GNU Linux-libre 4.19.264-gnu1
[releases.git] / drivers / atm / fore200e.c
1 /*
2   A FORE Systems 200E-series driver for ATM on Linux.
3   Christophe Lizzi (lizzi@cnam.fr), October 1999-March 2003.
4
5   Based on the PCA-200E driver from Uwe Dannowski (Uwe.Dannowski@inf.tu-dresden.de).
6
7   This driver simultaneously supports PCA-200E and SBA-200E adapters
8   on i386, alpha (untested), powerpc, sparc and sparc64 architectures.
9
10   This program is free software; you can redistribute it and/or modify
11   it under the terms of the GNU General Public License as published by
12   the Free Software Foundation; either version 2 of the License, or
13   (at your option) any later version.
14
15   This program is distributed in the hope that it will be useful,
16   but WITHOUT ANY WARRANTY; without even the implied warranty of
17   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18   GNU General Public License for more details.
19
20   You should have received a copy of the GNU General Public License
21   along with this program; if not, write to the Free Software
22   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
23 */
24
25
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/init.h>
29 #include <linux/capability.h>
30 #include <linux/interrupt.h>
31 #include <linux/bitops.h>
32 #include <linux/pci.h>
33 #include <linux/module.h>
34 #include <linux/atmdev.h>
35 #include <linux/sonet.h>
36 #include <linux/atm_suni.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/delay.h>
39 #include <linux/firmware.h>
40 #include <asm/io.h>
41 #include <asm/string.h>
42 #include <asm/page.h>
43 #include <asm/irq.h>
44 #include <asm/dma.h>
45 #include <asm/byteorder.h>
46 #include <linux/uaccess.h>
47 #include <linux/atomic.h>
48
49 #ifdef CONFIG_SBUS
50 #include <linux/of.h>
51 #include <linux/of_device.h>
52 #include <asm/idprom.h>
53 #include <asm/openprom.h>
54 #include <asm/oplib.h>
55 #include <asm/pgtable.h>
56 #endif
57
58 #if defined(CONFIG_ATM_FORE200E_USE_TASKLET) /* defer interrupt work to a tasklet */
59 #define FORE200E_USE_TASKLET
60 #endif
61
62 #if 0 /* enable the debugging code of the buffer supply queues */
63 #define FORE200E_BSQ_DEBUG
64 #endif
65
66 #if 1 /* ensure correct handling of 52-byte AAL0 SDUs expected by atmdump-like apps */
67 #define FORE200E_52BYTE_AAL0_SDU
68 #endif
69
70 #include "fore200e.h"
71 #include "suni.h"
72
73 #define FORE200E_VERSION "0.3e"
74
75 #define FORE200E         "fore200e: "
76
77 #if 0 /* override .config */
78 #define CONFIG_ATM_FORE200E_DEBUG 1
79 #endif
80 #if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
81 #define DPRINTK(level, format, args...)  do { if (CONFIG_ATM_FORE200E_DEBUG >= (level)) \
82                                                   printk(FORE200E format, ##args); } while (0)
83 #else
84 #define DPRINTK(level, format, args...)  do {} while (0)
85 #endif
86
87
88 #define FORE200E_ALIGN(addr, alignment) \
89         ((((unsigned long)(addr) + (alignment - 1)) & ~(alignment - 1)) - (unsigned long)(addr))
90
91 #define FORE200E_DMA_INDEX(dma_addr, type, index)  ((dma_addr) + (index) * sizeof(type))
92
93 #define FORE200E_INDEX(virt_addr, type, index)     (&((type *)(virt_addr))[ index ])
94
95 #define FORE200E_NEXT_ENTRY(index, modulo)         (index = ((index) + 1) % (modulo))
96
97 #if 1
98 #define ASSERT(expr)     if (!(expr)) { \
99                              printk(FORE200E "assertion failed! %s[%d]: %s\n", \
100                                     __func__, __LINE__, #expr); \
101                              panic(FORE200E "%s", __func__); \
102                          }
103 #else
104 #define ASSERT(expr)     do {} while (0)
105 #endif
106
107
108 static const struct atmdev_ops   fore200e_ops;
109 static const struct fore200e_bus fore200e_bus[];
110
111 static LIST_HEAD(fore200e_boards);
112
113
114 MODULE_AUTHOR("Christophe Lizzi - credits to Uwe Dannowski and Heikki Vatiainen");
115 MODULE_DESCRIPTION("FORE Systems 200E-series ATM driver - version " FORE200E_VERSION);
116 MODULE_SUPPORTED_DEVICE("PCA-200E, SBA-200E");
117
118
119 static const int fore200e_rx_buf_nbr[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
120     { BUFFER_S1_NBR, BUFFER_L1_NBR },
121     { BUFFER_S2_NBR, BUFFER_L2_NBR }
122 };
123
124 static const int fore200e_rx_buf_size[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
125     { BUFFER_S1_SIZE, BUFFER_L1_SIZE },
126     { BUFFER_S2_SIZE, BUFFER_L2_SIZE }
127 };
128
129
130 #if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
131 static const char* fore200e_traffic_class[] = { "NONE", "UBR", "CBR", "VBR", "ABR", "ANY" };
132 #endif
133
134
135 #if 0 /* currently unused */
136 static int 
137 fore200e_fore2atm_aal(enum fore200e_aal aal)
138 {
139     switch(aal) {
140     case FORE200E_AAL0:  return ATM_AAL0;
141     case FORE200E_AAL34: return ATM_AAL34;
142     case FORE200E_AAL5:  return ATM_AAL5;
143     }
144
145     return -EINVAL;
146 }
147 #endif
148
149
150 static enum fore200e_aal
151 fore200e_atm2fore_aal(int aal)
152 {
153     switch(aal) {
154     case ATM_AAL0:  return FORE200E_AAL0;
155     case ATM_AAL34: return FORE200E_AAL34;
156     case ATM_AAL1:
157     case ATM_AAL2:
158     case ATM_AAL5:  return FORE200E_AAL5;
159     }
160
161     return -EINVAL;
162 }
163
164
165 static char*
166 fore200e_irq_itoa(int irq)
167 {
168     static char str[8];
169     sprintf(str, "%d", irq);
170     return str;
171 }
172
173
174 /* allocate and align a chunk of memory intended to hold the data behing exchanged
175    between the driver and the adapter (using streaming DVMA) */
176
177 static int
178 fore200e_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk, int size, int alignment, int direction)
179 {
180     unsigned long offset = 0;
181
182     if (alignment <= sizeof(int))
183         alignment = 0;
184
185     chunk->alloc_size = size + alignment;
186     chunk->align_size = size;
187     chunk->direction  = direction;
188
189     chunk->alloc_addr = kzalloc(chunk->alloc_size, GFP_KERNEL | GFP_DMA);
190     if (chunk->alloc_addr == NULL)
191         return -ENOMEM;
192
193     if (alignment > 0)
194         offset = FORE200E_ALIGN(chunk->alloc_addr, alignment); 
195     
196     chunk->align_addr = chunk->alloc_addr + offset;
197
198     chunk->dma_addr = fore200e->bus->dma_map(fore200e, chunk->align_addr, chunk->align_size, direction);
