GNU Linux-libre 4.19.264-gnu1
[releases.git] / drivers / acpi / acpi_pad.c
1 /*
2  * acpi_pad.c ACPI Processor Aggregator Driver
3  *
4  * Copyright (c) 2009, Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  */
16
17 #include <linux/kernel.h>
18 #include <linux/cpumask.h>
19 #include <linux/module.h>
20 #include <linux/init.h>
21 #include <linux/types.h>
22 #include <linux/kthread.h>
23 #include <uapi/linux/sched/types.h>
24 #include <linux/freezer.h>
25 #include <linux/cpu.h>
26 #include <linux/tick.h>
27 #include <linux/slab.h>
28 #include <linux/acpi.h>
29 #include <asm/mwait.h>
30 #include <xen/xen.h>
31
32 #define ACPI_PROCESSOR_AGGREGATOR_CLASS "acpi_pad"
33 #define ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME "Processor Aggregator"
34 #define ACPI_PROCESSOR_AGGREGATOR_NOTIFY 0x80
35 static DEFINE_MUTEX(isolated_cpus_lock);
36 static DEFINE_MUTEX(round_robin_lock);
37
38 static unsigned long power_saving_mwait_eax;
39
40 static unsigned char tsc_detected_unstable;
41 static unsigned char tsc_marked_unstable;
42
43 static void power_saving_mwait_init(void)
44 {
45         unsigned int eax, ebx, ecx, edx;
46         unsigned int highest_cstate = 0;
47         unsigned int highest_subcstate = 0;
48         int i;
49
50         if (!boot_cpu_has(X86_FEATURE_MWAIT))
51                 return;
52         if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF)
53                 return;
54
55         cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
56
57         if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) ||
58             !(ecx & CPUID5_ECX_INTERRUPT_BREAK))
59                 return;
60
61         edx >>= MWAIT_SUBSTATE_SIZE;
62         for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
63                 if (edx & MWAIT_SUBSTATE_MASK) {
64                         highest_cstate = i;
65                         highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
66                 }
67         }
68         power_saving_mwait_eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
69                 (highest_subcstate - 1);
70
71 #if defined(CONFIG_X86)
72         switch (boot_cpu_data.x86_vendor) {
73         case X86_VENDOR_AMD:
74         case X86_VENDOR_INTEL:
75                 /*
76                  * AMD Fam10h TSC will tick in all
77                  * C/P/S0/S1 states when this bit is set.
78                  */
79                 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
80                         tsc_detected_unstable = 1;
81                 break;
82         default:
83                 /* TSC could halt in idle */
84                 tsc_detected_unstable = 1;
85         }
86 #endif
87 }
88
89 static unsigned long cpu_weight[NR_CPUS];
90 static int tsk_in_cpu[NR_CPUS] = {[0 ... NR_CPUS-1] = -1};
91 static DECLARE_BITMAP(pad_busy_cpus_bits, NR_CPUS);
92 static void round_robin_cpu(unsigned int tsk_index)
93 {
94         struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
95         cpumask_var_t tmp;
96         int cpu;
97         unsigned long min_weight = -1;
98         unsigned long uninitialized_var(preferred_cpu);
99
100         if (!alloc_cpumask_var(&tmp, GFP_KERNEL))
101                 return;
102
103         mutex_lock(&round_robin_lock);
104         cpumask_clear(tmp);
105         for_each_cpu(cpu, pad_busy_cpus)
106                 cpumask_or(tmp, tmp, topology_sibling_cpumask(cpu));
107         cpumask_andnot(tmp, cpu_online_mask, tmp);
108         /* avoid HT sibilings if possible */
109         if (cpumask_empty(tmp))
110                 cpumask_andnot(tmp, cpu_online_mask, pad_busy_cpus);
111         if (cpumask_empty(tmp)) {
112                 mutex_unlock(&round_robin_lock);
113                 free_cpumask_var(tmp);
114                 return;
115         }
116         for_each_cpu(cpu, tmp) {
117                 if (cpu_weight[cpu] < min_weight) {
118                         min_weight = cpu_weight[cpu];
119                         preferred_cpu = cpu;
120                 }
121         }
122
123         if (tsk_in_cpu[tsk_index] != -1)
124                 cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
125         tsk_in_cpu[tsk_index] = preferred_cpu;
126         cpumask_set_cpu(preferred_cpu, pad_busy_cpus);
127         cpu_weight[preferred_cpu]++;
128         mutex_unlock(&round_robin_lock);
