GNU Linux-libre 4.14.266-gnu1
[releases.git] / arch / x86 / mm / tlb.c
1 #include <linux/init.h>
2
3 #include <linux/mm.h>
4 #include <linux/spinlock.h>
5 #include <linux/smp.h>
6 #include <linux/interrupt.h>
7 #include <linux/export.h>
8 #include <linux/cpu.h>
9 #include <linux/debugfs.h>
10
11 #include <asm/tlbflush.h>
12 #include <asm/mmu_context.h>
13 #include <asm/nospec-branch.h>
14 #include <asm/cache.h>
15 #include <asm/apic.h>
16 #include <asm/uv/uv.h>
17
18 /*
19  *      TLB flushing, formerly SMP-only
20  *              c/o Linus Torvalds.
21  *
22  *      These mean you can really definitely utterly forget about
23  *      writing to user space from interrupts. (Its not allowed anyway).
24  *
25  *      Optimizations Manfred Spraul <manfred@colorfullife.com>
26  *
27  *      More scalable flush, from Andi Kleen
28  *
29  *      Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
30  */
31
32 /*
33  * Use bit 0 to mangle the TIF_SPEC_IB state into the mm pointer which is
34  * stored in cpu_tlb_state.last_user_mm_ibpb.
35  */
36 #define LAST_USER_MM_IBPB       0x1UL
37
38 /*
39  * We get here when we do something requiring a TLB invalidation
40  * but could not go invalidate all of the contexts.  We do the
41  * necessary invalidation by clearing out the 'ctx_id' which
42  * forces a TLB flush when the context is loaded.
43  */
44 void clear_asid_other(void)
45 {
46         u16 asid;
47
48         /*
49          * This is only expected to be set if we have disabled
50          * kernel _PAGE_GLOBAL pages.
51          */
52         if (!static_cpu_has(X86_FEATURE_PTI)) {
53                 WARN_ON_ONCE(1);
54                 return;
55         }
56
57         for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
58                 /* Do not need to flush the current asid */
59                 if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid))
60                         continue;
61                 /*
62                  * Make sure the next time we go to switch to
63                  * this asid, we do a flush:
64                  */
65                 this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0);
66         }
67         this_cpu_write(cpu_tlbstate.invalidate_other, false);
68 }
69
70 atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
71
72
73 static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
74                             u16 *new_asid, bool *need_flush)
75 {
76         u16 asid;
77
78         if (!static_cpu_has(X86_FEATURE_PCID)) {
79                 *new_asid = 0;
80                 *need_flush = true;
81                 return;
82         }
83
84         if (this_cpu_read(cpu_tlbstate.invalidate_other))
85                 clear_asid_other();
86
87         for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
88                 if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
89                     next->context.ctx_id)
90                         continue;
91
92                 *new_asid = asid;
93                 *need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
94                                next_tlb_gen);
95                 return;
96         }
97
98         /*
99          * We don't currently own an ASID slot on this CPU.
100          * Allocate a slot.
101          */
102         *new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
103         if (*new_asid >= TLB_NR_DYN_ASIDS) {
104                 *new_asid = 0;
105                 this_cpu_write(cpu_tlbstate.next_asid, 1);
106         }
107         *need_flush = true;
108 }
109
110 static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, bool need_flush)
111 {
112         unsigned long new_mm_cr3;
113
114         if (need_flush) {
115                 invalidate_user_asid(new_asid);
116                 new_mm_cr3 = build_cr3(pgdir, new_asid);
117         } else {
118                 new_mm_cr3 = build_cr3_noflush(pgdir, new_asid);
119         }
120
121         /*
122          * Caution: many callers of this function expect
123          * that load_cr3() is serializing and orders TLB
124          * fills with respect to the mm_cpumask writes.
125          */
126         write_cr3(new_mm_cr3);
127 }
128
129 void leave_mm(int cpu)
130 {
131         struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
132
133         /*
134          * It's plausible that we're in lazy TLB mode while our mm is init_mm.
