GNU Linux-libre 4.14.266-gnu1
[releases.git] / arch / x86 / mm / pageattr.c
1 /*
2  * Copyright 2002 Andi Kleen, SuSE Labs.
3  * Thanks to Ben LaHaise for precious feedback.
4  */
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/sched.h>
8 #include <linux/mm.h>
9 #include <linux/interrupt.h>
10 #include <linux/seq_file.h>
11 #include <linux/debugfs.h>
12 #include <linux/pfn.h>
13 #include <linux/percpu.h>
14 #include <linux/gfp.h>
15 #include <linux/pci.h>
16 #include <linux/vmalloc.h>
17
18 #include <asm/e820/api.h>
19 #include <asm/processor.h>
20 #include <asm/tlbflush.h>
21 #include <asm/sections.h>
22 #include <asm/setup.h>
23 #include <linux/uaccess.h>
24 #include <asm/pgalloc.h>
25 #include <asm/proto.h>
26 #include <asm/pat.h>
27 #include <asm/set_memory.h>
28
29 /*
30  * The current flushing context - we pass it instead of 5 arguments:
31  */
32 struct cpa_data {
33         unsigned long   *vaddr;
34         pgd_t           *pgd;
35         pgprot_t        mask_set;
36         pgprot_t        mask_clr;
37         unsigned long   numpages;
38         int             flags;
39         unsigned long   pfn;
40         unsigned        force_split : 1;
41         int             curpage;
42         struct page     **pages;
43 };
44
45 /*
46  * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
47  * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
48  * entries change the page attribute in parallel to some other cpu
49  * splitting a large page entry along with changing the attribute.
50  */
51 static DEFINE_SPINLOCK(cpa_lock);
52
53 #define CPA_FLUSHTLB 1
54 #define CPA_ARRAY 2
55 #define CPA_PAGES_ARRAY 4
56
57 #ifdef CONFIG_PROC_FS
58 static unsigned long direct_pages_count[PG_LEVEL_NUM];
59
60 void update_page_count(int level, unsigned long pages)
61 {
62         /* Protect against CPA */
63         spin_lock(&pgd_lock);
64         direct_pages_count[level] += pages;
65         spin_unlock(&pgd_lock);
66 }
67
68 static void split_page_count(int level)
69 {
70         if (direct_pages_count[level] == 0)
71                 return;
72
73         direct_pages_count[level]--;
74         direct_pages_count[level - 1] += PTRS_PER_PTE;
75 }
76
77 void arch_report_meminfo(struct seq_file *m)
78 {
79         seq_printf(m, "DirectMap4k:    %8lu kB\n",
80                         direct_pages_count[PG_LEVEL_4K] << 2);
81 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
82         seq_printf(m, "DirectMap2M:    %8lu kB\n",
83                         direct_pages_count[PG_LEVEL_2M] << 11);
84 #else
85         seq_printf(m, "DirectMap4M:    %8lu kB\n",
86                         direct_pages_count[PG_LEVEL_2M] << 12);
87 #endif
88         if (direct_gbpages)
89                 seq_printf(m, "DirectMap1G:    %8lu kB\n",
90                         direct_pages_count[PG_LEVEL_1G] << 20);
91 }
92 #else
93 static inline void split_page_count(int level) { }
94 #endif
95
96 #ifdef CONFIG_X86_64
97
98 static inline unsigned long highmap_start_pfn(void)
99 {
100         return __pa_symbol(_text) >> PAGE_SHIFT;
101 }
102
103 static inline unsigned long highmap_end_pfn(void)
104 {
105         /* Do not reference physical address outside the kernel. */
106         return __pa_symbol(roundup(_brk_end, PMD_SIZE) - 1) >> PAGE_SHIFT;
107 }
108
109 #endif
110
111 static inline int
112 within(unsigned long addr, unsigned long start, unsigned long end)
113 {
114         return addr >= start && addr < end;
115 }
116
117 static inline int
118 within_inclusive(unsigned long addr, unsigned long start, unsigned long end)
119 {
120         return addr >= start && addr <= end;
121 }
122
123 /*
124  * Flushing functions
125  */
126
127 /**
128  * clflush_cache_range - flush a cache range with clflush
129  * @vaddr:      virtual start address
130  * @size:       number of bytes to flush
131  *
132  * clflushopt is an unordered instruction which needs fencing with mfence or
133  * sfence to avoid ordering issues.
134  */
135 void clflush_cache_range(void *vaddr, unsigned int size)
136 {
137         const unsigned long clflush_size = boot_cpu_data.x86_clflush_size;
138         void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1));
139         void *vend = vaddr + size;
140
141         if (p >= vend)
142                 return;
143
144         mb();
145
146         for (; p < vend; p += clflush_size)
147                 clflushopt(p);
148
149         mb();
150 }
151 EXPORT_SYMBOL_GPL(clflush_cache_range);
152
153 void arch_invalidate_pmem(void *addr, size_t size)
154 {
155         clflush_cache_range(addr, size);
156 }
157 EXPORT_SYMBOL_GPL(arch_invalidate_pmem);
158
159 static void __cpa_flush_all(void *arg)
160 {
161         unsigned long cache = (unsigned long)arg;
162
163         /*
164          * Flush all to work around Errata in early athlons regarding
165          * large page flushing.
166          */
167         __flush_tlb_all();
168
169         if (cache && boot_cpu_data.x86 >= 4)
170                 wbinvd();
171 }
172
173 static void cpa_flush_all(unsigned long cache)
174 {
175         BUG_ON(irqs_disabled());
176
177         on_each_cpu(__cpa_flush_all, (void *) cache, 1);
178 }
179
180 static void __cpa_flush_range(void *arg)
181 {
182         /*
183          * We could optimize that further and do individual per page
184          * tlb invalidates for a low number of pages. Caveat: we must
185          * flush the high aliases on 64bit as well.
186          */
187         __flush_tlb_all();
188 }
189
190 static void cpa_flush_range(unsigned long start, int numpages, int cache)
191 {
192         unsigned int i, level;
193         unsigned long addr;
194
195         BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
196         WARN_ON(PAGE_ALIGN(start) != start);
197
198         on_each_cpu(__cpa_flush_range, NULL, 1);
199
200         if (!cache)
201                 return;
202
203         /*
204          * We only need to flush on one CPU,
205          * clflush is a MESI-coherent instruction that
206          * will cause all other CPUs to flush the same
207          * cachelines:
208          */
209         for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
210                 pte_t *pte = lookup_address(addr, &level);
211
212                 /*
213                  * Only flush present addresses:
214                  */
215                 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
216                         clflush_cache_range((void *) addr, PAGE_SIZE);
217         }
218 }
219
220 static void cpa_flush_array(unsigned long *start, int numpages, int cache,
221                             int in_flags, struct page **pages)
222 {
223         unsigned int i, level;
224 #ifdef CONFIG_PREEMPT
225         /*
226          * Avoid wbinvd() because it causes latencies on all CPUs,
227          * regardless of any CPU isolation that may be in effect.
228          *
229          * This should be extended for CAT enabled systems independent of
230          * PREEMPT because wbinvd() does not respect the CAT partitions and
231          * this is exposed to unpriviledged users through the graphics
232          * subsystem.
233          */
234         unsigned long do_wbinvd = 0;
235 #else
236         unsigned long do_wbinvd = cache && numpages >= 1024; /* 4M threshold */
237 #endif
238
239         BUG_ON(irqs_disabled());
240
241         on_each_cpu(__cpa_flush_all, (void *) do_wbinvd, 1);
242
243         if (!cache || do_wbinvd)
244                 return;
245
246         /*
247          * We only need to flush on one CPU,
248          * clflush is a MESI-coherent instruction that
249          * will cause all other CPUs to flush the same
250          * cachelines:
251          */
252         for (i = 0; i < numpages; i++) {
253                 unsigned long addr;
254                 pte_t *pte;
255
256                 if (in_flags & CPA_PAGES_ARRAY)
257                         addr = (unsigned long)page_address(pages[i]);
258                 else
259                         addr = start[i];
260
261                 pte = lookup_address(addr, &level);
262
263                 /*
264                  * Only flush present addresses:
265                  */
266                 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
267                         clflush_cache_range((void *)addr, PAGE_SIZE);
268         }
269 }
270
271 /*
272  * Certain areas of memory on x86 require very specific protection flags,
273  * for example the BIOS area or kernel text. Callers don't always get this
274  * right (again, ioremap() on BIOS memory is not uncommon) so this function
275  * checks and fixes these known static required protection bits.
