GNU Linux-libre 4.19.264-gnu1
[releases.git] / block / blk-throttle.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Interface for controlling IO bandwidth on a request queue
4  *
5  * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
6  */
7
8 #include <linux/module.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/bio.h>
12 #include <linux/blktrace_api.h>
13 #include <linux/blk-cgroup.h>
14 #include "blk.h"
15
16 /* Max dispatch from a group in 1 round */
17 static int throtl_grp_quantum = 8;
18
19 /* Total max dispatch from all groups in one round */
20 static int throtl_quantum = 32;
21
22 /* Throttling is performed over a slice and after that slice is renewed */
23 #define DFL_THROTL_SLICE_HD (HZ / 10)
24 #define DFL_THROTL_SLICE_SSD (HZ / 50)
25 #define MAX_THROTL_SLICE (HZ)
26 #define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
27 #define MIN_THROTL_BPS (320 * 1024)
28 #define MIN_THROTL_IOPS (10)
29 #define DFL_LATENCY_TARGET (-1L)
30 #define DFL_IDLE_THRESHOLD (0)
31 #define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
32 #define LATENCY_FILTERED_SSD (0)
33 /*
34  * For HD, very small latency comes from sequential IO. Such IO is helpless to
35  * help determine if its IO is impacted by others, hence we ignore the IO
36  */
37 #define LATENCY_FILTERED_HD (1000L) /* 1ms */
38
39 static struct blkcg_policy blkcg_policy_throtl;
40
41 /* A workqueue to queue throttle related work */
42 static struct workqueue_struct *kthrotld_workqueue;
43
44 /*
45  * To implement hierarchical throttling, throtl_grps form a tree and bios
46  * are dispatched upwards level by level until they reach the top and get
47  * issued.  When dispatching bios from the children and local group at each
48  * level, if the bios are dispatched into a single bio_list, there's a risk
49  * of a local or child group which can queue many bios at once filling up
50  * the list starving others.
51  *
52  * To avoid such starvation, dispatched bios are queued separately
53  * according to where they came from.  When they are again dispatched to
54  * the parent, they're popped in round-robin order so that no single source
55  * hogs the dispatch window.
56  *
57  * throtl_qnode is used to keep the queued bios separated by their sources.
58  * Bios are queued to throtl_qnode which in turn is queued to
59  * throtl_service_queue and then dispatched in round-robin order.
60  *
61  * It's also used to track the reference counts on blkg's.  A qnode always
62  * belongs to a throtl_grp and gets queued on itself or the parent, so
63  * incrementing the reference of the associated throtl_grp when a qnode is
64  * queued and decrementing when dequeued is enough to keep the whole blkg
65  * tree pinned while bios are in flight.
66  */
67 struct throtl_qnode {
68         struct list_head        node;           /* service_queue->queued[] */
69         struct bio_list         bios;           /* queued bios */
70         struct throtl_grp       *tg;            /* tg this qnode belongs to */
71 };
72
73 struct throtl_service_queue {
74         struct throtl_service_queue *parent_sq; /* the parent service_queue */
75
76         /*
77          * Bios queued directly to this service_queue or dispatched from
78          * children throtl_grp's.
79          */
80         struct list_head        queued[2];      /* throtl_qnode [READ/WRITE] */
81         unsigned int            nr_queued[2];   /* number of queued bios */
82
83         /*
84          * RB tree of active children throtl_grp's, which are sorted by
85          * their ->disptime.
86          */
87         struct rb_root          pending_tree;   /* RB tree of active tgs */
88         struct rb_node          *first_pending; /* first node in the tree */
89         unsigned int            nr_pending;     /* # queued in the tree */
90         unsigned long           first_pending_disptime; /* disptime of the first tg */
91         struct timer_list       pending_timer;  /* fires on first_pending_disptime */
92 };
93
94 enum tg_state_flags {
95         THROTL_TG_PENDING       = 1 << 0,       /* on parent's pending tree */
96         THROTL_TG_WAS_EMPTY     = 1 << 1,       /* bio_lists[] became non-empty */
97 };
98
99 #define rb_entry_tg(node)       rb_entry((node), struct throtl_grp, rb_node)
100
101 enum {
102         LIMIT_LOW,
103         LIMIT_MAX,
104         LIMIT_CNT,
105 };
106
107 struct throtl_grp {
108         /* must be the first member */
109         struct blkg_policy_data pd;
110
111         /* active throtl group service_queue member */
112         struct rb_node rb_node;
113
114         /* throtl_data this group belongs to */
115         struct throtl_data *td;
116
117         /* this group's service queue */
118         struct throtl_service_queue service_queue;
119
120         /*
121          * qnode_on_self is used when bios are directly queued to this
122          * throtl_grp so that local bios compete fairly with bios
123          * dispatched from children.  qnode_on_parent is used when bios are
124          * dispatched from this throtl_grp into its parent and will compete
125          * with the sibling qnode_on_parents and the parent's
126          * qnode_on_self.
127          */
128         struct throtl_qnode qnode_on_self[2];
129         struct throtl_qnode qnode_on_parent[2];
130
131         /*
132          * Dispatch time in jiffies. This is the estimated time when group
133          * will unthrottle and is ready to dispatch more bio. It is used as
134          * key to sort active groups in service tree.
135          */
136         unsigned long disptime;
137
138         unsigned int flags;
139
140         /* are there any throtl rules between this group and td? */
141         bool has_rules[2];
142
143         /* internally used bytes per second rate limits */
144         uint64_t bps[2][LIMIT_CNT];
145         /* user configured bps limits */
146         uint64_t bps_conf[2][LIMIT_CNT];
147
148         /* internally used IOPS limits */
149         unsigned int iops[2][LIMIT_CNT];
150         /* user configured IOPS limits */
151         unsigned int iops_conf[2][LIMIT_CNT];
152
153         /* Number of bytes disptached in current slice */
154         uint64_t bytes_disp[2];
155         /* Number of bio's dispatched in current slice */
156         unsigned int io_disp[2];
157
158         unsigned long last_low_overflow_time[2];
159
160         uint64_t last_bytes_disp[2];
161         unsigned int last_io_disp[2];
162
163         unsigned long last_check_time;
164
165         unsigned long latency_target; /* us */
166         unsigned long latency_target_conf; /* us */
167         /* When did we start a new slice */
168         unsigned long slice_start[2];
169         unsigned long slice_end[2];
170
171         unsigned long last_finish_time; /* ns / 1024 */
172         unsigned long checked_last_finish_time; /* ns / 1024 */
173         unsigned long avg_idletime; /* ns / 1024 */
174         unsigned long idletime_threshold; /* us */
175         unsigned long idletime_threshold_conf; /* us */
176
177         unsigned int bio_cnt; /* total bios */
178         unsigned int bad_bio_cnt; /* bios exceeding latency threshold */
179         unsigned long bio_cnt_reset_time;
180 };
181
182 /* We measure latency for request size from <= 4k to >= 1M */
183 #define LATENCY_BUCKET_SIZE 9
184
185 struct latency_bucket {
186         unsigned long total_latency; /* ns / 1024 */
187         int samples;
188 };
189
190 struct avg_latency_bucket {
191         unsigned long latency; /* ns / 1024 */
192         bool valid;
193 };
194
195 struct throtl_data
196 {
197         /* service tree for active throtl groups */
198         struct throtl_service_queue service_queue;
199
200         struct request_queue *queue;
201
202         /* Total Number of queued bios on READ and WRITE lists */
203         unsigned int nr_queued[2];
204
205         unsigned int throtl_slice;
206
207         /* Work for dispatching throttled bios */
208         struct work_struct dispatch_work;
209         unsigned int limit_index;
210         bool limit_valid[LIMIT_CNT];
211
212         unsigned long low_upgrade_time;
213         unsigned long low_downgrade_time;
214
215         unsigned int scale;
216
217         struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE];
218         struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE];
219         struct latency_bucket __percpu *latency_buckets[2];
220         unsigned long last_calculate_time;
221         unsigned long filtered_latency;
222
223         bool track_bio_latency;
224 };
225
226 static void throtl_pending_timer_fn(struct timer_list *t);
227
228 static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
229 {
230         return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
231 }
232
233 static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
234 {
235         return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
236 }
237
238 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
239 {
240         return pd_to_blkg(&tg->pd);
241 }
242
243 /**
244  * sq_to_tg - return the throl_grp the specified service queue belongs to
245  * @sq: the throtl_service_queue of interest
246  *
247  * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
248  * embedded in throtl_data, %NULL is returned.
249  */
250 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
251 {
252         if (sq && sq->parent_sq)
253                 return container_of(sq, struct throtl_grp, service_queue);
254         else
255                 return NULL;
256 }
257
258 /**
259  * sq_to_td - return throtl_data the specified service queue belongs to
260  * @sq: the throtl_service_queue of interest
261  *
262  * A service_queue can be embedded in either a throtl_grp or throtl_data.
263  * Determine the associated throtl_data accordingly and return it.
264  */
265 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
266 {
267         struct throtl_grp *tg = sq_to_tg(sq);
268
269         if (tg)
270                 return tg->td;
271         else
272                 return container_of(sq, struct throtl_data, service_queue);
273 }
274
275 /*
276  * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
277  * make the IO dispatch more smooth.
278  * Scale up: linearly scale up according to lapsed time since upgrade. For
279  *           every throtl_slice, the limit scales up 1/2 .low limit till the
280  *           limit hits .max limit
281  * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
282  */
283 static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
284 {
285         /* arbitrary value to avoid too big scale */
286         if (td->scale < 4096 && time_after_eq(jiffies,
287             td->low_upgrade_time + td->scale * td->throtl_slice))
288                 td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;
289
290         return low + (low >> 1) * td->scale;
291 }
292
293 static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
294 {
295         struct blkcg_gq *blkg = tg_to_blkg(tg);
296         struct throtl_data *td;
297         uint64_t ret;
298
299         if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
300                 return U64_MAX;
301
302         td = tg->td;
303         ret = tg->bps[rw][td->limit_index];
304         if (ret == 0 && td->limit_index == LIMIT_LOW) {
305                 /* intermediate node or iops isn't 0 */
306                 if (!list_empty(&blkg->blkcg->css.children) ||
307                     tg->iops[rw][td->limit_index])
308                         return U64_MAX;
309                 else
310                         return MIN_THROTL_BPS;
311         }
312
313         if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
314             tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
315                 uint64_t adjusted;
316
317                 adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
318                 ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
319         }
320         return ret;
321 }
322
323 static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
324 {
325         struct blkcg_gq *blkg = tg_to_blkg(tg);
326         struct throtl_data *td;
327         unsigned int ret;
328
329         if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
330                 return UINT_MAX;
331
332         td = tg->td;
333         ret = tg->iops[rw][td->limit_index];
334         if (ret == 0 && tg->td->limit_index == LIMIT_LOW) {
335                 /* intermediate node or bps isn't 0 */
336                 if (!list_empty(&blkg->blkcg->css.children) ||
337                     tg->bps[rw][td->limit_index])
338                         return UINT_MAX;
339                 else
340                         return MIN_THROTL_IOPS;
341         }
342
343         if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
344             tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
345                 uint64_t adjusted;
346
347                 adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
348                 if (adjusted > UINT_MAX)
349                         adjusted = UINT_MAX;
350                 ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
351         }
352         return ret;
353 }
354
355 #define request_bucket_index(sectors) \
356         clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)
357
358 /**
359  * throtl_log - log debug message via blktrace
360  * @sq: the service_queue being reported
361  * @fmt: printf format string
362  * @args: printf args
363  *
364  * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
365  * throtl_grp; otherwise, just "throtl".