135          * If so, our callers still expect us to flush the TLB, but there
136          * aren't any user TLB entries in init_mm to worry about.
137          *
138          * This needs to happen before any other sanity checks due to
139          * intel_idle's shenanigans.
140          */
141         if (loaded_mm == &init_mm)
142                 return;
143
144         /* Warn if we're not lazy. */
145         WARN_ON(!this_cpu_read(cpu_tlbstate.is_lazy));
146
147         switch_mm(NULL, &init_mm, NULL);
148 }
149 EXPORT_SYMBOL_GPL(leave_mm);
150
151 void switch_mm(struct mm_struct *prev, struct mm_struct *next,
152                struct task_struct *tsk)
153 {
154         unsigned long flags;
155
156         local_irq_save(flags);
157         switch_mm_irqs_off(prev, next, tsk);
158         local_irq_restore(flags);
159 }
160
161 static void sync_current_stack_to_mm(struct mm_struct *mm)
162 {
163         unsigned long sp = current_stack_pointer;
164         pgd_t *pgd = pgd_offset(mm, sp);
165
166         if (CONFIG_PGTABLE_LEVELS > 4) {
167                 if (unlikely(pgd_none(*pgd))) {
168                         pgd_t *pgd_ref = pgd_offset_k(sp);
169
170                         set_pgd(pgd, *pgd_ref);
171                 }
172         } else {
173                 /*
174                  * "pgd" is faked.  The top level entries are "p4d"s, so sync
175                  * the p4d.  This compiles to approximately the same code as
176                  * the 5-level case.
177                  */
178                 p4d_t *p4d = p4d_offset(pgd, sp);
179
180                 if (unlikely(p4d_none(*p4d))) {
181                         pgd_t *pgd_ref = pgd_offset_k(sp);
182                         p4d_t *p4d_ref = p4d_offset(pgd_ref, sp);
183
184                         set_p4d(p4d, *p4d_ref);
185                 }
186         }
187 }
188
189 static inline unsigned long mm_mangle_tif_spec_ib(struct task_struct *next)
190 {
191         unsigned long next_tif = task_thread_info(next)->flags;
192         unsigned long ibpb = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_IBPB;
193
194         return (unsigned long)next->mm | ibpb;
195 }
196
197 static void cond_ibpb(struct task_struct *next)
198 {
199         if (!next || !next->mm)
200                 return;
201
202         /*
203          * Both, the conditional and the always IBPB mode use the mm
204          * pointer to avoid the IBPB when switching between tasks of the
205          * same process. Using the mm pointer instead of mm->context.ctx_id
206          * opens a hypothetical hole vs. mm_struct reuse, which is more or
207          * less impossible to control by an attacker. Aside of that it
208          * would only affect the first schedule so the theoretically
209          * exposed data is not really interesting.
210          */
211         if (static_branch_likely(&switch_mm_cond_ibpb)) {
212                 unsigned long prev_mm, next_mm;
213
214                 /*
215                  * This is a bit more complex than the always mode because
216                  * it has to handle two cases:
217                  *
218                  * 1) Switch from a user space task (potential attacker)
219                  *    which has TIF_SPEC_IB set to a user space task
220                  *    (potential victim) which has TIF_SPEC_IB not set.
221                  *
222                  * 2) Switch from a user space task (potential attacker)
223                  *    which has TIF_SPEC_IB not set to a user space task
224                  *    (potential victim) which has TIF_SPEC_IB set.
225                  *
226                  * This could be done by unconditionally issuing IBPB when
227                  * a task which has TIF_SPEC_IB set is either scheduled in
228                  * or out. Though that results in two flushes when:
229                  *
230                  * - the same user space task is scheduled out and later
231                  *   scheduled in again and only a kernel thread ran in
232                  *   between.
233                  *
234                  * - a user space task belonging to the same process is
235                  *   scheduled in after a kernel thread ran in between
236                  *
237                  * - a user space task belonging to the same process is
238                  *   scheduled in immediately.
