GNU Linux-libre 4.9.337-gnu1
[releases.git] / arch / x86 / xen / enlighten.c
1 /*
2  * Core of Xen paravirt_ops implementation.
3  *
4  * This file contains the xen_paravirt_ops structure itself, and the
5  * implementations for:
6  * - privileged instructions
7  * - interrupt flags
8  * - segment operations
9  * - booting and setup
10  *
11  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12  */
13
14 #include <linux/cpu.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/smp.h>
18 #include <linux/preempt.h>
19 #include <linux/hardirq.h>
20 #include <linux/percpu.h>
21 #include <linux/delay.h>
22 #include <linux/start_kernel.h>
23 #include <linux/sched.h>
24 #include <linux/kprobes.h>
25 #include <linux/bootmem.h>
26 #include <linux/export.h>
27 #include <linux/mm.h>
28 #include <linux/page-flags.h>
29 #include <linux/highmem.h>
30 #include <linux/console.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
33 #include <linux/memblock.h>
34 #include <linux/edd.h>
35 #include <linux/frame.h>
36
37 #include <linux/kexec.h>
38 #include <linux/slab.h>
39
40 #include <xen/xen.h>
41 #include <xen/events.h>
42 #include <xen/interface/xen.h>
43 #include <xen/interface/version.h>
44 #include <xen/interface/physdev.h>
45 #include <xen/interface/vcpu.h>
46 #include <xen/interface/memory.h>
47 #include <xen/interface/nmi.h>
48 #include <xen/interface/xen-mca.h>
49 #include <xen/features.h>
50 #include <xen/page.h>
51 #include <xen/hvm.h>
52 #include <xen/hvc-console.h>
53 #include <xen/acpi.h>
54
55 #include <asm/paravirt.h>
56 #include <asm/apic.h>
57 #include <asm/page.h>
58 #include <asm/xen/pci.h>
59 #include <asm/xen/hypercall.h>
60 #include <asm/xen/hypervisor.h>
61 #include <asm/xen/cpuid.h>
62 #include <asm/fixmap.h>
63 #include <asm/processor.h>
64 #include <asm/proto.h>
65 #include <asm/msr-index.h>
66 #include <asm/traps.h>
67 #include <asm/setup.h>
68 #include <asm/desc.h>
69 #include <asm/pgalloc.h>
70 #include <asm/pgtable.h>
71 #include <asm/tlbflush.h>
72 #include <asm/reboot.h>
73 #include <asm/stackprotector.h>
74 #include <asm/hypervisor.h>
75 #include <asm/mach_traps.h>
76 #include <asm/mwait.h>
77 #include <asm/pci_x86.h>
78 #include <asm/cpu.h>
79 #include <asm/unwind_hints.h>
80
81 #ifdef CONFIG_ACPI
82 #include <linux/acpi.h>
83 #include <asm/acpi.h>
84 #include <acpi/pdc_intel.h>
85 #include <acpi/processor.h>
86 #include <xen/interface/platform.h>
87 #endif
88
89 #include "xen-ops.h"
90 #include "mmu.h"
91 #include "smp.h"
92 #include "multicalls.h"
93 #include "pmu.h"
94
95 EXPORT_SYMBOL_GPL(hypercall_page);
96
97 /*
98  * Pointer to the xen_vcpu_info structure or
99  * &HYPERVISOR_shared_info->vcpu_info[cpu]. See xen_hvm_init_shared_info
100  * and xen_vcpu_setup for details. By default it points to share_info->vcpu_info
101  * but if the hypervisor supports VCPUOP_register_vcpu_info then it can point
102  * to xen_vcpu_info. The pointer is used in __xen_evtchn_do_upcall to
103  * acknowledge pending events.
104  * Also more subtly it is used by the patched version of irq enable/disable
105  * e.g. xen_irq_enable_direct and xen_iret in PV mode.
106  *
107  * The desire to be able to do those mask/unmask operations as a single
108  * instruction by using the per-cpu offset held in %gs is the real reason
109  * vcpu info is in a per-cpu pointer and the original reason for this
110  * hypercall.
111  *
112  */
113 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
114
115 /*
116  * Per CPU pages used if hypervisor supports VCPUOP_register_vcpu_info
117  * hypercall. This can be used both in PV and PVHVM mode. The structure
118  * overrides the default per_cpu(xen_vcpu, cpu) value.
119  */
120 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
121
122 /* Linux <-> Xen vCPU id mapping */
123 DEFINE_PER_CPU(uint32_t, xen_vcpu_id);
124 EXPORT_PER_CPU_SYMBOL(xen_vcpu_id);
125
126 enum xen_domain_type xen_domain_type = XEN_NATIVE;
127 EXPORT_SYMBOL_GPL(xen_domain_type);
128
129 unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START;
130 EXPORT_SYMBOL(machine_to_phys_mapping);
131 unsigned long  machine_to_phys_nr;
132 EXPORT_SYMBOL(machine_to_phys_nr);
133
134 struct start_info *xen_start_info;
135 EXPORT_SYMBOL_GPL(xen_start_info);
136
137 struct shared_info xen_dummy_shared_info;
138
139 void *xen_initial_gdt;
140
141 RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
142 __read_mostly int xen_have_vector_callback;
143 EXPORT_SYMBOL_GPL(xen_have_vector_callback);
144
145 static int xen_cpu_up_prepare(unsigned int cpu);
146 static int xen_cpu_up_online(unsigned int cpu);
147 static int xen_cpu_dead(unsigned int cpu);
148
149 /*
150  * Point at some empty memory to start with. We map the real shared_info
151  * page as soon as fixmap is up and running.
152  */
153 struct shared_info *HYPERVISOR_shared_info = &xen_dummy_shared_info;
154
155 /*
156  * Flag to determine whether vcpu info placement is available on all
157  * VCPUs.  We assume it is to start with, and then set it to zero on
158  * the first failure.  This is because it can succeed on some VCPUs
159  * and not others, since it can involve hypervisor memory allocation,
160  * or because the guest failed to guarantee all the appropriate
161  * constraints on all VCPUs (ie buffer can't cross a page boundary).
162  *
163  * Note that any particular CPU may be using a placed vcpu structure,
164  * but we can only optimise if the all are.
165  *
166  * 0: not available, 1: available
167  */
168 static int have_vcpu_info_placement = 1;
169
170 struct tls_descs {
171         struct desc_struct desc[3];
172 };
173
174 /*
175  * Updating the 3 TLS descriptors in the GDT on every task switch is
176  * surprisingly expensive so we avoid updating them if they haven't
177  * changed.  Since Xen writes different descriptors than the one
178  * passed in the update_descriptor hypercall we keep shadow copies to
179  * compare against.
180  */
181 static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
182
183 static void clamp_max_cpus(void)
184 {
185 #ifdef CONFIG_SMP
186         if (setup_max_cpus > MAX_VIRT_CPUS)
187                 setup_max_cpus = MAX_VIRT_CPUS;
188 #endif
189 }
190
191 void xen_vcpu_setup(int cpu)
192 {
193         struct vcpu_register_vcpu_info info;
194         int err;
195         struct vcpu_info *vcpup;
196
197         BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
198
199         /*
200          * This path is called twice on PVHVM - first during bootup via
201          * smp_init -> xen_hvm_cpu_notify, and then if the VCPU is being
202          * hotplugged: cpu_up -> xen_hvm_cpu_notify.
203          * As we can only do the VCPUOP_register_vcpu_info once lets
204          * not over-write its result.
205          *
206          * For PV it is called during restore (xen_vcpu_restore) and bootup
207          * (xen_setup_vcpu_info_placement). The hotplug mechanism does not
208          * use this function.
209          */
210         if (xen_hvm_domain()) {
211                 if (per_cpu(xen_vcpu, cpu) == &per_cpu(xen_vcpu_info, cpu))
212                         return;
213         }
214         if (xen_vcpu_nr(cpu) < MAX_VIRT_CPUS)
215                 per_cpu(xen_vcpu, cpu) =
216                         &HYPERVISOR_shared_info->vcpu_info[xen_vcpu_nr(cpu)];
217
218         if (!have_vcpu_info_placement) {
219                 if (cpu >= MAX_VIRT_CPUS)
220                         clamp_max_cpus();
221                 return;
222         }
223
224         vcpup = &per_cpu(xen_vcpu_info, cpu);
225         info.mfn = arbitrary_virt_to_mfn(vcpup);
226         info.offset = offset_in_page(vcpup);
227
228         /* Check to see if the hypervisor will put the vcpu_info
229            structure where we want it, which allows direct access via
230            a percpu-variable.
