
1007         while (end - start >= PMD_SIZE) {
1008
1009                 /*
1010                  * We cannot use a 1G page so allocate a PMD page if needed.
1011                  */
1012                 if (pud_none(*pud))
1013                         if (alloc_pmd_page(pud))
1014                                 return -1;
1015
1016                 pmd = pmd_offset(pud, start);
1017
1018                 set_pmd(pmd, pmd_mkhuge(pfn_pmd(cpa->pfn,
1019                                         canon_pgprot(pmd_pgprot))));
1020
1021                 start     += PMD_SIZE;
1022                 cpa->pfn  += PMD_SIZE >> PAGE_SHIFT;
1023                 cur_pages += PMD_SIZE >> PAGE_SHIFT;
1024         }
1025
1026         /*
1027          * Map trailing 4K pages.
1028          */
1029         if (start < end) {
1030                 pmd = pmd_offset(pud, start);
1031                 if (pmd_none(*pmd))
1032                         if (alloc_pte_page(pmd))
1033                                 return -1;
1034
1035                 populate_pte(cpa, start, end, num_pages - cur_pages,
1036                              pmd, pgprot);
1037         }
1038         return num_pages;
1039 }
1040
1041 static int populate_pud(struct cpa_data *cpa, unsigned long start, p4d_t *p4d,
1042                         pgprot_t pgprot)
1043 {
1044         pud_t *pud;
1045         unsigned long end;
1046         long cur_pages = 0;
1047         pgprot_t pud_pgprot;
1048
1049         end = start + (cpa->numpages << PAGE_SHIFT);
1050
1051         /*
1052          * Not on a Gb page boundary? => map everything up to it with
1053          * smaller pages.
1054          */
1055         if (start & (PUD_SIZE - 1)) {
1056                 unsigned long pre_end;
1057                 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1058
1059                 pre_end   = min_t(unsigned long, end, next_page);
1060                 cur_pages = (pre_end - start) >> PAGE_SHIFT;
1061                 cur_pages = min_t(int, (int)cpa->numpages, cur_pages);
1062
1063                 pud = pud_offset(p4d, start);
1064
1065                 /*
1066                  * Need a PMD page?
1067                  */
1068                 if (pud_none(*pud))
1069                         if (alloc_pmd_page(pud))
1070                                 return -1;
1071
1072                 cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
1073                                          pud, pgprot);
1074                 if (cur_pages < 0)
1075                         return cur_pages;
1076
1077                 start = pre_end;
1078         }
1079
1080         /* We mapped them all? */
1081         if (cpa->numpages == cur_pages)
1082                 return cur_pages;
1083
1084         pud = pud_offset(p4d, start);
1085         pud_pgprot = pgprot_4k_2_large(pgprot);
1086
1087         /*
1088          * Map everything starting from the Gb boundary, possibly with 1G pages
1089          */
1090         while (boot_cpu_has(X86_FEATURE_GBPAGES) && end - start >= PUD_SIZE) {
1091                 set_pud(pud, pud_mkhuge(pfn_pud(cpa->pfn,
1092                                    canon_pgprot(pud_pgprot))));
1093
1094                 start     += PUD_SIZE;
1095                 cpa->pfn  += PUD_SIZE >> PAGE_SHIFT;
1096                 cur_pages += PUD_SIZE >> PAGE_SHIFT;
1097                 pud++;
1098         }
1099
1100         /* Map trailing leftover */
1101         if (start < end) {
1102                 long tmp;
1103
1104                 pud = pud_offset(p4d, start);
1105                 if (pud_none(*pud))
1106                         if (alloc_pmd_page(pud))
1107                                 return -1;
1108
1109                 tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
1110                                    pud, pgprot);
1111                 if (tmp < 0)
1112                         return cur_pages;
1113
1114                 cur_pages += tmp;
1115         }
1116         return cur_pages;
1117 }
1118
1119 /*
1120  * Restrictions for kernel page table do not necessarily apply when mapping in
1121  * an alternate PGD.
1122  */
1123 static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
1124 {
1125         pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
1126         pud_t *pud = NULL;      /* shut up gcc */
1127         p4d_t *p4d;
1128         pgd_t *pgd_entry;
1129         long ret;
1130
1131         pgd_entry = cpa->pgd + pgd_index(addr);
1132
1133         if (pgd_none(*pgd_entry)) {
1134                 p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
1135                 if (!p4d)
1136                         return -1;
1137
1138                 set_pgd(pgd_entry, __pgd(__pa(p4d) | _KERNPG_TABLE));
1139         }
1140
1141         /*
1142          * Allocate a PUD page and hand it down for mapping.