129
130         set_cpus_allowed_ptr(current, cpumask_of(preferred_cpu));
131
132         free_cpumask_var(tmp);
133 }
134
135 static void exit_round_robin(unsigned int tsk_index)
136 {
137         struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
138         cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
139         tsk_in_cpu[tsk_index] = -1;
140 }
141
142 static unsigned int idle_pct = 5; /* percentage */
143 static unsigned int round_robin_time = 1; /* second */
144 static int power_saving_thread(void *data)
145 {
146         struct sched_param param = {.sched_priority = 1};
147         int do_sleep;
148         unsigned int tsk_index = (unsigned long)data;
149         u64 last_jiffies = 0;
150
151         sched_setscheduler(current, SCHED_RR, &param);
152
153         while (!kthread_should_stop()) {
154                 unsigned long expire_time;
155
156                 /* round robin to cpus */
157                 expire_time = last_jiffies + round_robin_time * HZ;
158                 if (time_before(expire_time, jiffies)) {
159                         last_jiffies = jiffies;
160                         round_robin_cpu(tsk_index);
161                 }
162
163                 do_sleep = 0;
164
165                 expire_time = jiffies + HZ * (100 - idle_pct) / 100;
166
167                 while (!need_resched()) {
168                         if (tsc_detected_unstable && !tsc_marked_unstable) {
169                                 /* TSC could halt in idle, so notify users */
170                                 mark_tsc_unstable("TSC halts in idle");
171                                 tsc_marked_unstable = 1;
172                         }
173                         local_irq_disable();
174                         tick_broadcast_enable();
175                         tick_broadcast_enter();
176                         stop_critical_timings();
177
178                         mwait_idle_with_hints(power_saving_mwait_eax, 1);
179
180                         start_critical_timings();
181                         tick_broadcast_exit();
182                         local_irq_enable();
183
184                         if (time_before(expire_time, jiffies)) {
185                                 do_sleep = 1;
186                                 break;
187                         }
188                 }
189
190                 /*
191                  * current sched_rt has threshold for rt task running time.
192                  * When a rt task uses 95% CPU time, the rt thread will be
193                  * scheduled out for 5% CPU time to not starve other tasks. But
194                  * the mechanism only works when all CPUs have RT task running,
195                  * as if one CPU hasn't RT task, RT task from other CPUs will
196                  * borrow CPU time from this CPU and cause RT task use > 95%
197                  * CPU time. To make 'avoid starvation' work, takes a nap here.
198                  */
199                 if (unlikely(do_sleep))
200                         schedule_timeout_killable(HZ * idle_pct / 100);
201
202                 /* If an external event has set the need_resched flag, then
203                  * we need to deal with it, or this loop will continue to
204                  * spin without calling __mwait().
205                  */
206                 if (unlikely(need_resched()))
207                         schedule();
208         }
209
210         exit_round_robin(tsk_index);
211         return 0;
212 }
213
214 static struct task_struct *ps_tsks[NR_CPUS];
215 static unsigned int ps_tsk_num;
216 static int create_power_saving_task(void)
217 {
218         int rc;
219
220         ps_tsks[ps_tsk_num] = kthread_run(power_saving_thread,
221                 (void *)(unsigned long)ps_tsk_num,
222                 "acpi_pad/%d", ps_tsk_num);
223
224         if (IS_ERR(ps_tsks[ps_tsk_num])) {
225                 rc = PTR_ERR(ps_tsks[ps_tsk_num]);
226                 ps_tsks[ps_tsk_num] = NULL;
227         } else {
228                 rc = 0;
229                 ps_tsk_num++;
230         }
231
232         return rc;
233 }
234
235 static void destroy_power_saving_task(void)
236 {
237         if (ps_tsk_num > 0) {
238                 ps_tsk_num--;
239                 kthread_stop(ps_tsks[ps_tsk_num]);
240                 ps_tsks[ps_tsk_num] = NULL;