231            N.B. This hypercall can _only_ be called once per CPU. Subsequent
232            calls will error out with -EINVAL. This is due to the fact that
233            hypervisor has no unregister variant and this hypercall does not
234            allow to over-write info.mfn and info.offset.
235          */
236         err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, xen_vcpu_nr(cpu),
237                                  &info);
238
239         if (err) {
240                 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
241                 have_vcpu_info_placement = 0;
242                 clamp_max_cpus();
243         } else {
244                 /* This cpu is using the registered vcpu info, even if
245                    later ones fail to. */
246                 per_cpu(xen_vcpu, cpu) = vcpup;
247         }
248 }
249
250 /*
251  * On restore, set the vcpu placement up again.
252  * If it fails, then we're in a bad state, since
253  * we can't back out from using it...
254  */
255 void xen_vcpu_restore(void)
256 {
257         int cpu;
258
259         for_each_possible_cpu(cpu) {
260                 bool other_cpu = (cpu != smp_processor_id());
261                 bool is_up = HYPERVISOR_vcpu_op(VCPUOP_is_up, xen_vcpu_nr(cpu),
262                                                 NULL);
263
264                 if (other_cpu && is_up &&
265                     HYPERVISOR_vcpu_op(VCPUOP_down, xen_vcpu_nr(cpu), NULL))
266                         BUG();
267
268                 xen_setup_runstate_info(cpu);
269
270                 if (have_vcpu_info_placement)
271                         xen_vcpu_setup(cpu);
272
273                 if (other_cpu && is_up &&
274                     HYPERVISOR_vcpu_op(VCPUOP_up, xen_vcpu_nr(cpu), NULL))
275                         BUG();
276         }
277 }
278
279 static void __init xen_banner(void)
280 {
281         unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
282         struct xen_extraversion extra;
283         HYPERVISOR_xen_version(XENVER_extraversion, &extra);
284
285         pr_info("Booting paravirtualized kernel %son %s\n",
286                 xen_feature(XENFEAT_auto_translated_physmap) ?
287                         "with PVH extensions " : "", pv_info.name);
288         printk(KERN_INFO "Xen version: %d.%d%s%s\n",
289                version >> 16, version & 0xffff, extra.extraversion,
290                xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
291 }
292 /* Check if running on Xen version (major, minor) or later */
293 bool
294 xen_running_on_version_or_later(unsigned int major, unsigned int minor)
295 {
296         unsigned int version;
297
298         if (!xen_domain())
299                 return false;
300
301         version = HYPERVISOR_xen_version(XENVER_version, NULL);
302         if ((((version >> 16) == major) && ((version & 0xffff) >= minor)) ||
303                 ((version >> 16) > major))
304                 return true;
305         return false;
306 }
307
308 #define CPUID_THERM_POWER_LEAF 6
309 #define APERFMPERF_PRESENT 0
310
311 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
312 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
313
314 static __read_mostly unsigned int cpuid_leaf1_ecx_set_mask;
315 static __read_mostly unsigned int cpuid_leaf5_ecx_val;
316 static __read_mostly unsigned int cpuid_leaf5_edx_val;
317
318 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
319                       unsigned int *cx, unsigned int *dx)
320 {
321         unsigned maskebx = ~0;
322         unsigned maskecx = ~0;
323         unsigned maskedx = ~0;
324         unsigned setecx = 0;
325         /*
326          * Mask out inconvenient features, to try and disable as many
327          * unsupported kernel subsystems as possible.
328          */
329         switch (*ax) {
330         case 1:
331                 maskecx = cpuid_leaf1_ecx_mask;
332                 setecx = cpuid_leaf1_ecx_set_mask;
333                 maskedx = cpuid_leaf1_edx_mask;
334                 break;
335
336         case CPUID_MWAIT_LEAF:
337                 /* Synthesize the values.. */
338                 *ax = 0;
339                 *bx = 0;
340                 *cx = cpuid_leaf5_ecx_val;
341                 *dx = cpuid_leaf5_edx_val;
342                 return;
343
344         case CPUID_THERM_POWER_LEAF:
345                 /* Disabling APERFMPERF for kernel usage */
346                 maskecx = ~(1 << APERFMPERF_PRESENT);
347                 break;
348
349         case 0xb:
350                 /* Suppress extended topology stuff */
351                 maskebx = 0;
352                 break;
353         }
354
355         asm(XEN_EMULATE_PREFIX "cpuid"
356                 : "=a" (*ax),
357                   "=b" (*bx),
358                   "=c" (*cx),
359                   "=d" (*dx)
360                 : "0" (*ax), "2" (*cx));
361
362         *bx &= maskebx;
363         *cx &= maskecx;
364         *cx |= setecx;
365         *dx &= maskedx;
366 }
367 STACK_FRAME_NON_STANDARD(xen_cpuid); /* XEN_EMULATE_PREFIX */
368
369 static bool __init xen_check_mwait(void)
370 {
371 #ifdef CONFIG_ACPI
372         struct xen_platform_op op = {
373                 .cmd                    = XENPF_set_processor_pminfo,
374                 .u.set_pminfo.id        = -1,
375                 .u.set_pminfo.type      = XEN_PM_PDC,
376         };
377         uint32_t buf[3];
378         unsigned int ax, bx, cx, dx;
379         unsigned int mwait_mask;
380
381         /* We need to determine whether it is OK to expose the MWAIT
382          * capability to the kernel to harvest deeper than C3 states from ACPI
383          * _CST using the processor_harvest_xen.c module. For this to work, we
384          * need to gather the MWAIT_LEAF values (which the cstate.c code
385          * checks against). The hypervisor won't expose the MWAIT flag because
386          * it would break backwards compatibility; so we will find out directly
387          * from the hardware and hypercall.
388          */
389         if (!xen_initial_domain())
390                 return false;
391
392         /*
393          * When running under platform earlier than Xen4.2, do not expose
394          * mwait, to avoid the risk of loading native acpi pad driver
395          */
396         if (!xen_running_on_version_or_later(4, 2))
397                 return false;
398
399         ax = 1;
400         cx = 0;
401
402         native_cpuid(&ax, &bx, &cx, &dx);
403
404         mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
405                      (1 << (X86_FEATURE_MWAIT % 32));
406
407         if ((cx & mwait_mask) != mwait_mask)
408                 return false;
409
410         /* We need to emulate the MWAIT_LEAF and for that we need both
411          * ecx and edx. The hypercall provides only partial information.
412          */
413
414         ax = CPUID_MWAIT_LEAF;
415         bx = 0;
416         cx = 0;
417         dx = 0;
418
419         native_cpuid(&ax, &bx, &cx, &dx);
420
421         /* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
422          * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
423          */
424         buf[0] = ACPI_PDC_REVISION_ID;
425         buf[1] = 1;
426         buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
427
428         set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
429
430         if ((HYPERVISOR_platform_op(&op) == 0) &&
431             (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
432                 cpuid_leaf5_ecx_val = cx;
433                 cpuid_leaf5_edx_val = dx;
434         }
435         return true;
436 #else
437         return false;
438 #endif
439 }
440 static void __init xen_init_cpuid_mask(void)
441 {
442         unsigned int ax, bx, cx, dx;
443         unsigned int xsave_mask;
444
445         cpuid_leaf1_edx_mask =
446                 ~((1 << X86_FEATURE_MTRR) |  /* disable MTRR */
447                   (1 << X86_FEATURE_ACC));   /* thermal monitoring */
448
449         /*
450          * Xen PV would need some work to support PCID: CR3 handling as well
451          * as xen_flush_tlb_others() would need updating.
452          */
453         cpuid_leaf1_ecx_mask &= ~(1 << (X86_FEATURE_PCID % 32));  /* disable PCID */
454
455         if (!xen_initial_domain())
456                 cpuid_leaf1_edx_mask &=
457                         ~((1 << X86_FEATURE_ACPI));  /* disable ACPI */
458
459         cpuid_leaf1_ecx_mask &= ~(1 << (X86_FEATURE_X2APIC % 32));
460
461         ax = 1;
462         cx = 0;
463         cpuid(1, &ax, &bx, &cx, &dx);
464
465         xsave_mask =
466                 (1 << (X86_FEATURE_XSAVE % 32)) |
467                 (1 << (X86_FEATURE_OSXSAVE % 32));
468
469         /* Xen will set CR4.OSXSAVE if supported and not disabled by force */
470         if ((cx & xsave_mask) != xsave_mask)
471                 cpuid_leaf1_ecx_mask &= ~xsave_mask; /* disable XSAVE & OSXSAVE */
472         if (xen_check_mwait())
473                 cpuid_leaf1_ecx_set_mask = (1 << (X86_FEATURE_MWAIT % 32));
474 }
475
476 static void __init xen_init_capabilities(void)
477 {
478         if (xen_pv_domain())
479                 setup_force_cpu_cap(X86_FEATURE_XENPV);
480 }
481
482 static void xen_set_debugreg(int reg, unsigned long val)
483 {
484         HYPERVISOR_set_debugreg(reg, val);
485 }
486
487 static unsigned long xen_get_debugreg(int reg)
488 {
489         return HYPERVISOR_get_debugreg(reg);
490 }
491
492 static void xen_end_context_switch(struct task_struct *next)
493 {
494         xen_mc_flush();
495         paravirt_end_context_switch(next);
496 }
497
498 static unsigned long xen_store_tr(void)
499 {
500         return 0;
501 }
502
503 /*
504  * Set the page permissions for a particular virtual address.  If the
505  * address is a vmalloc mapping (or other non-linear mapping), then
506  * find the linear mapping of the page and also set its protections to
507  * match.