239                  *
240                  * Optimize this with reasonably small overhead for the
241                  * above cases. Mangle the TIF_SPEC_IB bit into the mm
242                  * pointer of the incoming task which is stored in
243                  * cpu_tlbstate.last_user_mm_ibpb for comparison.
244                  */
245                 next_mm = mm_mangle_tif_spec_ib(next);
246                 prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_ibpb);
247
248                 /*
249                  * Issue IBPB only if the mm's are different and one or
250                  * both have the IBPB bit set.
251                  */
252                 if (next_mm != prev_mm &&
253                     (next_mm | prev_mm) & LAST_USER_MM_IBPB)
254                         indirect_branch_prediction_barrier();
255
256                 this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, next_mm);
257         }
258
259         if (static_branch_unlikely(&switch_mm_always_ibpb)) {
260                 /*
261                  * Only flush when switching to a user space task with a
262                  * different context than the user space task which ran
263                  * last on this CPU.
264                  */
265                 if (this_cpu_read(cpu_tlbstate.last_user_mm) != next->mm) {
266                         indirect_branch_prediction_barrier();
267                         this_cpu_write(cpu_tlbstate.last_user_mm, next->mm);
268                 }
269         }
270 }
271
272 void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
273                         struct task_struct *tsk)
274 {
275         struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
276         u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
277         unsigned cpu = smp_processor_id();
278         u64 next_tlb_gen;
279
280         /*
281          * NB: The scheduler will call us with prev == next when switching
282          * from lazy TLB mode to normal mode if active_mm isn't changing.
283          * When this happens, we don't assume that CR3 (and hence
284          * cpu_tlbstate.loaded_mm) matches next.
285          *
286          * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
287          */
288
289         /* We don't want flush_tlb_func_* to run concurrently with us. */
290         if (IS_ENABLED(CONFIG_PROVE_LOCKING))
291                 WARN_ON_ONCE(!irqs_disabled());
292
293         /*
294          * Verify that CR3 is what we think it is.  This will catch
295          * hypothetical buggy code that directly switches to swapper_pg_dir
296          * without going through leave_mm() / switch_mm_irqs_off() or that
297          * does something like write_cr3(read_cr3_pa()).
298          *
299          * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
300          * isn't free.
301          */
302 #ifdef CONFIG_DEBUG_VM
303         if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid))) {
304                 /*
305                  * If we were to BUG here, we'd be very likely to kill
306                  * the system so hard that we don't see the call trace.
307                  * Try to recover instead by ignoring the error and doing
308                  * a global flush to minimize the chance of corruption.
309                  *
310                  * (This is far from being a fully correct recovery.
311                  *  Architecturally, the CPU could prefetch something
312                  *  back into an incorrect ASID slot and leave it there
313                  *  to cause trouble down the road.  It's better than
314                  *  nothing, though.)
315                  */
316                 __flush_tlb_all();
317         }
318 #endif
319         this_cpu_write(cpu_tlbstate.is_lazy, false);
320
321         if (real_prev == next) {
322                 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
323                            next->context.ctx_id);
324
325                 /*
326                  * We don't currently support having a real mm loaded without
327                  * our cpu set in mm_cpumask().  We have all the bookkeeping
328                  * in place to figure out whether we would need to flush
329                  * if our cpu were cleared in mm_cpumask(), but we don't
330                  * currently use it.
331                  */
332                 if (WARN_ON_ONCE(real_prev != &init_mm &&
333                                  !cpumask_test_cpu(cpu, mm_cpumask(next))))
334                         cpumask_set_cpu(cpu, mm_cpumask(next));
335
336                 return;
337         } else {
338                 u16 new_asid;
339                 bool need_flush;
340
341                 /*
342                  * Avoid user/user BTB poisoning by flushing the branch
343                  * predictor when switching between processes. This stops
344                  * one process from doing Spectre-v2 attacks on another.
345                  */
346                 cond_ibpb(tsk);
347
348                 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
349                         /*
350                          * If our current stack is in vmalloc space and isn't
351                          * mapped in the new pgd, we'll double-fault.  Forcibly
352                          * map it.
