GNU Linux-libre 4.14.266-gnu1
[releases.git] / arch / x86 / platform / efi / efi.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Common EFI (Extensible Firmware Interface) support functions
4  * Based on Extensible Firmware Interface Specification version 1.0
5  *
6  * Copyright (C) 1999 VA Linux Systems
7  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
8  * Copyright (C) 1999-2002 Hewlett-Packard Co.
9  *      David Mosberger-Tang <davidm@hpl.hp.com>
10  *      Stephane Eranian <eranian@hpl.hp.com>
11  * Copyright (C) 2005-2008 Intel Co.
12  *      Fenghua Yu <fenghua.yu@intel.com>
13  *      Bibo Mao <bibo.mao@intel.com>
14  *      Chandramouli Narayanan <mouli@linux.intel.com>
15  *      Huang Ying <ying.huang@intel.com>
16  * Copyright (C) 2013 SuSE Labs
17  *      Borislav Petkov <bp@suse.de> - runtime services VA mapping
18  *
19  * Copied from efi_32.c to eliminate the duplicated code between EFI
20  * 32/64 support code. --ying 2007-10-26
21  *
22  * All EFI Runtime Services are not implemented yet as EFI only
23  * supports physical mode addressing on SoftSDV. This is to be fixed
24  * in a future version.  --drummond 1999-07-20
25  *
26  * Implemented EFI runtime services and virtual mode calls.  --davidm
27  *
28  * Goutham Rao: <goutham.rao@intel.com>
29  *      Skip non-WB memory and ignore empty memory ranges.
30  */
31
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/efi.h>
37 #include <linux/efi-bgrt.h>
38 #include <linux/export.h>
39 #include <linux/bootmem.h>
40 #include <linux/slab.h>
41 #include <linux/memblock.h>
42 #include <linux/spinlock.h>
43 #include <linux/uaccess.h>
44 #include <linux/time.h>
45 #include <linux/io.h>
46 #include <linux/reboot.h>
47 #include <linux/bcd.h>
48
49 #include <asm/setup.h>
50 #include <asm/efi.h>
51 #include <asm/e820/api.h>
52 #include <asm/time.h>
53 #include <asm/set_memory.h>
54 #include <asm/tlbflush.h>
55 #include <asm/x86_init.h>
56 #include <asm/uv/uv.h>
57
58 static struct efi efi_phys __initdata;
59 static efi_system_table_t efi_systab __initdata;
60
61 static efi_config_table_type_t arch_tables[] __initdata = {
62 #ifdef CONFIG_X86_UV
63         {UV_SYSTEM_TABLE_GUID, "UVsystab", &efi.uv_systab},
64 #endif
65         {NULL_GUID, NULL, NULL},
66 };
67
68 u64 efi_setup;          /* efi setup_data physical address */
69
70 static int add_efi_memmap __initdata;
71 static int __init setup_add_efi_memmap(char *arg)
72 {
73         add_efi_memmap = 1;
74         return 0;
75 }
76 early_param("add_efi_memmap", setup_add_efi_memmap);
77
78 static efi_status_t __init phys_efi_set_virtual_address_map(
79         unsigned long memory_map_size,
80         unsigned long descriptor_size,
81         u32 descriptor_version,
82         efi_memory_desc_t *virtual_map)
83 {
84         efi_status_t status;
85         unsigned long flags;
86         pgd_t *save_pgd;
87
88         save_pgd = efi_call_phys_prolog();
89
90         /* Disable interrupts around EFI calls: */
91         local_irq_save(flags);
92         status = efi_call_phys(efi_phys.set_virtual_address_map,
93                                memory_map_size, descriptor_size,
94                                descriptor_version, virtual_map);
95         local_irq_restore(flags);
96
97         efi_call_phys_epilog(save_pgd);
98
99         return status;
100 }
101
102 void __init efi_find_mirror(void)
103 {
104         efi_memory_desc_t *md;
105         u64 mirror_size = 0, total_size = 0;
106
107         for_each_efi_memory_desc(md) {
108                 unsigned long long start = md->phys_addr;
109                 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
110
111                 total_size += size;
112                 if (md->attribute & EFI_MEMORY_MORE_RELIABLE) {
113                         memblock_mark_mirror(start, size);
114                         mirror_size += size;
115                 }
116         }
117         if (mirror_size)
118                 pr_info("Memory: %lldM/%lldM mirrored memory\n",
119                         mirror_size>>20, total_size>>20);
120 }
121
122 /*
123  * Tell the kernel about the EFI memory map.  This might include
124  * more than the max 128 entries that can fit in the e820 legacy
125  * (zeropage) memory map.