508  */
509 static void set_aliased_prot(void *v, pgprot_t prot)
510 {
511         int level;
512         pte_t *ptep;
513         pte_t pte;
514         unsigned long pfn;
515         struct page *page;
516         unsigned char dummy;
517
518         ptep = lookup_address((unsigned long)v, &level);
519         BUG_ON(ptep == NULL);
520
521         pfn = pte_pfn(*ptep);
522         page = pfn_to_page(pfn);
523
524         pte = pfn_pte(pfn, prot);
525
526         /*
527          * Careful: update_va_mapping() will fail if the virtual address
528          * we're poking isn't populated in the page tables.  We don't
529          * need to worry about the direct map (that's always in the page
530          * tables), but we need to be careful about vmap space.  In
531          * particular, the top level page table can lazily propagate
532          * entries between processes, so if we've switched mms since we
533          * vmapped the target in the first place, we might not have the
534          * top-level page table entry populated.
535          *
536          * We disable preemption because we want the same mm active when
537          * we probe the target and when we issue the hypercall.  We'll
538          * have the same nominal mm, but if we're a kernel thread, lazy
539          * mm dropping could change our pgd.
540          *
541          * Out of an abundance of caution, this uses __get_user() to fault
542          * in the target address just in case there's some obscure case
543          * in which the target address isn't readable.
544          */
545
546         preempt_disable();
547
548         probe_kernel_read(&dummy, v, 1);
549
550         if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
551                 BUG();
552
553         if (!PageHighMem(page)) {
554                 void *av = __va(PFN_PHYS(pfn));
555
556                 if (av != v)
557                         if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
558                                 BUG();
559         } else
560                 kmap_flush_unused();
561
562         preempt_enable();
563 }
564
565 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
566 {
567         const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
568         int i;
569
570         /*
571          * We need to mark the all aliases of the LDT pages RO.  We
572          * don't need to call vm_flush_aliases(), though, since that's
573          * only responsible for flushing aliases out the TLBs, not the
574          * page tables, and Xen will flush the TLB for us if needed.
575          *
576          * To avoid confusing future readers: none of this is necessary
577          * to load the LDT.  The hypervisor only checks this when the
578          * LDT is faulted in due to subsequent descriptor access.
579          */
580
581         for(i = 0; i < entries; i += entries_per_page)
582                 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
583 }
584
585 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
586 {
587         const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
588         int i;
589
590         for(i = 0; i < entries; i += entries_per_page)
591                 set_aliased_prot(ldt + i, PAGE_KERNEL);
592 }
593
594 static void xen_set_ldt(const void *addr, unsigned entries)
595 {
596         struct mmuext_op *op;
597         struct multicall_space mcs = xen_mc_entry(sizeof(*op));
598
599         trace_xen_cpu_set_ldt(addr, entries);
600
601         op = mcs.args;
602         op->cmd = MMUEXT_SET_LDT;
603         op->arg1.linear_addr = (unsigned long)addr;
604         op->arg2.nr_ents = entries;
605
606         MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
607
608         xen_mc_issue(PARAVIRT_LAZY_CPU);
609 }
610
611 static void xen_load_gdt(const struct desc_ptr *dtr)
612 {
613         unsigned long va = dtr->address;
614         unsigned int size = dtr->size + 1;
615         unsigned pages = DIV_ROUND_UP(size, PAGE_SIZE);
616         unsigned long frames[pages];
617         int f;
618
619         /*
620          * A GDT can be up to 64k in size, which corresponds to 8192
621          * 8-byte entries, or 16 4k pages..
622          */
623
624         BUG_ON(size > 65536);
625         BUG_ON(va & ~PAGE_MASK);
626
627         for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
628                 int level;
629                 pte_t *ptep;
630                 unsigned long pfn, mfn;
631                 void *virt;
632
633                 /*
634                  * The GDT is per-cpu and is in the percpu data area.
635                  * That can be virtually mapped, so we need to do a
636                  * page-walk to get the underlying MFN for the
637                  * hypercall.  The page can also be in the kernel's
638                  * linear range, so we need to RO that mapping too.
639                  */
640                 ptep = lookup_address(va, &level);
641                 BUG_ON(ptep == NULL);
642
643                 pfn = pte_pfn(*ptep);
644                 mfn = pfn_to_mfn(pfn);
645                 virt = __va(PFN_PHYS(pfn));
646
647                 frames[f] = mfn;
648
649                 make_lowmem_page_readonly((void *)va);
650                 make_lowmem_page_readonly(virt);
651         }
652
653         if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
654                 BUG();
655 }
656
657 /*
658  * load_gdt for early boot, when the gdt is only mapped once
659  */
660 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
661 {
662         unsigned long va = dtr->address;
663         unsigned int size = dtr->size + 1;
664         unsigned pages = DIV_ROUND_UP(size, PAGE_SIZE);
665         unsigned long frames[pages];
666         int f;
667
668         /*
669          * A GDT can be up to 64k in size, which corresponds to 8192
670          * 8-byte entries, or 16 4k pages..
671          */
672
673         BUG_ON(size > 65536);
674         BUG_ON(va & ~PAGE_MASK);
675
676         for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
677                 pte_t pte;
678                 unsigned long pfn, mfn;
679
680                 pfn = virt_to_pfn(va);
681                 mfn = pfn_to_mfn(pfn);
682
683                 pte = pfn_pte(pfn, PAGE_KERNEL_RO);
684
685                 if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
686                         BUG();
687
688                 frames[f] = mfn;
689         }
690
691         if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
692                 BUG();
693 }
694
695 static inline bool desc_equal(const struct desc_struct *d1,
696                               const struct desc_struct *d2)
697 {
698         return d1->a == d2->a && d1->b == d2->b;
699 }
700
701 static void load_TLS_descriptor(struct thread_struct *t,
702                                 unsigned int cpu, unsigned int i)
703 {
704         struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
705         struct desc_struct *gdt;
706         xmaddr_t maddr;
707         struct multicall_space mc;
708
709         if (desc_equal(shadow, &t->tls_array[i]))
710                 return;
711
712         *shadow = t->tls_array[i];
713
714         gdt = get_cpu_gdt_table(cpu);
715         maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
716         mc = __xen_mc_entry(0);
717
718         MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
719 }
720
721 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
722 {
723         /*
724          * XXX sleazy hack: If we're being called in a lazy-cpu zone
725          * and lazy gs handling is enabled, it means we're in a
726          * context switch, and %gs has just been saved.  This means we
727          * can zero it out to prevent faults on exit from the
728          * hypervisor if the next process has no %gs.  Either way, it
729          * has been saved, and the new value will get loaded properly.
730          * This will go away as soon as Xen has been modified to not
731          * save/restore %gs for normal hypercalls.
732          *
733          * On x86_64, this hack is not used for %gs, because gs points
734          * to KERNEL_GS_BASE (and uses it for PDA references), so we
735          * must not zero %gs on x86_64
736          *
737          * For x86_64, we need to zero %fs, otherwise we may get an
738          * exception between the new %fs descriptor being loaded and
739          * %fs being effectively cleared at __switch_to().