241         }
242 }
243
244 static void set_power_saving_task_num(unsigned int num)
245 {
246         if (num > ps_tsk_num) {
247                 while (ps_tsk_num < num) {
248                         if (create_power_saving_task())
249                                 return;
250                 }
251         } else if (num < ps_tsk_num) {
252                 while (ps_tsk_num > num)
253                         destroy_power_saving_task();
254         }
255 }
256
257 static void acpi_pad_idle_cpus(unsigned int num_cpus)
258 {
259         get_online_cpus();
260
261         num_cpus = min_t(unsigned int, num_cpus, num_online_cpus());
262         set_power_saving_task_num(num_cpus);
263
264         put_online_cpus();
265 }
266
267 static uint32_t acpi_pad_idle_cpus_num(void)
268 {
269         return ps_tsk_num;
270 }
271
272 static ssize_t acpi_pad_rrtime_store(struct device *dev,
273         struct device_attribute *attr, const char *buf, size_t count)
274 {
275         unsigned long num;
276         if (kstrtoul(buf, 0, &num))
277                 return -EINVAL;
278         if (num < 1 || num >= 100)
279                 return -EINVAL;
280         mutex_lock(&isolated_cpus_lock);
281         round_robin_time = num;
282         mutex_unlock(&isolated_cpus_lock);
283         return count;
284 }
285
286 static ssize_t acpi_pad_rrtime_show(struct device *dev,
287         struct device_attribute *attr, char *buf)
288 {
289         return scnprintf(buf, PAGE_SIZE, "%d\n", round_robin_time);
290 }
291 static DEVICE_ATTR(rrtime, S_IRUGO|S_IWUSR,
292         acpi_pad_rrtime_show,
293         acpi_pad_rrtime_store);
294
295 static ssize_t acpi_pad_idlepct_store(struct device *dev,
296         struct device_attribute *attr, const char *buf, size_t count)
297 {
298         unsigned long num;
299         if (kstrtoul(buf, 0, &num))
300                 return -EINVAL;
301         if (num < 1 || num >= 100)
302                 return -EINVAL;
303         mutex_lock(&isolated_cpus_lock);
304         idle_pct = num;
305         mutex_unlock(&isolated_cpus_lock);
306         return count;
307 }
308
309 static ssize_t acpi_pad_idlepct_show(struct device *dev,
310         struct device_attribute *attr, char *buf)
311 {
312         return scnprintf(buf, PAGE_SIZE, "%d\n", idle_pct);
313 }
314 static DEVICE_ATTR(idlepct, S_IRUGO|S_IWUSR,
315         acpi_pad_idlepct_show,
316         acpi_pad_idlepct_store);
317
318 static ssize_t acpi_pad_idlecpus_store(struct device *dev,
319         struct device_attribute *attr, const char *buf, size_t count)
320 {
321         unsigned long num;
322         if (kstrtoul(buf, 0, &num))
323                 return -EINVAL;
324         mutex_lock(&isolated_cpus_lock);
325         acpi_pad_idle_cpus(num);
326         mutex_unlock(&isolated_cpus_lock);
327         return count;
328 }
329
330 static ssize_t acpi_pad_idlecpus_show(struct device *dev,
331         struct device_attribute *attr, char *buf)
332 {
333         return cpumap_print_to_pagebuf(false, buf,
334                                        to_cpumask(pad_busy_cpus_bits));
335 }
336
337 static DEVICE_ATTR(idlecpus, S_IRUGO|S_IWUSR,
338         acpi_pad_idlecpus_show,
339         acpi_pad_idlecpus_store);
340
341 static int acpi_pad_add_sysfs(struct acpi_device *device)
342 {
343         int result;
344
345         result = device_create_file(&device->dev, &dev_attr_idlecpus);
346         if (result)
347                 return -ENODEV;
348         result = device_create_file(&device->dev, &dev_attr_idlepct);
349         if (result) {
350                 device_remove_file(&device->dev, &dev_attr_idlecpus);
351                 return -ENODEV;
352         }
353         result = device_create_file(&device->dev, &dev_attr_rrtime);
354         if (result) {
355                 device_remove_file(&device->dev, &dev_attr_idlecpus);
356                 device_remove_file(&device->dev, &dev_attr_idlepct);
357                 return -ENODEV;
358         }
359         return 0;
360 }
361
362 static void acpi_pad_remove_sysfs(struct acpi_device *device)
363 {
364         device_remove_file(&device->dev, &dev_attr_idlecpus);
365         device_remove_file(&device->dev, &dev_attr_idlepct);
366         device_remove_file(&device->dev, &dev_attr_rrtime);
367 }
368
369 /*
370  * Query firmware how many CPUs should be idle