366  */
367 #define throtl_log(sq, fmt, args...)    do {                            \
368         struct throtl_grp *__tg = sq_to_tg((sq));                       \
369         struct throtl_data *__td = sq_to_td((sq));                      \
370                                                                         \
371         (void)__td;                                                     \
372         if (likely(!blk_trace_note_message_enabled(__td->queue)))       \
373                 break;                                                  \
374         if ((__tg)) {                                                   \
375                 blk_add_cgroup_trace_msg(__td->queue,                   \
376                         tg_to_blkg(__tg)->blkcg, "throtl " fmt, ##args);\
377         } else {                                                        \
378                 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);  \
379         }                                                               \
380 } while (0)
381
382 static inline unsigned int throtl_bio_data_size(struct bio *bio)
383 {
384         /* assume it's one sector */
385         if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
386                 return 512;
387         return bio->bi_iter.bi_size;
388 }
389
390 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
391 {
392         INIT_LIST_HEAD(&qn->node);
393         bio_list_init(&qn->bios);
394         qn->tg = tg;
395 }
396
397 /**
398  * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
399  * @bio: bio being added
400  * @qn: qnode to add bio to
401  * @queued: the service_queue->queued[] list @qn belongs to
402  *
403  * Add @bio to @qn and put @qn on @queued if it's not already on.
404  * @qn->tg's reference count is bumped when @qn is activated.  See the
405  * comment on top of throtl_qnode definition for details.
406  */
407 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
408                                  struct list_head *queued)
409 {
410         bio_list_add(&qn->bios, bio);
411         if (list_empty(&qn->node)) {
412                 list_add_tail(&qn->node, queued);
413                 blkg_get(tg_to_blkg(qn->tg));
414         }
415 }
416
417 /**
418  * throtl_peek_queued - peek the first bio on a qnode list
419  * @queued: the qnode list to peek
420  */
421 static struct bio *throtl_peek_queued(struct list_head *queued)
422 {
423         struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
424         struct bio *bio;
425
426         if (list_empty(queued))
427                 return NULL;
428
429         bio = bio_list_peek(&qn->bios);
430         WARN_ON_ONCE(!bio);
431         return bio;
432 }
433
434 /**
435  * throtl_pop_queued - pop the first bio form a qnode list
436  * @queued: the qnode list to pop a bio from
437  * @tg_to_put: optional out argument for throtl_grp to put
438  *
439  * Pop the first bio from the qnode list @queued.  After popping, the first
440  * qnode is removed from @queued if empty or moved to the end of @queued so
441  * that the popping order is round-robin.
442  *
443  * When the first qnode is removed, its associated throtl_grp should be put
444  * too.  If @tg_to_put is NULL, this function automatically puts it;
445  * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
446  * responsible for putting it.
447  */
448 static struct bio *throtl_pop_queued(struct list_head *queued,
449                                      struct throtl_grp **tg_to_put)
450 {
451         struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
452         struct bio *bio;
453
454         if (list_empty(queued))
455                 return NULL;
456
457         bio = bio_list_pop(&qn->bios);
458         WARN_ON_ONCE(!bio);
459
460         if (bio_list_empty(&qn->bios)) {
461                 list_del_init(&qn->node);
462                 if (tg_to_put)
463                         *tg_to_put = qn->tg;
464                 else
465                         blkg_put(tg_to_blkg(qn->tg));
466         } else {
467                 list_move_tail(&qn->node, queued);
468         }
469
470         return bio;
471 }
472
473 /* init a service_queue, assumes the caller zeroed it */
474 static void throtl_service_queue_init(struct throtl_service_queue *sq)
475 {
476         INIT_LIST_HEAD(&sq->queued[0]);
477         INIT_LIST_HEAD(&sq->queued[1]);
478         sq->pending_tree = RB_ROOT;
479         timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0);
480 }
481
482 static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, int node)
483 {
484         struct throtl_grp *tg;
485         int rw;
486
487         tg = kzalloc_node(sizeof(*tg), gfp, node);
488         if (!tg)
489                 return NULL;
490
491         throtl_service_queue_init(&tg->service_queue);
492
493         for (rw = READ; rw <= WRITE; rw++) {
494                 throtl_qnode_init(&tg->qnode_on_self[rw], tg);
495                 throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
496         }
497
498         RB_CLEAR_NODE(&tg->rb_node);
499         tg->bps[READ][LIMIT_MAX] = U64_MAX;
500         tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
501         tg->iops[READ][LIMIT_MAX] = UINT_MAX;
502         tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
503         tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
504         tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
505         tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
506         tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
507         /* LIMIT_LOW will have default value 0 */
508
509         tg->latency_target = DFL_LATENCY_TARGET;
510         tg->latency_target_conf = DFL_LATENCY_TARGET;
511         tg->idletime_threshold = DFL_IDLE_THRESHOLD;
512         tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD;
513
514         return &tg->pd;
515 }
516
517 static void throtl_pd_init(struct blkg_policy_data *pd)
518 {
519         struct throtl_grp *tg = pd_to_tg(pd);
520         struct blkcg_gq *blkg = tg_to_blkg(tg);
521         struct throtl_data *td = blkg->q->td;
522         struct throtl_service_queue *sq = &tg->service_queue;
523
524         /*
525          * If on the default hierarchy, we switch to properly hierarchical
526          * behavior where limits on a given throtl_grp are applied to the
527          * whole subtree rather than just the group itself.  e.g. If 16M
528          * read_bps limit is set on the root group, the whole system can't
529          * exceed 16M for the device.
530          *
531          * If not on the default hierarchy, the broken flat hierarchy
532          * behavior is retained where all throtl_grps are treated as if
533          * they're all separate root groups right below throtl_data.
534          * Limits of a group don't interact with limits of other groups
535          * regardless of the position of the group in the hierarchy.
536          */
537         sq->parent_sq = &td->service_queue;
538         if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
539                 sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
540         tg->td = td;
541 }
542
543 /*
544  * Set has_rules[] if @tg or any of its parents have limits configured.
545  * This doesn't require walking up to the top of the hierarchy as the
546  * parent's has_rules[] is guaranteed to be correct.
547  */
548 static void tg_update_has_rules(struct throtl_grp *tg)
549 {
550         struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
551         struct throtl_data *td = tg->td;
552         int rw;
553
554         for (rw = READ; rw <= WRITE; rw++)
555                 tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
556                         (td->limit_valid[td->limit_index] &&
557                          (tg_bps_limit(tg, rw) != U64_MAX ||
558                           tg_iops_limit(tg, rw) != UINT_MAX));
559 }
560
561 static void throtl_pd_online(struct blkg_policy_data *pd)
562 {
563         struct throtl_grp *tg = pd_to_tg(pd);
564         /*
565          * We don't want new groups to escape the limits of its ancestors.
566          * Update has_rules[] after a new group is brought online.
567          */
568         tg_update_has_rules(tg);
569 }
570
571 static void blk_throtl_update_limit_valid(struct throtl_data *td)
572 {
573         struct cgroup_subsys_state *pos_css;
574         struct blkcg_gq *blkg;
575         bool low_valid = false;
576
577         rcu_read_lock();
578         blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
579                 struct throtl_grp *tg = blkg_to_tg(blkg);
580
581                 if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
582                     tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) {
583                         low_valid = true;
584                         break;
585                 }
586         }
587         rcu_read_unlock();
588
589         td->limit_valid[LIMIT_LOW] = low_valid;
590 }
591
592 static void throtl_upgrade_state(struct throtl_data *td);
593 static void throtl_pd_offline(struct blkg_policy_data *pd)
594 {
595         struct throtl_grp *tg = pd_to_tg(pd);
596
597         tg->bps[READ][LIMIT_LOW] = 0;
598         tg->bps[WRITE][LIMIT_LOW] = 0;
599         tg->iops[READ][LIMIT_LOW] = 0;
600         tg->iops[WRITE][LIMIT_LOW] = 0;
601
602         blk_throtl_update_limit_valid(tg->td);
603
604         if (!tg->td->limit_valid[tg->td->limit_index])
605                 throtl_upgrade_state(tg->td);
606 }
607
608 static void throtl_pd_free(struct blkg_policy_data *pd)
609 {
610         struct throtl_grp *tg = pd_to_tg(pd);
611
612         del_timer_sync(&tg->service_queue.pending_timer);
613         kfree(tg);
614 }
615
616 static struct throtl_grp *
617 throtl_rb_first(struct throtl_service_queue *parent_sq)
618 {
619         /* Service tree is empty */
620         if (!parent_sq->nr_pending)
621                 return NULL;
622
623         if (!parent_sq->first_pending)
624                 parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
625
626         if (parent_sq->first_pending)
627                 return rb_entry_tg(parent_sq->first_pending);
628
629         return NULL;
630 }
631
632 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
633 {
634         rb_erase(n, root);
635         RB_CLEAR_NODE(n);
636 }
637
638 static void throtl_rb_erase(struct rb_node *n,
639                             struct throtl_service_queue *parent_sq)
640 {
641         if (parent_sq->first_pending == n)
642                 parent_sq->first_pending = NULL;
643         rb_erase_init(n, &parent_sq->pending_tree);
644         --parent_sq->nr_pending;
645 }
646
647 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
648 {
649         struct throtl_grp *tg;
650
651         tg = throtl_rb_first(parent_sq);
652         if (!tg)
653                 return;
654
655         parent_sq->first_pending_disptime = tg->disptime;
656 }
657
658 static void tg_service_queue_add(struct throtl_grp *tg)
659 {
660         struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
661         struct rb_node **node = &parent_sq->pending_tree.rb_node;
662         struct rb_node *parent = NULL;
663         struct throtl_grp *__tg;
664         unsigned long key = tg->disptime;
665         int left = 1;
666
667         while (*node != NULL) {
668                 parent = *node;
669                 __tg = rb_entry_tg(parent);
670
671                 if (time_before(key, __tg->disptime))
672                         node = &parent->rb_left;
673                 else {
674                         node = &parent->rb_right;
675                         left = 0;
676                 }
677         }
678
679         if (left)
680                 parent_sq->first_pending = &tg->rb_node;
681
682         rb_link_node(&tg->rb_node, parent, node);
683         rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
684 }
685
686 static void __throtl_enqueue_tg(struct throtl_grp *tg)
687 {
688         tg_service_queue_add(tg);
689         tg->flags |= THROTL_TG_PENDING;
690         tg->service_queue.parent_sq->nr_pending++;
691 }
692
693 static void throtl_enqueue_tg(struct throtl_grp *tg)
694 {
695         if (!(tg->flags & THROTL_TG_PENDING))
696                 __throtl_enqueue_tg(tg);
697 }
698
699 static void __throtl_dequeue_tg(struct throtl_grp *tg)
700 {
701         throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
702         tg->flags &= ~THROTL_TG_PENDING;
703 }
704
705 static void throtl_dequeue_tg(struct throtl_grp *tg)
706 {
707         if (tg->flags & THROTL_TG_PENDING)
708                 __throtl_dequeue_tg(tg);
709 }
710
711 /* Call with queue lock held */
712 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
713                                           unsigned long expires)
714 {
715         unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
716
717         /*
718          * Since we are adjusting the throttle limit dynamically, the sleep
719          * time calculated according to previous limit might be invalid. It's
720          * possible the cgroup sleep time is very long and no other cgroups
721          * have IO running so notify the limit changes. Make sure the cgroup
722          * doesn't sleep too long to avoid the missed notification.