740          */
741         if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
742 #ifdef CONFIG_X86_32
743                 lazy_load_gs(0);
744 #else
745                 loadsegment(fs, 0);
746 #endif
747         }
748
749         xen_mc_batch();
750
751         load_TLS_descriptor(t, cpu, 0);
752         load_TLS_descriptor(t, cpu, 1);
753         load_TLS_descriptor(t, cpu, 2);
754
755         xen_mc_issue(PARAVIRT_LAZY_CPU);
756 }
757
758 #ifdef CONFIG_X86_64
759 static void xen_load_gs_index(unsigned int idx)
760 {
761         if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
762                 BUG();
763 }
764 #endif
765
766 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
767                                 const void *ptr)
768 {
769         xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
770         u64 entry = *(u64 *)ptr;
771
772         trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
773
774         preempt_disable();
775
776         xen_mc_flush();
777         if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
778                 BUG();
779
780         preempt_enable();
781 }
782
783 static int cvt_gate_to_trap(int vector, const gate_desc *val,
784                             struct trap_info *info)
785 {
786         unsigned long addr;
787
788         if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
789                 return 0;
790
791         info->vector = vector;
792
793         addr = gate_offset(*val);
794 #ifdef CONFIG_X86_64
795         /*
796          * Look for known traps using IST, and substitute them
797          * appropriately.  The debugger ones are the only ones we care
798          * about.  Xen will handle faults like double_fault,
799          * so we should never see them.  Warn if
800          * there's an unexpected IST-using fault handler.
801          */
802         if (addr == (unsigned long)debug)
803                 addr = (unsigned long)xen_debug;
804         else if (addr == (unsigned long)int3)
805                 addr = (unsigned long)xen_int3;
806         else if (addr == (unsigned long)stack_segment)
807                 addr = (unsigned long)xen_stack_segment;
808         else if (addr == (unsigned long)double_fault) {
809                 /* Don't need to handle these */
810                 return 0;
811 #ifdef CONFIG_X86_MCE
812         } else if (addr == (unsigned long)machine_check) {
813                 /*
814                  * when xen hypervisor inject vMCE to guest,
815                  * use native mce handler to handle it
816                  */
817                 ;
818 #endif
819         } else if (addr == (unsigned long)nmi)
820                 /*
821                  * Use the native version as well.
822                  */
823                 ;
824         else {
825                 /* Some other trap using IST? */
826                 if (WARN_ON(val->ist != 0))
827                         return 0;
828         }
829 #endif  /* CONFIG_X86_64 */
830         info->address = addr;
831
832         info->cs = gate_segment(*val);
833         info->flags = val->dpl;
834         /* interrupt gates clear IF */
835         if (val->type == GATE_INTERRUPT)
836                 info->flags |= 1 << 2;
837
838         return 1;
839 }
840
841 /* Locations of each CPU's IDT */
842 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
843
844 /* Set an IDT entry.  If the entry is part of the current IDT, then
845    also update Xen. */
846 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
847 {
848         unsigned long p = (unsigned long)&dt[entrynum];
849         unsigned long start, end;
850
851         trace_xen_cpu_write_idt_entry(dt, entrynum, g);
852
853         preempt_disable();
854
855         start = __this_cpu_read(idt_desc.address);
856         end = start + __this_cpu_read(idt_desc.size) + 1;
857
858         xen_mc_flush();
859
860         native_write_idt_entry(dt, entrynum, g);
861
862         if (p >= start && (p + 8) <= end) {
863                 struct trap_info info[2];
864
865                 info[1].address = 0;
866
867                 if (cvt_gate_to_trap(entrynum, g, &info[0]))
868                         if (HYPERVISOR_set_trap_table(info))
869                                 BUG();
870         }
871
872         preempt_enable();
873 }
874
875 static unsigned xen_convert_trap_info(const struct desc_ptr *desc,
876                                       struct trap_info *traps, bool full)
877 {
878         unsigned in, out, count;
879
880         count = (desc->size+1) / sizeof(gate_desc);
881         BUG_ON(count > 256);
882
883         for (in = out = 0; in < count; in++) {
884                 gate_desc *entry = (gate_desc*)(desc->address) + in;
885
886                 if (cvt_gate_to_trap(in, entry, &traps[out]) || full)
887                         out++;
888         }
889
890         return out;
891 }
892
893 void xen_copy_trap_info(struct trap_info *traps)
894 {
895         const struct desc_ptr *desc = this_cpu_ptr(&idt_desc);
896
897         xen_convert_trap_info(desc, traps, true);
898 }
899
900 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
901    hold a spinlock to protect the static traps[] array (static because
902    it avoids allocation, and saves stack space). */
903 static void xen_load_idt(const struct desc_ptr *desc)
904 {
905         static DEFINE_SPINLOCK(lock);
906         static struct trap_info traps[257];
907         unsigned out;
908
909         trace_xen_cpu_load_idt(desc);
910
911         spin_lock(&lock);
912
913         memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc));
914
915         out = xen_convert_trap_info(desc, traps, false);
916         memset(&traps[out], 0, sizeof(traps[0]));
917
918         xen_mc_flush();
919         if (HYPERVISOR_set_trap_table(traps))
920                 BUG();
921
922         spin_unlock(&lock);
923 }
924
925 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
926    they're handled differently. */
927 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
928                                 const void *desc, int type)
929 {
930         trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
931
932         preempt_disable();
933
934         switch (type) {
935         case DESC_LDT:
936         case DESC_TSS:
937                 /* ignore */
938                 break;
939
940         default: {
941                 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
942
943                 xen_mc_flush();
944                 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
945                         BUG();
946         }
947
948         }
949
950         preempt_enable();
951 }
952
953 /*
954  * Version of write_gdt_entry for use at early boot-time needed to
955  * update an entry as simply as possible.
956  */
957 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
958                                             const void *desc, int type)
959 {
960         trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
961
962         switch (type) {
963         case DESC_LDT:
964         case DESC_TSS:
965                 /* ignore */
966                 break;
967
968         default: {
969                 xmaddr_t maddr = virt_to_machine(&dt[entry]);
970
971                 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
972                         dt[entry] = *(struct desc_struct *)desc;
973         }
974
975         }
976 }
977
978 static void xen_load_sp0(struct tss_struct *tss,
979                          struct thread_struct *thread)
980 {
981         struct multicall_space mcs;
982
983         mcs = xen_mc_entry(0);
984         MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
985         xen_mc_issue(PARAVIRT_LAZY_CPU);
986         tss->x86_tss.sp0 = thread->sp0;
987 }
988
989 void xen_set_iopl_mask(unsigned mask)
990 {
991         struct physdev_set_iopl set_iopl;
992
993         /* Force the change at ring 0. */
994         set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
995         HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
996 }
997
998 static void xen_io_delay(void)
999 {
1000 }
1001
1002 static void xen_clts(void)
1003 {
1004         struct multicall_space mcs;
1005
1006         mcs = xen_mc_entry(0);
1007
1008         MULTI_fpu_taskswitch(mcs.mc, 0);
1009
1010         xen_mc_issue(PARAVIRT_LAZY_CPU);
1011 }
1012
1013 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
1014
1015 static unsigned long xen_read_cr0(void)
1016 {
1017         unsigned long cr0 = this_cpu_read(xen_cr0_value);
1018
1019         if (unlikely(cr0 == 0)) {
1020                 cr0 = native_read_cr0();
1021                 this_cpu_write(xen_cr0_value, cr0);
1022         }
1023
1024         return cr0;
1025 }
1026
1027 static void xen_write_cr0(unsigned long cr0)
1028 {
1029         struct multicall_space mcs;
1030
1031         this_cpu_write(xen_cr0_value, cr0);
1032
1033         /* Only pay attention to cr0.TS; everything else is
1034            ignored. */
1035         mcs = xen_mc_entry(0);
1036
1037         MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
1038
1039         xen_mc_issue(PARAVIRT_LAZY_CPU);
1040 }
1041
1042 static void xen_write_cr4(unsigned long cr4)
1043 {
1044         cr4 &= ~(X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PCE);
1045
1046         native_write_cr4(cr4);
1047 }
1048 #ifdef CONFIG_X86_64
1049 static inline unsigned long xen_read_cr8(void)
1050 {
1051         return 0;
1052 }
1053 static inline void xen_write_cr8(unsigned long val)
1054 {
1055         BUG_ON(val);
1056 }
1057 #endif
1058
1059 static u64 xen_read_msr_safe(unsigned int msr, int *err)
1060 {
1061         u64 val;
1062
1063         if (pmu_msr_read(msr, &val, err))
1064                 return val;
1065
1066         val = native_read_msr_safe(msr, err);
1067         switch (msr) {
1068         case MSR_IA32_APICBASE:
1069 #ifdef CONFIG_X86_X2APIC
1070                 if (!(cpuid_ecx(1) & (1 << (X86_FEATURE_X2APIC & 31))))
1071 #endif
1072                         val &= ~X2APIC_ENABLE;
1073                 break;
1074         }
1075         return val;
1076 }
1077
1078 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
1079 {
1080         int ret;
1081
1082         ret = 0;
1083
1084         switch (msr) {
1085 #ifdef CONFIG_X86_64
1086                 unsigned which;
1087                 u64 base;
1088
1089         case MSR_FS_BASE:               which = SEGBASE_FS; goto set;
1090         case MSR_KERNEL_GS_BASE:        which = SEGBASE_GS_USER; goto set;
1091         case MSR_GS_BASE:               which = SEGBASE_GS_KERNEL; goto set;
1092
1093         set:
1094                 base = ((u64)high << 32) | low;
1095                 if (HYPERVISOR_set_segment_base(which, base) != 0)
1096                         ret = -EIO;
1097                 break;
1098 #endif
1099
1100         case MSR_STAR:
1101         case MSR_CSTAR:
1102         case MSR_LSTAR:
1103         case MSR_SYSCALL_MASK:
1104         case MSR_IA32_SYSENTER_CS:
1105         case MSR_IA32_SYSENTER_ESP:
1106         case MSR_IA32_SYSENTER_EIP:
1107                 /* Fast syscall setup is all done in hypercalls, so
1108                    these are all ignored.  Stub them out here to stop
1109                    Xen console noise. */
1110                 break;
1111
1112         default:
1113                 if (!pmu_msr_write(msr, low, high, &ret))
1114                         ret = native_write_msr_safe(msr, low, high);
1115         }
1116
1117         return ret;
1118 }
1119
1120 static u64 xen_read_msr(unsigned int msr)
1121 {
1122         /*
1123          * This will silently swallow a #GP from RDMSR.  It may be worth
1124          * changing that.