199     
200     return 0;
201 }
202
203
204 /* free a chunk of memory */
205
206 static void
207 fore200e_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
208 {
209     fore200e->bus->dma_unmap(fore200e, chunk->dma_addr, chunk->dma_size, chunk->direction);
210
211     kfree(chunk->alloc_addr);
212 }
213
214
215 static void
216 fore200e_spin(int msecs)
217 {
218     unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
219     while (time_before(jiffies, timeout));
220 }
221
222
223 static int
224 fore200e_poll(struct fore200e* fore200e, volatile u32* addr, u32 val, int msecs)
225 {
226     unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
227     int           ok;
228
229     mb();
230     do {
231         if ((ok = (*addr == val)) || (*addr & STATUS_ERROR))
232             break;
233
234     } while (time_before(jiffies, timeout));
235
236 #if 1
237     if (!ok) {
238         printk(FORE200E "cmd polling failed, got status 0x%08x, expected 0x%08x\n",
239                *addr, val);
240     }
241 #endif
242
243     return ok;
244 }
245
246
247 static int
248 fore200e_io_poll(struct fore200e* fore200e, volatile u32 __iomem *addr, u32 val, int msecs)
249 {
250     unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
251     int           ok;
252
253     do {
254         if ((ok = (fore200e->bus->read(addr) == val)))
255             break;
256
257     } while (time_before(jiffies, timeout));
258
259 #if 1
260     if (!ok) {
261         printk(FORE200E "I/O polling failed, got status 0x%08x, expected 0x%08x\n",
262                fore200e->bus->read(addr), val);
263     }
264 #endif
265
266     return ok;
267 }
268
269
270 static void
271 fore200e_free_rx_buf(struct fore200e* fore200e)
272 {
273     int scheme, magn, nbr;
274     struct buffer* buffer;
275
276     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
277         for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
278
279             if ((buffer = fore200e->host_bsq[ scheme ][ magn ].buffer) != NULL) {
280
281                 for (nbr = 0; nbr < fore200e_rx_buf_nbr[ scheme ][ magn ]; nbr++) {
282
283                     struct chunk* data = &buffer[ nbr ].data;
284
285                     if (data->alloc_addr != NULL)
286                         fore200e_chunk_free(fore200e, data);
287                 }
288             }
289         }
290     }
291 }
292
293
294 static void
295 fore200e_uninit_bs_queue(struct fore200e* fore200e)
296 {
297     int scheme, magn;
298     
299     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
300         for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
301
302             struct chunk* status    = &fore200e->host_bsq[ scheme ][ magn ].status;
303             struct chunk* rbd_block = &fore200e->host_bsq[ scheme ][ magn ].rbd_block;
304             
305             if (status->alloc_addr)
306                 fore200e->bus->dma_chunk_free(fore200e, status);
307             
308             if (rbd_block->alloc_addr)
309                 fore200e->bus->dma_chunk_free(fore200e, rbd_block);
310         }
311     }
312 }
313
314
315 static int
316 fore200e_reset(struct fore200e* fore200e, int diag)
317 {
318     int ok;
319
320     fore200e->cp_monitor = fore200e->virt_base + FORE200E_CP_MONITOR_OFFSET;
321     
322     fore200e->bus->write(BSTAT_COLD_START, &fore200e->cp_monitor->bstat);
323
324     fore200e->bus->reset(fore200e);
325
326     if (diag) {
327         ok = fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_SELFTEST_OK, 1000);
328         if (ok == 0) {
329             
330             printk(FORE200E "device %s self-test failed\n", fore200e->name);
331             return -ENODEV;
332         }
333
334         printk(FORE200E "device %s self-test passed\n", fore200e->name);
335         
336         fore200e->state = FORE200E_STATE_RESET;
337     }
338
339     return 0;
340 }
341
342
343 static void
344 fore200e_shutdown(struct fore200e* fore200e)
345 {
346     printk(FORE200E "removing device %s at 0x%lx, IRQ %s\n",
347            fore200e->name, fore200e->phys_base, 
348            fore200e_irq_itoa(fore200e->irq));
349     
350     if (fore200e->state > FORE200E_STATE_RESET) {
351         /* first, reset the board to prevent further interrupts or data transfers */
352         fore200e_reset(fore200e, 0);
353     }
354     
355     /* then, release all allocated resources */
356     switch(fore200e->state) {
357
358     case FORE200E_STATE_COMPLETE:
359         kfree(fore200e->stats);
360
361         /* fall through */
362     case FORE200E_STATE_IRQ:
363         free_irq(fore200e->irq, fore200e->atm_dev);
364
365         /* fall through */
366     case FORE200E_STATE_ALLOC_BUF:
367         fore200e_free_rx_buf(fore200e);
368
369         /* fall through */
370     case FORE200E_STATE_INIT_BSQ:
371         fore200e_uninit_bs_queue(fore200e);
372
373         /* fall through */
374     case FORE200E_STATE_INIT_RXQ:
375         fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_rxq.status);
376         fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_rxq.rpd);
377
378         /* fall through */
379     case FORE200E_STATE_INIT_TXQ:
380         fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_txq.status);
381         fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_txq.tpd);
382
383         /* fall through */
384     case FORE200E_STATE_INIT_CMDQ:
385         fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_cmdq.status);
386
387         /* fall through */
388     case FORE200E_STATE_INITIALIZE:
389         /* nothing to do for that state */
390
391     case FORE200E_STATE_START_FW:
392         /* nothing to do for that state */
393
394     case FORE200E_STATE_RESET:
395         /* nothing to do for that state */
396
397     case FORE200E_STATE_MAP:
398         fore200e->bus->unmap(fore200e);
399
400         /* fall through */
401     case FORE200E_STATE_CONFIGURE:
402         /* nothing to do for that state */
403
404     case FORE200E_STATE_REGISTER:
405         /* XXX shouldn't we *start* by deregistering the device? */
406         atm_dev_deregister(fore200e->atm_dev);
407
408     case FORE200E_STATE_BLANK:
409         /* nothing to do for that state */
410         break;
411     }
412 }
413
414
415 #ifdef CONFIG_PCI
416