276  */
277 static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
278                                    unsigned long pfn)
279 {
280         pgprot_t forbidden = __pgprot(0);
281
282         /*
283          * The BIOS area between 640k and 1Mb needs to be executable for
284          * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
285          */
286 #ifdef CONFIG_PCI_BIOS
287         if (pcibios_enabled && within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
288                 pgprot_val(forbidden) |= _PAGE_NX;
289 #endif
290
291         /*
292          * The kernel text needs to be executable for obvious reasons
293          * Does not cover __inittext since that is gone later on. On
294          * 64bit we do not enforce !NX on the low mapping
295          */
296         if (within(address, (unsigned long)_text, (unsigned long)_etext))
297                 pgprot_val(forbidden) |= _PAGE_NX;
298
299         /*
300          * The .rodata section needs to be read-only. Using the pfn
301          * catches all aliases.  This also includes __ro_after_init,
302          * so do not enforce until kernel_set_to_readonly is true.
303          */
304         if (kernel_set_to_readonly &&
305             within(pfn, __pa_symbol(__start_rodata) >> PAGE_SHIFT,
306                    __pa_symbol(__end_rodata) >> PAGE_SHIFT))
307                 pgprot_val(forbidden) |= _PAGE_RW;
308
309 #if defined(CONFIG_X86_64)
310         /*
311          * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
312          * kernel text mappings for the large page aligned text, rodata sections
313          * will be always read-only. For the kernel identity mappings covering
314          * the holes caused by this alignment can be anything that user asks.
315          *
316          * This will preserve the large page mappings for kernel text/data
317          * at no extra cost.
318          */
319         if (kernel_set_to_readonly &&
320             within(address, (unsigned long)_text,
321                    (unsigned long)__end_rodata_hpage_align)) {
322                 unsigned int level;
323
324                 /*
325                  * Don't enforce the !RW mapping for the kernel text mapping,
326                  * if the current mapping is already using small page mapping.
327                  * No need to work hard to preserve large page mappings in this
328                  * case.
329                  *
330                  * This also fixes the Linux Xen paravirt guest boot failure
331                  * (because of unexpected read-only mappings for kernel identity
332                  * mappings). In this paravirt guest case, the kernel text
333                  * mapping and the kernel identity mapping share the same
334                  * page-table pages. Thus we can't really use different
335                  * protections for the kernel text and identity mappings. Also,
336                  * these shared mappings are made of small page mappings.
337                  * Thus this don't enforce !RW mapping for small page kernel
338                  * text mapping logic will help Linux Xen parvirt guest boot
339                  * as well.
340                  */
341                 if (lookup_address(address, &level) && (level != PG_LEVEL_4K))
342                         pgprot_val(forbidden) |= _PAGE_RW;
343         }
344 #endif
345
346         prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
347
348         return prot;
349 }
350
351 /*
352  * Lookup the page table entry for a virtual address in a specific pgd.
353  * Return a pointer to the entry and the level of the mapping.
354  */
355 pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
356                              unsigned int *level)
357 {
358         p4d_t *p4d;
359         pud_t *pud;
360         pmd_t *pmd;
361
362         *level = PG_LEVEL_NONE;
363
364         if (pgd_none(*pgd))
365                 return NULL;
366
367         p4d = p4d_offset(pgd, address);
368         if (p4d_none(*p4d))
369                 return NULL;
370
371         *level = PG_LEVEL_512G;
372         if (p4d_large(*p4d) || !p4d_present(*p4d))
373                 return (pte_t *)p4d;
374
375         pud = pud_offset(p4d, address);
376         if (pud_none(*pud))
377                 return NULL;
378
379         *level = PG_LEVEL_1G;
380         if (pud_large(*pud) || !pud_present(*pud))
381                 return (pte_t *)pud;
382
383         pmd = pmd_offset(pud, address);
384         if (pmd_none(*pmd))
385                 return NULL;
386
387         *level = PG_LEVEL_2M;
388         if (pmd_large(*pmd) || !pmd_present(*pmd))
389                 return (pte_t *)pmd;
390
391         *level = PG_LEVEL_4K;
392
393         return pte_offset_kernel(pmd, address);
394 }
395
396 /*
397  * Lookup the page table entry for a virtual address. Return a pointer
398  * to the entry and the level of the mapping.
399  *
400  * Note: We return pud and pmd either when the entry is marked large
401  * or when the present bit is not set. Otherwise we would return a
402  * pointer to a nonexisting mapping.
403  */
404 pte_t *lookup_address(unsigned long address, unsigned int *level)
405 {
406         return lookup_address_in_pgd(pgd_offset_k(address), address, level);
407 }
408 EXPORT_SYMBOL_GPL(lookup_address);
409
410 static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
411                                   unsigned int *level)
412 {
413         if (cpa->pgd)
414                 return lookup_address_in_pgd(cpa->pgd + pgd_index(address),
415                                                address, level);
416
417         return lookup_address(address, level);
418 }
419
420 /*
421  * Lookup the PMD entry for a virtual address. Return a pointer to the entry
422  * or NULL if not present.
423  */
424 pmd_t *lookup_pmd_address(unsigned long address)
425 {
426         pgd_t *pgd;
427         p4d_t *p4d;
428         pud_t *pud;
429
430         pgd = pgd_offset_k(address);
431         if (pgd_none(*pgd))
432                 return NULL;
433
434         p4d = p4d_offset(pgd, address);
435         if (p4d_none(*p4d) || p4d_large(*p4d) || !p4d_present(*p4d))
436                 return NULL;
437
438         pud = pud_offset(p4d, address);
439         if (pud_none(*pud) || pud_large(*pud) || !pud_present(*pud))
440                 return NULL;
441
442         return pmd_offset(pud, address);
443 }
444
445 /*
446  * This is necessary because __pa() does not work on some
447  * kinds of memory, like vmalloc() or the alloc_remap()
448  * areas on 32-bit NUMA systems.  The percpu areas can
449  * end up in this kind of memory, for instance.
450  *
451  * This could be optimized, but it is only intended to be
452  * used at inititalization time, and keeping it
453  * unoptimized should increase the testing coverage for
454  * the more obscure platforms.
455  */
456 phys_addr_t slow_virt_to_phys(void *__virt_addr)
457 {
458         unsigned long virt_addr = (unsigned long)__virt_addr;
459         phys_addr_t phys_addr;
460         unsigned long offset;
461         enum pg_level level;
462         pte_t *pte;
463
464         pte = lookup_address(virt_addr, &level);
465         BUG_ON(!pte);
466
467         /*
468          * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t
469          * before being left-shifted PAGE_SHIFT bits -- this trick is to
470          * make 32-PAE kernel work correctly.
471          */
472         switch (level) {
473         case PG_LEVEL_1G:
474                 phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT;
475                 offset = virt_addr & ~PUD_PAGE_MASK;
476                 break;
477         case PG_LEVEL_2M:
478                 phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT;
479                 offset = virt_addr & ~PMD_PAGE_MASK;
480                 break;
481         default:
482                 phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
483                 offset = virt_addr & ~PAGE_MASK;
484         }
485
486         return (phys_addr_t)(phys_addr | offset);
487 }
488 EXPORT_SYMBOL_GPL(slow_virt_to_phys);
489
490 /*
491  * Set the new pmd in all the pgds we know about:
492  */
493 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
494 {
495         /* change init_mm */
496         set_pte_atomic(kpte, pte);
497 #ifdef CONFIG_X86_32
498         if (!SHARED_KERNEL_PMD) {
499                 struct page *page;
500
501                 list_for_each_entry(page, &pgd_list, lru) {
502                         pgd_t *pgd;
503                         p4d_t *p4d;
504                         pud_t *pud;
505                         pmd_t *pmd;
506
507                         pgd = (pgd_t *)page_address(page) + pgd_index(address);
508                         p4d = p4d_offset(pgd, address);
509                         pud = pud_offset(p4d, address);
510                         pmd = pmd_offset(pud, address);
511                         set_pte_atomic((pte_t *)pmd, pte);
512                 }
513         }
514 #endif
515 }
516
517 static int
518 try_preserve_large_page(pte_t *kpte, unsigned long address,
519                         struct cpa_data *cpa)
520 {
521         unsigned long nextpage_addr, numpages, pmask, psize, addr, pfn, old_pfn;
522         pte_t new_pte, old_pte, *tmp;
523         pgprot_t old_prot, new_prot, req_prot;
524         int i, do_split = 1;
525         enum pg_level level;
526
527         if (cpa->force_split)
528                 return 1;
529
530         spin_lock(&pgd_lock);
531         /*
532          * Check for races, another CPU might have split this page
533          * up already:
534          */
535         tmp = _lookup_address_cpa(cpa, address, &level);
536         if (tmp != kpte)
537                 goto out_unlock;
538
539         switch (level) {
540         case PG_LEVEL_2M:
541                 old_prot = pmd_pgprot(*(pmd_t *)kpte);
542                 old_pfn = pmd_pfn(*(pmd_t *)kpte);
543                 break;
544         case PG_LEVEL_1G:
545                 old_prot = pud_pgprot(*(pud_t *)kpte);
546                 old_pfn = pud_pfn(*(pud_t *)kpte);
547                 break;
548         default:
549                 do_split = -EINVAL;
550                 goto out_unlock;
551         }
552
553         psize = page_level_size(level);
554         pmask = page_level_mask(level);
555
556         /*
557          * Calculate the number of pages, which fit into this large
558          * page starting at address:
559          */
560         nextpage_addr = (address + psize) & pmask;
561         numpages = (nextpage_addr - address) >> PAGE_SHIFT;
562         if (numpages < cpa->numpages)
563                 cpa->numpages = numpages;
564
565         /*
566          * We are safe now. Check whether the new pgprot is the same:
567          * Convert protection attributes to 4k-format, as cpa->mask* are set
568          * up accordingly.