723          */
724         if (time_after(expires, max_expire))
725                 expires = max_expire;
726         mod_timer(&sq->pending_timer, expires);
727         throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
728                    expires - jiffies, jiffies);
729 }
730
731 /**
732  * throtl_schedule_next_dispatch - schedule the next dispatch cycle
733  * @sq: the service_queue to schedule dispatch for
734  * @force: force scheduling
735  *
736  * Arm @sq->pending_timer so that the next dispatch cycle starts on the
737  * dispatch time of the first pending child.  Returns %true if either timer
738  * is armed or there's no pending child left.  %false if the current
739  * dispatch window is still open and the caller should continue
740  * dispatching.
741  *
742  * If @force is %true, the dispatch timer is always scheduled and this
743  * function is guaranteed to return %true.  This is to be used when the
744  * caller can't dispatch itself and needs to invoke pending_timer
745  * unconditionally.  Note that forced scheduling is likely to induce short
746  * delay before dispatch starts even if @sq->first_pending_disptime is not
747  * in the future and thus shouldn't be used in hot paths.
748  */
749 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
750                                           bool force)
751 {
752         /* any pending children left? */
753         if (!sq->nr_pending)
754                 return true;
755
756         update_min_dispatch_time(sq);
757
758         /* is the next dispatch time in the future? */
759         if (force || time_after(sq->first_pending_disptime, jiffies)) {
760                 throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
761                 return true;
762         }
763
764         /* tell the caller to continue dispatching */
765         return false;
766 }
767
768 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
769                 bool rw, unsigned long start)
770 {
771         tg->bytes_disp[rw] = 0;
772         tg->io_disp[rw] = 0;
773
774         /*
775          * Previous slice has expired. We must have trimmed it after last
776          * bio dispatch. That means since start of last slice, we never used
777          * that bandwidth. Do try to make use of that bandwidth while giving
778          * credit.
779          */
780         if (time_after_eq(start, tg->slice_start[rw]))
781                 tg->slice_start[rw] = start;
782
783         tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
784         throtl_log(&tg->service_queue,
785                    "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
786                    rw == READ ? 'R' : 'W', tg->slice_start[rw],
787                    tg->slice_end[rw], jiffies);
788 }
789
790 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
791 {
792         tg->bytes_disp[rw] = 0;
793         tg->io_disp[rw] = 0;
794         tg->slice_start[rw] = jiffies;
795         tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
796         throtl_log(&tg->service_queue,
797                    "[%c] new slice start=%lu end=%lu jiffies=%lu",
798                    rw == READ ? 'R' : 'W', tg->slice_start[rw],
799                    tg->slice_end[rw], jiffies);
800 }
801
802 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
803                                         unsigned long jiffy_end)
804 {
805         tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
806 }
807
808 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
809                                        unsigned long jiffy_end)
810 {
811         tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
812         throtl_log(&tg->service_queue,
813                    "[%c] extend slice start=%lu end=%lu jiffies=%lu",
814                    rw == READ ? 'R' : 'W', tg->slice_start[rw],
815                    tg->slice_end[rw], jiffies);
816 }
817
818 /* Determine if previously allocated or extended slice is complete or not */
819 static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
820 {
821         if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
822                 return false;
823
824         return true;
825 }
826
827 /* Trim the used slices and adjust slice start accordingly */
828 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
829 {
830         unsigned long nr_slices, time_elapsed, io_trim;
831         u64 bytes_trim, tmp;
832
833         BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
834
835         /*
836          * If bps are unlimited (-1), then time slice don't get
837          * renewed. Don't try to trim the slice if slice is used. A new
838          * slice will start when appropriate.
839          */
840         if (throtl_slice_used(tg, rw))
841                 return;
842
843         /*
844          * A bio has been dispatched. Also adjust slice_end. It might happen
845          * that initially cgroup limit was very low resulting in high
846          * slice_end, but later limit was bumped up and bio was dispached
847          * sooner, then we need to reduce slice_end. A high bogus slice_end
848          * is bad because it does not allow new slice to start.
849          */
850
851         throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
852
853         time_elapsed = jiffies - tg->slice_start[rw];
854
855         nr_slices = time_elapsed / tg->td->throtl_slice;
856
857         if (!nr_slices)
858                 return;
859         tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
860         do_div(tmp, HZ);
861         bytes_trim = tmp;
862
863         io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
864                 HZ;
865
866         if (!bytes_trim && !io_trim)
867                 return;
868
869         if (tg->bytes_disp[rw] >= bytes_trim)
870                 tg->bytes_disp[rw] -= bytes_trim;
871         else
872                 tg->bytes_disp[rw] = 0;
873
874         if (tg->io_disp[rw] >= io_trim)
875                 tg->io_disp[rw] -= io_trim;
876         else
877                 tg->io_disp[rw] = 0;
878
879         tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
880
881         throtl_log(&tg->service_queue,
882                    "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
883                    rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
884                    tg->slice_start[rw], tg->slice_end[rw], jiffies);
885 }
886
887 static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
888                                   unsigned long *wait)
889 {
890         bool rw = bio_data_dir(bio);
891         unsigned int io_allowed;
892         unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
893         u64 tmp;
894
895         jiffy_elapsed = jiffies - tg->slice_start[rw];
896
897         /* Round up to the next throttle slice, wait time must be nonzero */
898         jiffy_elapsed_rnd = roundup(jiffy_elapsed + 1, tg->td->throtl_slice);
899
900         /*
901          * jiffy_elapsed_rnd should not be a big value as minimum iops can be
902          * 1 then at max jiffy elapsed should be equivalent of 1 second as we
903          * will allow dispatch after 1 second and after that slice should
904          * have been trimmed.
905          */
906
907         tmp = (u64)tg_iops_limit(tg, rw) * jiffy_elapsed_rnd;
908         do_div(tmp, HZ);
909
910         if (tmp > UINT_MAX)
911                 io_allowed = UINT_MAX;
912         else
913                 io_allowed = tmp;
914
915         if (tg->io_disp[rw] + 1 <= io_allowed) {
916                 if (wait)
917                         *wait = 0;
918                 return true;
919         }
920
921         /* Calc approx time to dispatch */
922         jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed;
923
924         if (wait)
925                 *wait = jiffy_wait;
926         return false;
927 }
928
929 static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
930                                  unsigned long *wait)
931 {
932         bool rw = bio_data_dir(bio);
933         u64 bytes_allowed, extra_bytes, tmp;
934         unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
935         unsigned int bio_size = throtl_bio_data_size(bio);
936
937         jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
938
939         /* Slice has just started. Consider one slice interval */
940         if (!jiffy_elapsed)
941                 jiffy_elapsed_rnd = tg->td->throtl_slice;
942
943         jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
944
945         tmp = tg_bps_limit(tg, rw) * jiffy_elapsed_rnd;
946         do_div(tmp, HZ);
947         bytes_allowed = tmp;
948
949         if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) {
950                 if (wait)
951                         *wait = 0;
952                 return true;
953         }
954
955         /* Calc approx time to dispatch */
956         extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
957         jiffy_wait = div64_u64(extra_bytes * HZ, tg_bps_limit(tg, rw));
958
959         if (!jiffy_wait)
960                 jiffy_wait = 1;
961
962         /*
963          * This wait time is without taking into consideration the rounding
964          * up we did. Add that time also.
965          */
966         jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
967         if (wait)
968                 *wait = jiffy_wait;
969         return false;
970 }
971
972 /*
973  * Returns whether one can dispatch a bio or not. Also returns approx number
974  * of jiffies to wait before this bio is with-in IO rate and can be dispatched
975  */
976 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
977                             unsigned long *wait)
978 {
979         bool rw = bio_data_dir(bio);
980         unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
981
982         /*
983          * Currently whole state machine of group depends on first bio
984          * queued in the group bio list. So one should not be calling
985          * this function with a different bio if there are other bios
986          * queued.
987          */
988         BUG_ON(tg->service_queue.nr_queued[rw] &&
989                bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
990
991         /* If tg->bps = -1, then BW is unlimited */
992         if (tg_bps_limit(tg, rw) == U64_MAX &&
993             tg_iops_limit(tg, rw) == UINT_MAX) {
994                 if (wait)
995                         *wait = 0;
996                 return true;
997         }
998
999         /*
1000          * If previous slice expired, start a new one otherwise renew/extend
1001          * existing slice to make sure it is at least throtl_slice interval
1002          * long since now. New slice is started only for empty throttle group.
1003          * If there is queued bio, that means there should be an active
1004          * slice and it should be extended instead.