126  */
127
128 static void __init do_add_efi_memmap(void)
129 {
130         efi_memory_desc_t *md;
131
132         for_each_efi_memory_desc(md) {
133                 unsigned long long start = md->phys_addr;
134                 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
135                 int e820_type;
136
137                 switch (md->type) {
138                 case EFI_LOADER_CODE:
139                 case EFI_LOADER_DATA:
140                 case EFI_BOOT_SERVICES_CODE:
141                 case EFI_BOOT_SERVICES_DATA:
142                 case EFI_CONVENTIONAL_MEMORY:
143                         if (md->attribute & EFI_MEMORY_WB)
144                                 e820_type = E820_TYPE_RAM;
145                         else
146                                 e820_type = E820_TYPE_RESERVED;
147                         break;
148                 case EFI_ACPI_RECLAIM_MEMORY:
149                         e820_type = E820_TYPE_ACPI;
150                         break;
151                 case EFI_ACPI_MEMORY_NVS:
152                         e820_type = E820_TYPE_NVS;
153                         break;
154                 case EFI_UNUSABLE_MEMORY:
155                         e820_type = E820_TYPE_UNUSABLE;
156                         break;
157                 case EFI_PERSISTENT_MEMORY:
158                         e820_type = E820_TYPE_PMEM;
159                         break;
160                 default:
161                         /*
162                          * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
163                          * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
164                          * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
165                          */
166                         e820_type = E820_TYPE_RESERVED;
167                         break;
168                 }
169                 e820__range_add(start, size, e820_type);
170         }
171         e820__update_table(e820_table);
172 }
173
174 int __init efi_memblock_x86_reserve_range(void)
175 {
176         struct efi_info *e = &boot_params.efi_info;
177         struct efi_memory_map_data data;
178         phys_addr_t pmap;
179         int rv;
180
181         if (efi_enabled(EFI_PARAVIRT))
182                 return 0;
183
184 #ifdef CONFIG_X86_32
185         /* Can't handle data above 4GB at this time */
186         if (e->efi_memmap_hi) {
187                 pr_err("Memory map is above 4GB, disabling EFI.\n");
188                 return -EINVAL;
189         }
190         pmap =  e->efi_memmap;
191 #else
192         pmap = (e->efi_memmap | ((__u64)e->efi_memmap_hi << 32));
193 #endif
194         data.phys_map           = pmap;
195         data.size               = e->efi_memmap_size;
196         data.desc_size          = e->efi_memdesc_size;
197         data.desc_version       = e->efi_memdesc_version;
198
199         rv = efi_memmap_init_early(&data);
200         if (rv)
201                 return rv;
202
203         if (add_efi_memmap)
204                 do_add_efi_memmap();
205
206         WARN(efi.memmap.desc_version != 1,
207              "Unexpected EFI_MEMORY_DESCRIPTOR version %ld",
208              efi.memmap.desc_version);
209
210         memblock_reserve(pmap, efi.memmap.nr_map * efi.memmap.desc_size);
211
212         return 0;
213 }
214
215 #define OVERFLOW_ADDR_SHIFT     (64 - EFI_PAGE_SHIFT)
216 #define OVERFLOW_ADDR_MASK      (U64_MAX << OVERFLOW_ADDR_SHIFT)
217 #define U64_HIGH_BIT            (~(U64_MAX >> 1))
218
219 static bool __init efi_memmap_entry_valid(const efi_memory_desc_t *md, int i)
220 {
221         u64 end = (md->num_pages << EFI_PAGE_SHIFT) + md->phys_addr - 1;
222         u64 end_hi = 0;
223         char buf[64];
224
225         if (md->num_pages == 0) {
226                 end = 0;
227         } else if (md->num_pages > EFI_PAGES_MAX ||
228                    EFI_PAGES_MAX - md->num_pages <
229                    (md->phys_addr >> EFI_PAGE_SHIFT)) {
230                 end_hi = (md->num_pages & OVERFLOW_ADDR_MASK)
231                         >> OVERFLOW_ADDR_SHIFT;
232
233                 if ((md->phys_addr & U64_HIGH_BIT) && !(end & U64_HIGH_BIT))
234                         end_hi += 1;