569          */
570         old_pte = *kpte;
571         req_prot = pgprot_large_2_4k(old_prot);
572
573         pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
574         pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
575
576         /*
577          * req_prot is in format of 4k pages. It must be converted to large
578          * page format: the caching mode includes the PAT bit located at
579          * different bit positions in the two formats.
580          */
581         req_prot = pgprot_4k_2_large(req_prot);
582
583         /*
584          * Set the PSE and GLOBAL flags only if the PRESENT flag is
585          * set otherwise pmd_present/pmd_huge will return true even on
586          * a non present pmd. The canon_pgprot will clear _PAGE_GLOBAL
587          * for the ancient hardware that doesn't support it.
588          */
589         if (pgprot_val(req_prot) & _PAGE_PRESENT)
590                 pgprot_val(req_prot) |= _PAGE_PSE | _PAGE_GLOBAL;
591         else
592                 pgprot_val(req_prot) &= ~(_PAGE_PSE | _PAGE_GLOBAL);
593
594         req_prot = canon_pgprot(req_prot);
595
596         /*
597          * old_pfn points to the large page base pfn. So we need
598          * to add the offset of the virtual address:
599          */
600         pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT);
601         cpa->pfn = pfn;
602
603         new_prot = static_protections(req_prot, address, pfn);
604
605         /*
606          * We need to check the full range, whether
607          * static_protection() requires a different pgprot for one of
608          * the pages in the range we try to preserve:
609          */
610         addr = address & pmask;
611         pfn = old_pfn;
612         for (i = 0; i < (psize >> PAGE_SHIFT); i++, addr += PAGE_SIZE, pfn++) {
613                 pgprot_t chk_prot = static_protections(req_prot, addr, pfn);
614
615                 if (pgprot_val(chk_prot) != pgprot_val(new_prot))
616                         goto out_unlock;
617         }
618
619         /*
620          * If there are no changes, return. maxpages has been updated
621          * above:
622          */
623         if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
624                 do_split = 0;
625                 goto out_unlock;
626         }
627
628         /*
629          * We need to change the attributes. Check, whether we can
630          * change the large page in one go. We request a split, when
631          * the address is not aligned and the number of pages is
632          * smaller than the number of pages in the large page. Note
633          * that we limited the number of possible pages already to
634          * the number of pages in the large page.
635          */
636         if (address == (address & pmask) && cpa->numpages == (psize >> PAGE_SHIFT)) {
637                 /*
638                  * The address is aligned and the number of pages
639                  * covers the full page.
640                  */
641                 new_pte = pfn_pte(old_pfn, new_prot);
642                 __set_pmd_pte(kpte, address, new_pte);
643                 cpa->flags |= CPA_FLUSHTLB;
644                 do_split = 0;
645         }
646
647 out_unlock:
648         spin_unlock(&pgd_lock);
649
650         return do_split;
651 }
652
653 static int
654 __split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address,
655                    struct page *base)
656 {
657         pte_t *pbase = (pte_t *)page_address(base);
658         unsigned long ref_pfn, pfn, pfninc = 1;
659         unsigned int i, level;
660         pte_t *tmp;
661         pgprot_t ref_prot;
662
663         spin_lock(&pgd_lock);
664         /*
665          * Check for races, another CPU might have split this page
666          * up for us already:
667          */
668         tmp = _lookup_address_cpa(cpa, address, &level);
669         if (tmp != kpte) {
670                 spin_unlock(&pgd_lock);
671                 return 1;
672         }
673
674         paravirt_alloc_pte(&init_mm, page_to_pfn(base));
675
676         switch (level) {
677         case PG_LEVEL_2M:
678                 ref_prot = pmd_pgprot(*(pmd_t *)kpte);
679                 /* clear PSE and promote PAT bit to correct position */
680                 ref_prot = pgprot_large_2_4k(ref_prot);
681                 ref_pfn = pmd_pfn(*(pmd_t *)kpte);
682                 break;
683
684         case PG_LEVEL_1G:
685                 ref_prot = pud_pgprot(*(pud_t *)kpte);
686                 ref_pfn = pud_pfn(*(pud_t *)kpte);
687                 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
688
689                 /*
690                  * Clear the PSE flags if the PRESENT flag is not set
691                  * otherwise pmd_present/pmd_huge will return true
692                  * even on a non present pmd.
693                  */
694                 if (!(pgprot_val(ref_prot) & _PAGE_PRESENT))
695                         pgprot_val(ref_prot) &= ~_PAGE_PSE;
696                 break;
697
698         default:
699                 spin_unlock(&pgd_lock);
700                 return 1;
701         }
702
703         /*
704          * Set the GLOBAL flags only if the PRESENT flag is set
705          * otherwise pmd/pte_present will return true even on a non
706          * present pmd/pte. The canon_pgprot will clear _PAGE_GLOBAL
707          * for the ancient hardware that doesn't support it.
708          */
709         if (pgprot_val(ref_prot) & _PAGE_PRESENT)
710                 pgprot_val(ref_prot) |= _PAGE_GLOBAL;
711         else
712                 pgprot_val(ref_prot) &= ~_PAGE_GLOBAL;
713
714         /*
715          * Get the target pfn from the original entry:
716          */
717         pfn = ref_pfn;
718         for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
719                 set_pte(&pbase[i], pfn_pte(pfn, canon_pgprot(ref_prot)));
720
721         if (virt_addr_valid(address)) {
722                 unsigned long pfn = PFN_DOWN(__pa(address));
723
724                 if (pfn_range_is_mapped(pfn, pfn + 1))
725                         split_page_count(level);
726         }
727
728         /*
729          * Install the new, split up pagetable.
730          *
731          * We use the standard kernel pagetable protections for the new
732          * pagetable protections, the actual ptes set above control the
733          * primary protection behavior:
734          */
735         __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
736
737         /*
738          * Intel Atom errata AAH41 workaround.
739          *
740          * The real fix should be in hw or in a microcode update, but
741          * we also probabilistically try to reduce the window of having
742          * a large TLB mixed with 4K TLBs while instruction fetches are
743          * going on.