1143          */
1144         p4d = p4d_offset(pgd_entry, addr);
1145         if (p4d_none(*p4d)) {
1146                 pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
1147                 if (!pud)
1148                         return -1;
1149
1150                 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
1151         }
1152
1153         pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
1154         pgprot_val(pgprot) |=  pgprot_val(cpa->mask_set);
1155
1156         ret = populate_pud(cpa, addr, p4d, pgprot);
1157         if (ret < 0) {
1158                 /*
1159                  * Leave the PUD page in place in case some other CPU or thread
1160                  * already found it, but remove any useless entries we just
1161                  * added to it.
1162                  */
1163                 unmap_pud_range(p4d, addr,
1164                                 addr + (cpa->numpages << PAGE_SHIFT));
1165                 return ret;
1166         }
1167
1168         cpa->numpages = ret;
1169         return 0;
1170 }
1171
1172 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
1173                                int primary)
1174 {
1175         if (cpa->pgd) {
1176                 /*
1177                  * Right now, we only execute this code path when mapping
1178                  * the EFI virtual memory map regions, no other users
1179                  * provide a ->pgd value. This may change in the future.
1180                  */
1181                 return populate_pgd(cpa, vaddr);
1182         }
1183
1184         /*
1185          * Ignore all non primary paths.
1186          */
1187         if (!primary) {
1188                 cpa->numpages = 1;
1189                 return 0;
1190         }
1191
1192         /*
1193          * Ignore the NULL PTE for kernel identity mapping, as it is expected
1194          * to have holes.
1195          * Also set numpages to '1' indicating that we processed cpa req for
1196          * one virtual address page and its pfn. TBD: numpages can be set based
1197          * on the initial value and the level returned by lookup_address().
1198          */
1199         if (within(vaddr, PAGE_OFFSET,
1200                    PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
1201                 cpa->numpages = 1;
1202                 cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
1203                 return 0;
1204
1205         } else if (__cpa_pfn_in_highmap(cpa->pfn)) {
1206                 /* Faults in the highmap are OK, so do not warn: */
1207                 return -EFAULT;
1208         } else {
1209                 WARN(1, KERN_WARNING "CPA: called for zero pte. "
1210                         "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
1211                         *cpa->vaddr);
1212
1213                 return -EFAULT;
1214         }
1215 }
1216
1217 static int __change_page_attr(struct cpa_data *cpa, int primary)
1218 {
1219         unsigned long address;
1220         int do_split, err;
1221         unsigned int level;
1222         pte_t *kpte, old_pte;
1223
1224         if (cpa->flags & CPA_PAGES_ARRAY) {
1225                 struct page *page = cpa->pages[cpa->curpage];
1226                 if (unlikely(PageHighMem(page)))
1227                         return 0;
1228                 address = (unsigned long)page_address(page);
1229         } else if (cpa->flags & CPA_ARRAY)
1230                 address = cpa->vaddr[cpa->curpage];
1231         else
1232                 address = *cpa->vaddr;
1233 repeat:
1234         kpte = _lookup_address_cpa(cpa, address, &level);
1235         if (!kpte)
1236                 return __cpa_process_fault(cpa, address, primary);
1237
1238         old_pte = *kpte;
1239         if (pte_none(old_pte))
1240                 return __cpa_process_fault(cpa, address, primary);
1241
1242         if (level == PG_LEVEL_4K) {
1243                 pte_t new_pte;
1244                 pgprot_t new_prot = pte_pgprot(old_pte);
1245                 unsigned long pfn = pte_pfn(old_pte);
1246
1247                 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
1248                 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
1249
1250                 new_prot = static_protections(new_prot, address, pfn);
1251
1252                 new_prot = pgprot_clear_protnone_bits(new_prot);
1253
1254                 /*
1255                  * We need to keep the pfn from the existing PTE,
1256                  * after all we're only going to change it's attributes
1257                  * not the memory it points to
1258                  */
1259                 new_pte = pfn_pte(pfn, new_prot);
1260                 cpa->pfn = pfn;
1261                 /*
1262                  * Do we really change anything ?
1263                  */
1264                 if (pte_val(old_pte) != pte_val(new_pte)) {
1265                         set_pte_atomic(kpte, new_pte);
1266                         cpa->flags |= CPA_FLUSHTLB;
1267                 }
1268                 cpa->numpages = 1;
1269                 return 0;
1270         }
1271
1272         /*
1273          * Check, whether we can keep the large page intact
1274          * and just change the pte:
1275          */
1276         do_split = try_preserve_large_page(kpte, address, cpa);
1277         /*
1278          * When the range fits into the existing large page,
1279          * return. cp->numpages and cpa->tlbflush have been updated in
1280          * try_large_page:
1281          */
1282         if (do_split <= 0)
1283                 return do_split;
1284
1285         /*
1286          * We have to split the large page:
1287          */
1288         err = split_large_page(cpa, kpte, address);
1289         if (!err) {
1290                 /*
1291                  * Do a global flush tlb after splitting the large page
1292                  * and before we do the actual change page attribute in the PTE.