1125          */
1126         int err;
1127
1128         return xen_read_msr_safe(msr, &err);
1129 }
1130
1131 static void xen_write_msr(unsigned int msr, unsigned low, unsigned high)
1132 {
1133         /*
1134          * This will silently swallow a #GP from WRMSR.  It may be worth
1135          * changing that.
1136          */
1137         xen_write_msr_safe(msr, low, high);
1138 }
1139
1140 void xen_setup_shared_info(void)
1141 {
1142         if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1143                 set_fixmap(FIX_PARAVIRT_BOOTMAP,
1144                            xen_start_info->shared_info);
1145
1146                 HYPERVISOR_shared_info =
1147                         (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
1148         } else
1149                 HYPERVISOR_shared_info =
1150                         (struct shared_info *)__va(xen_start_info->shared_info);
1151
1152 #ifndef CONFIG_SMP
1153         /* In UP this is as good a place as any to set up shared info */
1154         xen_setup_vcpu_info_placement();
1155 #endif
1156
1157         xen_setup_mfn_list_list();
1158 }
1159
1160 /* This is called once we have the cpu_possible_mask */
1161 void xen_setup_vcpu_info_placement(void)
1162 {
1163         int cpu;
1164
1165         for_each_possible_cpu(cpu) {
1166                 /* Set up direct vCPU id mapping for PV guests. */
1167                 per_cpu(xen_vcpu_id, cpu) = cpu;
1168                 xen_vcpu_setup(cpu);
1169         }
1170
1171         /* xen_vcpu_setup managed to place the vcpu_info within the
1172          * percpu area for all cpus, so make use of it. Note that for
1173          * PVH we want to use native IRQ mechanism. */
1174         if (have_vcpu_info_placement && !xen_pvh_domain()) {
1175                 pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1176                 pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
1177                 pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1178                 pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1179                 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1180         }
1181 }
1182
1183 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
1184                           unsigned long addr, unsigned len)
1185 {
1186         char *start, *end, *reloc;
1187         unsigned ret;
1188
1189         start = end = reloc = NULL;
1190
1191 #define SITE(op, x)                                                     \
1192         case PARAVIRT_PATCH(op.x):                                      \
1193         if (have_vcpu_info_placement) {                                 \
1194                 start = (char *)xen_##x##_direct;                       \
1195                 end = xen_##x##_direct_end;                             \
1196                 reloc = xen_##x##_direct_reloc;                         \
1197         }                                                               \
1198         goto patch_site
1199
1200         switch (type) {
1201                 SITE(pv_irq_ops, irq_enable);
1202                 SITE(pv_irq_ops, irq_disable);
1203                 SITE(pv_irq_ops, save_fl);
1204                 SITE(pv_irq_ops, restore_fl);
1205 #undef SITE
1206
1207         patch_site:
1208                 if (start == NULL || (end-start) > len)
1209                         goto default_patch;
1210
1211                 ret = paravirt_patch_insns(insnbuf, len, start, end);
1212
1213                 /* Note: because reloc is assigned from something that
1214                    appears to be an array, gcc assumes it's non-null,
1215                    but doesn't know its relationship with start and
1216                    end. */
1217                 if (reloc > start && reloc < end) {
1218                         int reloc_off = reloc - start;
1219                         long *relocp = (long *)(insnbuf + reloc_off);
1220                         long delta = start - (char *)addr;
1221
1222                         *relocp += delta;
1223                 }
1224                 break;
1225
1226         default_patch:
1227         default:
1228                 ret = paravirt_patch_default(type, clobbers, insnbuf,
1229                                              addr, len);
1230                 break;
1231         }
1232
1233         return ret;
1234 }
1235
1236 static const struct pv_info xen_info __initconst = {
1237         .shared_kernel_pmd = 0,
1238
1239 #ifdef CONFIG_X86_64
1240         .extra_user_64bit_cs = FLAT_USER_CS64,
1241 #endif
1242         .name = "Xen",
1243 };
1244
1245 static const struct pv_init_ops xen_init_ops __initconst = {
1246         .patch = xen_patch,
1247 };
1248
1249 static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1250         .cpuid = xen_cpuid,
1251
1252         .set_debugreg = xen_set_debugreg,
1253         .get_debugreg = xen_get_debugreg,
1254
1255         .clts = xen_clts,
1256
1257         .read_cr0 = xen_read_cr0,
1258         .write_cr0 = xen_write_cr0,
1259
1260         .read_cr4 = native_read_cr4,
1261         .write_cr4 = xen_write_cr4,
1262
1263 #ifdef CONFIG_X86_64
1264         .read_cr8 = xen_read_cr8,
1265         .write_cr8 = xen_write_cr8,
1266 #endif
1267
1268         .wbinvd = native_wbinvd,
1269
1270         .read_msr = xen_read_msr,
1271         .write_msr = xen_write_msr,
1272
1273         .read_msr_safe = xen_read_msr_safe,
1274         .write_msr_safe = xen_write_msr_safe,
1275
1276         .read_pmc = xen_read_pmc,
1277
1278         .iret = xen_iret,
1279 #ifdef CONFIG_X86_64
1280         .usergs_sysret64 = xen_sysret64,
1281 #endif
1282
1283         .load_tr_desc = paravirt_nop,
1284         .set_ldt = xen_set_ldt,
1285         .load_gdt = xen_load_gdt,
1286         .load_idt = xen_load_idt,
1287         .load_tls = xen_load_tls,
1288 #ifdef CONFIG_X86_64
1289         .load_gs_index = xen_load_gs_index,
1290 #endif
1291
1292         .alloc_ldt = xen_alloc_ldt,
1293         .free_ldt = xen_free_ldt,
1294
1295         .store_idt = native_store_idt,
1296         .store_tr = xen_store_tr,
1297
1298         .write_ldt_entry = xen_write_ldt_entry,
1299         .write_gdt_entry = xen_write_gdt_entry,
1300         .write_idt_entry = xen_write_idt_entry,
1301         .load_sp0 = xen_load_sp0,
1302
1303         .set_iopl_mask = xen_set_iopl_mask,
1304         .io_delay = xen_io_delay,
1305
1306         /* Xen takes care of %gs when switching to usermode for us */
1307         .swapgs = paravirt_nop,
1308
1309         .start_context_switch = paravirt_start_context_switch,
1310         .end_context_switch = xen_end_context_switch,
1311 };
1312
1313 static void xen_reboot(int reason)
1314 {
1315         struct sched_shutdown r = { .reason = reason };
1316         int cpu;
1317
1318         for_each_online_cpu(cpu)
1319                 xen_pmu_finish(cpu);
1320
1321         if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1322                 BUG();
1323 }
1324
1325 static void xen_restart(char *msg)
1326 {
1327         xen_reboot(SHUTDOWN_reboot);
1328 }
1329
1330 static void xen_emergency_restart(void)
1331 {
1332         xen_reboot(SHUTDOWN_reboot);
1333 }
1334
1335 static void xen_machine_halt(void)
1336 {
1337         xen_reboot(SHUTDOWN_poweroff);
1338 }
1339
1340 static void xen_machine_power_off(void)
1341 {
1342         if (pm_power_off)
1343                 pm_power_off();
1344         xen_reboot(SHUTDOWN_poweroff);
1345 }
1346
1347 static void xen_crash_shutdown(struct pt_regs *regs)
1348 {
1349         xen_reboot(SHUTDOWN_crash);
1350 }
1351
1352 static int
1353 xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
1354 {
1355         if (!kexec_crash_loaded())
1356                 xen_reboot(SHUTDOWN_crash);
1357         return NOTIFY_DONE;
1358 }
1359
1360 static struct notifier_block xen_panic_block = {
1361         .notifier_call= xen_panic_event,
1362         .priority = INT_MIN
1363 };
1364
1365 int xen_panic_handler_init(void)
1366 {
1367         atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
1368         return 0;
1369 }
1370
1371 static const struct machine_ops xen_machine_ops __initconst = {
1372         .restart = xen_restart,
1373         .halt = xen_machine_halt,
1374         .power_off = xen_machine_power_off,
1375         .shutdown = xen_machine_halt,
1376         .crash_shutdown = xen_crash_shutdown,
1377         .emergency_restart = xen_emergency_restart,
1378 };
1379
1380 static unsigned char xen_get_nmi_reason(void)
1381 {
1382         unsigned char reason = 0;
1383
1384         /* Construct a value which looks like it came from port 0x61. */
1385         if (test_bit(_XEN_NMIREASON_io_error,
1386                      &HYPERVISOR_shared_info->arch.nmi_reason))