371  * return -1 on failure
372  */
373 static int acpi_pad_pur(acpi_handle handle)
374 {
375         struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
376         union acpi_object *package;
377         int num = -1;
378
379         if (ACPI_FAILURE(acpi_evaluate_object(handle, "_PUR", NULL, &buffer)))
380                 return num;
381
382         if (!buffer.length || !buffer.pointer)
383                 return num;
384
385         package = buffer.pointer;
386
387         if (package->type == ACPI_TYPE_PACKAGE &&
388                 package->package.count == 2 &&
389                 package->package.elements[0].integer.value == 1) /* rev 1 */
390
391                 num = package->package.elements[1].integer.value;
392
393         kfree(buffer.pointer);
394         return num;
395 }
396
397 static void acpi_pad_handle_notify(acpi_handle handle)
398 {
399         int num_cpus;
400         uint32_t idle_cpus;
401         struct acpi_buffer param = {
402                 .length = 4,
403                 .pointer = (void *)&idle_cpus,
404         };
405
406         mutex_lock(&isolated_cpus_lock);
407         num_cpus = acpi_pad_pur(handle);
408         if (num_cpus < 0) {
409                 mutex_unlock(&isolated_cpus_lock);
410                 return;
411         }
412         acpi_pad_idle_cpus(num_cpus);
413         idle_cpus = acpi_pad_idle_cpus_num();
414         acpi_evaluate_ost(handle, ACPI_PROCESSOR_AGGREGATOR_NOTIFY, 0, &param);
415         mutex_unlock(&isolated_cpus_lock);
416 }
417
418 static void acpi_pad_notify(acpi_handle handle, u32 event,
419         void *data)
420 {
421         struct acpi_device *device = data;
422
423         switch (event) {
424         case ACPI_PROCESSOR_AGGREGATOR_NOTIFY:
425                 acpi_pad_handle_notify(handle);
426                 acpi_bus_generate_netlink_event(device->pnp.device_class,
427                         dev_name(&device->dev), event, 0);
428                 break;
429         default:
430                 pr_warn("Unsupported event [0x%x]\n", event);
431                 break;
432         }
433 }
434
435 static int acpi_pad_add(struct acpi_device *device)
436 {
437         acpi_status status;
438
439         strcpy(acpi_device_name(device), ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME);
440         strcpy(acpi_device_class(device), ACPI_PROCESSOR_AGGREGATOR_CLASS);
441
442         if (acpi_pad_add_sysfs(device))
443                 return -ENODEV;
444
445         status = acpi_install_notify_handler(device->handle,
446                 ACPI_DEVICE_NOTIFY, acpi_pad_notify, device);
447         if (ACPI_FAILURE(status)) {
448                 acpi_pad_remove_sysfs(device);
449                 return -ENODEV;
450         }
451
452         return 0;
453 }
454
455 static int acpi_pad_remove(struct acpi_device *device)
456 {
457         mutex_lock(&isolated_cpus_lock);
458         acpi_pad_idle_cpus(0);
459         mutex_unlock(&isolated_cpus_lock);
460
461         acpi_remove_notify_handler(device->handle,
462                 ACPI_DEVICE_NOTIFY, acpi_pad_notify);
463         acpi_pad_remove_sysfs(device);
464         return 0;
465 }
466
467 static const struct acpi_device_id pad_device_ids[] = {
468         {"ACPI000C", 0},
469         {"", 0},
470 };
471 MODULE_DEVICE_TABLE(acpi, pad_device_ids);
472
473 static struct acpi_driver acpi_pad_driver = {
474         .name = "processor_aggregator",
475         .class = ACPI_PROCESSOR_AGGREGATOR_CLASS,
476         .ids = pad_device_ids,
477         .ops = {
478                 .add = acpi_pad_add,
479                 .remove = acpi_pad_remove,
480         },
481 };
482
483 static int __init acpi_pad_init(void)
484 {
485         /* Xen ACPI PAD is used when running as Xen Dom0. */
486         if (xen_initial_domain())
487                 return -ENODEV;
488
489         power_saving_mwait_init();
490         if (power_saving_mwait_eax == 0)
491                 return -EINVAL;
492
493         return acpi_bus_register_driver(&acpi_pad_driver);
494 }
495
496 static void __exit acpi_pad_exit(void)
497 {
498         acpi_bus_unregister_driver(&acpi_pad_driver);
499 }
500
501 module_init(acpi_pad_init);
502 module_exit(acpi_pad_exit);
503 MODULE_AUTHOR("Shaohua Li<shaohua.li@intel.com>");
504 MODULE_DESCRIPTION("ACPI Processor Aggregator Driver");
505 MODULE_LICENSE("GPL");