1293                  *
1294                  * With out this, we violate the TLB application note, that says
1295                  * "The TLBs may contain both ordinary and large-page
1296                  *  translations for a 4-KByte range of linear addresses. This
1297                  *  may occur if software modifies the paging structures so that
1298                  *  the page size used for the address range changes. If the two
1299                  *  translations differ with respect to page frame or attributes
1300                  *  (e.g., permissions), processor behavior is undefined and may
1301                  *  be implementation-specific."
1302                  *
1303                  * We do this global tlb flush inside the cpa_lock, so that we
1304                  * don't allow any other cpu, with stale tlb entries change the
1305                  * page attribute in parallel, that also falls into the
1306                  * just split large page entry.
1307                  */
1308                 flush_tlb_all();
1309                 goto repeat;
1310         }
1311
1312         return err;
1313 }
1314
1315 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
1316
1317 static int cpa_process_alias(struct cpa_data *cpa)
1318 {
1319         struct cpa_data alias_cpa;
1320         unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
1321         unsigned long vaddr;
1322         int ret;
1323
1324         if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
1325                 return 0;
1326
1327         /*
1328          * No need to redo, when the primary call touched the direct
1329          * mapping already:
1330          */
1331         if (cpa->flags & CPA_PAGES_ARRAY) {
1332                 struct page *page = cpa->pages[cpa->curpage];
1333                 if (unlikely(PageHighMem(page)))
1334                         return 0;
1335                 vaddr = (unsigned long)page_address(page);
1336         } else if (cpa->flags & CPA_ARRAY)
1337                 vaddr = cpa->vaddr[cpa->curpage];
1338         else
1339                 vaddr = *cpa->vaddr;
1340
1341         if (!(within(vaddr, PAGE_OFFSET,
1342                     PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
1343
1344                 alias_cpa = *cpa;
1345                 alias_cpa.vaddr = &laddr;
1346                 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1347
1348                 ret = __change_page_attr_set_clr(&alias_cpa, 0);
1349                 if (ret)
1350                         return ret;
1351         }
1352
1353 #ifdef CONFIG_X86_64
1354         /*
1355          * If the primary call didn't touch the high mapping already
1356          * and the physical address is inside the kernel map, we need
1357          * to touch the high mapped kernel as well:
1358          */
1359         if (!within(vaddr, (unsigned long)_text, _brk_end) &&
1360             __cpa_pfn_in_highmap(cpa->pfn)) {
1361                 unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
1362                                                __START_KERNEL_map - phys_base;
1363                 alias_cpa = *cpa;
1364                 alias_cpa.vaddr = &temp_cpa_vaddr;
1365                 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1366
1367                 /*
1368                  * The high mapping range is imprecise, so ignore the
1369                  * return value.
1370                  */
1371                 __change_page_attr_set_clr(&alias_cpa, 0);
1372         }
1373 #endif
1374
1375         return 0;
1376 }
1377
1378 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
1379 {
1380         unsigned long numpages = cpa->numpages;
1381         int ret;
1382
1383         while (numpages) {
1384                 /*
1385                  * Store the remaining nr of pages for the large page
1386                  * preservation check.
1387                  */
1388                 cpa->numpages = numpages;
1389                 /* for array changes, we can't use large page */
1390                 if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
1391                         cpa->numpages = 1;
1392
1393                 if (!debug_pagealloc_enabled())
1394                         spin_lock(&cpa_lock);
1395                 ret = __change_page_attr(cpa, checkalias);
1396                 if (!debug_pagealloc_enabled())
1397                         spin_unlock(&cpa_lock);
1398                 if (ret)
1399                         return ret;
1400
1401                 if (checkalias) {
1402                         ret = cpa_process_alias(cpa);
1403                         if (ret)
1404                                 return ret;
1405                 }
1406
1407                 /*
1408                  * Adjust the number of pages with the result of the
1409                  * CPA operation. Either a large page has been
1410                  * preserved or a single page update happened.
1411                  */
1412                 BUG_ON(cpa->numpages > numpages || !cpa->numpages);
1413                 numpages -= cpa->numpages;
1414                 if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY))
1415                         cpa->curpage++;
1416                 else
1417                         *cpa->vaddr += cpa->numpages * PAGE_SIZE;
1418
1419         }
1420         return 0;
1421 }
1422
1423 /*
1424  * Machine check recovery code needs to change cache mode of poisoned
1425  * pages to UC to avoid speculative access logging another error. But
1426  * passing the address of the 1:1 mapping to set_memory_uc() is a fine
1427  * way to encourage a speculative access. So we cheat and flip the top
1428  * bit of the address. This works fine for the code that updates the
1429  * page tables. But at the end of the process we need to flush the cache
1430  * and the non-canonical address causes a #GP fault when used by the
1431  * CLFLUSH instruction.