744          */
745         __flush_tlb_all();
746         spin_unlock(&pgd_lock);
747
748         return 0;
749 }
750
751 static int split_large_page(struct cpa_data *cpa, pte_t *kpte,
752                             unsigned long address)
753 {
754         struct page *base;
755
756         if (!debug_pagealloc_enabled())
757                 spin_unlock(&cpa_lock);
758         base = alloc_pages(GFP_KERNEL, 0);
759         if (!debug_pagealloc_enabled())
760                 spin_lock(&cpa_lock);
761         if (!base)
762                 return -ENOMEM;
763
764         if (__split_large_page(cpa, kpte, address, base))
765                 __free_page(base);
766
767         return 0;
768 }
769
770 static bool try_to_free_pte_page(pte_t *pte)
771 {
772         int i;
773
774         for (i = 0; i < PTRS_PER_PTE; i++)
775                 if (!pte_none(pte[i]))
776                         return false;
777
778         free_page((unsigned long)pte);
779         return true;
780 }
781
782 static bool try_to_free_pmd_page(pmd_t *pmd)
783 {
784         int i;
785
786         for (i = 0; i < PTRS_PER_PMD; i++)
787                 if (!pmd_none(pmd[i]))
788                         return false;
789
790         free_page((unsigned long)pmd);
791         return true;
792 }
793
794 static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end)
795 {
796         pte_t *pte = pte_offset_kernel(pmd, start);
797
798         while (start < end) {
799                 set_pte(pte, __pte(0));
800
801                 start += PAGE_SIZE;
802                 pte++;
803         }
804
805         if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) {
806                 pmd_clear(pmd);
807                 return true;
808         }
809         return false;
810 }
811
812 static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd,
813                               unsigned long start, unsigned long end)
814 {
815         if (unmap_pte_range(pmd, start, end))
816                 if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
817                         pud_clear(pud);
818 }
819
820 static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end)
821 {
822         pmd_t *pmd = pmd_offset(pud, start);
823
824         /*
825          * Not on a 2MB page boundary?
826          */
827         if (start & (PMD_SIZE - 1)) {
828                 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
829                 unsigned long pre_end = min_t(unsigned long, end, next_page);
830
831                 __unmap_pmd_range(pud, pmd, start, pre_end);
832
833                 start = pre_end;
834                 pmd++;
835         }
836
837         /*
838          * Try to unmap in 2M chunks.
839          */
840         while (end - start >= PMD_SIZE) {
841                 if (pmd_large(*pmd))
842                         pmd_clear(pmd);
843                 else
844                         __unmap_pmd_range(pud, pmd, start, start + PMD_SIZE);
845
846                 start += PMD_SIZE;
847                 pmd++;
848         }
849
850         /*
851          * 4K leftovers?
852          */
853         if (start < end)
854                 return __unmap_pmd_range(pud, pmd, start, end);
855
856         /*
857          * Try again to free the PMD page if haven't succeeded above.
858          */
859         if (!pud_none(*pud))
860                 if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
861                         pud_clear(pud);
862 }
863
864 static void unmap_pud_range(p4d_t *p4d, unsigned long start, unsigned long end)
865 {
866         pud_t *pud = pud_offset(p4d, start);
867
868         /*
869          * Not on a GB page boundary?
870          */
871         if (start & (PUD_SIZE - 1)) {
872                 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
873                 unsigned long pre_end   = min_t(unsigned long, end, next_page);
874
875                 unmap_pmd_range(pud, start, pre_end);
876
877                 start = pre_end;
878                 pud++;
879         }
880
881         /*
882          * Try to unmap in 1G chunks?
883          */
884         while (end - start >= PUD_SIZE) {
885
886                 if (pud_large(*pud))
887                         pud_clear(pud);
888                 else
889                         unmap_pmd_range(pud, start, start + PUD_SIZE);
890
891                 start += PUD_SIZE;
892                 pud++;
893         }
894
895         /*
896          * 2M leftovers?
897          */
898         if (start < end)
899                 unmap_pmd_range(pud, start, end);
900
901         /*
902          * No need to try to free the PUD page because we'll free it in
903          * populate_pgd's error path
904          */
905 }
906
907 static int alloc_pte_page(pmd_t *pmd)
908 {
909         pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
910         if (!pte)
911                 return -1;
912
913         set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
914         return 0;
915 }
916
917 static int alloc_pmd_page(pud_t *pud)
918 {
919         pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
920         if (!pmd)
921                 return -1;
922
923         set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
924         return 0;
925 }
926
927 static void populate_pte(struct cpa_data *cpa,
928                          unsigned long start, unsigned long end,
929                          unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
930 {
931         pte_t *pte;
932
933         pte = pte_offset_kernel(pmd, start);
934
935         /*
936          * Set the GLOBAL flags only if the PRESENT flag is
937          * set otherwise pte_present will return true even on
938          * a non present pte. The canon_pgprot will clear
939          * _PAGE_GLOBAL for the ancient hardware that doesn't
940          * support it.
941          */
942         if (pgprot_val(pgprot) & _PAGE_PRESENT)
943                 pgprot_val(pgprot) |= _PAGE_GLOBAL;
944         else
945                 pgprot_val(pgprot) &= ~_PAGE_GLOBAL;
946
947         pgprot = canon_pgprot(pgprot);
948
949         while (num_pages-- && start < end) {
950                 set_pte(pte, pfn_pte(cpa->pfn, pgprot));
951
952                 start    += PAGE_SIZE;
953                 cpa->pfn++;
954                 pte++;
955         }
956 }
957
958 static long populate_pmd(struct cpa_data *cpa,
959                          unsigned long start, unsigned long end,
960                          unsigned num_pages, pud_t *pud, pgprot_t pgprot)
961 {
962         long cur_pages = 0;
963         pmd_t *pmd;
964         pgprot_t pmd_pgprot;
965
966         /*
967          * Not on a 2M boundary?
968          */
969         if (start & (PMD_SIZE - 1)) {
970                 unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
971                 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
972
973                 pre_end   = min_t(unsigned long, pre_end, next_page);
974                 cur_pages = (pre_end - start) >> PAGE_SHIFT;
975                 cur_pages = min_t(unsigned int, num_pages, cur_pages);
976
977                 /*
978                  * Need a PTE page?
979                  */
980                 pmd = pmd_offset(pud, start);
981                 if (pmd_none(*pmd))
982                         if (alloc_pte_page(pmd))
983                                 return -1;
984
985                 populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);
986
987                 start = pre_end;
988         }
989
990         /*
991          * We mapped them all?
992          */
993         if (num_pages == cur_pages)
994                 return cur_pages;
995
996         pmd_pgprot = pgprot_4k_2_large(pgprot);
997
998         while (end - start >= PMD_SIZE) {
999
1000                 /*
1001                  * We cannot use a 1G page so allocate a PMD page if needed.
1002                  */
1003                 if (pud_none(*pud))
1004                         if (alloc_pmd_page(pud))
1005                                 return -1;
1006
1007                 pmd = pmd_offset(pud, start);
1008
1009                 set_pmd(pmd, pmd_mkhuge(pfn_pmd(cpa->pfn,
1010                                         canon_pgprot(pmd_pgprot))));
1011
1012                 start     += PMD_SIZE;
1013                 cpa->pfn  += PMD_SIZE >> PAGE_SHIFT;
1014                 cur_pages += PMD_SIZE >> PAGE_SHIFT;
1015         }
1016
1017         /*
1018          * Map trailing 4K pages.
1019          */
1020         if (start < end) {
1021                 pmd = pmd_offset(pud, start);
1022                 if (pmd_none(*pmd))
1023                         if (alloc_pte_page(pmd))
1024                                 return -1;
1025
1026                 populate_pte(cpa, start, end, num_pages - cur_pages,
1027                              pmd, pgprot);
1028         }
1029         return num_pages;
1030 }
1031
1032 static int populate_pud(struct cpa_data *cpa, unsigned long start, p4d_t *p4d,
1033                         pgprot_t pgprot)
1034 {
1035         pud_t *pud;
1036         unsigned long end;
1037         long cur_pages = 0;
1038         pgprot_t pud_pgprot;
1039
1040         end = start + (cpa->numpages << PAGE_SHIFT);
1041
1042         /*
1043          * Not on a Gb page boundary? => map everything up to it with
1044          * smaller pages.
1045          */
1046         if (start & (PUD_SIZE - 1)) {
1047                 unsigned long pre_end;
1048                 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1049
1050                 pre_end   = min_t(unsigned long, end, next_page);
1051                 cur_pages = (pre_end - start) >> PAGE_SHIFT;
1052                 cur_pages = min_t(int, (int)cpa->numpages, cur_pages);
1053
1054                 pud = pud_offset(p4d, start);
1055
1056                 /*
1057                  * Need a PMD page?