1387                 reason |= NMI_REASON_IOCHK;
1388         if (test_bit(_XEN_NMIREASON_pci_serr,
1389                      &HYPERVISOR_shared_info->arch.nmi_reason))
1390                 reason |= NMI_REASON_SERR;
1391
1392         return reason;
1393 }
1394
1395 static void __init xen_boot_params_init_edd(void)
1396 {
1397 #if IS_ENABLED(CONFIG_EDD)
1398         struct xen_platform_op op;
1399         struct edd_info *edd_info;
1400         u32 *mbr_signature;
1401         unsigned nr;
1402         int ret;
1403
1404         edd_info = boot_params.eddbuf;
1405         mbr_signature = boot_params.edd_mbr_sig_buffer;
1406
1407         op.cmd = XENPF_firmware_info;
1408
1409         op.u.firmware_info.type = XEN_FW_DISK_INFO;
1410         for (nr = 0; nr < EDDMAXNR; nr++) {
1411                 struct edd_info *info = edd_info + nr;
1412
1413                 op.u.firmware_info.index = nr;
1414                 info->params.length = sizeof(info->params);
1415                 set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
1416                                      &info->params);
1417                 ret = HYPERVISOR_platform_op(&op);
1418                 if (ret)
1419                         break;
1420
1421 #define C(x) info->x = op.u.firmware_info.u.disk_info.x
1422                 C(device);
1423                 C(version);
1424                 C(interface_support);
1425                 C(legacy_max_cylinder);
1426                 C(legacy_max_head);
1427                 C(legacy_sectors_per_track);
1428 #undef C
1429         }
1430         boot_params.eddbuf_entries = nr;
1431
1432         op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
1433         for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
1434                 op.u.firmware_info.index = nr;
1435                 ret = HYPERVISOR_platform_op(&op);
1436                 if (ret)
1437                         break;
1438                 mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
1439         }
1440         boot_params.edd_mbr_sig_buf_entries = nr;
1441 #endif
1442 }
1443
1444 /*
1445  * Set up the GDT and segment registers for -fstack-protector.  Until
1446  * we do this, we have to be careful not to call any stack-protected
1447  * function, which is most of the kernel.
1448  *
1449  * Note, that it is __ref because the only caller of this after init
1450  * is PVH which is not going to use xen_load_gdt_boot or other
1451  * __init functions.
1452  */
1453 static void __ref xen_setup_gdt(int cpu)
1454 {
1455         if (xen_feature(XENFEAT_auto_translated_physmap)) {
1456 #ifdef CONFIG_X86_64
1457                 unsigned long dummy;
1458
1459                 load_percpu_segment(cpu); /* We need to access per-cpu area */
1460                 switch_to_new_gdt(cpu); /* GDT and GS set */
1461
1462                 /* We are switching of the Xen provided GDT to our HVM mode
1463                  * GDT. The new GDT has  __KERNEL_CS with CS.L = 1
1464                  * and we are jumping to reload it.
1465                  */
1466                 asm volatile (UNWIND_HINT_SAVE
1467                               "pushq %0\n"
1468                               "leaq 1f(%%rip),%0\n"
1469                               "pushq %0\n"
1470                               "lretq\n"
1471                               UNWIND_HINT_RESTORE
1472                               "1:\n"
1473                               : "=&r" (dummy) : "0" (__KERNEL_CS));
1474
1475                 /*
1476                  * While not needed, we also set the %es, %ds, and %fs
1477                  * to zero. We don't care about %ss as it is NULL.
1478                  * Strictly speaking this is not needed as Xen zeros those
1479                  * out (and also MSR_FS_BASE, MSR_GS_BASE, MSR_KERNEL_GS_BASE)
1480                  *
1481                  * Linux zeros them in cpu_init() and in secondary_startup_64
1482                  * (for BSP).
1483                  */
1484                 loadsegment(es, 0);
1485                 loadsegment(ds, 0);
1486                 loadsegment(fs, 0);
1487 #else
1488                 /* PVH: TODO Implement. */
1489                 BUG();
1490 #endif
1491                 return; /* PVH does not need any PV GDT ops. */
1492         }
1493         pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1494         pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1495
1496         setup_stack_canary_segment(0);
1497         switch_to_new_gdt(0);
1498
1499         pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1500         pv_cpu_ops.load_gdt = xen_load_gdt;
1501 }
1502
1503 #ifdef CONFIG_XEN_PVH
1504 /*
1505  * A PV guest starts with default flags that are not set for PVH, set them
1506  * here asap.
1507  */
1508 static void xen_pvh_set_cr_flags(int cpu)
1509 {
1510
1511         /* Some of these are setup in 'secondary_startup_64'. The others:
1512          * X86_CR0_TS, X86_CR0_PE, X86_CR0_ET are set by Xen for HVM guests
1513          * (which PVH shared codepaths), while X86_CR0_PG is for PVH. */
1514         write_cr0(read_cr0() | X86_CR0_MP | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM);
1515
1516         if (!cpu)
1517                 return;
1518         /*
1519          * For BSP, PSE PGE are set in probe_page_size_mask(), for APs
1520          * set them here. For all, OSFXSR OSXMMEXCPT are set in fpu__init_cpu().
1521         */
1522         if (boot_cpu_has(X86_FEATURE_PSE))
1523                 cr4_set_bits_and_update_boot(X86_CR4_PSE);
1524
1525         if (boot_cpu_has(X86_FEATURE_PGE))
1526                 cr4_set_bits_and_update_boot(X86_CR4_PGE);
1527 }
1528
1529 /*
1530  * Note, that it is ref - because the only caller of this after init
1531  * is PVH which is not going to use xen_load_gdt_boot or other
1532  * __init functions.
1533  */
1534 void __ref xen_pvh_secondary_vcpu_init(int cpu)
1535 {
1536         xen_setup_gdt(cpu);
1537         xen_pvh_set_cr_flags(cpu);
1538 }
1539
1540 static void __init xen_pvh_early_guest_init(void)
1541 {
1542         if (!xen_feature(XENFEAT_auto_translated_physmap))
1543                 return;
1544
1545         if (!xen_feature(XENFEAT_hvm_callback_vector))
1546                 return;
1547
1548         xen_have_vector_callback = 1;
1549
1550         xen_pvh_early_cpu_init(0, false);
1551         xen_pvh_set_cr_flags(0);
1552
1553 #ifdef CONFIG_X86_32
1554         BUG(); /* PVH: Implement proper support. */
1555 #endif
1556 }
1557 #endif    /* CONFIG_XEN_PVH */
1558
1559 static void __init xen_dom0_set_legacy_features(void)
1560 {
1561         x86_platform.legacy.rtc = 1;
1562 }
1563
1564 static int xen_cpuhp_setup(void)
1565 {
1566         int rc;
1567
1568         rc = cpuhp_setup_state_nocalls(CPUHP_XEN_PREPARE,
1569                                        "XEN_HVM_GUEST_PREPARE",
1570                                        xen_cpu_up_prepare, xen_cpu_dead);
1571         if (rc >= 0) {
1572                 rc = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
1573                                                "XEN_HVM_GUEST_ONLINE",
1574                                                xen_cpu_up_online, NULL);
1575                 if (rc < 0)
1576                         cpuhp_remove_state_nocalls(CPUHP_XEN_PREPARE);
1577         }
1578
1579         return rc >= 0 ? 0 : rc;
1580 }
1581
1582 static void __init xen_domu_set_legacy_features(void)
1583 {
1584         x86_platform.legacy.rtc = 0;
1585 }
1586
1587 /* First C function to be called on Xen boot */
1588 asmlinkage __visible void __init xen_start_kernel(void)
1589 {
1590         struct physdev_set_iopl set_iopl;
1591         unsigned long initrd_start = 0;
1592         int rc;
1593
1594         if (!xen_start_info)
1595                 return;
1596
1597         xen_domain_type = XEN_PV_DOMAIN;
1598
1599         xen_setup_features();
1600 #ifdef CONFIG_XEN_PVH
1601         xen_pvh_early_guest_init();
1602 #endif
1603         xen_setup_machphys_mapping();
1604
1605         /* Install Xen paravirt ops */
1606         pv_info = xen_info;
1607         pv_init_ops = xen_init_ops;
1608         if (!xen_pvh_domain()) {
1609                 pv_cpu_ops = xen_cpu_ops;
1610
1611                 x86_platform.get_nmi_reason = xen_get_nmi_reason;
1612         }
1613
1614         if (xen_feature(XENFEAT_auto_translated_physmap))
1615                 x86_init.resources.memory_setup = xen_auto_xlated_memory_setup;
1616         else
1617                 x86_init.resources.memory_setup = xen_memory_setup;
1618         x86_init.oem.arch_setup = xen_arch_setup;
1619         x86_init.oem.banner = xen_banner;
1620
1621         xen_init_time_ops();
1622
1623         /*
1624          * Set up some pagetable state before starting to set any ptes.