1432  *
1433  * But in the common case we already have a canonical address. This code
1434  * will fix the top bit if needed and is a no-op otherwise.
1435  */
1436 static inline unsigned long make_addr_canonical_again(unsigned long addr)
1437 {
1438 #ifdef CONFIG_X86_64
1439         return (long)(addr << 1) >> 1;
1440 #else
1441         return addr;
1442 #endif
1443 }
1444
1445
1446 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
1447                                     pgprot_t mask_set, pgprot_t mask_clr,
1448                                     int force_split, int in_flag,
1449                                     struct page **pages)
1450 {
1451         struct cpa_data cpa;
1452         int ret, cache, checkalias;
1453         unsigned long baddr = 0;
1454
1455         memset(&cpa, 0, sizeof(cpa));
1456
1457         /*
1458          * Check, if we are requested to set a not supported
1459          * feature.  Clearing non-supported features is OK.
1460          */
1461         mask_set = canon_pgprot(mask_set);
1462
1463         if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
1464                 return 0;
1465
1466         /* Ensure we are PAGE_SIZE aligned */
1467         if (in_flag & CPA_ARRAY) {
1468                 int i;
1469                 for (i = 0; i < numpages; i++) {
1470                         if (addr[i] & ~PAGE_MASK) {
1471                                 addr[i] &= PAGE_MASK;
1472                                 WARN_ON_ONCE(1);
1473                         }
1474                 }
1475         } else if (!(in_flag & CPA_PAGES_ARRAY)) {
1476                 /*
1477                  * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1478                  * No need to cehck in that case
1479                  */
1480                 if (*addr & ~PAGE_MASK) {
1481                         *addr &= PAGE_MASK;
1482                         /*
1483                          * People should not be passing in unaligned addresses:
1484                          */
1485                         WARN_ON_ONCE(1);
1486                 }
1487                 /*
1488                  * Save address for cache flush. *addr is modified in the call
1489                  * to __change_page_attr_set_clr() below.
1490                  */
1491                 baddr = make_addr_canonical_again(*addr);
1492         }
1493
1494         /* Must avoid aliasing mappings in the highmem code */
1495         kmap_flush_unused();
1496
1497         vm_unmap_aliases();
1498
1499         cpa.vaddr = addr;
1500         cpa.pages = pages;
1501         cpa.numpages = numpages;
1502         cpa.mask_set = mask_set;
1503         cpa.mask_clr = mask_clr;
1504         cpa.flags = 0;
1505         cpa.curpage = 0;
1506         cpa.force_split = force_split;
1507
1508         if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
1509                 cpa.flags |= in_flag;
1510
1511         /* No alias checking for _NX bit modifications */
1512         checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
1513         /* Has caller explicitly disabled alias checking? */
1514         if (in_flag & CPA_NO_CHECK_ALIAS)
1515                 checkalias = 0;
1516
1517         ret = __change_page_attr_set_clr(&cpa, checkalias);
1518
1519         /*
1520          * Check whether we really changed something:
1521          */
1522         if (!(cpa.flags & CPA_FLUSHTLB))
1523                 goto out;
1524
1525         /*
1526          * No need to flush, when we did not set any of the caching
1527          * attributes:
1528          */
1529         cache = !!pgprot2cachemode(mask_set);
1530
1531         /*
1532          * On success we use CLFLUSH, when the CPU supports it to
1533          * avoid the WBINVD. If the CPU does not support it and in the
1534          * error case we fall back to cpa_flush_all (which uses
1535          * WBINVD):
1536          */
1537         if (!ret && boot_cpu_has(X86_FEATURE_CLFLUSH)) {
1538                 if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
1539                         cpa_flush_array(addr, numpages, cache,
1540                                         cpa.flags, pages);
1541                 } else
1542                         cpa_flush_range(baddr, numpages, cache);
1543         } else
1544                 cpa_flush_all(cache);
1545
1546 out:
1547         return ret;
1548 }
1549
1550 static inline int change_page_attr_set(unsigned long *addr, int numpages,
1551                                        pgprot_t mask, int array)
1552 {
1553         return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1554                 (array ? CPA_ARRAY : 0), NULL);
1555 }
1556
1557 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
1558                                          pgprot_t mask, int array)
1559 {
1560         return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1561                 (array ? CPA_ARRAY : 0), NULL);
1562 }
1563
1564 static inline int cpa_set_pages_array(struct page **pages, int numpages,
1565                                        pgprot_t mask)
1566 {
1567         return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
1568                 CPA_PAGES_ARRAY, pages);
1569 }
1570
1571 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1572                                          pgprot_t mask)
1573 {
1574         return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1575                 CPA_PAGES_ARRAY, pages);
1576 }
1577
1578 int _set_memory_uc(unsigned long addr, int numpages)
1579 {
1580         /*
1581          * for now UC MINUS. see comments in ioremap_nocache()
1582          * If you really need strong UC use ioremap_uc(), but note
1583          * that you cannot override IO areas with set_memory_*() as
1584          * these helpers cannot work with IO memory.