417 static u32 fore200e_pca_read(volatile u32 __iomem *addr)
418 {
419     /* on big-endian hosts, the board is configured to convert
420        the endianess of slave RAM accesses  */
421     return le32_to_cpu(readl(addr));
422 }
423
424
425 static void fore200e_pca_write(u32 val, volatile u32 __iomem *addr)
426 {
427     /* on big-endian hosts, the board is configured to convert
428        the endianess of slave RAM accesses  */
429     writel(cpu_to_le32(val), addr);
430 }
431
432
433 static u32
434 fore200e_pca_dma_map(struct fore200e* fore200e, void* virt_addr, int size, int direction)
435 {
436     u32 dma_addr = dma_map_single(&((struct pci_dev *) fore200e->bus_dev)->dev, virt_addr, size, direction);
437
438     DPRINTK(3, "PCI DVMA mapping: virt_addr = 0x%p, size = %d, direction = %d,  --> dma_addr = 0x%08x\n",
439             virt_addr, size, direction, dma_addr);
440     
441     return dma_addr;
442 }
443
444
445 static void
446 fore200e_pca_dma_unmap(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
447 {
448     DPRINTK(3, "PCI DVMA unmapping: dma_addr = 0x%08x, size = %d, direction = %d\n",
449             dma_addr, size, direction);
450
451     dma_unmap_single(&((struct pci_dev *) fore200e->bus_dev)->dev, dma_addr, size, direction);
452 }
453
454
455 static void
456 fore200e_pca_dma_sync_for_cpu(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
457 {
458     DPRINTK(3, "PCI DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
459
460     dma_sync_single_for_cpu(&((struct pci_dev *) fore200e->bus_dev)->dev, dma_addr, size, direction);
461 }
462
463 static void
464 fore200e_pca_dma_sync_for_device(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
465 {
466     DPRINTK(3, "PCI DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
467
468     dma_sync_single_for_device(&((struct pci_dev *) fore200e->bus_dev)->dev, dma_addr, size, direction);
469 }
470
471
472 /* allocate a DMA consistent chunk of memory intended to act as a communication mechanism
473    (to hold descriptors, status, queues, etc.) shared by the driver and the adapter */
474
475 static int
476 fore200e_pca_dma_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk,
477                              int size, int nbr, int alignment)
478 {
479     /* returned chunks are page-aligned */
480     chunk->alloc_size = size * nbr;
481     chunk->alloc_addr = dma_alloc_coherent(&((struct pci_dev *) fore200e->bus_dev)->dev,
482                                            chunk->alloc_size,
483                                            &chunk->dma_addr,
484                                            GFP_KERNEL);
485     
486     if ((chunk->alloc_addr == NULL) || (chunk->dma_addr == 0))
487         return -ENOMEM;
488
489     chunk->align_addr = chunk->alloc_addr;
490     
491     return 0;
492 }
493
494
495 /* free a DMA consistent chunk of memory */
496
497 static void
498 fore200e_pca_dma_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
499 {
500     dma_free_coherent(&((struct pci_dev *) fore200e->bus_dev)->dev,
501                         chunk->alloc_size,
502                         chunk->alloc_addr,
503                         chunk->dma_addr);
504 }
505
506
507 static int
508 fore200e_pca_irq_check(struct fore200e* fore200e)
509 {
510     /* this is a 1 bit register */
511     int irq_posted = readl(fore200e->regs.pca.psr);
512
513 #if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG == 2)
514     if (irq_posted && (readl(fore200e->regs.pca.hcr) & PCA200E_HCR_OUTFULL)) {
515         DPRINTK(2,"FIFO OUT full, device %d\n", fore200e->atm_dev->number);
516     }
517 #endif
518
519     return irq_posted;
520 }
521
522
523 static void
524 fore200e_pca_irq_ack(struct fore200e* fore200e)
525 {
526     writel(PCA200E_HCR_CLRINTR, fore200e->regs.pca.hcr);
527 }
528
529
530 static void
531 fore200e_pca_reset(struct fore200e* fore200e)
532 {
533     writel(PCA200E_HCR_RESET, fore200e->regs.pca.hcr);
534     fore200e_spin(10);
535     writel(0, fore200e->regs.pca.hcr);
536 }
537
538
539 static int fore200e_pca_map(struct fore200e* fore200e)
540 {
541     DPRINTK(2, "device %s being mapped in memory\n", fore200e->name);
542
543     fore200e->virt_base = ioremap(fore200e->phys_base, PCA200E_IOSPACE_LENGTH);
544     
545     if (fore200e->virt_base == NULL) {
546         printk(FORE200E "can't map device %s\n", fore200e->name);
547         return -EFAULT;
548     }
549
550     DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
551
552     /* gain access to the PCA specific registers  */
553     fore200e->regs.pca.hcr = fore200e->virt_base + PCA200E_HCR_OFFSET;
554     fore200e->regs.pca.imr = fore200e->virt_base + PCA200E_IMR_OFFSET;
555     fore200e->regs.pca.psr = fore200e->virt_base + PCA200E_PSR_OFFSET;
556
557     fore200e->state = FORE200E_STATE_MAP;
558     return 0;
559 }
560
561
562 static void
563 fore200e_pca_unmap(struct fore200e* fore200e)
564 {
565     DPRINTK(2, "device %s being unmapped from memory\n", fore200e->name);
566
567     if (fore200e->virt_base != NULL)
568         iounmap(fore200e->virt_base);
569 }
570
571
572 static int fore200e_pca_configure(struct fore200e *fore200e)
573 {
574     struct pci_dev* pci_dev = (struct pci_dev*)fore200e->bus_dev;
575     u8              master_ctrl, latency;
576
577     DPRINTK(2, "device %s being configured\n", fore200e->name);
578
579     if ((pci_dev->irq == 0) || (pci_dev->irq == 0xFF)) {
580         printk(FORE200E "incorrect IRQ setting - misconfigured PCI-PCI bridge?\n");
581         return -EIO;
582     }
583
584     pci_read_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, &master_ctrl);
585
586     master_ctrl = master_ctrl
587 #if defined(__BIG_ENDIAN)
588         /* request the PCA board to convert the endianess of slave RAM accesses */
589         | PCA200E_CTRL_CONVERT_ENDIAN
590 #endif
591 #if 0
592         | PCA200E_CTRL_DIS_CACHE_RD
593         | PCA200E_CTRL_DIS_WRT_INVAL
594         | PCA200E_CTRL_ENA_CONT_REQ_MODE
595         | PCA200E_CTRL_2_CACHE_WRT_INVAL
596 #endif
597         | PCA200E_CTRL_LARGE_PCI_BURSTS;
598     
599     pci_write_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, master_ctrl);
600
601     /* raise latency from 32 (default) to 192, as this seems to prevent NIC
602        lockups (under heavy rx loads) due to continuous 'FIFO OUT full' condition.