235         } else {
236                 return true;
237         }
238
239         pr_warn_once(FW_BUG "Invalid EFI memory map entries:\n");
240
241         if (end_hi) {
242                 pr_warn("mem%02u: %s range=[0x%016llx-0x%llx%016llx] (invalid)\n",
243                         i, efi_md_typeattr_format(buf, sizeof(buf), md),
244                         md->phys_addr, end_hi, end);
245         } else {
246                 pr_warn("mem%02u: %s range=[0x%016llx-0x%016llx] (invalid)\n",
247                         i, efi_md_typeattr_format(buf, sizeof(buf), md),
248                         md->phys_addr, end);
249         }
250         return false;
251 }
252
253 static void __init efi_clean_memmap(void)
254 {
255         efi_memory_desc_t *out = efi.memmap.map;
256         const efi_memory_desc_t *in = out;
257         const efi_memory_desc_t *end = efi.memmap.map_end;
258         int i, n_removal;
259
260         for (i = n_removal = 0; in < end; i++) {
261                 if (efi_memmap_entry_valid(in, i)) {
262                         if (out != in)
263                                 memcpy(out, in, efi.memmap.desc_size);
264                         out = (void *)out + efi.memmap.desc_size;
265                 } else {
266                         n_removal++;
267                 }
268                 in = (void *)in + efi.memmap.desc_size;
269         }
270
271         if (n_removal > 0) {
272                 u64 size = efi.memmap.nr_map - n_removal;
273
274                 pr_warn("Removing %d invalid memory map entries.\n", n_removal);
275                 efi_memmap_install(efi.memmap.phys_map, size);
276         }
277 }
278
279 void __init efi_print_memmap(void)
280 {
281         efi_memory_desc_t *md;
282         int i = 0;
283
284         for_each_efi_memory_desc(md) {
285                 char buf[64];
286
287                 pr_info("mem%02u: %s range=[0x%016llx-0x%016llx] (%lluMB)\n",
288                         i++, efi_md_typeattr_format(buf, sizeof(buf), md),
289                         md->phys_addr,
290                         md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1,
291                         (md->num_pages >> (20 - EFI_PAGE_SHIFT)));
292         }
293 }
294
295 static int __init efi_systab_init(void *phys)
296 {
297         if (efi_enabled(EFI_64BIT)) {
298                 efi_system_table_64_t *systab64;
299                 struct efi_setup_data *data = NULL;
300                 u64 tmp = 0;
301
302                 if (efi_setup) {
303                         data = early_memremap(efi_setup, sizeof(*data));
304                         if (!data)
305                                 return -ENOMEM;
306                 }
307                 systab64 = early_memremap((unsigned long)phys,
308                                          sizeof(*systab64));
309                 if (systab64 == NULL) {
310                         pr_err("Couldn't map the system table!\n");
311                         if (data)
312                                 early_memunmap(data, sizeof(*data));
313                         return -ENOMEM;
314                 }
315
316                 efi_systab.hdr = systab64->hdr;
317                 efi_systab.fw_vendor = data ? (unsigned long)data->fw_vendor :
318                                               systab64->fw_vendor;
319                 tmp |= data ? data->fw_vendor : systab64->fw_vendor;
320                 efi_systab.fw_revision = systab64->fw_revision;
321                 efi_systab.con_in_handle = systab64->con_in_handle;
322                 tmp |= systab64->con_in_handle;
323                 efi_systab.con_in = systab64->con_in;
324                 tmp |= systab64->con_in;
325                 efi_systab.con_out_handle = systab64->con_out_handle;
326                 tmp |= systab64->con_out_handle;
327                 efi_systab.con_out = systab64->con_out;
328                 tmp |= systab64->con_out;
329                 efi_systab.stderr_handle = systab64->stderr_handle;
330                 tmp |= systab64->stderr_handle;
331                 efi_systab.stderr = systab64->stderr;
332                 tmp |= systab64->stderr;
333                 efi_systab.runtime = data ?