1005          */
1006         if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
1007                 throtl_start_new_slice(tg, rw);
1008         else {
1009                 if (time_before(tg->slice_end[rw],
1010                     jiffies + tg->td->throtl_slice))
1011                         throtl_extend_slice(tg, rw,
1012                                 jiffies + tg->td->throtl_slice);
1013         }
1014
1015         if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
1016             tg_with_in_iops_limit(tg, bio, &iops_wait)) {
1017                 if (wait)
1018                         *wait = 0;
1019                 return true;
1020         }
1021
1022         max_wait = max(bps_wait, iops_wait);
1023
1024         if (wait)
1025                 *wait = max_wait;
1026
1027         if (time_before(tg->slice_end[rw], jiffies + max_wait))
1028                 throtl_extend_slice(tg, rw, jiffies + max_wait);
1029
1030         return false;
1031 }
1032
1033 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
1034 {
1035         bool rw = bio_data_dir(bio);
1036         unsigned int bio_size = throtl_bio_data_size(bio);
1037
1038         /* Charge the bio to the group */
1039         tg->bytes_disp[rw] += bio_size;
1040         tg->io_disp[rw]++;
1041         tg->last_bytes_disp[rw] += bio_size;
1042         tg->last_io_disp[rw]++;
1043
1044         /*
1045          * BIO_THROTTLED is used to prevent the same bio to be throttled
1046          * more than once as a throttled bio will go through blk-throtl the
1047          * second time when it eventually gets issued.  Set it when a bio
1048          * is being charged to a tg.
1049          */
1050         if (!bio_flagged(bio, BIO_THROTTLED))
1051                 bio_set_flag(bio, BIO_THROTTLED);
1052 }
1053
1054 /**
1055  * throtl_add_bio_tg - add a bio to the specified throtl_grp
1056  * @bio: bio to add
1057  * @qn: qnode to use
1058  * @tg: the target throtl_grp
1059  *
1060  * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
1061  * tg->qnode_on_self[] is used.
1062  */
1063 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
1064                               struct throtl_grp *tg)
1065 {
1066         struct throtl_service_queue *sq = &tg->service_queue;
1067         bool rw = bio_data_dir(bio);
1068
1069         if (!qn)
1070                 qn = &tg->qnode_on_self[rw];
1071
1072         /*
1073          * If @tg doesn't currently have any bios queued in the same
1074          * direction, queueing @bio can change when @tg should be
1075          * dispatched.  Mark that @tg was empty.  This is automatically
1076          * cleaered on the next tg_update_disptime().
1077          */
1078         if (!sq->nr_queued[rw])
1079                 tg->flags |= THROTL_TG_WAS_EMPTY;
1080
1081         throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
1082
1083         sq->nr_queued[rw]++;
1084         throtl_enqueue_tg(tg);
1085 }
1086
1087 static void tg_update_disptime(struct throtl_grp *tg)
1088 {
1089         struct throtl_service_queue *sq = &tg->service_queue;
1090         unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
1091         struct bio *bio;
1092
1093         bio = throtl_peek_queued(&sq->queued[READ]);
1094         if (bio)
1095                 tg_may_dispatch(tg, bio, &read_wait);
1096
1097         bio = throtl_peek_queued(&sq->queued[WRITE]);
1098         if (bio)
1099                 tg_may_dispatch(tg, bio, &write_wait);
1100
1101         min_wait = min(read_wait, write_wait);
1102         disptime = jiffies + min_wait;
1103
1104         /* Update dispatch time */
1105         throtl_dequeue_tg(tg);
1106         tg->disptime = disptime;
1107         throtl_enqueue_tg(tg);
1108
1109         /* see throtl_add_bio_tg() */
1110         tg->flags &= ~THROTL_TG_WAS_EMPTY;
1111 }
1112
1113 static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1114                                         struct throtl_grp *parent_tg, bool rw)
1115 {
1116         if (throtl_slice_used(parent_tg, rw)) {
1117                 throtl_start_new_slice_with_credit(parent_tg, rw,
1118                                 child_tg->slice_start[rw]);
1119         }
1120
1121 }
1122
1123 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1124 {
1125         struct throtl_service_queue *sq = &tg->service_queue;
1126         struct throtl_service_queue *parent_sq = sq->parent_sq;
1127         struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1128         struct throtl_grp *tg_to_put = NULL;
1129         struct bio *bio;
1130
1131         /*
1132          * @bio is being transferred from @tg to @parent_sq.  Popping a bio
1133          * from @tg may put its reference and @parent_sq might end up
1134          * getting released prematurely.  Remember the tg to put and put it
1135          * after @bio is transferred to @parent_sq.
1136          */
1137         bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1138         sq->nr_queued[rw]--;
1139
1140         throtl_charge_bio(tg, bio);
1141
1142         /*
1143          * If our parent is another tg, we just need to transfer @bio to
1144          * the parent using throtl_add_bio_tg().  If our parent is
1145          * @td->service_queue, @bio is ready to be issued.  Put it on its
1146          * bio_lists[] and decrease total number queued.  The caller is
1147          * responsible for issuing these bios.
1148          */
1149         if (parent_tg) {
1150                 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1151                 start_parent_slice_with_credit(tg, parent_tg, rw);
1152         } else {
1153                 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1154                                      &parent_sq->queued[rw]);
1155                 BUG_ON(tg->td->nr_queued[rw] <= 0);
1156                 tg->td->nr_queued[rw]--;
1157         }
1158
1159         throtl_trim_slice(tg, rw);
1160
1161         if (tg_to_put)
1162                 blkg_put(tg_to_blkg(tg_to_put));
1163 }
1164
1165 static int throtl_dispatch_tg(struct throtl_grp *tg)
1166 {
1167         struct throtl_service_queue *sq = &tg->service_queue;
1168         unsigned int nr_reads = 0, nr_writes = 0;
1169         unsigned int max_nr_reads = throtl_grp_quantum*3/4;
1170         unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
1171         struct bio *bio;
1172
1173         /* Try to dispatch 75% READS and 25% WRITES */
1174
1175         while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1176                tg_may_dispatch(tg, bio, NULL)) {
1177
1178                 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1179                 nr_reads++;
1180
1181                 if (nr_reads >= max_nr_reads)
1182                         break;
1183         }
1184
1185         while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1186                tg_may_dispatch(tg, bio, NULL)) {
1187
1188                 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1189                 nr_writes++;
1190
1191                 if (nr_writes >= max_nr_writes)
1192                         break;
1193         }
1194
1195         return nr_reads + nr_writes;
1196 }
1197
1198 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1199 {
1200         unsigned int nr_disp = 0;
1201
1202         while (1) {
1203                 struct throtl_grp *tg = throtl_rb_first(parent_sq);
1204                 struct throtl_service_queue *sq;
1205
1206                 if (!tg)
1207                         break;
1208
1209                 if (time_before(jiffies, tg->disptime))
1210                         break;
1211
1212                 throtl_dequeue_tg(tg);
1213
1214                 nr_disp += throtl_dispatch_tg(tg);
1215
1216                 sq = &tg->service_queue;
1217                 if (sq->nr_queued[0] || sq->nr_queued[1])
1218                         tg_update_disptime(tg);
1219
1220                 if (nr_disp >= throtl_quantum)
1221                         break;
1222         }
1223
1224         return nr_disp;
1225 }
1226
1227 static bool throtl_can_upgrade(struct throtl_data *td,
1228         struct throtl_grp *this_tg);
1229 /**
1230  * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1231  * @arg: the throtl_service_queue being serviced
1232  *
1233  * This timer is armed when a child throtl_grp with active bio's become
1234  * pending and queued on the service_queue's pending_tree and expires when
1235  * the first child throtl_grp should be dispatched.  This function
1236  * dispatches bio's from the children throtl_grps to the parent
1237  * service_queue.
1238  *
1239  * If the parent's parent is another throtl_grp, dispatching is propagated
1240  * by either arming its pending_timer or repeating dispatch directly.  If
1241  * the top-level service_tree is reached, throtl_data->dispatch_work is
1242  * kicked so that the ready bio's are issued.
1243  */
1244 static void throtl_pending_timer_fn(struct timer_list *t)
1245 {
1246         struct throtl_service_queue *sq = from_timer(sq, t, pending_timer);
1247         struct throtl_grp *tg = sq_to_tg(sq);
1248         struct throtl_data *td = sq_to_td(sq);
1249         struct request_queue *q = td->queue;
1250         struct throtl_service_queue *parent_sq;
1251         bool dispatched;
1252         int ret;
1253
1254         spin_lock_irq(q->queue_lock);
1255         if (throtl_can_upgrade(td, NULL))
1256                 throtl_upgrade_state(td);
1257
1258 again:
1259         parent_sq = sq->parent_sq;
1260         dispatched = false;
1261
1262         while (true) {
1263                 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1264                            sq->nr_queued[READ] + sq->nr_queued[WRITE],
1265                            sq->nr_queued[READ], sq->nr_queued[WRITE]);
1266
1267                 ret = throtl_select_dispatch(sq);
1268                 if (ret) {
1269                         throtl_log(sq, "bios disp=%u", ret);
1270                         dispatched = true;
1271                 }
1272
1273                 if (throtl_schedule_next_dispatch(sq, false))
1274                         break;
1275
1276                 /* this dispatch windows is still open, relax and repeat */
1277                 spin_unlock_irq(q->queue_lock);
1278                 cpu_relax();
1279                 spin_lock_irq(q->queue_lock);
1280         }
1281
1282         if (!dispatched)
1283                 goto out_unlock;
1284
1285         if (parent_sq) {
1286                 /* @parent_sq is another throl_grp, propagate dispatch */
1287                 if (tg->flags & THROTL_TG_WAS_EMPTY) {
1288                         tg_update_disptime(tg);
1289                         if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1290                                 /* window is already open, repeat dispatching */
1291                                 sq = parent_sq;
1292                                 tg = sq_to_tg(sq);
1293                                 goto again;
1294                         }
1295                 }
1296         } else {
1297                 /* reached the top-level, queue issueing */
1298                 queue_work(kthrotld_workqueue, &td->dispatch_work);
1299         }
1300 out_unlock:
1301         spin_unlock_irq(q->queue_lock);
1302 }
1303
1304 /**
1305  * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1306  * @work: work item being executed
1307  *
1308  * This function is queued for execution when bio's reach the bio_lists[]
1309  * of throtl_data->service_queue.  Those bio's are ready and issued by this
1310  * function.