603        this may impact the performances of other PCI devices on the same bus, though */
604     latency = 192;
605     pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, latency);
606
607     fore200e->state = FORE200E_STATE_CONFIGURE;
608     return 0;
609 }
610
611
612 static int __init
613 fore200e_pca_prom_read(struct fore200e* fore200e, struct prom_data* prom)
614 {
615     struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
616     struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
617     struct prom_opcode      opcode;
618     int                     ok;
619     u32                     prom_dma;
620
621     FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
622
623     opcode.opcode = OPCODE_GET_PROM;
624     opcode.pad    = 0;
625
626     prom_dma = fore200e->bus->dma_map(fore200e, prom, sizeof(struct prom_data), DMA_FROM_DEVICE);
627
628     fore200e->bus->write(prom_dma, &entry->cp_entry->cmd.prom_block.prom_haddr);
629     
630     *entry->status = STATUS_PENDING;
631
632     fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.prom_block.opcode);
633
634     ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
635
636     *entry->status = STATUS_FREE;
637
638     fore200e->bus->dma_unmap(fore200e, prom_dma, sizeof(struct prom_data), DMA_FROM_DEVICE);
639
640     if (ok == 0) {
641         printk(FORE200E "unable to get PROM data from device %s\n", fore200e->name);
642         return -EIO;
643     }
644
645 #if defined(__BIG_ENDIAN)
646     
647 #define swap_here(addr) (*((u32*)(addr)) = swab32( *((u32*)(addr)) ))
648
649     /* MAC address is stored as little-endian */
650     swap_here(&prom->mac_addr[0]);
651     swap_here(&prom->mac_addr[4]);
652 #endif
653     
654     return 0;
655 }
656
657
658 static int
659 fore200e_pca_proc_read(struct fore200e* fore200e, char *page)
660 {
661     struct pci_dev* pci_dev = (struct pci_dev*)fore200e->bus_dev;
662
663     return sprintf(page, "   PCI bus/slot/function:\t%d/%d/%d\n",
664                    pci_dev->bus->number, PCI_SLOT(pci_dev->devfn), PCI_FUNC(pci_dev->devfn));
665 }
666
667 #endif /* CONFIG_PCI */
668
669
670 #ifdef CONFIG_SBUS
671
672 static u32 fore200e_sba_read(volatile u32 __iomem *addr)
673 {
674     return sbus_readl(addr);
675 }
676
677 static void fore200e_sba_write(u32 val, volatile u32 __iomem *addr)
678 {
679     sbus_writel(val, addr);
680 }
681
682 static u32 fore200e_sba_dma_map(struct fore200e *fore200e, void* virt_addr, int size, int direction)
683 {
684         struct platform_device *op = fore200e->bus_dev;
685         u32 dma_addr;
686
687         dma_addr = dma_map_single(&op->dev, virt_addr, size, direction);
688
689         DPRINTK(3, "SBUS DVMA mapping: virt_addr = 0x%p, size = %d, direction = %d --> dma_addr = 0x%08x\n",
690                 virt_addr, size, direction, dma_addr);
691     
692         return dma_addr;
693 }
694
695 static void fore200e_sba_dma_unmap(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
696 {
697         struct platform_device *op = fore200e->bus_dev;
698
699         DPRINTK(3, "SBUS DVMA unmapping: dma_addr = 0x%08x, size = %d, direction = %d,\n",
700                 dma_addr, size, direction);
701
702         dma_unmap_single(&op->dev, dma_addr, size, direction);
703 }
704
705 static void fore200e_sba_dma_sync_for_cpu(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
706 {
707         struct platform_device *op = fore200e->bus_dev;
708
709         DPRINTK(3, "SBUS DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
710     
711         dma_sync_single_for_cpu(&op->dev, dma_addr, size, direction);
712 }
713
714 static void fore200e_sba_dma_sync_for_device(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
715 {
716         struct platform_device *op = fore200e->bus_dev;
717
718         DPRINTK(3, "SBUS DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
719
720         dma_sync_single_for_device(&op->dev, dma_addr, size, direction);
721 }
722
723 /* Allocate a DVMA consistent chunk of memory intended to act as a communication mechanism
724  * (to hold descriptors, status, queues, etc.) shared by the driver and the adapter.