1625          */
1626
1627         xen_init_mmu_ops();
1628
1629         /* Prevent unwanted bits from being set in PTEs. */
1630         __supported_pte_mask &= ~_PAGE_GLOBAL;
1631
1632         /*
1633          * Prevent page tables from being allocated in highmem, even
1634          * if CONFIG_HIGHPTE is enabled.
1635          */
1636         __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1637
1638         /* Work out if we support NX */
1639         x86_configure_nx();
1640
1641         /* Get mfn list */
1642         xen_build_dynamic_phys_to_machine();
1643
1644         /*
1645          * Set up kernel GDT and segment registers, mainly so that
1646          * -fstack-protector code can be executed.
1647          */
1648         xen_setup_gdt(0);
1649
1650         xen_init_irq_ops();
1651         xen_init_cpuid_mask();
1652         xen_init_capabilities();
1653
1654 #ifdef CONFIG_X86_LOCAL_APIC
1655         /*
1656          * set up the basic apic ops.
1657          */
1658         xen_init_apic();
1659 #endif
1660
1661         if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1662                 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1663                 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1664         }
1665
1666         machine_ops = xen_machine_ops;
1667
1668         /*
1669          * The only reliable way to retain the initial address of the
1670          * percpu gdt_page is to remember it here, so we can go and
1671          * mark it RW later, when the initial percpu area is freed.
1672          */
1673         xen_initial_gdt = &per_cpu(gdt_page, 0);
1674
1675         xen_smp_init();
1676
1677 #ifdef CONFIG_ACPI_NUMA
1678         /*
1679          * The pages we from Xen are not related to machine pages, so
1680          * any NUMA information the kernel tries to get from ACPI will
1681          * be meaningless.  Prevent it from trying.
1682          */
1683         acpi_numa = -1;
1684 #endif
1685         /* Don't do the full vcpu_info placement stuff until we have a
1686            possible map and a non-dummy shared_info. */
1687         per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1688
1689         WARN_ON(xen_cpuhp_setup());
1690
1691         local_irq_disable();
1692         early_boot_irqs_disabled = true;
1693
1694         xen_raw_console_write("mapping kernel into physical memory\n");
1695         xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base,
1696                                    xen_start_info->nr_pages);
1697         xen_reserve_special_pages();
1698
1699         /* keep using Xen gdt for now; no urgent need to change it */
1700
1701 #ifdef CONFIG_X86_32
1702         pv_info.kernel_rpl = 1;
1703         if (xen_feature(XENFEAT_supervisor_mode_kernel))
1704                 pv_info.kernel_rpl = 0;
1705 #else
1706         pv_info.kernel_rpl = 0;
1707 #endif
1708         /* set the limit of our address space */
1709         xen_reserve_top();
1710
1711         /* PVH: runs at default kernel iopl of 0 */
1712         if (!xen_pvh_domain()) {
1713                 /*
1714                  * We used to do this in xen_arch_setup, but that is too late
1715                  * on AMD were early_cpu_init (run before ->arch_setup()) calls
1716                  * early_amd_init which pokes 0xcf8 port.
1717                  */
1718                 set_iopl.iopl = 1;
1719                 rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1720                 if (rc != 0)
1721                         xen_raw_printk("physdev_op failed %d\n", rc);
1722         }
1723
1724 #ifdef CONFIG_X86_32
1725         /* set up basic CPUID stuff */
1726         cpu_detect(&new_cpu_data);
1727         set_cpu_cap(&new_cpu_data, X86_FEATURE_FPU);
1728         new_cpu_data.wp_works_ok = 1;
1729         new_cpu_data.x86_capability[CPUID_1_EDX] = cpuid_edx(1);
1730 #endif
1731
1732         if (xen_start_info->mod_start) {
1733             if (xen_start_info->flags & SIF_MOD_START_PFN)
1734                 initrd_start = PFN_PHYS(xen_start_info->mod_start);
1735             else
1736                 initrd_start = __pa(xen_start_info->mod_start);
1737         }
1738
1739         /* Poke various useful things into boot_params */
1740         boot_params.hdr.type_of_loader = (9 << 4) | 0;
1741         boot_params.hdr.ramdisk_image = initrd_start;
1742         boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1743         boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1744         boot_params.hdr.hardware_subarch = X86_SUBARCH_XEN;
1745
1746         if (!xen_initial_domain()) {
1747                 add_preferred_console("xenboot", 0, NULL);
1748                 add_preferred_console("tty", 0, NULL);
1749                 add_preferred_console("hvc", 0, NULL);
1750                 if (pci_xen)
1751                         x86_init.pci.arch_init = pci_xen_init;
1752                 x86_platform.set_legacy_features =
1753                                 xen_domu_set_legacy_features;
1754         } else {
1755                 const struct dom0_vga_console_info *info =
1756                         (void *)((char *)xen_start_info +
1757                                  xen_start_info->console.dom0.info_off);
1758                 struct xen_platform_op op = {
1759                         .cmd = XENPF_firmware_info,
1760                         .interface_version = XENPF_INTERFACE_VERSION,
1761                         .u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1762                 };
1763
1764                 x86_platform.set_legacy_features =
1765                                 xen_dom0_set_legacy_features;
1766                 xen_init_vga(info, xen_start_info->console.dom0.info_size);
1767                 xen_start_info->console.domU.mfn = 0;
1768                 xen_start_info->console.domU.evtchn = 0;
1769
1770                 if (HYPERVISOR_platform_op(&op) == 0)
1771                         boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1772
1773                 /* Make sure ACS will be enabled */
1774                 pci_request_acs();
1775
1776                 xen_acpi_sleep_register();
1777
1778                 /* Avoid searching for BIOS MP tables */
1779                 x86_init.mpparse.find_smp_config = x86_init_noop;
1780                 x86_init.mpparse.get_smp_config = x86_init_uint_noop;
1781
1782                 xen_boot_params_init_edd();
1783         }
1784 #ifdef CONFIG_PCI
1785         /* PCI BIOS service won't work from a PV guest. */
1786         pci_probe &= ~PCI_PROBE_BIOS;
1787 #endif
1788         xen_raw_console_write("about to get started...\n");
1789
1790         /* Let's presume PV guests always boot on vCPU with id 0. */
1791         per_cpu(xen_vcpu_id, 0) = 0;
1792
1793         xen_setup_runstate_info(0);
1794
1795         xen_efi_init();
1796
1797         /* Start the world */
1798 #ifdef CONFIG_X86_32
1799         i386_start_kernel();
1800 #else
1801         cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */
1802         x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1803 #endif
1804 }
1805
1806 void __ref xen_hvm_init_shared_info(void)
1807 {
1808         int cpu;
1809         struct xen_add_to_physmap xatp;
1810         static struct shared_info *shared_info_page = 0;
1811
1812         if (!shared_info_page)
1813                 shared_info_page = (struct shared_info *)
1814                         extend_brk(PAGE_SIZE, PAGE_SIZE);
1815         xatp.domid = DOMID_SELF;
1816         xatp.idx = 0;
1817         xatp.space = XENMAPSPACE_shared_info;
1818         xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT;
1819         if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
1820                 BUG();
1821
1822         HYPERVISOR_shared_info = (struct shared_info *)shared_info_page;
1823
1824         /* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
1825          * page, we use it in the event channel upcall and in some pvclock
1826          * related functions. We don't need the vcpu_info placement
1827          * optimizations because we don't use any pv_mmu or pv_irq op on
1828          * HVM.