334                                      (void *)(unsigned long)data->runtime :
335                                      (void *)(unsigned long)systab64->runtime;
336                 tmp |= data ? data->runtime : systab64->runtime;
337                 efi_systab.boottime = (void *)(unsigned long)systab64->boottime;
338                 tmp |= systab64->boottime;
339                 efi_systab.nr_tables = systab64->nr_tables;
340                 efi_systab.tables = data ? (unsigned long)data->tables :
341                                            systab64->tables;
342                 tmp |= data ? data->tables : systab64->tables;
343
344                 early_memunmap(systab64, sizeof(*systab64));
345                 if (data)
346                         early_memunmap(data, sizeof(*data));
347 #ifdef CONFIG_X86_32
348                 if (tmp >> 32) {
349                         pr_err("EFI data located above 4GB, disabling EFI.\n");
350                         return -EINVAL;
351                 }
352 #endif
353         } else {
354                 efi_system_table_32_t *systab32;
355
356                 systab32 = early_memremap((unsigned long)phys,
357                                          sizeof(*systab32));
358                 if (systab32 == NULL) {
359                         pr_err("Couldn't map the system table!\n");
360                         return -ENOMEM;
361                 }
362
363                 efi_systab.hdr = systab32->hdr;
364                 efi_systab.fw_vendor = systab32->fw_vendor;
365                 efi_systab.fw_revision = systab32->fw_revision;
366                 efi_systab.con_in_handle = systab32->con_in_handle;
367                 efi_systab.con_in = systab32->con_in;
368                 efi_systab.con_out_handle = systab32->con_out_handle;
369                 efi_systab.con_out = systab32->con_out;
370                 efi_systab.stderr_handle = systab32->stderr_handle;
371                 efi_systab.stderr = systab32->stderr;
372                 efi_systab.runtime = (void *)(unsigned long)systab32->runtime;
373                 efi_systab.boottime = (void *)(unsigned long)systab32->boottime;
374                 efi_systab.nr_tables = systab32->nr_tables;
375                 efi_systab.tables = systab32->tables;
376
377                 early_memunmap(systab32, sizeof(*systab32));
378         }
379
380         efi.systab = &efi_systab;
381
382         /*
383          * Verify the EFI Table
384          */
385         if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) {
386                 pr_err("System table signature incorrect!\n");
387                 return -EINVAL;
388         }
389         if ((efi.systab->hdr.revision >> 16) == 0)
390                 pr_err("Warning: System table version %d.%02d, expected 1.00 or greater!\n",
391                        efi.systab->hdr.revision >> 16,
392                        efi.systab->hdr.revision & 0xffff);
393
394         return 0;
395 }
396
397 static int __init efi_runtime_init32(void)
398 {
399         efi_runtime_services_32_t *runtime;
400
401         runtime = early_memremap((unsigned long)efi.systab->runtime,
402                         sizeof(efi_runtime_services_32_t));
403         if (!runtime) {
404                 pr_err("Could not map the runtime service table!\n");
405                 return -ENOMEM;
406         }
407
408         /*
409          * We will only need *early* access to the SetVirtualAddressMap
410          * EFI runtime service. All other runtime services will be called
411          * via the virtual mapping.
412          */
413         efi_phys.set_virtual_address_map =
414                         (efi_set_virtual_address_map_t *)
415                         (unsigned long)runtime->set_virtual_address_map;
416         early_memunmap(runtime, sizeof(efi_runtime_services_32_t));
417
418         return 0;
419 }
420
421 static int __init efi_runtime_init64(void)
422 {
423         efi_runtime_services_64_t *runtime;
424
425         runtime = early_memremap((unsigned long)efi.systab->runtime,
426                         sizeof(efi_runtime_services_64_t));
427         if (!runtime) {
428                 pr_err("Could not map the runtime service table!\n");
429                 return -ENOMEM;
430         }
431
432         /*
433          * We will only need *early* access to the SetVirtualAddressMap
434          * EFI runtime service. All other runtime services will be called
435          * via the virtual mapping.
436          */
437         efi_phys.set_virtual_address_map =
438                         (efi_set_virtual_address_map_t *)
439                         (unsigned long)runtime->set_virtual_address_map;
440         early_memunmap(runtime, sizeof(efi_runtime_services_64_t));
441
442         return 0;
443 }
444
445 static int __init efi_runtime_init(void)
446 {
447         int rv;
448
449         /*
450          * Check out the runtime services table. We need to map
451          * the runtime services table so that we can grab the physical
452          * address of several of the EFI runtime functions, needed to
453          * set the firmware into virtual mode.
454          *
455          * When EFI_PARAVIRT is in force then we could not map runtime
456          * service memory region because we do not have direct access to it.
457          * However, runtime services are available through proxy functions
458          * (e.g. in case of Xen dom0 EFI implementation they call special
459          * hypercall which executes relevant EFI functions) and that is why
460          * they are always enabled.