725  */
726 static int fore200e_sba_dma_chunk_alloc(struct fore200e *fore200e, struct chunk *chunk,
727                                         int size, int nbr, int alignment)
728 {
729         struct platform_device *op = fore200e->bus_dev;
730
731         chunk->alloc_size = chunk->align_size = size * nbr;
732
733         /* returned chunks are page-aligned */
734         chunk->alloc_addr = dma_alloc_coherent(&op->dev, chunk->alloc_size,
735                                                &chunk->dma_addr, GFP_ATOMIC);
736
737         if ((chunk->alloc_addr == NULL) || (chunk->dma_addr == 0))
738                 return -ENOMEM;
739
740         chunk->align_addr = chunk->alloc_addr;
741     
742         return 0;
743 }
744
745 /* free a DVMA consistent chunk of memory */
746 static void fore200e_sba_dma_chunk_free(struct fore200e *fore200e, struct chunk *chunk)
747 {
748         struct platform_device *op = fore200e->bus_dev;
749
750         dma_free_coherent(&op->dev, chunk->alloc_size,
751                           chunk->alloc_addr, chunk->dma_addr);
752 }
753
754 static void fore200e_sba_irq_enable(struct fore200e *fore200e)
755 {
756         u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
757         fore200e->bus->write(hcr | SBA200E_HCR_INTR_ENA, fore200e->regs.sba.hcr);
758 }
759
760 static int fore200e_sba_irq_check(struct fore200e *fore200e)
761 {
762         return fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_INTR_REQ;
763 }
764
765 static void fore200e_sba_irq_ack(struct fore200e *fore200e)
766 {
767         u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
768         fore200e->bus->write(hcr | SBA200E_HCR_INTR_CLR, fore200e->regs.sba.hcr);
769 }
770
771 static void fore200e_sba_reset(struct fore200e *fore200e)
772 {
773         fore200e->bus->write(SBA200E_HCR_RESET, fore200e->regs.sba.hcr);
774         fore200e_spin(10);
775         fore200e->bus->write(0, fore200e->regs.sba.hcr);
776 }
777
778 static int __init fore200e_sba_map(struct fore200e *fore200e)
779 {
780         struct platform_device *op = fore200e->bus_dev;
781         unsigned int bursts;
782
783         /* gain access to the SBA specific registers  */
784         fore200e->regs.sba.hcr = of_ioremap(&op->resource[0], 0, SBA200E_HCR_LENGTH, "SBA HCR");
785         fore200e->regs.sba.bsr = of_ioremap(&op->resource[1], 0, SBA200E_BSR_LENGTH, "SBA BSR");
786         fore200e->regs.sba.isr = of_ioremap(&op->resource[2], 0, SBA200E_ISR_LENGTH, "SBA ISR");
787         fore200e->virt_base    = of_ioremap(&op->resource[3], 0, SBA200E_RAM_LENGTH, "SBA RAM");
788
789         if (!fore200e->virt_base) {
790                 printk(FORE200E "unable to map RAM of device %s\n", fore200e->name);
791                 return -EFAULT;
792         }
793
794         DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
795     
796         fore200e->bus->write(0x02, fore200e->regs.sba.isr); /* XXX hardwired interrupt level */
797
798         /* get the supported DVMA burst sizes */
799         bursts = of_getintprop_default(op->dev.of_node->parent, "burst-sizes", 0x00);
800
801         if (sbus_can_dma_64bit())
802                 sbus_set_sbus64(&op->dev, bursts);
803
804         fore200e->state = FORE200E_STATE_MAP;
805         return 0;
806 }
807
808 static void fore200e_sba_unmap(struct fore200e *fore200e)
809 {
810         struct platform_device *op = fore200e->bus_dev;
811
812         of_iounmap(&op->resource[0], fore200e->regs.sba.hcr, SBA200E_HCR_LENGTH);
813         of_iounmap(&op->resource[1], fore200e->regs.sba.bsr, SBA200E_BSR_LENGTH);
814         of_iounmap(&op->resource[2], fore200e->regs.sba.isr, SBA200E_ISR_LENGTH);
815         of_iounmap(&op->resource[3], fore200e->virt_base,    SBA200E_RAM_LENGTH);
816 }
817
818 static int __init fore200e_sba_configure(struct fore200e *fore200e)
819 {
820         fore200e->state = FORE200E_STATE_CONFIGURE;
821         return 0;
822 }
823
824 static int __init fore200e_sba_prom_read(struct fore200e *fore200e, struct prom_data *prom)
825 {
826         struct platform_device *op = fore200e->bus_dev;
827         const u8 *prop;
828         int len;
829
830         prop = of_get_property(op->dev.of_node, "madaddrlo2", &len);
831         if (!prop)
832                 return -ENODEV;
833         memcpy(&prom->mac_addr[4], prop, 4);
834
835         prop = of_get_property(op->dev.of_node, "madaddrhi4", &len);
836         if (!prop)
837                 return -ENODEV;
838         memcpy(&prom->mac_addr[2], prop, 4);
839
840         prom->serial_number = of_getintprop_default(op->dev.of_node,
841                                                     "serialnumber", 0);
842         prom->hw_revision = of_getintprop_default(op->dev.of_node,
843                                                   "promversion", 0);
844     
845         return 0;
846 }
847
848 static int fore200e_sba_proc_read(struct fore200e *fore200e, char *page)
849 {
850         struct platform_device *op = fore200e->bus_dev;
851         const struct linux_prom_registers *regs;
852
853         regs = of_get_property(op->dev.of_node, "reg", NULL);
854
855         return sprintf(page, "   SBUS slot/device:\t\t%d/'%s'\n",
856                        (regs ? regs->which_io : 0), op->dev.of_node->name);
857 }
858 #endif /* CONFIG_SBUS */
859
860
861 static void
862 fore200e_tx_irq(struct fore200e* fore200e)
863 {
864     struct host_txq*        txq = &fore200e->host_txq;
865     struct host_txq_entry*  entry;
866     struct atm_vcc*         vcc;
867     struct fore200e_vc_map* vc_map;
868
869     if (fore200e->host_txq.txing == 0)
870         return;
871
872     for (;;) {
873         
874         entry = &txq->host_entry[ txq->tail ];
875
876         if ((*entry->status & STATUS_COMPLETE) == 0) {
877             break;
878         }
879
880         DPRINTK(3, "TX COMPLETED: entry = %p [tail = %d], vc_map = %p, skb = %p\n", 
881                 entry, txq->tail, entry->vc_map, entry->skb);
882
883         /* free copy of misaligned data */
884         kfree(entry->data);
885         
886         /* remove DMA mapping */
887         fore200e->bus->dma_unmap(fore200e, entry->tpd->tsd[ 0 ].buffer, entry->tpd->tsd[ 0 ].length,
888                                  DMA_TO_DEVICE);
889
890         vc_map = entry->vc_map;
891
892         /* vcc closed since the time the entry was submitted for tx? */
893         if ((vc_map->vcc == NULL) ||
894             (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
895
896             DPRINTK(1, "no ready vcc found for PDU sent on device %d\n",
897                     fore200e->atm_dev->number);
898
899             dev_kfree_skb_any(entry->skb);
900         }
901         else {
902             ASSERT(vc_map->vcc);
903
904             /* vcc closed then immediately re-opened? */
905             if (vc_map->incarn != entry->incarn) {
906
907                 /* when a vcc is closed, some PDUs may be still pending in the tx queue.