1585          */
1586         return change_page_attr_set(&addr, numpages,
1587                                     cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1588                                     0);
1589 }
1590
1591 int set_memory_uc(unsigned long addr, int numpages)
1592 {
1593         int ret;
1594
1595         /*
1596          * for now UC MINUS. see comments in ioremap_nocache()
1597          */
1598         ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1599                               _PAGE_CACHE_MODE_UC_MINUS, NULL);
1600         if (ret)
1601                 goto out_err;
1602
1603         ret = _set_memory_uc(addr, numpages);
1604         if (ret)
1605                 goto out_free;
1606
1607         return 0;
1608
1609 out_free:
1610         free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1611 out_err:
1612         return ret;
1613 }
1614 EXPORT_SYMBOL(set_memory_uc);
1615
1616 static int _set_memory_array(unsigned long *addr, int addrinarray,
1617                 enum page_cache_mode new_type)
1618 {
1619         enum page_cache_mode set_type;
1620         int i, j;
1621         int ret;
1622
1623         for (i = 0; i < addrinarray; i++) {
1624                 ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
1625                                         new_type, NULL);
1626                 if (ret)
1627                         goto out_free;
1628         }
1629
1630         /* If WC, set to UC- first and then WC */
1631         set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
1632                                 _PAGE_CACHE_MODE_UC_MINUS : new_type;
1633
1634         ret = change_page_attr_set(addr, addrinarray,
1635                                    cachemode2pgprot(set_type), 1);
1636
1637         if (!ret && new_type == _PAGE_CACHE_MODE_WC)
1638                 ret = change_page_attr_set_clr(addr, addrinarray,
1639                                                cachemode2pgprot(
1640                                                 _PAGE_CACHE_MODE_WC),
1641                                                __pgprot(_PAGE_CACHE_MASK),
1642                                                0, CPA_ARRAY, NULL);
1643         if (ret)
1644                 goto out_free;
1645
1646         return 0;
1647
1648 out_free:
1649         for (j = 0; j < i; j++)
1650                 free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
1651
1652         return ret;
1653 }
1654
1655 int set_memory_array_uc(unsigned long *addr, int addrinarray)
1656 {
1657         return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_UC_MINUS);
1658 }
1659 EXPORT_SYMBOL(set_memory_array_uc);
1660
1661 int set_memory_array_wc(unsigned long *addr, int addrinarray)
1662 {
1663         return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_WC);
1664 }
1665 EXPORT_SYMBOL(set_memory_array_wc);
1666
1667 int set_memory_array_wt(unsigned long *addr, int addrinarray)
1668 {
1669         return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_WT);
1670 }
1671 EXPORT_SYMBOL_GPL(set_memory_array_wt);
1672
1673 int _set_memory_wc(unsigned long addr, int numpages)
1674 {
1675         int ret;
1676         unsigned long addr_copy = addr;
1677
1678         ret = change_page_attr_set(&addr, numpages,
1679                                    cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1680                                    0);
1681         if (!ret) {
1682                 ret = change_page_attr_set_clr(&addr_copy, numpages,
1683                                                cachemode2pgprot(
1684                                                 _PAGE_CACHE_MODE_WC),
1685                                                __pgprot(_PAGE_CACHE_MASK),
1686                                                0, 0, NULL);
1687         }
1688         return ret;
1689 }
1690
1691 int set_memory_wc(unsigned long addr, int numpages)
1692 {
1693         int ret;
1694
1695         ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1696                 _PAGE_CACHE_MODE_WC, NULL);
1697         if (ret)
1698                 return ret;
1699
1700         ret = _set_memory_wc(addr, numpages);
1701         if (ret)
1702                 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1703
1704         return ret;
1705 }
1706 EXPORT_SYMBOL(set_memory_wc);
1707
1708 int _set_memory_wt(unsigned long addr, int numpages)
1709 {
1710         return change_page_attr_set(&addr, numpages,
1711                                     cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0);
1712 }
1713
1714 int set_memory_wt(unsigned long addr, int numpages)
1715 {
1716         int ret;
1717
1718         ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1719                               _PAGE_CACHE_MODE_WT, NULL);
1720         if (ret)
1721                 return ret;
1722
1723         ret = _set_memory_wt(addr, numpages);
1724         if (ret)
1725                 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1726
