GNU Linux-libre 4.14.266-gnu1
[releases.git] / arch / xtensa / kernel / pci-dma.c
1 /*
2  * DMA coherent memory allocation.
3  *
4  * This program is free software; you can redistribute  it and/or modify it
5  * under  the terms of  the GNU General  Public License as published by the
6  * Free Software Foundation;  either version 2 of the  License, or (at your
7  * option) any later version.
8  *
9  * Copyright (C) 2002 - 2005 Tensilica Inc.
10  * Copyright (C) 2015 Cadence Design Systems Inc.
11  *
12  * Based on version for i386.
13  *
14  * Chris Zankel <chris@zankel.net>
15  * Joe Taylor <joe@tensilica.com, joetylr@yahoo.com>
16  */
17
18 #include <linux/dma-contiguous.h>
19 #include <linux/gfp.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/pci.h>
24 #include <linux/string.h>
25 #include <linux/types.h>
26 #include <asm/cacheflush.h>
27 #include <asm/io.h>
28
29 void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
30                     enum dma_data_direction dir)
31 {
32         switch (dir) {
33         case DMA_BIDIRECTIONAL:
34                 __flush_invalidate_dcache_range((unsigned long)vaddr, size);
35                 break;
36
37         case DMA_FROM_DEVICE:
38                 __invalidate_dcache_range((unsigned long)vaddr, size);
39                 break;
40
41         case DMA_TO_DEVICE:
42                 __flush_dcache_range((unsigned long)vaddr, size);
43                 break;
44
45         case DMA_NONE:
46                 BUG();
47                 break;
48         }
49 }
50 EXPORT_SYMBOL(dma_cache_sync);
51
52 static void do_cache_op(dma_addr_t dma_handle, size_t size,
53                         void (*fn)(unsigned long, unsigned long))
54 {
55         unsigned long off = dma_handle & (PAGE_SIZE - 1);
56         unsigned long pfn = PFN_DOWN(dma_handle);
57         struct page *page = pfn_to_page(pfn);
58
59         if (!PageHighMem(page))
60                 fn((unsigned long)bus_to_virt(dma_handle), size);
61         else
62                 while (size > 0) {
63                         size_t sz = min_t(size_t, size, PAGE_SIZE - off);
64                         void *vaddr = kmap_atomic(page);
65
66                         fn((unsigned long)vaddr + off, sz);
67                         kunmap_atomic(vaddr);
68                         off = 0;
69                         ++page;
70                         size -= sz;
71                 }
72 }
73
74 static void xtensa_sync_single_for_cpu(struct device *dev,
75                                        dma_addr_t dma_handle, size_t size,
76                                        enum dma_data_direction dir)
77 {
78         switch (dir) {
79         case DMA_BIDIRECTIONAL:
80         case DMA_FROM_DEVICE:
81                 do_cache_op(dma_handle, size, __invalidate_dcache_range);
82                 break;
83
84         case DMA_NONE:
85                 BUG();
86                 break;
87
88         default:
89                 break;
90         }
91 }
92
93 static void xtensa_sync_single_for_device(struct device *dev,
94                                           dma_addr_t dma_handle, size_t size,
95                                           enum dma_data_direction dir)
96 {
97         switch (dir) {
98         case DMA_BIDIRECTIONAL:
99         case DMA_TO_DEVICE:
100                 if (XCHAL_DCACHE_IS_WRITEBACK)
101                         do_cache_op(dma_handle, size, __flush_dcache_range);
102                 break;
103
104         case DMA_NONE:
105                 BUG();
106                 break;
107
108         default:
109                 break;
110         }
111 }
112
113 static void xtensa_sync_sg_for_cpu(struct device *dev,
114                                    struct scatterlist *sg, int nents,
115                                    enum dma_data_direction dir)
116 {
117         struct scatterlist *s;
118         int i;
119
120         for_each_sg(sg, s, nents, i) {
121                 xtensa_sync_single_for_cpu(dev, sg_dma_address(s),
122                                            sg_dma_len(s), dir);
123         }
124 }
125
126 static void xtensa_sync_sg_for_device(struct device *dev,
127                                       struct scatterlist *sg, int nents,
128                                       enum dma_data_direction dir)
129 {
130         struct scatterlist *s;
131         int i;
132
133         for_each_sg(sg, s, nents, i) {
134                 xtensa_sync_single_for_device(dev, sg_dma_address(s),
135                                               sg_dma_len(s), dir);
136         }
137 }
138
139 /*
140  * Note: We assume that the full memory space is always mapped to 'kseg'
141  *       Otherwise we have to use page attributes (not implemented).