1829          * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is
1830          * online but xen_hvm_init_shared_info is run at resume time too and
1831          * in that case multiple vcpus might be online. */
1832         for_each_online_cpu(cpu) {
1833                 /* Leave it to be NULL. */
1834                 if (xen_vcpu_nr(cpu) >= MAX_VIRT_CPUS)
1835                         continue;
1836                 per_cpu(xen_vcpu, cpu) =
1837                         &HYPERVISOR_shared_info->vcpu_info[xen_vcpu_nr(cpu)];
1838         }
1839 }
1840
1841 #ifdef CONFIG_XEN_PVHVM
1842 static void __init init_hvm_pv_info(void)
1843 {
1844         int major, minor;
1845         uint32_t eax, ebx, ecx, edx, pages, msr, base;
1846         u64 pfn;
1847
1848         base = xen_cpuid_base();
1849         cpuid(base + 1, &eax, &ebx, &ecx, &edx);
1850
1851         major = eax >> 16;
1852         minor = eax & 0xffff;
1853         printk(KERN_INFO "Xen version %d.%d.\n", major, minor);
1854
1855         cpuid(base + 2, &pages, &msr, &ecx, &edx);
1856
1857         pfn = __pa(hypercall_page);
1858         wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
1859
1860         xen_setup_features();
1861
1862         cpuid(base + 4, &eax, &ebx, &ecx, &edx);
1863         if (eax & XEN_HVM_CPUID_VCPU_ID_PRESENT)
1864                 this_cpu_write(xen_vcpu_id, ebx);
1865         else
1866                 this_cpu_write(xen_vcpu_id, smp_processor_id());
1867
1868         pv_info.name = "Xen HVM";
1869
1870         xen_domain_type = XEN_HVM_DOMAIN;
1871 }
1872 #endif
1873
1874 static int xen_cpu_up_prepare(unsigned int cpu)
1875 {
1876         int rc;
1877
1878         if (xen_hvm_domain()) {
1879                 /*
1880                  * This can happen if CPU was offlined earlier and
1881                  * offlining timed out in common_cpu_die().
1882                  */
1883                 if (cpu_report_state(cpu) == CPU_DEAD_FROZEN) {
1884                         xen_smp_intr_free(cpu);
1885                         xen_uninit_lock_cpu(cpu);
1886                 }
1887
1888                 if (cpu_acpi_id(cpu) != U32_MAX)
1889                         per_cpu(xen_vcpu_id, cpu) = cpu_acpi_id(cpu);
1890                 else
1891                         per_cpu(xen_vcpu_id, cpu) = cpu;
1892                 xen_vcpu_setup(cpu);
1893         }
1894
1895         if (xen_pv_domain() ||
1896             (xen_have_vector_callback &&
1897              xen_feature(XENFEAT_hvm_safe_pvclock)))
1898                 xen_setup_timer(cpu);
1899
1900         rc = xen_smp_intr_init(cpu);
1901         if (rc) {
1902                 WARN(1, "xen_smp_intr_init() for CPU %d failed: %d\n",
1903                      cpu, rc);
1904                 return rc;
1905         }
1906         return 0;
1907 }
1908
1909 static int xen_cpu_dead(unsigned int cpu)
1910 {
1911         xen_smp_intr_free(cpu);
1912
1913         if (xen_pv_domain() ||
1914             (xen_have_vector_callback &&
1915              xen_feature(XENFEAT_hvm_safe_pvclock)))
1916                 xen_teardown_timer(cpu);
1917
1918         return 0;
1919 }
1920
1921 static int xen_cpu_up_online(unsigned int cpu)
1922 {
1923         xen_init_lock_cpu(cpu);
1924         return 0;
1925 }
1926
1927 #ifdef CONFIG_XEN_PVHVM
1928 #ifdef CONFIG_KEXEC_CORE
1929 static void xen_hvm_shutdown(void)
1930 {
1931         native_machine_shutdown();
1932         if (kexec_in_progress)
1933                 xen_reboot(SHUTDOWN_soft_reset);
1934 }
1935
1936 static void xen_hvm_crash_shutdown(struct pt_regs *regs)
1937 {
1938         native_machine_crash_shutdown(regs);
1939         xen_reboot(SHUTDOWN_soft_reset);
1940 }
1941 #endif
1942
1943 static void __init xen_hvm_guest_init(void)
1944 {
1945         if (xen_pv_domain())
1946                 return;
1947
1948         init_hvm_pv_info();
1949
1950         xen_hvm_init_shared_info();
1951
1952         xen_panic_handler_init();
1953
1954         if (xen_feature(XENFEAT_hvm_callback_vector))
1955                 xen_have_vector_callback = 1;
1956         xen_hvm_smp_init();
1957         WARN_ON(xen_cpuhp_setup());
1958         xen_unplug_emulated_devices();
1959         x86_init.irqs.intr_init = xen_init_IRQ;
1960         xen_hvm_init_time_ops();
1961         xen_hvm_init_mmu_ops();
1962 #ifdef CONFIG_KEXEC_CORE
1963         machine_ops.shutdown = xen_hvm_shutdown;
1964         machine_ops.crash_shutdown = xen_hvm_crash_shutdown;
1965 #endif
1966 }
1967 #endif
1968
1969 static bool xen_nopv = false;
1970 static __init int xen_parse_nopv(char *arg)
1971 {
1972        xen_nopv = true;
1973        return 0;
1974 }
1975 early_param("xen_nopv", xen_parse_nopv);
1976
1977 static uint32_t __init xen_platform(void)
1978 {
1979         if (xen_nopv)
1980                 return 0;
1981
1982         return xen_cpuid_base();
1983 }
1984
1985 bool xen_hvm_need_lapic(void)
1986 {
1987         if (xen_nopv)
1988                 return false;
1989         if (xen_pv_domain())
1990                 return false;
1991         if (!xen_hvm_domain())
1992                 return false;
1993         if (xen_feature(XENFEAT_hvm_pirqs) && xen_have_vector_callback)
1994                 return false;
1995         return true;
1996 }
1997 EXPORT_SYMBOL_GPL(xen_hvm_need_lapic);
1998
1999 static void xen_pin_vcpu(int cpu)
2000 {
2001         static bool disable_pinning;
2002         struct sched_pin_override pin_override;
2003         int ret;
2004
2005         if (disable_pinning)
2006                 return;
2007
2008         pin_override.pcpu = cpu;
2009         ret = HYPERVISOR_sched_op(SCHEDOP_pin_override, &pin_override);
2010
2011         /* Ignore errors when removing override. */
2012         if (cpu < 0)
2013                 return;
2014
2015         switch (ret) {
2016         case -ENOSYS:
2017                 pr_warn("Unable to pin on physical cpu %d. In case of problems consider vcpu pinning.\n",
2018                         cpu);
2019                 disable_pinning = true;
2020                 break;
2021         case -EPERM:
2022                 WARN(1, "Trying to pin vcpu without having privilege to do so\n");
2023                 disable_pinning = true;
2024                 break;
2025         case -EINVAL:
2026         case -EBUSY:
2027                 pr_warn("Physical cpu %d not available for pinning. Check Xen cpu configuration.\n",
2028                         cpu);
2029                 break;
2030         case 0:
2031                 break;
2032         default:
2033                 WARN(1, "rc %d while trying to pin vcpu\n", ret);
2034                 disable_pinning = true;
2035         }
2036 }
2037
2038 const struct hypervisor_x86 x86_hyper_xen = {
2039         .name                   = "Xen",
2040         .detect                 = xen_platform,
2041 #ifdef CONFIG_XEN_PVHVM
2042         .init_platform          = xen_hvm_guest_init,
2043 #endif
2044         .x2apic_available       = xen_x2apic_para_available,
2045         .pin_vcpu               = xen_pin_vcpu,
2046 };
2047 EXPORT_SYMBOL(x86_hyper_xen);
2048
2049 #ifdef CONFIG_HOTPLUG_CPU
2050 void xen_arch_register_cpu(int num)
2051 {
2052         arch_register_cpu(num);
2053 }
2054 EXPORT_SYMBOL(xen_arch_register_cpu);
2055
2056 void xen_arch_unregister_cpu(int num)
2057 {
2058         arch_unregister_cpu(num);
2059 }
2060 EXPORT_SYMBOL(xen_arch_unregister_cpu);
2061 #endif