461          */
462
463         if (!efi_enabled(EFI_PARAVIRT)) {
464                 if (efi_enabled(EFI_64BIT))
465                         rv = efi_runtime_init64();
466                 else
467                         rv = efi_runtime_init32();
468
469                 if (rv)
470                         return rv;
471         }
472
473         set_bit(EFI_RUNTIME_SERVICES, &efi.flags);
474
475         return 0;
476 }
477
478 void __init efi_init(void)
479 {
480         efi_char16_t *c16;
481         char vendor[100] = "unknown";
482         int i = 0;
483
484 #ifdef CONFIG_X86_32
485         if (boot_params.efi_info.efi_systab_hi ||
486             boot_params.efi_info.efi_memmap_hi) {
487                 pr_info("Table located above 4GB, disabling EFI.\n");
488                 return;
489         }
490         efi_phys.systab = (efi_system_table_t *)boot_params.efi_info.efi_systab;
491 #else
492         efi_phys.systab = (efi_system_table_t *)
493                           (boot_params.efi_info.efi_systab |
494                           ((__u64)boot_params.efi_info.efi_systab_hi<<32));
495 #endif
496
497         if (efi_systab_init(efi_phys.systab))
498                 return;
499
500         efi.config_table = (unsigned long)efi.systab->tables;
501         efi.fw_vendor    = (unsigned long)efi.systab->fw_vendor;
502         efi.runtime      = (unsigned long)efi.systab->runtime;
503
504         /*
505          * Show what we know for posterity
506          */
507         c16 = early_memremap_ro(efi.systab->fw_vendor,
508                                 sizeof(vendor) * sizeof(efi_char16_t));
509         if (c16) {
510                 for (i = 0; i < sizeof(vendor) - 1 && c16[i]; ++i)
511                         vendor[i] = c16[i];
512                 vendor[i] = '\0';
513                 early_memunmap(c16, sizeof(vendor) * sizeof(efi_char16_t));
514         } else {
515                 pr_err("Could not map the firmware vendor!\n");
516         }
517
518         pr_info("EFI v%u.%.02u by %s\n",
519                 efi.systab->hdr.revision >> 16,
520                 efi.systab->hdr.revision & 0xffff, vendor);
521
522         if (efi_reuse_config(efi.systab->tables, efi.systab->nr_tables))
523                 return;
524
525         if (efi_config_init(arch_tables))
526                 return;
527
528         /*
529          * Note: We currently don't support runtime services on an EFI
530          * that doesn't match the kernel 32/64-bit mode.
531          */
532
533         if (!efi_runtime_supported())
534                 pr_info("No EFI runtime due to 32/64-bit mismatch with kernel\n");
535         else {
536                 if (efi_runtime_disabled() || efi_runtime_init()) {
537                         efi_memmap_unmap();
538                         return;
539                 }
540         }
541
542         efi_clean_memmap();
543
544         if (efi_enabled(EFI_DBG))
545                 efi_print_memmap();
546 }
547
548 void __init efi_set_executable(efi_memory_desc_t *md, bool executable)
549 {
550         u64 addr, npages;
551
552         addr = md->virt_addr;
553         npages = md->num_pages;
554
555         memrange_efi_to_native(&addr, &npages);
556
557         if (executable)
558                 set_memory_x(addr, npages);
559         else
560                 set_memory_nx(addr, npages);
561 }
562
563 void __init runtime_code_page_mkexec(void)
564 {
565         efi_memory_desc_t *md;
566
567         /* Make EFI runtime service code area executable */
568         for_each_efi_memory_desc(md) {
569                 if (md->type != EFI_RUNTIME_SERVICES_CODE)
570                         continue;
571
572                 efi_set_executable(md, true);
573         }
574 }
575
576 void __init efi_memory_uc(u64 addr, unsigned long size)
577 {
578         unsigned long page_shift = 1UL << EFI_PAGE_SHIFT;
579         u64 npages;
580
581         npages = round_up(size, page_shift) / page_shift;
582         memrange_efi_to_native(&addr, &npages);
583         set_memory_uc(addr, npages);
584 }
585
586 void __init old_map_region(efi_memory_desc_t *md)
587 {
588         u64 start_pfn, end_pfn, end;
589         unsigned long size;
590         void *va;
591
592         start_pfn = PFN_DOWN(md->phys_addr);
593         size      = md->num_pages << PAGE_SHIFT;
594         end       = md->phys_addr + size;
595         end_pfn   = PFN_UP(end);
596
597         if (pfn_range_is_mapped(start_pfn, end_pfn)) {
598                 va = __va(md->phys_addr);
599
600                 if (!(md->attribute & EFI_MEMORY_WB))
601                         efi_memory_uc((u64)(unsigned long)va, size);
602         } else
603                 va = efi_ioremap(md->phys_addr, size,
604                                  md->type, md->attribute);
605
606         md->virt_addr = (u64) (unsigned long) va;
607         if (!va)
608                 pr_err("ioremap of 0x%llX failed!\n",
609                        (unsigned long long)md->phys_addr);
610 }
611
612 /* Merge contiguous regions of the same type and attribute */
613 static void __init efi_merge_regions(void)
614 {
615         efi_memory_desc_t *md, *prev_md = NULL;
616