1727         return ret;
1728 }
1729 EXPORT_SYMBOL_GPL(set_memory_wt);
1730
1731 int _set_memory_wb(unsigned long addr, int numpages)
1732 {
1733         /* WB cache mode is hard wired to all cache attribute bits being 0 */
1734         return change_page_attr_clear(&addr, numpages,
1735                                       __pgprot(_PAGE_CACHE_MASK), 0);
1736 }
1737
1738 int set_memory_wb(unsigned long addr, int numpages)
1739 {
1740         int ret;
1741
1742         ret = _set_memory_wb(addr, numpages);
1743         if (ret)
1744                 return ret;
1745
1746         free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1747         return 0;
1748 }
1749 EXPORT_SYMBOL(set_memory_wb);
1750
1751 int set_memory_array_wb(unsigned long *addr, int addrinarray)
1752 {
1753         int i;
1754         int ret;
1755
1756         /* WB cache mode is hard wired to all cache attribute bits being 0 */
1757         ret = change_page_attr_clear(addr, addrinarray,
1758                                       __pgprot(_PAGE_CACHE_MASK), 1);
1759         if (ret)
1760                 return ret;
1761
1762         for (i = 0; i < addrinarray; i++)
1763                 free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
1764
1765         return 0;
1766 }
1767 EXPORT_SYMBOL(set_memory_array_wb);
1768
1769 int set_memory_x(unsigned long addr, int numpages)
1770 {
1771         if (!(__supported_pte_mask & _PAGE_NX))
1772                 return 0;
1773
1774         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1775 }
1776 EXPORT_SYMBOL(set_memory_x);
1777
1778 int set_memory_nx(unsigned long addr, int numpages)
1779 {
1780         if (!(__supported_pte_mask & _PAGE_NX))
1781                 return 0;
1782
1783         return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1784 }
1785 EXPORT_SYMBOL(set_memory_nx);
1786
1787 int set_memory_ro(unsigned long addr, int numpages)
1788 {
1789         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1790 }
1791
1792 int set_memory_rw(unsigned long addr, int numpages)
1793 {
1794         return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1795 }
1796
1797 int set_memory_np(unsigned long addr, int numpages)
1798 {
1799         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1800 }
1801
1802 int set_memory_np_noalias(unsigned long addr, int numpages)
1803 {
1804         int cpa_flags = CPA_NO_CHECK_ALIAS;
1805
1806         return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1807                                         __pgprot(_PAGE_PRESENT), 0,
1808                                         cpa_flags, NULL);
1809 }
1810
1811 int set_memory_4k(unsigned long addr, int numpages)
1812 {
1813         return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1814                                         __pgprot(0), 1, 0, NULL);
1815 }
1816
1817 int set_memory_nonglobal(unsigned long addr, int numpages)
1818 {
1819         return change_page_attr_clear(&addr, numpages,
1820                                       __pgprot(_PAGE_GLOBAL), 0);
1821 }
1822
1823 int set_memory_global(unsigned long addr, int numpages)
1824 {
1825         return change_page_attr_set(&addr, numpages,
1826                                     __pgprot(_PAGE_GLOBAL), 0);
1827 }
1828
1829 static int __set_memory_enc_dec(unsigned long addr, int numpages, bool enc)
1830 {
1831         struct cpa_data cpa;
1832         unsigned long start;
1833         int ret;
1834
1835         /* Nothing to do if memory encryption is not active */
1836         if (!mem_encrypt_active())
1837                 return 0;
1838
1839         /* Should not be working on unaligned addresses */
1840         if (WARN_ONCE(addr & ~PAGE_MASK, "misaligned address: %#lx\n", addr))
1841                 addr &= PAGE_MASK;
1842
1843         start = addr;
1844
1845         memset(&cpa, 0, sizeof(cpa));
1846         cpa.vaddr = &addr;
1847         cpa.numpages = numpages;
1848         cpa.mask_set = enc ? __pgprot(_PAGE_ENC) : __pgprot(0);
1849         cpa.mask_clr = enc ? __pgprot(0) : __pgprot(_PAGE_ENC);
1850         cpa.pgd = init_mm.pgd;
1851
1852         /* Must avoid aliasing mappings in the highmem code */
1853         kmap_flush_unused();
1854         vm_unmap_aliases();
1855
1856         /*
1857          * Before changing the encryption attribute, we need to flush caches.
1858          */
1859         if (static_cpu_has(X86_FEATURE_CLFLUSH))
1860                 cpa_flush_range(start, numpages, 1);
1861         else
1862                 cpa_flush_all(1);
1863
1864         ret = __change_page_attr_set_clr(&cpa, 1);
1865
1866         /*
1867          * After changing the encryption attribute, we need to flush TLBs
1868          * again in case any speculative TLB caching occurred (but no need
1869          * to flush caches again).  We could just use cpa_flush_all(), but
1870          * in case TLB flushing gets optimized in the cpa_flush_range()
1871          * path use the same logic as above.