1311  */
1312 static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1313 {
1314         struct throtl_data *td = container_of(work, struct throtl_data,
1315                                               dispatch_work);
1316         struct throtl_service_queue *td_sq = &td->service_queue;
1317         struct request_queue *q = td->queue;
1318         struct bio_list bio_list_on_stack;
1319         struct bio *bio;
1320         struct blk_plug plug;
1321         int rw;
1322
1323         bio_list_init(&bio_list_on_stack);
1324
1325         spin_lock_irq(q->queue_lock);
1326         for (rw = READ; rw <= WRITE; rw++)
1327                 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1328                         bio_list_add(&bio_list_on_stack, bio);
1329         spin_unlock_irq(q->queue_lock);
1330
1331         if (!bio_list_empty(&bio_list_on_stack)) {
1332                 blk_start_plug(&plug);
1333                 while((bio = bio_list_pop(&bio_list_on_stack)))
1334                         generic_make_request(bio);
1335                 blk_finish_plug(&plug);
1336         }
1337 }
1338
1339 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1340                               int off)
1341 {
1342         struct throtl_grp *tg = pd_to_tg(pd);
1343         u64 v = *(u64 *)((void *)tg + off);
1344
1345         if (v == U64_MAX)
1346                 return 0;
1347         return __blkg_prfill_u64(sf, pd, v);
1348 }
1349
1350 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1351                                int off)
1352 {
1353         struct throtl_grp *tg = pd_to_tg(pd);
1354         unsigned int v = *(unsigned int *)((void *)tg + off);
1355
1356         if (v == UINT_MAX)
1357                 return 0;
1358         return __blkg_prfill_u64(sf, pd, v);
1359 }
1360
1361 static int tg_print_conf_u64(struct seq_file *sf, void *v)
1362 {
1363         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1364                           &blkcg_policy_throtl, seq_cft(sf)->private, false);
1365         return 0;
1366 }
1367
1368 static int tg_print_conf_uint(struct seq_file *sf, void *v)
1369 {
1370         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1371                           &blkcg_policy_throtl, seq_cft(sf)->private, false);
1372         return 0;
1373 }
1374
1375 static void tg_conf_updated(struct throtl_grp *tg, bool global)
1376 {
1377         struct throtl_service_queue *sq = &tg->service_queue;
1378         struct cgroup_subsys_state *pos_css;
1379         struct blkcg_gq *blkg;
1380
1381         throtl_log(&tg->service_queue,
1382                    "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1383                    tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1384                    tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1385
1386         /*
1387          * Update has_rules[] flags for the updated tg's subtree.  A tg is
1388          * considered to have rules if either the tg itself or any of its
1389          * ancestors has rules.  This identifies groups without any
1390          * restrictions in the whole hierarchy and allows them to bypass
1391          * blk-throttle.
1392          */
1393         blkg_for_each_descendant_pre(blkg, pos_css,
1394                         global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
1395                 struct throtl_grp *this_tg = blkg_to_tg(blkg);
1396                 struct throtl_grp *parent_tg;
1397
1398                 tg_update_has_rules(this_tg);
1399                 /* ignore root/second level */
1400                 if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
1401                     !blkg->parent->parent)
1402                         continue;
1403                 parent_tg = blkg_to_tg(blkg->parent);
1404                 /*
1405                  * make sure all children has lower idle time threshold and
1406                  * higher latency target
1407                  */
1408                 this_tg->idletime_threshold = min(this_tg->idletime_threshold,
1409                                 parent_tg->idletime_threshold);
1410                 this_tg->latency_target = max(this_tg->latency_target,
1411                                 parent_tg->latency_target);
1412         }
1413
1414         /*
1415          * We're already holding queue_lock and know @tg is valid.  Let's
1416          * apply the new config directly.
1417          *
1418          * Restart the slices for both READ and WRITES. It might happen
1419          * that a group's limit are dropped suddenly and we don't want to
1420          * account recently dispatched IO with new low rate.
1421          */
1422         throtl_start_new_slice(tg, 0);
1423         throtl_start_new_slice(tg, 1);
1424
1425         if (tg->flags & THROTL_TG_PENDING) {
1426                 tg_update_disptime(tg);
1427                 throtl_schedule_next_dispatch(sq->parent_sq, true);
1428         }
1429 }
1430
1431 static ssize_t tg_set_conf(struct kernfs_open_file *of,
1432                            char *buf, size_t nbytes, loff_t off, bool is_u64)
1433 {
1434         struct blkcg *blkcg = css_to_blkcg(of_css(of));
1435         struct blkg_conf_ctx ctx;
1436         struct throtl_grp *tg;
1437         int ret;
1438         u64 v;
1439
1440         ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1441         if (ret)
1442                 return ret;
1443
1444         ret = -EINVAL;
1445         if (sscanf(ctx.body, "%llu", &v) != 1)
1446                 goto out_finish;
1447         if (!v)
1448                 v = U64_MAX;
1449
1450         tg = blkg_to_tg(ctx.blkg);
1451
1452         if (is_u64)
1453                 *(u64 *)((void *)tg + of_cft(of)->private) = v;
1454         else
1455                 *(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1456
1457         tg_conf_updated(tg, false);
1458         ret = 0;
1459 out_finish:
1460         blkg_conf_finish(&ctx);
1461         return ret ?: nbytes;
1462 }
1463
1464 static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1465                                char *buf, size_t nbytes, loff_t off)
1466 {
1467         return tg_set_conf(of, buf, nbytes, off, true);
1468 }
1469
1470 static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1471                                 char *buf, size_t nbytes, loff_t off)
1472 {
1473         return tg_set_conf(of, buf, nbytes, off, false);
1474 }
1475
1476 static struct cftype throtl_legacy_files[] = {
1477         {
1478                 .name = "throttle.read_bps_device",
1479                 .private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
1480                 .seq_show = tg_print_conf_u64,
1481                 .write = tg_set_conf_u64,
1482         },
1483         {
1484                 .name = "throttle.write_bps_device",
1485                 .private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
1486                 .seq_show = tg_print_conf_u64,
1487                 .write = tg_set_conf_u64,
1488         },
1489         {
1490                 .name = "throttle.read_iops_device",
1491                 .private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
1492                 .seq_show = tg_print_conf_uint,
1493                 .write = tg_set_conf_uint,
1494         },
1495         {
1496                 .name = "throttle.write_iops_device",
1497                 .private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
1498                 .seq_show = tg_print_conf_uint,
1499                 .write = tg_set_conf_uint,
1500         },
1501         {
1502                 .name = "throttle.io_service_bytes",
1503                 .private = (unsigned long)&blkcg_policy_throtl,
1504                 .seq_show = blkg_print_stat_bytes,
1505         },
1506         {
1507                 .name = "throttle.io_service_bytes_recursive",
1508                 .private = (unsigned long)&blkcg_policy_throtl,
1509                 .seq_show = blkg_print_stat_bytes_recursive,
1510         },
1511         {
1512                 .name = "throttle.io_serviced",
1513                 .private = (unsigned long)&blkcg_policy_throtl,
1514                 .seq_show = blkg_print_stat_ios,
1515         },
1516         {
1517                 .name = "throttle.io_serviced_recursive",
1518                 .private = (unsigned long)&blkcg_policy_throtl,
1519                 .seq_show = blkg_print_stat_ios_recursive,
1520         },
1521         { }     /* terminate */
1522 };
1523
1524 static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1525                          int off)
1526 {
1527         struct throtl_grp *tg = pd_to_tg(pd);
1528         const char *dname = blkg_dev_name(pd->blkg);
1529         char bufs[4][21] = { "max", "max", "max", "max" };
1530         u64 bps_dft;
1531         unsigned int iops_dft;
1532         char idle_time[26] = "";
1533         char latency_time[26] = "";
1534
1535         if (!dname)
1536                 return 0;
1537
1538         if (off == LIMIT_LOW) {
1539                 bps_dft = 0;
1540                 iops_dft = 0;
1541         } else {
1542                 bps_dft = U64_MAX;
1543                 iops_dft = UINT_MAX;
1544         }
1545
1546         if (tg->bps_conf[READ][off] == bps_dft &&
1547             tg->bps_conf[WRITE][off] == bps_dft &&
1548             tg->iops_conf[READ][off] == iops_dft &&
1549             tg->iops_conf[WRITE][off] == iops_dft &&
1550             (off != LIMIT_LOW ||
1551              (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD &&
1552               tg->latency_target_conf == DFL_LATENCY_TARGET)))
1553                 return 0;
1554
1555         if (tg->bps_conf[READ][off] != U64_MAX)
1556                 snprintf(bufs[0], sizeof(bufs[0]), "%llu",
1557                         tg->bps_conf[READ][off]);
1558         if (tg->bps_conf[WRITE][off] != U64_MAX)
1559                 snprintf(bufs[1], sizeof(bufs[1]), "%llu",
1560                         tg->bps_conf[WRITE][off]);
1561         if (tg->iops_conf[READ][off] != UINT_MAX)
1562                 snprintf(bufs[2], sizeof(bufs[2]), "%u",
1563                         tg->iops_conf[READ][off]);
1564         if (tg->iops_conf[WRITE][off] != UINT_MAX)
1565                 snprintf(bufs[3], sizeof(bufs[3]), "%u",
1566                         tg->iops_conf[WRITE][off]);
1567         if (off == LIMIT_LOW) {
1568                 if (tg->idletime_threshold_conf == ULONG_MAX)
1569                         strcpy(idle_time, " idle=max");
1570                 else
1571                         snprintf(idle_time, sizeof(idle_time), " idle=%lu",
1572                                 tg->idletime_threshold_conf);
1573
1574                 if (tg->latency_target_conf == ULONG_MAX)
1575                         strcpy(latency_time, " latency=max");
1576                 else
1577                         snprintf(latency_time, sizeof(latency_time),
1578                                 " latency=%lu", tg->latency_target_conf);
1579         }
1580
1581         seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
1582                    dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
1583                    latency_time);
1584         return 0;
1585 }
1586
1587 static int tg_print_limit(struct seq_file *sf, void *v)
1588 {
1589         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1590                           &blkcg_policy_throtl, seq_cft(sf)->private, false);
1591         return 0;
1592 }
1593
1594 static ssize_t tg_set_limit(struct kernfs_open_file *of,
1595                           char *buf, size_t nbytes, loff_t off)
1596 {
1597         struct blkcg *blkcg = css_to_blkcg(of_css(of));
1598         struct blkg_conf_ctx ctx;
1599         struct throtl_grp *tg;
1600         u64 v[4];
1601         unsigned long idle_time;
1602         unsigned long latency_time;
1603         int ret;
1604         int index = of_cft(of)->private;
1605
1606         ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1607         if (ret)
1608                 return ret;
1609
1610         tg = blkg_to_tg(ctx.blkg);
1611
1612         v[0] = tg->bps_conf[READ][index];