617         for_each_efi_memory_desc(md) {
618                 u64 prev_size;
619
620                 if (!prev_md) {
621                         prev_md = md;
622                         continue;
623                 }
624
625                 if (prev_md->type != md->type ||
626                     prev_md->attribute != md->attribute) {
627                         prev_md = md;
628                         continue;
629                 }
630
631                 prev_size = prev_md->num_pages << EFI_PAGE_SHIFT;
632
633                 if (md->phys_addr == (prev_md->phys_addr + prev_size)) {
634                         prev_md->num_pages += md->num_pages;
635                         md->type = EFI_RESERVED_TYPE;
636                         md->attribute = 0;
637                         continue;
638                 }
639                 prev_md = md;
640         }
641 }
642
643 static void __init get_systab_virt_addr(efi_memory_desc_t *md)
644 {
645         unsigned long size;
646         u64 end, systab;
647
648         size = md->num_pages << EFI_PAGE_SHIFT;
649         end = md->phys_addr + size;
650         systab = (u64)(unsigned long)efi_phys.systab;
651         if (md->phys_addr <= systab && systab < end) {
652                 systab += md->virt_addr - md->phys_addr;
653                 efi.systab = (efi_system_table_t *)(unsigned long)systab;
654         }
655 }
656
657 static void *realloc_pages(void *old_memmap, int old_shift)
658 {
659         void *ret;
660
661         ret = (void *)__get_free_pages(GFP_KERNEL, old_shift + 1);
662         if (!ret)
663                 goto out;
664
665         /*
666          * A first-time allocation doesn't have anything to copy.
667          */
668         if (!old_memmap)
669                 return ret;
670
671         memcpy(ret, old_memmap, PAGE_SIZE << old_shift);
672
673 out:
674         free_pages((unsigned long)old_memmap, old_shift);
675         return ret;
676 }
677
678 /*
679  * Iterate the EFI memory map in reverse order because the regions
680  * will be mapped top-down. The end result is the same as if we had
681  * mapped things forward, but doesn't require us to change the
682  * existing implementation of efi_map_region().
683  */
684 static inline void *efi_map_next_entry_reverse(void *entry)
685 {
686         /* Initial call */
687         if (!entry)
688                 return efi.memmap.map_end - efi.memmap.desc_size;
689
690         entry -= efi.memmap.desc_size;
691         if (entry < efi.memmap.map)
692                 return NULL;
693
694         return entry;
695 }
696
697 /*
698  * efi_map_next_entry - Return the next EFI memory map descriptor
699  * @entry: Previous EFI memory map descriptor
700  *
701  * This is a helper function to iterate over the EFI memory map, which
702  * we do in different orders depending on the current configuration.
703  *
704  * To begin traversing the memory map @entry must be %NULL.
705  *
706  * Returns %NULL when we reach the end of the memory map.
707  */
708 static void *efi_map_next_entry(void *entry)
709 {
710         if (!efi_enabled(EFI_OLD_MEMMAP) && efi_enabled(EFI_64BIT)) {
711                 /*
712                  * Starting in UEFI v2.5 the EFI_PROPERTIES_TABLE
713                  * config table feature requires us to map all entries
714                  * in the same order as they appear in the EFI memory
715                  * map. That is to say, entry N must have a lower
716                  * virtual address than entry N+1. This is because the
717                  * firmware toolchain leaves relative references in
718                  * the code/data sections, which are split and become
719                  * separate EFI memory regions. Mapping things
720                  * out-of-order leads to the firmware accessing
721                  * unmapped addresses.
722                  *
723                  * Since we need to map things this way whether or not
724                  * the kernel actually makes use of
725                  * EFI_PROPERTIES_TABLE, let's just switch to this
726                  * scheme by default for 64-bit.
727                  */
728                 return efi_map_next_entry_reverse(entry);
729         }
730
731         /* Initial call */
732         if (!entry)
733                 return efi.memmap.map;
734
735         entry += efi.memmap.desc_size;
736         if (entry >= efi.memmap.map_end)
737                 return NULL;
738
739         return entry;
740 }
741
742 static bool should_map_region(efi_memory_desc_t *md)
743 {
744         /*
745          * Runtime regions always require runtime mappings (obviously).
746          */
747         if (md->attribute & EFI_MEMORY_RUNTIME)
748                 return true;
749
750         /*
751          * 32-bit EFI doesn't suffer from the bug that requires us to
752          * reserve boot services regions, and mixed mode support
753          * doesn't exist for 32-bit kernels.
754          */
755         if (IS_ENABLED(CONFIG_X86_32))
756                 return false;
757
758         /*
759          * Map all of RAM so that we can access arguments in the 1:1
760          * mapping when making EFI runtime calls.