908                    if the same vcc is immediately re-opened, those pending PDUs must
909                    not be popped after the completion of their emission, as they refer
910                    to the prior incarnation of that vcc. otherwise, sk_atm(vcc)->sk_wmem_alloc
911                    would be decremented by the size of the (unrelated) skb, possibly
912                    leading to a negative sk->sk_wmem_alloc count, ultimately freezing the vcc.
913                    we thus bind the tx entry to the current incarnation of the vcc
914                    when the entry is submitted for tx. When the tx later completes,
915                    if the incarnation number of the tx entry does not match the one
916                    of the vcc, then this implies that the vcc has been closed then re-opened.
917                    we thus just drop the skb here. */
918
919                 DPRINTK(1, "vcc closed-then-re-opened; dropping PDU sent on device %d\n",
920                         fore200e->atm_dev->number);
921
922                 dev_kfree_skb_any(entry->skb);
923             }
924             else {
925                 vcc = vc_map->vcc;
926                 ASSERT(vcc);
927
928                 /* notify tx completion */
929                 if (vcc->pop) {
930                     vcc->pop(vcc, entry->skb);
931                 }
932                 else {
933                     dev_kfree_skb_any(entry->skb);
934                 }
935
936                 /* check error condition */
937                 if (*entry->status & STATUS_ERROR)
938                     atomic_inc(&vcc->stats->tx_err);
939                 else
940                     atomic_inc(&vcc->stats->tx);
941             }
942         }
943
944         *entry->status = STATUS_FREE;
945
946         fore200e->host_txq.txing--;
947
948         FORE200E_NEXT_ENTRY(txq->tail, QUEUE_SIZE_TX);
949     }
950 }
951
952
953 #ifdef FORE200E_BSQ_DEBUG
954 int bsq_audit(int where, struct host_bsq* bsq, int scheme, int magn)
955 {
956     struct buffer* buffer;
957     int count = 0;
958
959     buffer = bsq->freebuf;
960     while (buffer) {
961
962         if (buffer->supplied) {
963             printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld supplied but in free list!\n",
964                    where, scheme, magn, buffer->index);
965         }
966
967         if (buffer->magn != magn) {
968             printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected magn = %d\n",
969                    where, scheme, magn, buffer->index, buffer->magn);
970         }
971
972         if (buffer->scheme != scheme) {
973             printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected scheme = %d\n",
974                    where, scheme, magn, buffer->index, buffer->scheme);
975         }
976
977         if ((buffer->index < 0) || (buffer->index >= fore200e_rx_buf_nbr[ scheme ][ magn ])) {
978             printk(FORE200E "bsq_audit(%d): queue %d.%d, out of range buffer index = %ld !\n",
979                    where, scheme, magn, buffer->index);
980         }
981
982         count++;
983         buffer = buffer->next;
984     }
985
986     if (count != bsq->freebuf_count) {
987         printk(FORE200E "bsq_audit(%d): queue %d.%d, %d bufs in free list, but freebuf_count = %d\n",
988                where, scheme, magn, count, bsq->freebuf_count);
989     }
990     return 0;
991 }
992 #endif
993
994
995 static void
996 fore200e_supply(struct fore200e* fore200e)
997 {
998     int  scheme, magn, i;
999
1000     struct host_bsq*       bsq;
1001     struct host_bsq_entry* entry;
1002     struct buffer*         buffer;
1003
1004     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
1005         for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
1006
1007             bsq = &fore200e->host_bsq[ scheme ][ magn ];
1008
1009 #ifdef FORE200E_BSQ_DEBUG
1010             bsq_audit(1, bsq, scheme, magn);
1011 #endif
1012             while (bsq->freebuf_count >= RBD_BLK_SIZE) {
1013
1014                 DPRINTK(2, "supplying %d rx buffers to queue %d / %d, freebuf_count = %d\n",
1015                         RBD_BLK_SIZE, scheme, magn, bsq->freebuf_count);
1016
1017                 entry = &bsq->host_entry[ bsq->head ];
1018
1019                 for (i = 0; i < RBD_BLK_SIZE; i++) {
1020
1021                     /* take the first buffer in the free buffer list */
1022                     buffer = bsq->freebuf;
1023                     if (!buffer) {
1024                         printk(FORE200E "no more free bufs in queue %d.%d, but freebuf_count = %d\n",
1025                                scheme, magn, bsq->freebuf_count);
1026                         return;
1027                     }
1028                     bsq->freebuf = buffer->next;
1029                     
1030 #ifdef FORE200E_BSQ_DEBUG
1031                     if (buffer->supplied)
1032                         printk(FORE200E "queue %d.%d, buffer %lu already supplied\n",
1033                                scheme, magn, buffer->index);
1034                     buffer->supplied = 1;
1035 #endif
1036                     entry->rbd_block->rbd[ i ].buffer_haddr = buffer->data.dma_addr;
1037                     entry->rbd_block->rbd[ i ].handle       = FORE200E_BUF2HDL(buffer);
1038                 }
1039
1040                 FORE200E_NEXT_ENTRY(bsq->head, QUEUE_SIZE_BS);
1041
1042                 /* decrease accordingly the number of free rx buffers */
1043                 bsq->freebuf_count -= RBD_BLK_SIZE;
1044
1045                 *entry->status = STATUS_PENDING;
1046                 fore200e->bus->write(entry->rbd_block_dma, &entry->cp_entry->rbd_block_haddr);
1047             }
1048         }
1049     }
1050 }
1051
1052
1053 static int
1054 fore200e_push_rpd(struct fore200e* fore200e, struct atm_vcc* vcc, struct rpd* rpd)