353                          */
354                         sync_current_stack_to_mm(next);
355                 }
356
357                 /* Stop remote flushes for the previous mm */
358                 VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu, mm_cpumask(real_prev)) &&
359                                 real_prev != &init_mm);
360                 cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
361
362                 /*
363                  * Start remote flushes and then read tlb_gen.
364                  */
365                 cpumask_set_cpu(cpu, mm_cpumask(next));
366                 next_tlb_gen = atomic64_read(&next->context.tlb_gen);
367
368                 choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
369
370                 /* Let nmi_uaccess_okay() know that we're changing CR3. */
371                 this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING);
372                 barrier();
373
374                 if (need_flush) {
375                         this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
376                         this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
377                         load_new_mm_cr3(next->pgd, new_asid, true);
378
379                         /*
380                          * NB: This gets called via leave_mm() in the idle path
381                          * where RCU functions differently.  Tracing normally
382                          * uses RCU, so we need to use the _rcuidle variant.
383                          *
384                          * (There is no good reason for this.  The idle code should
385                          *  be rearranged to call this before rcu_idle_enter().)
386                          */
387                         trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
388                 } else {
389                         /* The new ASID is already up to date. */
390                         load_new_mm_cr3(next->pgd, new_asid, false);
391
392                         /* See above wrt _rcuidle. */
393                         trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, 0);
394                 }
395
396                 /* Make sure we write CR3 before loaded_mm. */
397                 barrier();
398
399                 this_cpu_write(cpu_tlbstate.loaded_mm, next);
400                 this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
401         }
402
403         load_mm_cr4(next);
404         switch_ldt(real_prev, next);
405 }
406
407 /*
408  * Please ignore the name of this function.  It should be called
409  * switch_to_kernel_thread().
410  *
411  * enter_lazy_tlb() is a hint from the scheduler that we are entering a
412  * kernel thread or other context without an mm.  Acceptable implementations
413  * include doing nothing whatsoever, switching to init_mm, or various clever
414  * lazy tricks to try to minimize TLB flushes.
415  *
416  * The scheduler reserves the right to call enter_lazy_tlb() several times
417  * in a row.  It will notify us that we're going back to a real mm by
418  * calling switch_mm_irqs_off().
419  */
420 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
421 {
422         if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
423                 return;
424
425         if (tlb_defer_switch_to_init_mm()) {
426                 /*
427                  * There's a significant optimization that may be possible
428                  * here.  We have accurate enough TLB flush tracking that we
429                  * don't need to maintain coherence of TLB per se when we're
430                  * lazy.  We do, however, need to maintain coherence of
431                  * paging-structure caches.  We could, in principle, leave our
432                  * old mm loaded and only switch to init_mm when
433                  * tlb_remove_page() happens.
434                  */
435                 this_cpu_write(cpu_tlbstate.is_lazy, true);
436         } else {
437                 switch_mm(NULL, &init_mm, NULL);
438         }
439 }
440
441 /*
442  * Call this when reinitializing a CPU.  It fixes the following potential
443  * problems:
444  *
445  * - The ASID changed from what cpu_tlbstate thinks it is (most likely
446  *   because the CPU was taken down and came back up with CR3's PCID
447  *   bits clear.  CPU hotplug can do this.
448  *
449  * - The TLB contains junk in slots corresponding to inactive ASIDs.
450  *
451  * - The CPU went so far out to lunch that it may have missed a TLB
452  *   flush.
453  */
454 void initialize_tlbstate_and_flush(void)
455 {
456         int i;
457         struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
458         u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
459         unsigned long cr3 = __read_cr3();
460
461         /* Assert that CR3 already references the right mm. */
462         WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
463
464         /*
465          * Assert that CR4.PCIDE is set if needed.  (CR4.PCIDE initialization
466          * doesn't work like other CR4 bits because it can only be set from
467          * long mode.)