142  */
143
144 static void *xtensa_dma_alloc(struct device *dev, size_t size,
145                               dma_addr_t *handle, gfp_t flag,
146                               unsigned long attrs)
147 {
148         unsigned long ret;
149         unsigned long uncached = 0;
150         unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
151         struct page *page = NULL;
152
153         /* ignore region speicifiers */
154
155         flag &= ~(__GFP_DMA | __GFP_HIGHMEM);
156
157         if (dev == NULL || (dev->coherent_dma_mask < 0xffffffff))
158                 flag |= GFP_DMA;
159
160         if (gfpflags_allow_blocking(flag))
161                 page = dma_alloc_from_contiguous(dev, count, get_order(size),
162                                                  flag);
163
164         if (!page)
165                 page = alloc_pages(flag, get_order(size));
166
167         if (!page)
168                 return NULL;
169
170         ret = (unsigned long)page_address(page);
171
172         /* We currently don't support coherent memory outside KSEG */
173
174         BUG_ON(ret < XCHAL_KSEG_CACHED_VADDR ||
175                ret > XCHAL_KSEG_CACHED_VADDR + XCHAL_KSEG_SIZE - 1);
176
177         uncached = ret + XCHAL_KSEG_BYPASS_VADDR - XCHAL_KSEG_CACHED_VADDR;
178         *handle = virt_to_bus((void *)ret);
179         __invalidate_dcache_range(ret, size);
180
181         return (void *)uncached;
182 }
183
184 static void xtensa_dma_free(struct device *dev, size_t size, void *vaddr,
185                             dma_addr_t dma_handle, unsigned long attrs)
186 {
187         unsigned long addr = (unsigned long)vaddr +
188                 XCHAL_KSEG_CACHED_VADDR - XCHAL_KSEG_BYPASS_VADDR;
189         struct page *page = virt_to_page(addr);
190         unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
191
192         BUG_ON(addr < XCHAL_KSEG_CACHED_VADDR ||
193                addr > XCHAL_KSEG_CACHED_VADDR + XCHAL_KSEG_SIZE - 1);
194
195         if (!dma_release_from_contiguous(dev, page, count))
196                 __free_pages(page, get_order(size));
197 }
198
199 static dma_addr_t xtensa_map_page(struct device *dev, struct page *page,
200                                   unsigned long offset, size_t size,
201                                   enum dma_data_direction dir,
202                                   unsigned long attrs)
203 {
204         dma_addr_t dma_handle = page_to_phys(page) + offset;
205
206         if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
207                 xtensa_sync_single_for_device(dev, dma_handle, size, dir);
208
209         return dma_handle;
210 }
211
212 static void xtensa_unmap_page(struct device *dev, dma_addr_t dma_handle,
213                               size_t size, enum dma_data_direction dir,
214                               unsigned long attrs)
215 {
216         if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
217                 xtensa_sync_single_for_cpu(dev, dma_handle, size, dir);
218 }
219
220 static int xtensa_map_sg(struct device *dev, struct scatterlist *sg,
221                          int nents, enum dma_data_direction dir,
222                          unsigned long attrs)
223 {
224         struct scatterlist *s;
225         int i;
226
227         for_each_sg(sg, s, nents, i) {
228                 s->dma_address = xtensa_map_page(dev, sg_page(s), s->offset,
229                                                  s->length, dir, attrs);
230         }
231         return nents;
232 }
233
234 static void xtensa_unmap_sg(struct device *dev,
235                             struct scatterlist *sg, int nents,
236                             enum dma_data_direction dir,
237                             unsigned long attrs)
238 {
239         struct scatterlist *s;
240         int i;
241
242         for_each_sg(sg, s, nents, i) {
243                 xtensa_unmap_page(dev, sg_dma_address(s),
244                                   sg_dma_len(s), dir, attrs);
245         }
246 }
247
248 int xtensa_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
249 {
250         return 0;
251 }
252
253 const struct dma_map_ops xtensa_dma_map_ops = {
254         .alloc = xtensa_dma_alloc,
255         .free = xtensa_dma_free,
256         .map_page = xtensa_map_page,
257         .unmap_page = xtensa_unmap_page,
258         .map_sg = xtensa_map_sg,
259         .unmap_sg = xtensa_unmap_sg,
260         .sync_single_for_cpu = xtensa_sync_single_for_cpu,
261         .sync_single_for_device = xtensa_sync_single_for_device,
262         .sync_sg_for_cpu = xtensa_sync_sg_for_cpu,
263         .sync_sg_for_device = xtensa_sync_sg_for_device,
264         .mapping_error = xtensa_dma_mapping_error,
265 };
266 EXPORT_SYMBOL(xtensa_dma_map_ops);
267
268 #define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16)
269
270 static int __init xtensa_dma_init(void)
271 {
272         dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
273         return 0;
274 }
275 fs_initcall(xtensa_dma_init);