1055 {
1056     struct sk_buff*      skb;
1057     struct buffer*       buffer;
1058     struct fore200e_vcc* fore200e_vcc;
1059     int                  i, pdu_len = 0;
1060 #ifdef FORE200E_52BYTE_AAL0_SDU
1061     u32                  cell_header = 0;
1062 #endif
1063
1064     ASSERT(vcc);
1065     
1066     fore200e_vcc = FORE200E_VCC(vcc);
1067     ASSERT(fore200e_vcc);
1068
1069 #ifdef FORE200E_52BYTE_AAL0_SDU
1070     if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.rxtp.max_sdu == ATM_AAL0_SDU)) {
1071
1072         cell_header = (rpd->atm_header.gfc << ATM_HDR_GFC_SHIFT) |
1073                       (rpd->atm_header.vpi << ATM_HDR_VPI_SHIFT) |
1074                       (rpd->atm_header.vci << ATM_HDR_VCI_SHIFT) |
1075                       (rpd->atm_header.plt << ATM_HDR_PTI_SHIFT) | 
1076                        rpd->atm_header.clp;
1077         pdu_len = 4;
1078     }
1079 #endif
1080     
1081     /* compute total PDU length */
1082     for (i = 0; i < rpd->nseg; i++)
1083         pdu_len += rpd->rsd[ i ].length;
1084     
1085     skb = alloc_skb(pdu_len, GFP_ATOMIC);
1086     if (skb == NULL) {
1087         DPRINTK(2, "unable to alloc new skb, rx PDU length = %d\n", pdu_len);
1088
1089         atomic_inc(&vcc->stats->rx_drop);
1090         return -ENOMEM;
1091     } 
1092
1093     __net_timestamp(skb);
1094     
1095 #ifdef FORE200E_52BYTE_AAL0_SDU
1096     if (cell_header) {
1097         *((u32*)skb_put(skb, 4)) = cell_header;
1098     }
1099 #endif
1100
1101     /* reassemble segments */
1102     for (i = 0; i < rpd->nseg; i++) {
1103         
1104         /* rebuild rx buffer address from rsd handle */
1105         buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1106         
1107         /* Make device DMA transfer visible to CPU.  */
1108         fore200e->bus->dma_sync_for_cpu(fore200e, buffer->data.dma_addr, rpd->rsd[ i ].length, DMA_FROM_DEVICE);
1109         
1110         skb_put_data(skb, buffer->data.align_addr, rpd->rsd[i].length);
1111
1112         /* Now let the device get at it again.  */
1113         fore200e->bus->dma_sync_for_device(fore200e, buffer->data.dma_addr, rpd->rsd[ i ].length, DMA_FROM_DEVICE);
1114     }
1115
1116     DPRINTK(3, "rx skb: len = %d, truesize = %d\n", skb->len, skb->truesize);
1117     
1118     if (pdu_len < fore200e_vcc->rx_min_pdu)
1119         fore200e_vcc->rx_min_pdu = pdu_len;
1120     if (pdu_len > fore200e_vcc->rx_max_pdu)
1121         fore200e_vcc->rx_max_pdu = pdu_len;
1122     fore200e_vcc->rx_pdu++;
1123
1124     /* push PDU */
1125     if (atm_charge(vcc, skb->truesize) == 0) {
1126
1127         DPRINTK(2, "receive buffers saturated for %d.%d.%d - PDU dropped\n",
1128                 vcc->itf, vcc->vpi, vcc->vci);
1129
1130         dev_kfree_skb_any(skb);
1131
1132         atomic_inc(&vcc->stats->rx_drop);
1133         return -ENOMEM;
1134     }
1135
1136     vcc->push(vcc, skb);
1137     atomic_inc(&vcc->stats->rx);
1138
1139     return 0;
1140 }
1141
1142
1143 static void
1144 fore200e_collect_rpd(struct fore200e* fore200e, struct rpd* rpd)
1145 {
1146     struct host_bsq* bsq;
1147     struct buffer*   buffer;
1148     int              i;
1149     
1150     for (i = 0; i < rpd->nseg; i++) {
1151
1152         /* rebuild rx buffer address from rsd handle */
1153         buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1154
1155         bsq = &fore200e->host_bsq[ buffer->scheme ][ buffer->magn ];
1156
1157 #ifdef FORE200E_BSQ_DEBUG
1158         bsq_audit(2, bsq, buffer->scheme, buffer->magn);
1159
1160         if (buffer->supplied == 0)
1161             printk(FORE200E "queue %d.%d, buffer %ld was not supplied\n",
1162                    buffer->scheme, buffer->magn, buffer->index);
1163         buffer->supplied = 0;
1164 #endif
1165
1166         /* re-insert the buffer into the free buffer list */
1167         buffer->next = bsq->freebuf;
1168         bsq->freebuf = buffer;
1169
1170         /* then increment the number of free rx buffers */
1171         bsq->freebuf_count++;
1172     }
1173 }
1174
1175
1176 static void
1177 fore200e_rx_irq(struct fore200e* fore200e)
1178 {
1179     struct host_rxq*        rxq = &fore200e->host_rxq;
1180     struct host_rxq_entry*  entry;
1181     struct atm_vcc*         vcc;
1182     struct fore200e_vc_map* vc_map;
1183
1184     for (;;) {
1185         
1186         entry = &rxq->host_entry[ rxq->head ];
1187
1188         /* no more received PDUs */
1189         if ((*entry->status & STATUS_COMPLETE) == 0)
1190             break;
1191
1192         vc_map = FORE200E_VC_MAP(fore200e, entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1193
1194         if ((vc_map->vcc == NULL) ||
1195             (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
1196
1197             DPRINTK(1, "no ready VC found for PDU received on %d.%d.%d\n",
1198                     fore200e->atm_dev->number,
1199                     entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1200         }
1201         else {
1202             vcc = vc_map->vcc;
1203             ASSERT(vcc);
1204
1205             if ((*entry->status & STATUS_ERROR) == 0) {
1206
1207                 fore200e_push_rpd(fore200e, vcc, entry->rpd);
1208             }
1209             else {
1210                 DPRINTK(2, "damaged PDU on %d.%d.%d\n",
1211                         fore200e->atm_dev->number,
1212                         entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1213                 atomic_inc(&vcc->stats->rx_err);
1214             }
1215         }
1216
1217         FORE200E_NEXT_ENTRY(rxq->head, QUEUE_SIZE_RX);
1218
1219         fore200e_collect_rpd(fore200e, entry->rpd);
1220
1221         /* rewrite the rpd address to ack the received PDU */
1222         fore200e->bus->write(entry->rpd_dma, &entry->cp_entry->rpd_haddr);
1223         *entry->status = STATUS_FREE;