1058                  */
1059                 if (pud_none(*pud))
1060                         if (alloc_pmd_page(pud))
1061                                 return -1;
1062
1063                 cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
1064                                          pud, pgprot);
1065                 if (cur_pages < 0)
1066                         return cur_pages;
1067
1068                 start = pre_end;
1069         }
1070
1071         /* We mapped them all? */
1072         if (cpa->numpages == cur_pages)
1073                 return cur_pages;
1074
1075         pud = pud_offset(p4d, start);
1076         pud_pgprot = pgprot_4k_2_large(pgprot);
1077
1078         /*
1079          * Map everything starting from the Gb boundary, possibly with 1G pages
1080          */
1081         while (boot_cpu_has(X86_FEATURE_GBPAGES) && end - start >= PUD_SIZE) {
1082                 set_pud(pud, pud_mkhuge(pfn_pud(cpa->pfn,
1083                                    canon_pgprot(pud_pgprot))));
1084
1085                 start     += PUD_SIZE;
1086                 cpa->pfn  += PUD_SIZE >> PAGE_SHIFT;
1087                 cur_pages += PUD_SIZE >> PAGE_SHIFT;
1088                 pud++;
1089         }
1090
1091         /* Map trailing leftover */
1092         if (start < end) {
1093                 long tmp;
1094
1095                 pud = pud_offset(p4d, start);
1096                 if (pud_none(*pud))
1097                         if (alloc_pmd_page(pud))
1098                                 return -1;
1099
1100                 tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
1101                                    pud, pgprot);
1102                 if (tmp < 0)
1103                         return cur_pages;
1104
1105                 cur_pages += tmp;
1106         }
1107         return cur_pages;
1108 }
1109
1110 /*
1111  * Restrictions for kernel page table do not necessarily apply when mapping in
1112  * an alternate PGD.
1113  */
1114 static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
1115 {
1116         pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
1117         pud_t *pud = NULL;      /* shut up gcc */
1118         p4d_t *p4d;
1119         pgd_t *pgd_entry;
1120         long ret;
1121
1122         pgd_entry = cpa->pgd + pgd_index(addr);
1123
1124         if (pgd_none(*pgd_entry)) {
1125                 p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
1126                 if (!p4d)
1127                         return -1;
1128
1129                 set_pgd(pgd_entry, __pgd(__pa(p4d) | _KERNPG_TABLE));
1130         }
1131
1132         /*
1133          * Allocate a PUD page and hand it down for mapping.
1134          */
1135         p4d = p4d_offset(pgd_entry, addr);
1136         if (p4d_none(*p4d)) {
1137                 pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
1138                 if (!pud)
1139                         return -1;
1140
1141                 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
1142         }
1143
1144         pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
1145         pgprot_val(pgprot) |=  pgprot_val(cpa->mask_set);
1146
1147         ret = populate_pud(cpa, addr, p4d, pgprot);
1148         if (ret < 0) {
1149                 /*
1150                  * Leave the PUD page in place in case some other CPU or thread
1151                  * already found it, but remove any useless entries we just
1152                  * added to it.
1153                  */
1154                 unmap_pud_range(p4d, addr,
1155                                 addr + (cpa->numpages << PAGE_SHIFT));
1156                 return ret;
1157         }
1158
1159         cpa->numpages = ret;
1160         return 0;
1161 }
1162
1163 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
1164                                int primary)
1165 {
1166         if (cpa->pgd) {
1167                 /*
1168                  * Right now, we only execute this code path when mapping
1169                  * the EFI virtual memory map regions, no other users
1170                  * provide a ->pgd value. This may change in the future.
1171                  */
1172                 return populate_pgd(cpa, vaddr);
1173         }
1174
1175         /*
1176          * Ignore all non primary paths.
1177          */
1178         if (!primary) {
1179                 cpa->numpages = 1;
1180                 return 0;
1181         }
1182
1183         /*
1184          * Ignore the NULL PTE for kernel identity mapping, as it is expected
1185          * to have holes.
1186          * Also set numpages to '1' indicating that we processed cpa req for
1187          * one virtual address page and its pfn. TBD: numpages can be set based
1188          * on the initial value and the level returned by lookup_address().
1189          */
1190         if (within(vaddr, PAGE_OFFSET,
1191                    PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
1192                 cpa->numpages = 1;
1193                 cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
1194                 return 0;
1195         } else {
1196                 WARN(1, KERN_WARNING "CPA: called for zero pte. "
1197                         "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
1198                         *cpa->vaddr);
1199
1200                 return -EFAULT;
1201         }
1202 }
1203
1204 static int __change_page_attr(struct cpa_data *cpa, int primary)
1205 {
1206         unsigned long address;
1207         int do_split, err;
1208         unsigned int level;
1209         pte_t *kpte, old_pte;
1210
1211         if (cpa->flags & CPA_PAGES_ARRAY) {
1212                 struct page *page = cpa->pages[cpa->curpage];
1213                 if (unlikely(PageHighMem(page)))
1214                         return 0;
1215                 address = (unsigned long)page_address(page);
1216         } else if (cpa->flags & CPA_ARRAY)
1217                 address = cpa->vaddr[cpa->curpage];
1218         else
1219                 address = *cpa->vaddr;
1220 repeat:
1221         kpte = _lookup_address_cpa(cpa, address, &level);
1222         if (!kpte)
1223                 return __cpa_process_fault(cpa, address, primary);
1224
1225         old_pte = *kpte;
1226         if (pte_none(old_pte))
1227                 return __cpa_process_fault(cpa, address, primary);
1228
1229         if (level == PG_LEVEL_4K) {
1230                 pte_t new_pte;
1231                 pgprot_t new_prot = pte_pgprot(old_pte);
1232                 unsigned long pfn = pte_pfn(old_pte);
1233
1234                 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
1235                 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
1236
1237                 new_prot = static_protections(new_prot, address, pfn);
1238
1239                 /*
1240                  * Set the GLOBAL flags only if the PRESENT flag is
1241                  * set otherwise pte_present will return true even on
1242                  * a non present pte. The canon_pgprot will clear
1243                  * _PAGE_GLOBAL for the ancient hardware that doesn't
1244                  * support it.
1245                  */
1246                 if (pgprot_val(new_prot) & _PAGE_PRESENT)
1247                         pgprot_val(new_prot) |= _PAGE_GLOBAL;
1248                 else
1249                         pgprot_val(new_prot) &= ~_PAGE_GLOBAL;
1250
1251                 /*
1252                  * We need to keep the pfn from the existing PTE,
1253                  * after all we're only going to change it's attributes
1254                  * not the memory it points to
1255                  */
1256                 new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
1257                 cpa->pfn = pfn;
1258                 /*
1259                  * Do we really change anything ?
1260                  */
1261                 if (pte_val(old_pte) != pte_val(new_pte)) {
1262                         set_pte_atomic(kpte, new_pte);
1263                         cpa->flags |= CPA_FLUSHTLB;
1264                 }
1265                 cpa->numpages = 1;
1266                 return 0;
1267         }
1268
1269         /*
1270          * Check, whether we can keep the large page intact
1271          * and just change the pte:
1272          */
1273         do_split = try_preserve_large_page(kpte, address, cpa);
1274         /*
1275          * When the range fits into the existing large page,
1276          * return. cp->numpages and cpa->tlbflush have been updated in
1277          * try_large_page:
1278          */
1279         if (do_split <= 0)
1280                 return do_split;
1281
1282         /*
1283          * We have to split the large page:
1284          */
1285         err = split_large_page(cpa, kpte, address);
1286         if (!err) {
1287                 /*
1288                  * Do a global flush tlb after splitting the large page
1289                  * and before we do the actual change page attribute in the PTE.
1290                  *
1291                  * With out this, we violate the TLB application note, that says
1292                  * "The TLBs may contain both ordinary and large-page
1293                  *  translations for a 4-KByte range of linear addresses. This
1294                  *  may occur if software modifies the paging structures so that
1295                  *  the page size used for the address range changes. If the two
1296                  *  translations differ with respect to page frame or attributes
1297                  *  (e.g., permissions), processor behavior is undefined and may
1298                  *  be implementation-specific."
1299                  *
1300                  * We do this global tlb flush inside the cpa_lock, so that we
1301                  * don't allow any other cpu, with stale tlb entries change the
1302                  * page attribute in parallel, that also falls into the
1303                  * just split large page entry.