1872          */
1873         if (static_cpu_has(X86_FEATURE_CLFLUSH))
1874                 cpa_flush_range(start, numpages, 0);
1875         else
1876                 cpa_flush_all(0);
1877
1878         return ret;
1879 }
1880
1881 int set_memory_encrypted(unsigned long addr, int numpages)
1882 {
1883         return __set_memory_enc_dec(addr, numpages, true);
1884 }
1885 EXPORT_SYMBOL_GPL(set_memory_encrypted);
1886
1887 int set_memory_decrypted(unsigned long addr, int numpages)
1888 {
1889         return __set_memory_enc_dec(addr, numpages, false);
1890 }
1891 EXPORT_SYMBOL_GPL(set_memory_decrypted);
1892
1893 int set_pages_uc(struct page *page, int numpages)
1894 {
1895         unsigned long addr = (unsigned long)page_address(page);
1896
1897         return set_memory_uc(addr, numpages);
1898 }
1899 EXPORT_SYMBOL(set_pages_uc);
1900
1901 static int _set_pages_array(struct page **pages, int addrinarray,
1902                 enum page_cache_mode new_type)
1903 {
1904         unsigned long start;
1905         unsigned long end;
1906         enum page_cache_mode set_type;
1907         int i;
1908         int free_idx;
1909         int ret;
1910
1911         for (i = 0; i < addrinarray; i++) {
1912                 if (PageHighMem(pages[i]))
1913                         continue;
1914                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1915                 end = start + PAGE_SIZE;
1916                 if (reserve_memtype(start, end, new_type, NULL))
1917                         goto err_out;
1918         }
1919
1920         /* If WC, set to UC- first and then WC */
1921         set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
1922                                 _PAGE_CACHE_MODE_UC_MINUS : new_type;
1923
1924         ret = cpa_set_pages_array(pages, addrinarray,
1925                                   cachemode2pgprot(set_type));
1926         if (!ret && new_type == _PAGE_CACHE_MODE_WC)
1927                 ret = change_page_attr_set_clr(NULL, addrinarray,
1928                                                cachemode2pgprot(
1929                                                 _PAGE_CACHE_MODE_WC),
1930                                                __pgprot(_PAGE_CACHE_MASK),
1931                                                0, CPA_PAGES_ARRAY, pages);
1932         if (ret)
1933                 goto err_out;
1934         return 0; /* Success */
1935 err_out:
1936         free_idx = i;
1937         for (i = 0; i < free_idx; i++) {
1938                 if (PageHighMem(pages[i]))
1939                         continue;
1940                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1941                 end = start + PAGE_SIZE;
1942                 free_memtype(start, end);
1943         }
1944         return -EINVAL;
1945 }
1946
1947 int set_pages_array_uc(struct page **pages, int addrinarray)
1948 {
1949         return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_UC_MINUS);
1950 }
1951 EXPORT_SYMBOL(set_pages_array_uc);
1952
1953 int set_pages_array_wc(struct page **pages, int addrinarray)
1954 {
1955         return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_WC);
1956 }
1957 EXPORT_SYMBOL(set_pages_array_wc);
1958
1959 int set_pages_array_wt(struct page **pages, int addrinarray)
1960 {
1961         return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_WT);
1962 }
1963 EXPORT_SYMBOL_GPL(set_pages_array_wt);
1964
1965 int set_pages_wb(struct page *page, int numpages)
1966 {
1967         unsigned long addr = (unsigned long)page_address(page);
1968
1969         return set_memory_wb(addr, numpages);
1970 }
1971 EXPORT_SYMBOL(set_pages_wb);
1972
1973 int set_pages_array_wb(struct page **pages, int addrinarray)
1974 {
1975         int retval;
1976         unsigned long start;
1977         unsigned long end;
1978         int i;
1979
1980         /* WB cache mode is hard wired to all cache attribute bits being 0 */
1981         retval = cpa_clear_pages_array(pages, addrinarray,
1982                         __pgprot(_PAGE_CACHE_MASK));
1983         if (retval)
1984                 return retval;
1985
1986         for (i = 0; i < addrinarray; i++) {
1987                 if (PageHighMem(pages[i]))
1988                         continue;
1989                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1990                 end = start + PAGE_SIZE;
1991                 free_memtype(start, end);
1992         }
1993
1994         return 0;
1995 }
1996 EXPORT_SYMBOL(set_pages_array_wb);
1997
1998 int set_pages_x(struct page *page, int numpages)
1999 {
2000         unsigned long addr = (unsigned long)page_address(page);
2001
2002         return set_memory_x(addr, numpages);
2003 }
2004 EXPORT_SYMBOL(set_pages_x);
2005
2006 int set_pages_nx(struct page *page, int numpages)
2007 {
2008         unsigned long addr = (unsigned long)page_address(page);
2009
2010         return set_memory_nx(addr, numpages);
2011 }
2012 EXPORT_SYMBOL(set_pages_nx);
2013
2014 int set_pages_ro(struct page *page, int numpages)
2015 {
2016         unsigned long addr = (unsigned long)page_address(page);
2017
2018         return set_memory_ro(addr, numpages);
2019 }
2020
2021 int set_pages_rw(struct page *page, int numpages)
2022 {
2023         unsigned long addr = (unsigned long)page_address(page);
2024
2025         return set_memory_rw(addr, numpages);
2026 }
2027
2028 #ifdef CONFIG_DEBUG_PAGEALLOC
2029
2030 static int __set_pages_p(struct page *page, int numpages)
2031 {
2032         unsigned long tempaddr = (unsigned long) page_address(page);
2033         struct cpa_data cpa = { .vaddr = &tempaddr,
2034                                 .pgd = NULL,
2035                                 .numpages = numpages,
2036                                 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2037                                 .mask_clr = __pgprot(0),
2038                                 .flags = 0};
2039
2040         /*
2041          * No alias checking needed for setting present flag. otherwise,
2042          * we may need to break large pages for 64-bit kernel text
2043          * mappings (this adds to complexity if we want to do this from
2044          * atomic context especially). Let's keep it simple!