468          */
469         WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
470                 !(cr4_read_shadow() & X86_CR4_PCIDE));
471
472         /* Force ASID 0 and force a TLB flush. */
473         write_cr3(build_cr3(mm->pgd, 0));
474
475         /* Reinitialize tlbstate. */
476         this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, LAST_USER_MM_IBPB);
477         this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
478         this_cpu_write(cpu_tlbstate.next_asid, 1);
479         this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
480         this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
481
482         for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
483                 this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
484 }
485
486 /*
487  * flush_tlb_func_common()'s memory ordering requirement is that any
488  * TLB fills that happen after we flush the TLB are ordered after we
489  * read active_mm's tlb_gen.  We don't need any explicit barriers
490  * because all x86 flush operations are serializing and the
491  * atomic64_read operation won't be reordered by the compiler.
492  */
493 static void flush_tlb_func_common(const struct flush_tlb_info *f,
494                                   bool local, enum tlb_flush_reason reason)
495 {
496         /*
497          * We have three different tlb_gen values in here.  They are:
498          *
499          * - mm_tlb_gen:     the latest generation.
500          * - local_tlb_gen:  the generation that this CPU has already caught
501          *                   up to.
502          * - f->new_tlb_gen: the generation that the requester of the flush
503          *                   wants us to catch up to.
504          */
505         struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
506         u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
507         u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
508         u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
509
510         /* This code cannot presently handle being reentered. */
511         VM_WARN_ON(!irqs_disabled());
512
513         if (unlikely(loaded_mm == &init_mm))
514                 return;
515
516         VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
517                    loaded_mm->context.ctx_id);
518
519         if (this_cpu_read(cpu_tlbstate.is_lazy)) {
520                 /*
521                  * We're in lazy mode.  We need to at least flush our
522                  * paging-structure cache to avoid speculatively reading
523                  * garbage into our TLB.  Since switching to init_mm is barely
524                  * slower than a minimal flush, just switch to init_mm.
525                  */
526                 switch_mm_irqs_off(NULL, &init_mm, NULL);
527                 return;
528         }
529
530         if (unlikely(local_tlb_gen == mm_tlb_gen)) {
531                 /*
532                  * There's nothing to do: we're already up to date.  This can
533                  * happen if two concurrent flushes happen -- the first flush to
534                  * be handled can catch us all the way up, leaving no work for
535                  * the second flush.
536                  */
537                 trace_tlb_flush(reason, 0);
538                 return;
539         }
540
541         WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
542         WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
543
544         /*
545          * If we get to this point, we know that our TLB is out of date.
546          * This does not strictly imply that we need to flush (it's
547          * possible that f->new_tlb_gen <= local_tlb_gen), but we're
548          * going to need to flush in the very near future, so we might
549          * as well get it over with.
550          *
551          * The only question is whether to do a full or partial flush.
552          *
553          * We do a partial flush if requested and two extra conditions
554          * are met:
555          *
556          * 1. f->new_tlb_gen == local_tlb_gen + 1.  We have an invariant that
557          *    we've always done all needed flushes to catch up to
558          *    local_tlb_gen.  If, for example, local_tlb_gen == 2 and
559          *    f->new_tlb_gen == 3, then we know that the flush needed to bring
560          *    us up to date for tlb_gen 3 is the partial flush we're
561          *    processing.
562          *
563          *    As an example of why this check is needed, suppose that there
564          *    are two concurrent flushes.  The first is a full flush that
565          *    changes context.tlb_gen from 1 to 2.  The second is a partial
566          *    flush that changes context.tlb_gen from 2 to 3.  If they get
567          *    processed on this CPU in reverse order, we'll see
568          *     local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
569          *    If we were to use __flush_tlb_one_user() and set local_tlb_gen to
570          *    3, we'd be break the invariant: we'd update local_tlb_gen above
571          *    1 without the full flush that's needed for tlb_gen 2.
572          *
573          * 2. f->new_tlb_gen == mm_tlb_gen.  This is purely an optimiation.