1304                  */
1305                 flush_tlb_all();
1306                 goto repeat;
1307         }
1308
1309         return err;
1310 }
1311
1312 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
1313
1314 static int cpa_process_alias(struct cpa_data *cpa)
1315 {
1316         struct cpa_data alias_cpa;
1317         unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
1318         unsigned long vaddr;
1319         int ret;
1320
1321         if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
1322                 return 0;
1323
1324         /*
1325          * No need to redo, when the primary call touched the direct
1326          * mapping already:
1327          */
1328         if (cpa->flags & CPA_PAGES_ARRAY) {
1329                 struct page *page = cpa->pages[cpa->curpage];
1330                 if (unlikely(PageHighMem(page)))
1331                         return 0;
1332                 vaddr = (unsigned long)page_address(page);
1333         } else if (cpa->flags & CPA_ARRAY)
1334                 vaddr = cpa->vaddr[cpa->curpage];
1335         else
1336                 vaddr = *cpa->vaddr;
1337
1338         if (!(within(vaddr, PAGE_OFFSET,
1339                     PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
1340
1341                 alias_cpa = *cpa;
1342                 alias_cpa.vaddr = &laddr;
1343                 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1344
1345                 ret = __change_page_attr_set_clr(&alias_cpa, 0);
1346                 if (ret)
1347                         return ret;
1348         }
1349
1350 #ifdef CONFIG_X86_64
1351         /*
1352          * If the primary call didn't touch the high mapping already
1353          * and the physical address is inside the kernel map, we need
1354          * to touch the high mapped kernel as well:
1355          */
1356         if (!within(vaddr, (unsigned long)_text, _brk_end) &&
1357             within_inclusive(cpa->pfn, highmap_start_pfn(),
1358                              highmap_end_pfn())) {
1359                 unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
1360                                                __START_KERNEL_map - phys_base;
1361                 alias_cpa = *cpa;
1362                 alias_cpa.vaddr = &temp_cpa_vaddr;
1363                 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1364
1365                 /*
1366                  * The high mapping range is imprecise, so ignore the
1367                  * return value.
1368                  */
1369                 __change_page_attr_set_clr(&alias_cpa, 0);
1370         }
1371 #endif
1372
1373         return 0;
1374 }
1375
1376 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
1377 {
1378         unsigned long numpages = cpa->numpages;
1379         int ret;
1380
1381         while (numpages) {
1382                 /*
1383                  * Store the remaining nr of pages for the large page
1384                  * preservation check.
1385                  */
1386                 cpa->numpages = numpages;
1387                 /* for array changes, we can't use large page */
1388                 if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
1389                         cpa->numpages = 1;
1390
1391                 if (!debug_pagealloc_enabled())
1392                         spin_lock(&cpa_lock);
1393                 ret = __change_page_attr(cpa, checkalias);
1394                 if (!debug_pagealloc_enabled())
1395                         spin_unlock(&cpa_lock);
1396                 if (ret)
1397                         return ret;
1398
1399                 if (checkalias) {
1400                         ret = cpa_process_alias(cpa);
1401                         if (ret)
1402                                 return ret;
1403                 }
1404
1405                 /*
1406                  * Adjust the number of pages with the result of the
1407                  * CPA operation. Either a large page has been
1408                  * preserved or a single page update happened.
1409                  */
1410                 BUG_ON(cpa->numpages > numpages || !cpa->numpages);
1411                 numpages -= cpa->numpages;
1412                 if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY))
1413                         cpa->curpage++;
1414                 else
1415                         *cpa->vaddr += cpa->numpages * PAGE_SIZE;
1416
1417         }
1418         return 0;
1419 }
1420
1421 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
1422                                     pgprot_t mask_set, pgprot_t mask_clr,
1423                                     int force_split, int in_flag,
1424                                     struct page **pages)
1425 {
1426         struct cpa_data cpa;
1427         int ret, cache, checkalias;
1428         unsigned long baddr = 0;
1429
1430         memset(&cpa, 0, sizeof(cpa));
1431
1432         /*
1433          * Check, if we are requested to change a not supported
1434          * feature:
1435          */
1436         mask_set = canon_pgprot(mask_set);
1437         mask_clr = canon_pgprot(mask_clr);
1438         if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
1439                 return 0;
1440
1441         /* Ensure we are PAGE_SIZE aligned */
1442         if (in_flag & CPA_ARRAY) {
1443                 int i;
1444                 for (i = 0; i < numpages; i++) {
1445                         if (addr[i] & ~PAGE_MASK) {
1446                                 addr[i] &= PAGE_MASK;
1447                                 WARN_ON_ONCE(1);
1448                         }
1449                 }
1450         } else if (!(in_flag & CPA_PAGES_ARRAY)) {
1451                 /*
1452                  * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1453                  * No need to cehck in that case
1454                  */
1455                 if (*addr & ~PAGE_MASK) {
1456                         *addr &= PAGE_MASK;
1457                         /*
1458                          * People should not be passing in unaligned addresses:
1459                          */
1460                         WARN_ON_ONCE(1);
1461                 }
1462                 /*
1463                  * Save address for cache flush. *addr is modified in the call
1464                  * to __change_page_attr_set_clr() below.
1465                  */
1466                 baddr = *addr;
1467         }
1468
1469         /* Must avoid aliasing mappings in the highmem code */
1470         kmap_flush_unused();
1471
1472         vm_unmap_aliases();
1473
1474         cpa.vaddr = addr;
1475         cpa.pages = pages;
1476         cpa.numpages = numpages;
1477         cpa.mask_set = mask_set;
1478         cpa.mask_clr = mask_clr;
1479         cpa.flags = 0;
1480         cpa.curpage = 0;
1481         cpa.force_split = force_split;
1482
1483         if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
1484                 cpa.flags |= in_flag;
1485
1486         /* No alias checking for _NX bit modifications */
1487         checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
1488
1489         ret = __change_page_attr_set_clr(&cpa, checkalias);
1490
1491         /*
1492          * Check whether we really changed something:
1493          */
1494         if (!(cpa.flags & CPA_FLUSHTLB))
1495                 goto out;
1496
1497         /*
1498          * No need to flush, when we did not set any of the caching
1499          * attributes:
1500          */
1501         cache = !!pgprot2cachemode(mask_set);
1502
1503         /*
1504          * On success we use CLFLUSH, when the CPU supports it to
1505          * avoid the WBINVD. If the CPU does not support it and in the
1506          * error case we fall back to cpa_flush_all (which uses
1507          * WBINVD):
1508          */
1509         if (!ret && boot_cpu_has(X86_FEATURE_CLFLUSH)) {
1510                 if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
1511                         cpa_flush_array(addr, numpages, cache,
1512                                         cpa.flags, pages);
1513                 } else
1514                         cpa_flush_range(baddr, numpages, cache);
1515         } else
1516                 cpa_flush_all(cache);
1517
1518 out:
1519         return ret;
1520 }
1521
1522 static inline int change_page_attr_set(unsigned long *addr, int numpages,
1523                                        pgprot_t mask, int array)
1524 {
1525         return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1526                 (array ? CPA_ARRAY : 0), NULL);
1527 }
1528
1529 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
1530                                          pgprot_t mask, int array)
1531 {
1532         return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1533                 (array ? CPA_ARRAY : 0), NULL);
1534 }
1535
1536 static inline int cpa_set_pages_array(struct page **pages, int numpages,
1537                                        pgprot_t mask)
1538 {
1539         return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
1540                 CPA_PAGES_ARRAY, pages);
1541 }
1542
1543 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1544                                          pgprot_t mask)
1545 {
1546         return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1547                 CPA_PAGES_ARRAY, pages);
1548 }
1549
1550 int _set_memory_uc(unsigned long addr, int numpages)
1551 {
1552         /*
1553          * for now UC MINUS. see comments in ioremap_nocache()
1554          * If you really need strong UC use ioremap_uc(), but note
1555          * that you cannot override IO areas with set_memory_*() as
1556          * these helpers cannot work with IO memory.