761          */
762         if (IS_ENABLED(CONFIG_EFI_MIXED) && !efi_is_native()) {
763                 if (md->type == EFI_CONVENTIONAL_MEMORY ||
764                     md->type == EFI_LOADER_DATA ||
765                     md->type == EFI_LOADER_CODE)
766                         return true;
767         }
768
769         /*
770          * Map boot services regions as a workaround for buggy
771          * firmware that accesses them even when they shouldn't.
772          *
773          * See efi_{reserve,free}_boot_services().
774          */
775         if (md->type == EFI_BOOT_SERVICES_CODE ||
776             md->type == EFI_BOOT_SERVICES_DATA)
777                 return true;
778
779         return false;
780 }
781
782 /*
783  * Map the efi memory ranges of the runtime services and update new_mmap with
784  * virtual addresses.
785  */
786 static void * __init efi_map_regions(int *count, int *pg_shift)
787 {
788         void *p, *new_memmap = NULL;
789         unsigned long left = 0;
790         unsigned long desc_size;
791         efi_memory_desc_t *md;
792
793         desc_size = efi.memmap.desc_size;
794
795         p = NULL;
796         while ((p = efi_map_next_entry(p))) {
797                 md = p;
798
799                 if (!should_map_region(md))
800                         continue;
801
802                 efi_map_region(md);
803                 get_systab_virt_addr(md);
804
805                 if (left < desc_size) {
806                         new_memmap = realloc_pages(new_memmap, *pg_shift);
807                         if (!new_memmap)
808                                 return NULL;
809
810                         left += PAGE_SIZE << *pg_shift;
811                         (*pg_shift)++;
812                 }
813
814                 memcpy(new_memmap + (*count * desc_size), md, desc_size);
815
816                 left -= desc_size;
817                 (*count)++;
818         }
819
820         return new_memmap;
821 }
822
823 static void __init kexec_enter_virtual_mode(void)
824 {
825 #ifdef CONFIG_KEXEC_CORE
826         efi_memory_desc_t *md;
827         unsigned int num_pages;
828
829         efi.systab = NULL;
830
831         /*
832          * We don't do virtual mode, since we don't do runtime services, on
833          * non-native EFI. With efi=old_map, we don't do runtime services in
834          * kexec kernel because in the initial boot something else might
835          * have been mapped at these virtual addresses.
836          */
837         if (!efi_is_native() || efi_enabled(EFI_OLD_MEMMAP)) {
838                 efi_memmap_unmap();
839                 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
840                 return;
841         }
842
843         if (efi_alloc_page_tables()) {
844                 pr_err("Failed to allocate EFI page tables\n");
845                 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
846                 return;
847         }
848
849         /*
850         * Map efi regions which were passed via setup_data. The virt_addr is a
851         * fixed addr which was used in first kernel of a kexec boot.
852         */
853         for_each_efi_memory_desc(md) {
854                 efi_map_region_fixed(md); /* FIXME: add error handling */
855                 get_systab_virt_addr(md);
856         }
857
858         /*
859          * Unregister the early EFI memmap from efi_init() and install
860          * the new EFI memory map.
861          */
862         efi_memmap_unmap();
863
864         if (efi_memmap_init_late(efi.memmap.phys_map,
865                                  efi.memmap.desc_size * efi.memmap.nr_map)) {
866                 pr_err("Failed to remap late EFI memory map\n");
867                 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
868                 return;
869         }
870
871         BUG_ON(!efi.systab);
872
873         num_pages = ALIGN(efi.memmap.nr_map * efi.memmap.desc_size, PAGE_SIZE);
874         num_pages >>= PAGE_SHIFT;
875
876         if (efi_setup_page_tables(efi.memmap.phys_map, num_pages)) {
877                 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
878                 return;
879         }
880
881         efi_sync_low_kernel_mappings();
882
883         /*
884          * Now that EFI is in virtual mode, update the function
885          * pointers in the runtime service table to the new virtual addresses.
886          *
887          * Call EFI services through wrapper functions.
888          */
889         efi.runtime_version = efi_systab.hdr.revision;
890
891         efi_native_runtime_setup();
892
893         efi.set_virtual_address_map = NULL;
894
895         if (efi_enabled(EFI_OLD_MEMMAP) && (__supported_pte_mask & _PAGE_NX))
896                 runtime_code_page_mkexec();
897 #endif
898 }
899
900 /*
901  * This function will switch the EFI runtime services to virtual mode.
902  * Essentially, we look through the EFI memmap and map every region that
903  * has the runtime attribute bit set in its memory descriptor into the
904  * efi_pgd page table.