2045          */
2046         return __change_page_attr_set_clr(&cpa, 0);
2047 }
2048
2049 static int __set_pages_np(struct page *page, int numpages)
2050 {
2051         unsigned long tempaddr = (unsigned long) page_address(page);
2052         struct cpa_data cpa = { .vaddr = &tempaddr,
2053                                 .pgd = NULL,
2054                                 .numpages = numpages,
2055                                 .mask_set = __pgprot(0),
2056                                 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2057                                 .flags = 0};
2058
2059         /*
2060          * No alias checking needed for setting not present flag. otherwise,
2061          * we may need to break large pages for 64-bit kernel text
2062          * mappings (this adds to complexity if we want to do this from
2063          * atomic context especially). Let's keep it simple!
2064          */
2065         return __change_page_attr_set_clr(&cpa, 0);
2066 }
2067
2068 void __kernel_map_pages(struct page *page, int numpages, int enable)
2069 {
2070         if (PageHighMem(page))
2071                 return;
2072         if (!enable) {
2073                 debug_check_no_locks_freed(page_address(page),
2074                                            numpages * PAGE_SIZE);
2075         }
2076
2077         /*
2078          * The return value is ignored as the calls cannot fail.
2079          * Large pages for identity mappings are not used at boot time
2080          * and hence no memory allocations during large page split.
2081          */
2082         if (enable)
2083                 __set_pages_p(page, numpages);
2084         else
2085                 __set_pages_np(page, numpages);
2086
2087         /*
2088          * We should perform an IPI and flush all tlbs,
2089          * but that can deadlock->flush only current cpu.
2090          * Preemption needs to be disabled around __flush_tlb_all() due to
2091          * CR3 reload in __native_flush_tlb().
2092          */
2093         preempt_disable();
2094         __flush_tlb_all();
2095         preempt_enable();
2096
2097         arch_flush_lazy_mmu_mode();
2098 }
2099
2100 #ifdef CONFIG_HIBERNATION
2101
2102 bool kernel_page_present(struct page *page)
2103 {
2104         unsigned int level;
2105         pte_t *pte;
2106
2107         if (PageHighMem(page))
2108                 return false;
2109
2110         pte = lookup_address((unsigned long)page_address(page), &level);
2111         return (pte_val(*pte) & _PAGE_PRESENT);
2112 }
2113
2114 #endif /* CONFIG_HIBERNATION */
2115
2116 #endif /* CONFIG_DEBUG_PAGEALLOC */
2117
2118 int kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
2119                             unsigned numpages, unsigned long page_flags)
2120 {
2121         int retval = -EINVAL;
2122
2123         struct cpa_data cpa = {
2124                 .vaddr = &address,
2125                 .pfn = pfn,
2126                 .pgd = pgd,
2127                 .numpages = numpages,
2128                 .mask_set = __pgprot(0),
2129                 .mask_clr = __pgprot(~page_flags & (_PAGE_NX|_PAGE_RW)),
2130                 .flags = 0,
2131         };
2132
2133         if (!(__supported_pte_mask & _PAGE_NX))
2134                 goto out;
2135
2136         if (!(page_flags & _PAGE_ENC))
2137                 cpa.mask_clr = pgprot_encrypted(cpa.mask_clr);
2138
2139         cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags);
2140
2141         retval = __change_page_attr_set_clr(&cpa, 0);
2142         __flush_tlb_all();
2143
2144 out:
2145         return retval;
2146 }
2147
2148 /*
2149  * The testcases use internal knowledge of the implementation that shouldn't
2150  * be exposed to the rest of the kernel. Include these directly here.
2151  */
2152 #ifdef CONFIG_CPA_DEBUG
2153 #include "pageattr-test.c"
2154 #endif