1613         v[1] = tg->bps_conf[WRITE][index];
1614         v[2] = tg->iops_conf[READ][index];
1615         v[3] = tg->iops_conf[WRITE][index];
1616
1617         idle_time = tg->idletime_threshold_conf;
1618         latency_time = tg->latency_target_conf;
1619         while (true) {
1620                 char tok[27];   /* wiops=18446744073709551616 */
1621                 char *p;
1622                 u64 val = U64_MAX;
1623                 int len;
1624
1625                 if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1626                         break;
1627                 if (tok[0] == '\0')
1628                         break;
1629                 ctx.body += len;
1630
1631                 ret = -EINVAL;
1632                 p = tok;
1633                 strsep(&p, "=");
1634                 if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1635                         goto out_finish;
1636
1637                 ret = -ERANGE;
1638                 if (!val)
1639                         goto out_finish;
1640
1641                 ret = -EINVAL;
1642                 if (!strcmp(tok, "rbps"))
1643                         v[0] = val;
1644                 else if (!strcmp(tok, "wbps"))
1645                         v[1] = val;
1646                 else if (!strcmp(tok, "riops"))
1647                         v[2] = min_t(u64, val, UINT_MAX);
1648                 else if (!strcmp(tok, "wiops"))
1649                         v[3] = min_t(u64, val, UINT_MAX);
1650                 else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
1651                         idle_time = val;
1652                 else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
1653                         latency_time = val;
1654                 else
1655                         goto out_finish;
1656         }
1657
1658         tg->bps_conf[READ][index] = v[0];
1659         tg->bps_conf[WRITE][index] = v[1];
1660         tg->iops_conf[READ][index] = v[2];
1661         tg->iops_conf[WRITE][index] = v[3];
1662
1663         if (index == LIMIT_MAX) {
1664                 tg->bps[READ][index] = v[0];
1665                 tg->bps[WRITE][index] = v[1];
1666                 tg->iops[READ][index] = v[2];
1667                 tg->iops[WRITE][index] = v[3];
1668         }
1669         tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
1670                 tg->bps_conf[READ][LIMIT_MAX]);
1671         tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
1672                 tg->bps_conf[WRITE][LIMIT_MAX]);
1673         tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
1674                 tg->iops_conf[READ][LIMIT_MAX]);
1675         tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
1676                 tg->iops_conf[WRITE][LIMIT_MAX]);
1677         tg->idletime_threshold_conf = idle_time;
1678         tg->latency_target_conf = latency_time;
1679
1680         /* force user to configure all settings for low limit  */
1681         if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] ||
1682               tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) ||
1683             tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD ||
1684             tg->latency_target_conf == DFL_LATENCY_TARGET) {
1685                 tg->bps[READ][LIMIT_LOW] = 0;
1686                 tg->bps[WRITE][LIMIT_LOW] = 0;
1687                 tg->iops[READ][LIMIT_LOW] = 0;
1688                 tg->iops[WRITE][LIMIT_LOW] = 0;
1689                 tg->idletime_threshold = DFL_IDLE_THRESHOLD;
1690                 tg->latency_target = DFL_LATENCY_TARGET;
1691         } else if (index == LIMIT_LOW) {
1692                 tg->idletime_threshold = tg->idletime_threshold_conf;
1693                 tg->latency_target = tg->latency_target_conf;
1694         }
1695
1696         blk_throtl_update_limit_valid(tg->td);
1697         if (tg->td->limit_valid[LIMIT_LOW]) {
1698                 if (index == LIMIT_LOW)
1699                         tg->td->limit_index = LIMIT_LOW;
1700         } else
1701                 tg->td->limit_index = LIMIT_MAX;
1702         tg_conf_updated(tg, index == LIMIT_LOW &&
1703                 tg->td->limit_valid[LIMIT_LOW]);
1704         ret = 0;
1705 out_finish:
1706         blkg_conf_finish(&ctx);
1707         return ret ?: nbytes;
1708 }
1709
1710 static struct cftype throtl_files[] = {
1711 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1712         {
1713                 .name = "low",
1714                 .flags = CFTYPE_NOT_ON_ROOT,
1715                 .seq_show = tg_print_limit,
1716                 .write = tg_set_limit,
1717                 .private = LIMIT_LOW,
1718         },
1719 #endif
1720         {
1721                 .name = "max",
1722                 .flags = CFTYPE_NOT_ON_ROOT,
1723                 .seq_show = tg_print_limit,
1724                 .write = tg_set_limit,
1725                 .private = LIMIT_MAX,
1726         },
1727         { }     /* terminate */
1728 };
1729
1730 static void throtl_shutdown_wq(struct request_queue *q)
1731 {
1732         struct throtl_data *td = q->td;
1733
1734         cancel_work_sync(&td->dispatch_work);
1735 }
1736
1737 static struct blkcg_policy blkcg_policy_throtl = {
1738         .dfl_cftypes            = throtl_files,
1739         .legacy_cftypes         = throtl_legacy_files,
1740
1741         .pd_alloc_fn            = throtl_pd_alloc,
1742         .pd_init_fn             = throtl_pd_init,
1743         .pd_online_fn           = throtl_pd_online,
1744         .pd_offline_fn          = throtl_pd_offline,
1745         .pd_free_fn             = throtl_pd_free,
1746 };
1747
1748 static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
1749 {
1750         unsigned long rtime = jiffies, wtime = jiffies;
1751
1752         if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
1753                 rtime = tg->last_low_overflow_time[READ];
1754         if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
1755                 wtime = tg->last_low_overflow_time[WRITE];
1756         return min(rtime, wtime);
1757 }
1758
1759 /* tg should not be an intermediate node */
1760 static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
1761 {
1762         struct throtl_service_queue *parent_sq;
1763         struct throtl_grp *parent = tg;
1764         unsigned long ret = __tg_last_low_overflow_time(tg);
1765
1766         while (true) {
1767                 parent_sq = parent->service_queue.parent_sq;
1768                 parent = sq_to_tg(parent_sq);
1769                 if (!parent)
1770                         break;
1771
1772                 /*
1773                  * The parent doesn't have low limit, it always reaches low
1774                  * limit. Its overflow time is useless for children
1775                  */
1776                 if (!parent->bps[READ][LIMIT_LOW] &&
1777                     !parent->iops[READ][LIMIT_LOW] &&
1778                     !parent->bps[WRITE][LIMIT_LOW] &&
1779                     !parent->iops[WRITE][LIMIT_LOW])
1780                         continue;
1781                 if (time_after(__tg_last_low_overflow_time(parent), ret))
1782                         ret = __tg_last_low_overflow_time(parent);
1783         }
1784         return ret;
1785 }
1786
1787 static bool throtl_tg_is_idle(struct throtl_grp *tg)
1788 {
1789         /*
1790          * cgroup is idle if:
1791          * - single idle is too long, longer than a fixed value (in case user
1792          *   configure a too big threshold) or 4 times of idletime threshold
1793          * - average think time is more than threshold
1794          * - IO latency is largely below threshold
1795          */
1796         unsigned long time;
1797         bool ret;
1798
1799         time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold);
1800         ret = tg->latency_target == DFL_LATENCY_TARGET ||
1801               tg->idletime_threshold == DFL_IDLE_THRESHOLD ||
1802               (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
1803               tg->avg_idletime > tg->idletime_threshold ||
1804               (tg->latency_target && tg->bio_cnt &&
1805                 tg->bad_bio_cnt * 5 < tg->bio_cnt);
1806         throtl_log(&tg->service_queue,
1807                 "avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
1808                 tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
1809                 tg->bio_cnt, ret, tg->td->scale);
1810         return ret;
1811 }
1812
1813 static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
1814 {
1815         struct throtl_service_queue *sq = &tg->service_queue;
1816         bool read_limit, write_limit;
1817
1818         /*
1819          * if cgroup reaches low limit (if low limit is 0, the cgroup always
1820          * reaches), it's ok to upgrade to next limit
1821          */
1822         read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
1823         write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
1824         if (!read_limit && !write_limit)
1825                 return true;
1826         if (read_limit && sq->nr_queued[READ] &&
1827             (!write_limit || sq->nr_queued[WRITE]))
1828                 return true;
1829         if (write_limit && sq->nr_queued[WRITE] &&
1830             (!read_limit || sq->nr_queued[READ]))
1831                 return true;
1832
1833         if (time_after_eq(jiffies,
1834                 tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
1835             throtl_tg_is_idle(tg))
1836                 return true;
1837         return false;
1838 }
1839
1840 static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
1841 {
1842         while (true) {
1843                 if (throtl_tg_can_upgrade(tg))
1844                         return true;
1845                 tg = sq_to_tg(tg->service_queue.parent_sq);
1846                 if (!tg || !tg_to_blkg(tg)->parent)
1847                         return false;
1848         }
1849         return false;
1850 }
1851
1852 static bool throtl_can_upgrade(struct throtl_data *td,
1853         struct throtl_grp *this_tg)
1854 {
1855         struct cgroup_subsys_state *pos_css;
1856         struct blkcg_gq *blkg;
1857
1858         if (td->limit_index != LIMIT_LOW)
1859                 return false;
1860
1861         if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
1862                 return false;
1863
1864         rcu_read_lock();
1865         blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1866                 struct throtl_grp *tg = blkg_to_tg(blkg);
1867
1868                 if (tg == this_tg)
1869                         continue;
1870                 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1871                         continue;
1872                 if (!throtl_hierarchy_can_upgrade(tg)) {
1873                         rcu_read_unlock();
1874                         return false;
1875                 }
1876         }
1877         rcu_read_unlock();
1878         return true;
1879 }
1880
1881 static void throtl_upgrade_check(struct throtl_grp *tg)
1882 {
1883         unsigned long now = jiffies;
1884
1885         if (tg->td->limit_index != LIMIT_LOW)
1886                 return;
1887
1888         if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1889                 return;
1890
1891         tg->last_check_time = now;
1892
1893         if (!time_after_eq(now,
1894              __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
1895                 return;
1896
1897         if (throtl_can_upgrade(tg->td, NULL))
1898                 throtl_upgrade_state(tg->td);
1899 }
1900
1901 static void throtl_upgrade_state(struct throtl_data *td)
1902 {
1903         struct cgroup_subsys_state *pos_css;
1904         struct blkcg_gq *blkg;
1905
1906         throtl_log(&td->service_queue, "upgrade to max");
1907         td->limit_index = LIMIT_MAX;
1908         td->low_upgrade_time = jiffies;
1909         td->scale = 0;
1910         rcu_read_lock();
1911         blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1912                 struct throtl_grp *tg = blkg_to_tg(blkg);
1913                 struct throtl_service_queue *sq = &tg->service_queue;
1914