905  *
906  * The old method which used to update that memory descriptor with the
907  * virtual address obtained from ioremap() is still supported when the
908  * kernel is booted with efi=old_map on its command line. Same old
909  * method enabled the runtime services to be called without having to
910  * thunk back into physical mode for every invocation.
911  *
912  * The new method does a pagetable switch in a preemption-safe manner
913  * so that we're in a different address space when calling a runtime
914  * function. For function arguments passing we do copy the PUDs of the
915  * kernel page table into efi_pgd prior to each call.
916  *
917  * Specially for kexec boot, efi runtime maps in previous kernel should
918  * be passed in via setup_data. In that case runtime ranges will be mapped
919  * to the same virtual addresses as the first kernel, see
920  * kexec_enter_virtual_mode().
921  */
922 static void __init __efi_enter_virtual_mode(void)
923 {
924         int count = 0, pg_shift = 0;
925         void *new_memmap = NULL;
926         efi_status_t status;
927         unsigned long pa;
928
929         efi.systab = NULL;
930
931         if (efi_alloc_page_tables()) {
932                 pr_err("Failed to allocate EFI page tables\n");
933                 goto err;
934         }
935
936         efi_merge_regions();
937         new_memmap = efi_map_regions(&count, &pg_shift);
938         if (!new_memmap) {
939                 pr_err("Error reallocating memory, EFI runtime non-functional!\n");
940                 goto err;
941         }
942
943         pa = __pa(new_memmap);
944
945         /*
946          * Unregister the early EFI memmap from efi_init() and install
947          * the new EFI memory map that we are about to pass to the
948          * firmware via SetVirtualAddressMap().
949          */
950         efi_memmap_unmap();
951
952         if (efi_memmap_init_late(pa, efi.memmap.desc_size * count)) {
953                 pr_err("Failed to remap late EFI memory map\n");
954                 goto err;
955         }
956
957         if (efi_enabled(EFI_DBG)) {
958                 pr_info("EFI runtime memory map:\n");
959                 efi_print_memmap();
960         }
961
962         if (WARN_ON(!efi.systab))
963                 goto err;
964
965         if (efi_setup_page_tables(pa, 1 << pg_shift))
966                 goto err;
967
968         efi_sync_low_kernel_mappings();
969
970         if (efi_is_native()) {
971                 status = phys_efi_set_virtual_address_map(
972                                 efi.memmap.desc_size * count,
973                                 efi.memmap.desc_size,
974                                 efi.memmap.desc_version,
975                                 (efi_memory_desc_t *)pa);
976         } else {
977                 status = efi_thunk_set_virtual_address_map(
978                                 efi_phys.set_virtual_address_map,
979                                 efi.memmap.desc_size * count,
980                                 efi.memmap.desc_size,
981                                 efi.memmap.desc_version,
982                                 (efi_memory_desc_t *)pa);
983         }
984
985         if (status != EFI_SUCCESS) {
986                 pr_err("Unable to switch EFI into virtual mode (status=%lx)!\n",
987                        status);
988                 goto err;
989         }
990
991         /*
992          * Now that EFI is in virtual mode, update the function
993          * pointers in the runtime service table to the new virtual addresses.
994          *
995          * Call EFI services through wrapper functions.
996          */
997         efi.runtime_version = efi_systab.hdr.revision;
998
999         if (efi_is_native())
1000                 efi_native_runtime_setup();
1001         else
1002                 efi_thunk_runtime_setup();
1003
1004         efi.set_virtual_address_map = NULL;
1005
1006         /*
1007          * Apply more restrictive page table mapping attributes now that
1008          * SVAM() has been called and the firmware has performed all
1009          * necessary relocation fixups for the new virtual addresses.
1010          */
1011         efi_runtime_update_mappings();
1012
1013         /* clean DUMMY object */
1014         efi_delete_dummy_variable();
1015         return;
1016
1017 err:
1018         clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
1019 }
1020
1021 void __init efi_enter_virtual_mode(void)
1022 {
1023         if (efi_enabled(EFI_PARAVIRT))
1024                 return;
1025
1026         if (efi_setup)
1027                 kexec_enter_virtual_mode();
1028         else
1029                 __efi_enter_virtual_mode();
1030
1031         efi_dump_pagetable();
1032 }
1033
1034 static int __init arch_parse_efi_cmdline(char *str)
1035 {
1036         if (!str) {
1037                 pr_warn("need at least one option\n");
1038                 return -EINVAL;
1039         }
1040
1041         if (parse_option_str(str, "old_map"))
1042                 set_bit(EFI_OLD_MEMMAP, &efi.flags);
1043
1044         return 0;
1045 }
1046 early_param("efi", arch_parse_efi_cmdline);