1557          */
1558         return change_page_attr_set(&addr, numpages,
1559                                     cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1560                                     0);
1561 }
1562
1563 int set_memory_uc(unsigned long addr, int numpages)
1564 {
1565         int ret;
1566
1567         /*
1568          * for now UC MINUS. see comments in ioremap_nocache()
1569          */
1570         ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1571                               _PAGE_CACHE_MODE_UC_MINUS, NULL);
1572         if (ret)
1573                 goto out_err;
1574
1575         ret = _set_memory_uc(addr, numpages);
1576         if (ret)
1577                 goto out_free;
1578
1579         return 0;
1580
1581 out_free:
1582         free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1583 out_err:
1584         return ret;
1585 }
1586 EXPORT_SYMBOL(set_memory_uc);
1587
1588 static int _set_memory_array(unsigned long *addr, int addrinarray,
1589                 enum page_cache_mode new_type)
1590 {
1591         enum page_cache_mode set_type;
1592         int i, j;
1593         int ret;
1594
1595         for (i = 0; i < addrinarray; i++) {
1596                 ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
1597                                         new_type, NULL);
1598                 if (ret)
1599                         goto out_free;
1600         }
1601
1602         /* If WC, set to UC- first and then WC */
1603         set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
1604                                 _PAGE_CACHE_MODE_UC_MINUS : new_type;
1605
1606         ret = change_page_attr_set(addr, addrinarray,
1607                                    cachemode2pgprot(set_type), 1);
1608
1609         if (!ret && new_type == _PAGE_CACHE_MODE_WC)
1610                 ret = change_page_attr_set_clr(addr, addrinarray,
1611                                                cachemode2pgprot(
1612                                                 _PAGE_CACHE_MODE_WC),
1613                                                __pgprot(_PAGE_CACHE_MASK),
1614                                                0, CPA_ARRAY, NULL);
1615         if (ret)
1616                 goto out_free;
1617
1618         return 0;
1619
1620 out_free:
1621         for (j = 0; j < i; j++)
1622                 free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
1623
1624         return ret;
1625 }
1626
1627 int set_memory_array_uc(unsigned long *addr, int addrinarray)
1628 {
1629         return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_UC_MINUS);
1630 }
1631 EXPORT_SYMBOL(set_memory_array_uc);
1632
1633 int set_memory_array_wc(unsigned long *addr, int addrinarray)
1634 {
1635         return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_WC);
1636 }
1637 EXPORT_SYMBOL(set_memory_array_wc);
1638
1639 int set_memory_array_wt(unsigned long *addr, int addrinarray)
1640 {
1641         return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_WT);
1642 }
1643 EXPORT_SYMBOL_GPL(set_memory_array_wt);
1644
1645 int _set_memory_wc(unsigned long addr, int numpages)
1646 {
1647         int ret;
1648         unsigned long addr_copy = addr;
1649
1650         ret = change_page_attr_set(&addr, numpages,
1651                                    cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1652                                    0);
1653         if (!ret) {
1654                 ret = change_page_attr_set_clr(&addr_copy, numpages,
1655                                                cachemode2pgprot(
1656                                                 _PAGE_CACHE_MODE_WC),
1657                                                __pgprot(_PAGE_CACHE_MASK),
1658                                                0, 0, NULL);
1659         }
1660         return ret;
1661 }
1662
1663 int set_memory_wc(unsigned long addr, int numpages)
1664 {
1665         int ret;
1666
1667         ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1668                 _PAGE_CACHE_MODE_WC, NULL);
1669         if (ret)
1670                 return ret;
1671
1672         ret = _set_memory_wc(addr, numpages);
1673         if (ret)
1674                 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1675
1676         return ret;
1677 }
1678 EXPORT_SYMBOL(set_memory_wc);
1679
1680 int _set_memory_wt(unsigned long addr, int numpages)
1681 {
1682         return change_page_attr_set(&addr, numpages,
1683                                     cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0);
1684 }
1685
1686 int set_memory_wt(unsigned long addr, int numpages)
1687 {
1688         int ret;
1689
1690         ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1691                               _PAGE_CACHE_MODE_WT, NULL);
1692         if (ret)
1693                 return ret;
1694
1695         ret = _set_memory_wt(addr, numpages);
1696         if (ret)
1697                 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1698
1699         return ret;
1700 }
1701 EXPORT_SYMBOL_GPL(set_memory_wt);
1702
1703 int _set_memory_wb(unsigned long addr, int numpages)
1704 {
1705         /* WB cache mode is hard wired to all cache attribute bits being 0 */
1706         return change_page_attr_clear(&addr, numpages,
1707                                       __pgprot(_PAGE_CACHE_MASK), 0);
1708 }
1709
1710 int set_memory_wb(unsigned long addr, int numpages)
1711 {
1712         int ret;
1713
1714         ret = _set_memory_wb(addr, numpages);
1715         if (ret)
1716                 return ret;
1717
1718         free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1719         return 0;
1720 }
1721 EXPORT_SYMBOL(set_memory_wb);
1722
1723 int set_memory_array_wb(unsigned long *addr, int addrinarray)
1724 {
1725         int i;
1726         int ret;
1727
1728         /* WB cache mode is hard wired to all cache attribute bits being 0 */
1729         ret = change_page_attr_clear(addr, addrinarray,
1730                                       __pgprot(_PAGE_CACHE_MASK), 1);
1731         if (ret)
1732                 return ret;
1733
1734         for (i = 0; i < addrinarray; i++)
1735                 free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
1736
1737         return 0;
1738 }
1739 EXPORT_SYMBOL(set_memory_array_wb);
1740
1741 int set_memory_x(unsigned long addr, int numpages)
1742 {
1743         if (!(__supported_pte_mask & _PAGE_NX))
1744                 return 0;
1745
1746         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1747 }
1748 EXPORT_SYMBOL(set_memory_x);
1749
1750 int set_memory_nx(unsigned long addr, int numpages)
1751 {
1752         if (!(__supported_pte_mask & _PAGE_NX))
1753                 return 0;
1754
1755         return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1756 }
1757 EXPORT_SYMBOL(set_memory_nx);
1758
1759 int set_memory_ro(unsigned long addr, int numpages)
1760 {
1761         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1762 }
1763
1764 int set_memory_rw(unsigned long addr, int numpages)
1765 {
1766         return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1767 }
1768
1769 int set_memory_np(unsigned long addr, int numpages)
1770 {
1771         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1772 }
1773
1774 int set_memory_4k(unsigned long addr, int numpages)
1775 {
1776         return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1777                                         __pgprot(0), 1, 0, NULL);
1778 }
1779
1780 static int __set_memory_enc_dec(unsigned long addr, int numpages, bool enc)
1781 {
1782         struct cpa_data cpa;
1783         unsigned long start;
1784         int ret;
1785
1786         /* Nothing to do if the SME is not active */
1787         if (!sme_active())
1788                 return 0;
1789
1790         /* Should not be working on unaligned addresses */
1791         if (WARN_ONCE(addr & ~PAGE_MASK, "misaligned address: %#lx\n", addr))
1792                 addr &= PAGE_MASK;
1793
1794         start = addr;
1795
1796         memset(&cpa, 0, sizeof(cpa));
1797         cpa.vaddr = &addr;
1798         cpa.numpages = numpages;
1799         cpa.mask_set = enc ? __pgprot(_PAGE_ENC) : __pgprot(0);
1800         cpa.mask_clr = enc ? __pgprot(0) : __pgprot(_PAGE_ENC);
1801         cpa.pgd = init_mm.pgd;
1802
1803         /* Must avoid aliasing mappings in the highmem code */
1804         kmap_flush_unused();
1805         vm_unmap_aliases();
1806
1807         /*
1808          * Before changing the encryption attribute, we need to flush caches.
1809          */
1810         if (static_cpu_has(X86_FEATURE_CLFLUSH))
1811                 cpa_flush_range(start, numpages, 1);
1812         else
1813                 cpa_flush_all(1);
1814
1815         ret = __change_page_attr_set_clr(&cpa, 1);
1816
1817         /*
1818          * After changing the encryption attribute, we need to flush TLBs
1819          * again in case any speculative TLB caching occurred (but no need
1820          * to flush caches again).  We could just use cpa_flush_all(), but
1821          * in case TLB flushing gets optimized in the cpa_flush_range()
1822          * path use the same logic as above.