1915                 tg->disptime = jiffies - 1;
1916                 throtl_select_dispatch(sq);
1917                 throtl_schedule_next_dispatch(sq, true);
1918         }
1919         rcu_read_unlock();
1920         throtl_select_dispatch(&td->service_queue);
1921         throtl_schedule_next_dispatch(&td->service_queue, true);
1922         queue_work(kthrotld_workqueue, &td->dispatch_work);
1923 }
1924
1925 static void throtl_downgrade_state(struct throtl_data *td, int new)
1926 {
1927         td->scale /= 2;
1928
1929         throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
1930         if (td->scale) {
1931                 td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
1932                 return;
1933         }
1934
1935         td->limit_index = new;
1936         td->low_downgrade_time = jiffies;
1937 }
1938
1939 static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
1940 {
1941         struct throtl_data *td = tg->td;
1942         unsigned long now = jiffies;
1943
1944         /*
1945          * If cgroup is below low limit, consider downgrade and throttle other
1946          * cgroups
1947          */
1948         if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) &&
1949             time_after_eq(now, tg_last_low_overflow_time(tg) +
1950                                         td->throtl_slice) &&
1951             (!throtl_tg_is_idle(tg) ||
1952              !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
1953                 return true;
1954         return false;
1955 }
1956
1957 static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
1958 {
1959         while (true) {
1960                 if (!throtl_tg_can_downgrade(tg))
1961                         return false;
1962                 tg = sq_to_tg(tg->service_queue.parent_sq);
1963                 if (!tg || !tg_to_blkg(tg)->parent)
1964                         break;
1965         }
1966         return true;
1967 }
1968
1969 static void throtl_downgrade_check(struct throtl_grp *tg)
1970 {
1971         uint64_t bps;
1972         unsigned int iops;
1973         unsigned long elapsed_time;
1974         unsigned long now = jiffies;
1975
1976         if (tg->td->limit_index != LIMIT_MAX ||
1977             !tg->td->limit_valid[LIMIT_LOW])
1978                 return;
1979         if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1980                 return;
1981         if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1982                 return;
1983
1984         elapsed_time = now - tg->last_check_time;
1985         tg->last_check_time = now;
1986
1987         if (time_before(now, tg_last_low_overflow_time(tg) +
1988                         tg->td->throtl_slice))
1989                 return;
1990
1991         if (tg->bps[READ][LIMIT_LOW]) {
1992                 bps = tg->last_bytes_disp[READ] * HZ;
1993                 do_div(bps, elapsed_time);
1994                 if (bps >= tg->bps[READ][LIMIT_LOW])
1995                         tg->last_low_overflow_time[READ] = now;
1996         }
1997
1998         if (tg->bps[WRITE][LIMIT_LOW]) {
1999                 bps = tg->last_bytes_disp[WRITE] * HZ;
2000                 do_div(bps, elapsed_time);
2001                 if (bps >= tg->bps[WRITE][LIMIT_LOW])
2002                         tg->last_low_overflow_time[WRITE] = now;
2003         }
2004
2005         if (tg->iops[READ][LIMIT_LOW]) {
2006                 iops = tg->last_io_disp[READ] * HZ / elapsed_time;
2007                 if (iops >= tg->iops[READ][LIMIT_LOW])
2008                         tg->last_low_overflow_time[READ] = now;
2009         }
2010
2011         if (tg->iops[WRITE][LIMIT_LOW]) {
2012                 iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
2013                 if (iops >= tg->iops[WRITE][LIMIT_LOW])
2014                         tg->last_low_overflow_time[WRITE] = now;
2015         }
2016
2017         /*
2018          * If cgroup is below low limit, consider downgrade and throttle other
2019          * cgroups
2020          */
2021         if (throtl_hierarchy_can_downgrade(tg))
2022                 throtl_downgrade_state(tg->td, LIMIT_LOW);
2023
2024         tg->last_bytes_disp[READ] = 0;
2025         tg->last_bytes_disp[WRITE] = 0;
2026         tg->last_io_disp[READ] = 0;
2027         tg->last_io_disp[WRITE] = 0;
2028 }
2029
2030 static void blk_throtl_update_idletime(struct throtl_grp *tg)
2031 {
2032         unsigned long now = ktime_get_ns() >> 10;
2033         unsigned long last_finish_time = tg->last_finish_time;
2034
2035         if (now <= last_finish_time || last_finish_time == 0 ||
2036             last_finish_time == tg->checked_last_finish_time)
2037                 return;
2038
2039         tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
2040         tg->checked_last_finish_time = last_finish_time;
2041 }
2042
2043 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2044 static void throtl_update_latency_buckets(struct throtl_data *td)
2045 {
2046         struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE];
2047         int i, cpu, rw;
2048         unsigned long last_latency[2] = { 0 };
2049         unsigned long latency[2];
2050
2051         if (!blk_queue_nonrot(td->queue))
2052                 return;
2053         if (time_before(jiffies, td->last_calculate_time + HZ))
2054                 return;
2055         td->last_calculate_time = jiffies;
2056
2057         memset(avg_latency, 0, sizeof(avg_latency));
2058         for (rw = READ; rw <= WRITE; rw++) {
2059                 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2060                         struct latency_bucket *tmp = &td->tmp_buckets[rw][i];
2061
2062                         for_each_possible_cpu(cpu) {
2063                                 struct latency_bucket *bucket;
2064
2065                                 /* this isn't race free, but ok in practice */
2066                                 bucket = per_cpu_ptr(td->latency_buckets[rw],
2067                                         cpu);
2068                                 tmp->total_latency += bucket[i].total_latency;
2069                                 tmp->samples += bucket[i].samples;
2070                                 bucket[i].total_latency = 0;
2071                                 bucket[i].samples = 0;
2072                         }
2073
2074                         if (tmp->samples >= 32) {
2075                                 int samples = tmp->samples;
2076
2077                                 latency[rw] = tmp->total_latency;
2078
2079                                 tmp->total_latency = 0;
2080                                 tmp->samples = 0;
2081                                 latency[rw] /= samples;
2082                                 if (latency[rw] == 0)
2083                                         continue;
2084                                 avg_latency[rw][i].latency = latency[rw];
2085                         }
2086                 }
2087         }
2088
2089         for (rw = READ; rw <= WRITE; rw++) {
2090                 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2091                         if (!avg_latency[rw][i].latency) {
2092                                 if (td->avg_buckets[rw][i].latency < last_latency[rw])
2093                                         td->avg_buckets[rw][i].latency =
2094                                                 last_latency[rw];
2095                                 continue;
2096                         }
2097
2098                         if (!td->avg_buckets[rw][i].valid)
2099                                 latency[rw] = avg_latency[rw][i].latency;
2100                         else
2101                                 latency[rw] = (td->avg_buckets[rw][i].latency * 7 +
2102                                         avg_latency[rw][i].latency) >> 3;
2103
2104                         td->avg_buckets[rw][i].latency = max(latency[rw],
2105                                 last_latency[rw]);
2106                         td->avg_buckets[rw][i].valid = true;
2107                         last_latency[rw] = td->avg_buckets[rw][i].latency;
2108                 }
2109         }
2110
2111         for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
2112                 throtl_log(&td->service_queue,
2113                         "Latency bucket %d: read latency=%ld, read valid=%d, "
2114                         "write latency=%ld, write valid=%d", i,
2115                         td->avg_buckets[READ][i].latency,
2116                         td->avg_buckets[READ][i].valid,
2117                         td->avg_buckets[WRITE][i].latency,
2118                         td->avg_buckets[WRITE][i].valid);
2119 }
2120 #else
2121 static inline void throtl_update_latency_buckets(struct throtl_data *td)
2122 {
2123 }
2124 #endif
2125
2126 static void blk_throtl_assoc_bio(struct throtl_grp *tg, struct bio *bio)
2127 {
2128 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2129         /* fallback to root_blkg if we fail to get a blkg ref */
2130         if (bio->bi_css && (bio_associate_blkg(bio, tg_to_blkg(tg)) == -ENODEV))
2131                 bio_associate_blkg(bio, bio->bi_disk->queue->root_blkg);
2132         bio_issue_init(&bio->bi_issue, bio_sectors(bio));
2133 #endif
2134 }
2135
2136 bool blk_throtl_bio(struct request_queue *q, struct blkcg_gq *blkg,
2137                     struct bio *bio)
2138 {
2139         struct throtl_qnode *qn = NULL;
2140         struct throtl_grp *tg = blkg_to_tg(blkg ?: q->root_blkg);
2141         struct throtl_service_queue *sq;
2142         bool rw = bio_data_dir(bio);
2143         bool throttled = false;
2144         struct throtl_data *td = tg->td;
2145
2146         WARN_ON_ONCE(!rcu_read_lock_held());
2147
2148         /* see throtl_charge_bio() */
2149         if (bio_flagged(bio, BIO_THROTTLED) || !tg->has_rules[rw])
2150                 goto out;
2151
2152         spin_lock_irq(q->queue_lock);
2153
2154         throtl_update_latency_buckets(td);
2155
2156         if (unlikely(blk_queue_bypass(q)))
2157                 goto out_unlock;
2158
2159         blk_throtl_assoc_bio(tg, bio);
2160         blk_throtl_update_idletime(tg);
2161
2162         sq = &tg->service_queue;
2163
2164 again:
2165         while (true) {
2166                 if (tg->last_low_overflow_time[rw] == 0)
2167                         tg->last_low_overflow_time[rw] = jiffies;
2168                 throtl_downgrade_check(tg);
2169                 throtl_upgrade_check(tg);
2170                 /* throtl is FIFO - if bios are already queued, should queue */
2171                 if (sq->nr_queued[rw])
2172                         break;
2173
2174                 /* if above limits, break to queue */
2175                 if (!tg_may_dispatch(tg, bio, NULL)) {
2176                         tg->last_low_overflow_time[rw] = jiffies;
2177                         if (throtl_can_upgrade(td, tg)) {
2178                                 throtl_upgrade_state(td);
2179                                 goto again;
2180                         }
2181                         break;
2182                 }
2183
2184                 /* within limits, let's charge and dispatch directly */
2185                 throtl_charge_bio(tg, bio);
2186
2187                 /*
2188                  * We need to trim slice even when bios are not being queued
2189                  * otherwise it might happen that a bio is not queued for
2190                  * a long time and slice keeps on extending and trim is not
2191                  * called for a long time. Now if limits are reduced suddenly
2192                  * we take into account all the IO dispatched so far at new
2193                  * low rate and * newly queued IO gets a really long dispatch
2194                  * time.
2195                  *
2196                  * So keep on trimming slice even if bio is not queued.
2197                  */
2198                 throtl_trim_slice(tg, rw);
2199
2200                 /*
2201                  * @bio passed through this layer without being throttled.
2202                  * Climb up the ladder.  If we''re already at the top, it
2203                  * can be executed directly.