574          *    Partial TLB flushes are not all that much cheaper than full TLB
575          *    flushes, so it seems unlikely that it would be a performance win
576          *    to do a partial flush if that won't bring our TLB fully up to
577          *    date.  By doing a full flush instead, we can increase
578          *    local_tlb_gen all the way to mm_tlb_gen and we can probably
579          *    avoid another flush in the very near future.
580          */
581         if (f->end != TLB_FLUSH_ALL &&
582             f->new_tlb_gen == local_tlb_gen + 1 &&
583             f->new_tlb_gen == mm_tlb_gen) {
584                 /* Partial flush */
585                 unsigned long addr;
586                 unsigned long nr_pages = (f->end - f->start) >> PAGE_SHIFT;
587
588                 addr = f->start;
589                 while (addr < f->end) {
590                         __flush_tlb_one_user(addr);
591                         addr += PAGE_SIZE;
592                 }
593                 if (local)
594                         count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_pages);
595                 trace_tlb_flush(reason, nr_pages);
596         } else {
597                 /* Full flush. */
598                 local_flush_tlb();
599                 if (local)
600                         count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
601                 trace_tlb_flush(reason, TLB_FLUSH_ALL);
602         }
603
604         /* Both paths above update our state to mm_tlb_gen. */
605         this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
606 }
607
608 static void flush_tlb_func_local(void *info, enum tlb_flush_reason reason)
609 {
610         const struct flush_tlb_info *f = info;
611
612         flush_tlb_func_common(f, true, reason);
613 }
614
615 static void flush_tlb_func_remote(void *info)
616 {
617         const struct flush_tlb_info *f = info;
618
619         inc_irq_stat(irq_tlb_count);
620
621         if (f->mm && f->mm != this_cpu_read(cpu_tlbstate.loaded_mm))
622                 return;
623
624         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
625         flush_tlb_func_common(f, false, TLB_REMOTE_SHOOTDOWN);
626 }
627
628 void native_flush_tlb_others(const struct cpumask *cpumask,
629                              const struct flush_tlb_info *info)
630 {
631         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
632         if (info->end == TLB_FLUSH_ALL)
633                 trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
634         else
635                 trace_tlb_flush(TLB_REMOTE_SEND_IPI,
636                                 (info->end - info->start) >> PAGE_SHIFT);
637
638         if (is_uv_system()) {
639                 /*
640                  * This whole special case is confused.  UV has a "Broadcast
641                  * Assist Unit", which seems to be a fancy way to send IPIs.
642                  * Back when x86 used an explicit TLB flush IPI, UV was
643                  * optimized to use its own mechanism.  These days, x86 uses
644                  * smp_call_function_many(), but UV still uses a manual IPI,
645                  * and that IPI's action is out of date -- it does a manual
646                  * flush instead of calling flush_tlb_func_remote().  This
647                  * means that the percpu tlb_gen variables won't be updated
648                  * and we'll do pointless flushes on future context switches.
649                  *
650                  * Rather than hooking native_flush_tlb_others() here, I think
651                  * that UV should be updated so that smp_call_function_many(),
652                  * etc, are optimal on UV.
653                  */
654                 cpumask = uv_flush_tlb_others(cpumask, info);
655                 if (cpumask)
656                         smp_call_function_many(cpumask, flush_tlb_func_remote,
657                                                (void *)info, 1);
658                 return;
659         }
660         smp_call_function_many(cpumask, flush_tlb_func_remote,
661                                (void *)info, 1);
662 }
663
664 /*
665  * See Documentation/x86/tlb.txt for details.  We choose 33
666  * because it is large enough to cover the vast majority (at
667  * least 95%) of allocations, and is small enough that we are
668  * confident it will not cause too much overhead.  Each single
669  * flush is about 100 ns, so this caps the maximum overhead at
670  * _about_ 3,000 ns.
671  *
672  * This is in units of pages.