1823          */
1824         if (static_cpu_has(X86_FEATURE_CLFLUSH))
1825                 cpa_flush_range(start, numpages, 0);
1826         else
1827                 cpa_flush_all(0);
1828
1829         return ret;
1830 }
1831
1832 int set_memory_encrypted(unsigned long addr, int numpages)
1833 {
1834         return __set_memory_enc_dec(addr, numpages, true);
1835 }
1836 EXPORT_SYMBOL_GPL(set_memory_encrypted);
1837
1838 int set_memory_decrypted(unsigned long addr, int numpages)
1839 {
1840         return __set_memory_enc_dec(addr, numpages, false);
1841 }
1842 EXPORT_SYMBOL_GPL(set_memory_decrypted);
1843
1844 int set_pages_uc(struct page *page, int numpages)
1845 {
1846         unsigned long addr = (unsigned long)page_address(page);
1847
1848         return set_memory_uc(addr, numpages);
1849 }
1850 EXPORT_SYMBOL(set_pages_uc);
1851
1852 static int _set_pages_array(struct page **pages, int addrinarray,
1853                 enum page_cache_mode new_type)
1854 {
1855         unsigned long start;
1856         unsigned long end;
1857         enum page_cache_mode set_type;
1858         int i;
1859         int free_idx;
1860         int ret;
1861
1862         for (i = 0; i < addrinarray; i++) {
1863                 if (PageHighMem(pages[i]))
1864                         continue;
1865                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1866                 end = start + PAGE_SIZE;
1867                 if (reserve_memtype(start, end, new_type, NULL))
1868                         goto err_out;
1869         }
1870
1871         /* If WC, set to UC- first and then WC */
1872         set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
1873                                 _PAGE_CACHE_MODE_UC_MINUS : new_type;
1874
1875         ret = cpa_set_pages_array(pages, addrinarray,
1876                                   cachemode2pgprot(set_type));
1877         if (!ret && new_type == _PAGE_CACHE_MODE_WC)
1878                 ret = change_page_attr_set_clr(NULL, addrinarray,
1879                                                cachemode2pgprot(
1880                                                 _PAGE_CACHE_MODE_WC),
1881                                                __pgprot(_PAGE_CACHE_MASK),
1882                                                0, CPA_PAGES_ARRAY, pages);
1883         if (ret)
1884                 goto err_out;
1885         return 0; /* Success */
1886 err_out:
1887         free_idx = i;
1888         for (i = 0; i < free_idx; i++) {
1889                 if (PageHighMem(pages[i]))
1890                         continue;
1891                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1892                 end = start + PAGE_SIZE;
1893                 free_memtype(start, end);
1894         }
1895         return -EINVAL;
1896 }
1897
1898 int set_pages_array_uc(struct page **pages, int addrinarray)
1899 {
1900         return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_UC_MINUS);
1901 }
1902 EXPORT_SYMBOL(set_pages_array_uc);
1903
1904 int set_pages_array_wc(struct page **pages, int addrinarray)
1905 {
1906         return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_WC);
1907 }
1908 EXPORT_SYMBOL(set_pages_array_wc);
1909
1910 int set_pages_array_wt(struct page **pages, int addrinarray)
1911 {
1912         return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_WT);
1913 }
1914 EXPORT_SYMBOL_GPL(set_pages_array_wt);
1915
1916 int set_pages_wb(struct page *page, int numpages)
1917 {
1918         unsigned long addr = (unsigned long)page_address(page);
1919
1920         return set_memory_wb(addr, numpages);
1921 }
1922 EXPORT_SYMBOL(set_pages_wb);
1923
1924 int set_pages_array_wb(struct page **pages, int addrinarray)
1925 {
1926         int retval;
1927         unsigned long start;
1928         unsigned long end;
1929         int i;
1930
1931         /* WB cache mode is hard wired to all cache attribute bits being 0 */
1932         retval = cpa_clear_pages_array(pages, addrinarray,
1933                         __pgprot(_PAGE_CACHE_MASK));
1934         if (retval)
1935                 return retval;
1936
1937         for (i = 0; i < addrinarray; i++) {
1938                 if (PageHighMem(pages[i]))
1939                         continue;
1940                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1941                 end = start + PAGE_SIZE;
1942                 free_memtype(start, end);
1943         }
1944
1945         return 0;
1946 }
1947 EXPORT_SYMBOL(set_pages_array_wb);
1948
1949 int set_pages_x(struct page *page, int numpages)
1950 {
1951         unsigned long addr = (unsigned long)page_address(page);
1952
1953         return set_memory_x(addr, numpages);
1954 }
1955 EXPORT_SYMBOL(set_pages_x);
1956
1957 int set_pages_nx(struct page *page, int numpages)
1958 {
1959         unsigned long addr = (unsigned long)page_address(page);
1960
1961         return set_memory_nx(addr, numpages);
1962 }
1963 EXPORT_SYMBOL(set_pages_nx);
1964
1965 int set_pages_ro(struct page *page, int numpages)
1966 {
1967         unsigned long addr = (unsigned long)page_address(page);
1968
1969         return set_memory_ro(addr, numpages);
1970 }
1971
1972 int set_pages_rw(struct page *page, int numpages)
1973 {
1974         unsigned long addr = (unsigned long)page_address(page);
1975
1976         return set_memory_rw(addr, numpages);
1977 }
1978
1979 #ifdef CONFIG_DEBUG_PAGEALLOC
1980
1981 static int __set_pages_p(struct page *page, int numpages)
1982 {
1983         unsigned long tempaddr = (unsigned long) page_address(page);
1984         struct cpa_data cpa = { .vaddr = &tempaddr,
1985                                 .pgd = NULL,
1986                                 .numpages = numpages,
1987                                 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1988                                 .mask_clr = __pgprot(0),
1989                                 .flags = 0};
1990
1991         /*
1992          * No alias checking needed for setting present flag. otherwise,
1993          * we may need to break large pages for 64-bit kernel text
1994          * mappings (this adds to complexity if we want to do this from
1995          * atomic context especially). Let's keep it simple!
1996          */
1997         return __change_page_attr_set_clr(&cpa, 0);
1998 }
1999
2000 static int __set_pages_np(struct page *page, int numpages)
2001 {
2002         unsigned long tempaddr = (unsigned long) page_address(page);
2003         struct cpa_data cpa = { .vaddr = &tempaddr,
2004                                 .pgd = NULL,
2005                                 .numpages = numpages,
2006                                 .mask_set = __pgprot(0),
2007                                 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2008                                 .flags = 0};
2009
2010         /*
2011          * No alias checking needed for setting not present flag. otherwise,
2012          * we may need to break large pages for 64-bit kernel text
2013          * mappings (this adds to complexity if we want to do this from
2014          * atomic context especially). Let's keep it simple!
2015          */
2016         return __change_page_attr_set_clr(&cpa, 0);
2017 }
2018
2019 void __kernel_map_pages(struct page *page, int numpages, int enable)
2020 {
2021         if (PageHighMem(page))
2022                 return;
2023         if (!enable) {
2024                 debug_check_no_locks_freed(page_address(page),
2025                                            numpages * PAGE_SIZE);
2026         }
2027
2028         /*
2029          * The return value is ignored as the calls cannot fail.
2030          * Large pages for identity mappings are not used at boot time
2031          * and hence no memory allocations during large page split.
2032          */
2033         if (enable)
2034                 __set_pages_p(page, numpages);
2035         else
2036                 __set_pages_np(page, numpages);
2037
2038         /*
2039          * We should perform an IPI and flush all tlbs,
2040          * but that can deadlock->flush only current cpu.
2041          * Preemption needs to be disabled around __flush_tlb_all() due to
2042          * CR3 reload in __native_flush_tlb().
2043          */
2044         preempt_disable();
2045         __flush_tlb_all();
2046         preempt_enable();
2047
2048         arch_flush_lazy_mmu_mode();
2049 }
2050
2051 #ifdef CONFIG_HIBERNATION
2052
2053 bool kernel_page_present(struct page *page)
2054 {
2055         unsigned int level;
2056         pte_t *pte;
2057
2058         if (PageHighMem(page))
2059                 return false;
2060
2061         pte = lookup_address((unsigned long)page_address(page), &level);
2062         return (pte_val(*pte) & _PAGE_PRESENT);
2063 }
2064
2065 #endif /* CONFIG_HIBERNATION */
2066
2067 #endif /* CONFIG_DEBUG_PAGEALLOC */
2068
2069 int kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
2070                             unsigned numpages, unsigned long page_flags)
2071 {
2072         int retval = -EINVAL;
2073
2074         struct cpa_data cpa = {
2075                 .vaddr = &address,
2076                 .pfn = pfn,
2077                 .pgd = pgd,
2078                 .numpages = numpages,
2079                 .mask_set = __pgprot(0),
2080                 .mask_clr = __pgprot(~page_flags & (_PAGE_NX|_PAGE_RW)),
2081                 .flags = 0,
2082         };
2083
2084         if (!(__supported_pte_mask & _PAGE_NX))
2085                 goto out;
2086
2087         if (!(page_flags & _PAGE_ENC))
2088                 cpa.mask_clr = pgprot_encrypted(cpa.mask_clr);
2089
2090         cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags);
2091
2092         retval = __change_page_attr_set_clr(&cpa, 0);
2093         __flush_tlb_all();
2094
2095 out:
2096         return retval;
2097 }
2098
2099 /*
2100  * The testcases use internal knowledge of the implementation that shouldn't
2101  * be exposed to the rest of the kernel. Include these directly here.
2102  */
2103 #ifdef CONFIG_CPA_DEBUG
2104 #include "pageattr-test.c"
2105 #endif