2204                  */
2205                 qn = &tg->qnode_on_parent[rw];
2206                 sq = sq->parent_sq;
2207                 tg = sq_to_tg(sq);
2208                 if (!tg)
2209                         goto out_unlock;
2210         }
2211
2212         /* out-of-limit, queue to @tg */
2213         throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
2214                    rw == READ ? 'R' : 'W',
2215                    tg->bytes_disp[rw], bio->bi_iter.bi_size,
2216                    tg_bps_limit(tg, rw),
2217                    tg->io_disp[rw], tg_iops_limit(tg, rw),
2218                    sq->nr_queued[READ], sq->nr_queued[WRITE]);
2219
2220         tg->last_low_overflow_time[rw] = jiffies;
2221
2222         td->nr_queued[rw]++;
2223         throtl_add_bio_tg(bio, qn, tg);
2224         throttled = true;
2225
2226         /*
2227          * Update @tg's dispatch time and force schedule dispatch if @tg
2228          * was empty before @bio.  The forced scheduling isn't likely to
2229          * cause undue delay as @bio is likely to be dispatched directly if
2230          * its @tg's disptime is not in the future.
2231          */
2232         if (tg->flags & THROTL_TG_WAS_EMPTY) {
2233                 tg_update_disptime(tg);
2234                 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
2235         }
2236
2237 out_unlock:
2238         spin_unlock_irq(q->queue_lock);
2239 out:
2240         bio_set_flag(bio, BIO_THROTTLED);
2241
2242 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2243         if (throttled || !td->track_bio_latency)
2244                 bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY;
2245 #endif
2246         return throttled;
2247 }
2248
2249 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2250 static void throtl_track_latency(struct throtl_data *td, sector_t size,
2251         int op, unsigned long time)
2252 {
2253         struct latency_bucket *latency;
2254         int index;
2255
2256         if (!td || td->limit_index != LIMIT_LOW ||
2257             !(op == REQ_OP_READ || op == REQ_OP_WRITE) ||
2258             !blk_queue_nonrot(td->queue))
2259                 return;
2260
2261         index = request_bucket_index(size);
2262
2263         latency = get_cpu_ptr(td->latency_buckets[op]);
2264         latency[index].total_latency += time;
2265         latency[index].samples++;
2266         put_cpu_ptr(td->latency_buckets[op]);
2267 }
2268
2269 void blk_throtl_stat_add(struct request *rq, u64 time_ns)
2270 {
2271         struct request_queue *q = rq->q;
2272         struct throtl_data *td = q->td;
2273
2274         throtl_track_latency(td, rq->throtl_size, req_op(rq), time_ns >> 10);
2275 }
2276
2277 void blk_throtl_bio_endio(struct bio *bio)
2278 {
2279         struct blkcg_gq *blkg;
2280         struct throtl_grp *tg;
2281         u64 finish_time_ns;
2282         unsigned long finish_time;
2283         unsigned long start_time;
2284         unsigned long lat;
2285         int rw = bio_data_dir(bio);
2286
2287         blkg = bio->bi_blkg;
2288         if (!blkg)
2289                 return;
2290         tg = blkg_to_tg(blkg);
2291
2292         finish_time_ns = ktime_get_ns();
2293         tg->last_finish_time = finish_time_ns >> 10;
2294
2295         start_time = bio_issue_time(&bio->bi_issue) >> 10;
2296         finish_time = __bio_issue_time(finish_time_ns) >> 10;
2297         if (!start_time || finish_time <= start_time)
2298                 return;
2299
2300         lat = finish_time - start_time;
2301         /* this is only for bio based driver */
2302         if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY))
2303                 throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue),
2304                                      bio_op(bio), lat);
2305
2306         if (tg->latency_target && lat >= tg->td->filtered_latency) {
2307                 int bucket;
2308                 unsigned int threshold;
2309
2310                 bucket = request_bucket_index(bio_issue_size(&bio->bi_issue));
2311                 threshold = tg->td->avg_buckets[rw][bucket].latency +
2312                         tg->latency_target;
2313                 if (lat > threshold)
2314                         tg->bad_bio_cnt++;
2315                 /*
2316                  * Not race free, could get wrong count, which means cgroups
2317                  * will be throttled
2318                  */
2319                 tg->bio_cnt++;
2320         }
2321
2322         if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
2323                 tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
2324                 tg->bio_cnt /= 2;
2325                 tg->bad_bio_cnt /= 2;
2326         }
2327 }
2328 #endif
2329
2330 /*
2331  * Dispatch all bios from all children tg's queued on @parent_sq.  On
2332  * return, @parent_sq is guaranteed to not have any active children tg's
2333  * and all bios from previously active tg's are on @parent_sq->bio_lists[].
2334  */
2335 static void tg_drain_bios(struct throtl_service_queue *parent_sq)
2336 {
2337         struct throtl_grp *tg;
2338
2339         while ((tg = throtl_rb_first(parent_sq))) {
2340                 struct throtl_service_queue *sq = &tg->service_queue;
2341                 struct bio *bio;
2342
2343                 throtl_dequeue_tg(tg);
2344
2345                 while ((bio = throtl_peek_queued(&sq->queued[READ])))
2346                         tg_dispatch_one_bio(tg, bio_data_dir(bio));
2347                 while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
2348                         tg_dispatch_one_bio(tg, bio_data_dir(bio));
2349         }
2350 }
2351
2352 /**
2353  * blk_throtl_drain - drain throttled bios
2354  * @q: request_queue to drain throttled bios for
2355  *
2356  * Dispatch all currently throttled bios on @q through ->make_request_fn().
2357  */
2358 void blk_throtl_drain(struct request_queue *q)
2359         __releases(q->queue_lock) __acquires(q->queue_lock)
2360 {
2361         struct throtl_data *td = q->td;
2362         struct blkcg_gq *blkg;
2363         struct cgroup_subsys_state *pos_css;
2364         struct bio *bio;
2365         int rw;
2366
2367         queue_lockdep_assert_held(q);
2368         rcu_read_lock();
2369
2370         /*
2371          * Drain each tg while doing post-order walk on the blkg tree, so
2372          * that all bios are propagated to td->service_queue.  It'd be
2373          * better to walk service_queue tree directly but blkg walk is
2374          * easier.
2375          */
2376         blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg)
2377                 tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
2378
2379         /* finally, transfer bios from top-level tg's into the td */
2380         tg_drain_bios(&td->service_queue);
2381
2382         rcu_read_unlock();
2383         spin_unlock_irq(q->queue_lock);
2384
2385         /* all bios now should be in td->service_queue, issue them */
2386         for (rw = READ; rw <= WRITE; rw++)
2387                 while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
2388                                                 NULL)))
2389                         generic_make_request(bio);
2390
2391         spin_lock_irq(q->queue_lock);
2392 }
2393
2394 int blk_throtl_init(struct request_queue *q)
2395 {
2396         struct throtl_data *td;
2397         int ret;
2398
2399         td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
2400         if (!td)
2401                 return -ENOMEM;
2402         td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) *
2403                 LATENCY_BUCKET_SIZE, __alignof__(u64));
2404         if (!td->latency_buckets[READ]) {
2405                 kfree(td);
2406                 return -ENOMEM;
2407         }
2408         td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) *
2409                 LATENCY_BUCKET_SIZE, __alignof__(u64));
2410         if (!td->latency_buckets[WRITE]) {
2411                 free_percpu(td->latency_buckets[READ]);
2412                 kfree(td);
2413                 return -ENOMEM;
2414         }
2415
2416         INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
2417         throtl_service_queue_init(&td->service_queue);
2418
2419         q->td = td;
2420         td->queue = q;
2421
2422         td->limit_valid[LIMIT_MAX] = true;
2423         td->limit_index = LIMIT_MAX;
2424         td->low_upgrade_time = jiffies;
2425         td->low_downgrade_time = jiffies;
2426
2427         /* activate policy */
2428         ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
2429         if (ret) {
2430                 free_percpu(td->latency_buckets[READ]);
2431                 free_percpu(td->latency_buckets[WRITE]);
2432                 kfree(td);
2433         }
2434         return ret;
2435 }
2436
2437 void blk_throtl_exit(struct request_queue *q)
2438 {
2439         BUG_ON(!q->td);
2440         del_timer_sync(&q->td->service_queue.pending_timer);
2441         throtl_shutdown_wq(q);
2442         blkcg_deactivate_policy(q, &blkcg_policy_throtl);
2443         free_percpu(q->td->latency_buckets[READ]);
2444         free_percpu(q->td->latency_buckets[WRITE]);
2445         kfree(q->td);
2446 }
2447
2448 void blk_throtl_register_queue(struct request_queue *q)
2449 {
2450         struct throtl_data *td;
2451         int i;
2452
2453         td = q->td;
2454         BUG_ON(!td);
2455
2456         if (blk_queue_nonrot(q)) {
2457                 td->throtl_slice = DFL_THROTL_SLICE_SSD;
2458                 td->filtered_latency = LATENCY_FILTERED_SSD;
2459         } else {
2460                 td->throtl_slice = DFL_THROTL_SLICE_HD;
2461                 td->filtered_latency = LATENCY_FILTERED_HD;
2462                 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2463                         td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY;
2464                         td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY;
2465                 }
2466         }
2467 #ifndef CONFIG_BLK_DEV_THROTTLING_LOW
2468         /* if no low limit, use previous default */
2469         td->throtl_slice = DFL_THROTL_SLICE_HD;
2470 #endif
2471
2472         td->track_bio_latency = !queue_is_rq_based(q);
2473         if (!td->track_bio_latency)
2474                 blk_stat_enable_accounting(q);
2475 }
2476
2477 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2478 ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
2479 {
2480         if (!q->td)
2481                 return -EINVAL;
2482         return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
2483 }
2484
2485 ssize_t blk_throtl_sample_time_store(struct request_queue *q,
2486         const char *page, size_t count)
2487 {
2488         unsigned long v;
2489         unsigned long t;
2490
2491         if (!q->td)
2492                 return -EINVAL;
2493         if (kstrtoul(page, 10, &v))
2494                 return -EINVAL;
2495         t = msecs_to_jiffies(v);
2496         if (t == 0 || t > MAX_THROTL_SLICE)
2497                 return -EINVAL;
2498         q->td->throtl_slice = t;
2499         return count;
2500 }
2501 #endif
2502
2503 static int __init throtl_init(void)
2504 {
2505         kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
2506         if (!kthrotld_workqueue)
2507                 panic("Failed to create kthrotld\n");
2508
2509         return blkcg_policy_register(&blkcg_policy_throtl);
2510 }
2511
2512 module_init(throtl_init);