673  */
674 static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
675
676 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
677                                 unsigned long end, unsigned long vmflag)
678 {
679         int cpu;
680
681         struct flush_tlb_info info = {
682                 .mm = mm,
683         };
684
685         cpu = get_cpu();
686
687         /* This is also a barrier that synchronizes with switch_mm(). */
688         info.new_tlb_gen = inc_mm_tlb_gen(mm);
689
690         /* Should we flush just the requested range? */
691         if ((end != TLB_FLUSH_ALL) &&
692             !(vmflag & VM_HUGETLB) &&
693             ((end - start) >> PAGE_SHIFT) <= tlb_single_page_flush_ceiling) {
694                 info.start = start;
695                 info.end = end;
696         } else {
697                 info.start = 0UL;
698                 info.end = TLB_FLUSH_ALL;
699         }
700
701         if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
702                 VM_WARN_ON(irqs_disabled());
703                 local_irq_disable();
704                 flush_tlb_func_local(&info, TLB_LOCAL_MM_SHOOTDOWN);
705                 local_irq_enable();
706         }
707
708         if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids)
709                 flush_tlb_others(mm_cpumask(mm), &info);
710
711         put_cpu();
712 }
713
714
715 static void do_flush_tlb_all(void *info)
716 {
717         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
718         __flush_tlb_all();
719 }
720
721 void flush_tlb_all(void)
722 {
723         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
724         on_each_cpu(do_flush_tlb_all, NULL, 1);
725 }
726
727 static void do_kernel_range_flush(void *info)
728 {
729         struct flush_tlb_info *f = info;
730         unsigned long addr;
731
732         /* flush range by one by one 'invlpg' */
733         for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
734                 __flush_tlb_one_kernel(addr);
735 }
736
737 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
738 {
739
740         /* Balance as user space task's flush, a bit conservative */
741         if (end == TLB_FLUSH_ALL ||
742             (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
743                 on_each_cpu(do_flush_tlb_all, NULL, 1);
744         } else {
745                 struct flush_tlb_info info;
746                 info.start = start;
747                 info.end = end;
748                 on_each_cpu(do_kernel_range_flush, &info, 1);
749         }
750 }
751
752 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
753 {
754         struct flush_tlb_info info = {
755                 .mm = NULL,
756                 .start = 0UL,
757                 .end = TLB_FLUSH_ALL,
758         };
759
760         int cpu = get_cpu();
761
762         if (cpumask_test_cpu(cpu, &batch->cpumask)) {
763                 VM_WARN_ON(irqs_disabled());
764                 local_irq_disable();
765                 flush_tlb_func_local(&info, TLB_LOCAL_SHOOTDOWN);
766                 local_irq_enable();
767         }
768
769         if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids)
770                 flush_tlb_others(&batch->cpumask, &info);
771
772         cpumask_clear(&batch->cpumask);
773
774         put_cpu();
775 }
776
777 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
778                              size_t count, loff_t *ppos)
779 {
780         char buf[32];
781         unsigned int len;
782
783         len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
784         return simple_read_from_buffer(user_buf, count, ppos, buf, len);
785 }
786
787 static ssize_t tlbflush_write_file(struct file *file,
788                  const char __user *user_buf, size_t count, loff_t *ppos)
789 {
790         char buf[32];
791         ssize_t len;
792         int ceiling;
793
794         len = min(count, sizeof(buf) - 1);
795         if (copy_from_user(buf, user_buf, len))
796                 return -EFAULT;
797
798         buf[len] = '\0';
799         if (kstrtoint(buf, 0, &ceiling))
800                 return -EINVAL;
801
802         if (ceiling < 0)
803                 return -EINVAL;
804
805         tlb_single_page_flush_ceiling = ceiling;
806         return count;
807 }
808
809 static const struct file_operations fops_tlbflush = {
810         .read = tlbflush_read_file,
811         .write = tlbflush_write_file,
812         .llseek = default_llseek,
813 };
814
815 static int __init create_tlb_single_page_flush_ceiling(void)
816 {
817         debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
818                             arch_debugfs_dir, NULL, &fops_tlbflush);
819         return 0;
820 }
821 late_initcall(create_tlb_single_page_flush_ceiling);