1224
1225         fore200e_supply(fore200e);
1226     }
1227 }
1228
1229
1230 #ifndef FORE200E_USE_TASKLET
1231 static void
1232 fore200e_irq(struct fore200e* fore200e)
1233 {
1234     unsigned long flags;
1235
1236     spin_lock_irqsave(&fore200e->q_lock, flags);
1237     fore200e_rx_irq(fore200e);
1238     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1239
1240     spin_lock_irqsave(&fore200e->q_lock, flags);
1241     fore200e_tx_irq(fore200e);
1242     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1243 }
1244 #endif
1245
1246
1247 static irqreturn_t
1248 fore200e_interrupt(int irq, void* dev)
1249 {
1250     struct fore200e* fore200e = FORE200E_DEV((struct atm_dev*)dev);
1251
1252     if (fore200e->bus->irq_check(fore200e) == 0) {
1253         
1254         DPRINTK(3, "interrupt NOT triggered by device %d\n", fore200e->atm_dev->number);
1255         return IRQ_NONE;
1256     }
1257     DPRINTK(3, "interrupt triggered by device %d\n", fore200e->atm_dev->number);
1258
1259 #ifdef FORE200E_USE_TASKLET
1260     tasklet_schedule(&fore200e->tx_tasklet);
1261     tasklet_schedule(&fore200e->rx_tasklet);
1262 #else
1263     fore200e_irq(fore200e);
1264 #endif
1265     
1266     fore200e->bus->irq_ack(fore200e);
1267     return IRQ_HANDLED;
1268 }
1269
1270
1271 #ifdef FORE200E_USE_TASKLET
1272 static void
1273 fore200e_tx_tasklet(unsigned long data)
1274 {
1275     struct fore200e* fore200e = (struct fore200e*) data;
1276     unsigned long flags;
1277
1278     DPRINTK(3, "tx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1279
1280     spin_lock_irqsave(&fore200e->q_lock, flags);
1281     fore200e_tx_irq(fore200e);
1282     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1283 }
1284
1285
1286 static void
1287 fore200e_rx_tasklet(unsigned long data)
1288 {
1289     struct fore200e* fore200e = (struct fore200e*) data;
1290     unsigned long    flags;
1291
1292     DPRINTK(3, "rx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1293
1294     spin_lock_irqsave(&fore200e->q_lock, flags);
1295     fore200e_rx_irq((struct fore200e*) data);
1296     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1297 }
1298 #endif
1299
1300
1301 static int
1302 fore200e_select_scheme(struct atm_vcc* vcc)
1303 {
1304     /* fairly balance the VCs over (identical) buffer schemes */
1305     int scheme = vcc->vci % 2 ? BUFFER_SCHEME_ONE : BUFFER_SCHEME_TWO;
1306
1307     DPRINTK(1, "VC %d.%d.%d uses buffer scheme %d\n",
1308             vcc->itf, vcc->vpi, vcc->vci, scheme);
1309
1310     return scheme;
1311 }
1312
1313
1314 static int 
1315 fore200e_activate_vcin(struct fore200e* fore200e, int activate, struct atm_vcc* vcc, int mtu)
1316 {
1317     struct host_cmdq*        cmdq  = &fore200e->host_cmdq;
1318     struct host_cmdq_entry*  entry = &cmdq->host_entry[ cmdq->head ];
1319     struct activate_opcode   activ_opcode;
1320     struct deactivate_opcode deactiv_opcode;
1321     struct vpvc              vpvc;
1322     int                      ok;
1323     enum fore200e_aal        aal = fore200e_atm2fore_aal(vcc->qos.aal);
1324
1325     FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1326     
1327     if (activate) {
1328         FORE200E_VCC(vcc)->scheme = fore200e_select_scheme(vcc);
1329         
1330         activ_opcode.opcode = OPCODE_ACTIVATE_VCIN;
1331         activ_opcode.aal    = aal;
1332         activ_opcode.scheme = FORE200E_VCC(vcc)->scheme;
1333         activ_opcode.pad    = 0;
1334     }
1335     else {
1336         deactiv_opcode.opcode = OPCODE_DEACTIVATE_VCIN;
1337         deactiv_opcode.pad    = 0;
1338     }
1339
1340     vpvc.vci = vcc->vci;
1341     vpvc.vpi = vcc->vpi;
1342
1343     *entry->status = STATUS_PENDING;
1344
1345     if (activate) {
1346
1347 #ifdef FORE200E_52BYTE_AAL0_SDU
1348         mtu = 48;
1349 #endif
1350         /* the MTU is not used by the cp, except in the case of AAL0 */
1351         fore200e->bus->write(mtu,                        &entry->cp_entry->cmd.activate_block.mtu);
1352         fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.activate_block.vpvc);
1353         fore200e->bus->write(*(u32*)&activ_opcode, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.opcode);
1354     }
1355     else {
1356         fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.vpvc);
1357         fore200e->bus->write(*(u32*)&deactiv_opcode, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.opcode);
1358     }
1359
1360     ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1361
1362     *entry->status = STATUS_FREE;
1363
1364     if (ok == 0) {
1365         printk(FORE200E "unable to %s VC %d.%d.%d\n",
1366                activate ? "open" : "close", vcc->itf, vcc->vpi, vcc->vci);
1367         return -EIO;
1368     }
1369
1370     DPRINTK(1, "VC %d.%d.%d %sed\n", vcc->itf, vcc->vpi, vcc->vci, 
1371             activate ? "open" : "clos");
1372
1373     return 0;
1374 }
1375
1376
1377 #define FORE200E_MAX_BACK2BACK_CELLS 255    /* XXX depends on CDVT */
1378
1379 static void
1380 fore200e_rate_ctrl(struct atm_qos* qos, struct tpd_rate* rate)
1381 {
1382     if (qos->txtp.max_pcr < ATM_OC3_PCR) {
1383     
1384         /* compute the data cells to idle cells ratio from the tx PCR */
1385         rate->data_cells = qos->txtp.max_pcr * FORE200E_MAX_BACK2BACK_CELLS / ATM_OC3_PCR;
1386         rate->idle_cells = FORE200E_MAX_BACK2BACK_CELLS - rate->data_cells;
1387     }
1388     else {
1389         /* disable rate control */
1390         rate->data_cells = rate->idle_cells = 0;
1391     }
1392 }
1393
1394
1395 static int
1396 fore200e_open(struct atm_vcc *vcc)
1397 {
1398     struct fore200e*        fore200e = FORE200E_DEV(vcc->dev);
1399     struct fore200e_vcc*    fore200e_vcc;
1400     struct fore200e_vc_map* vc_map;
1401     unsigned long           flags;
1402     int                     vci = vcc->vci;
1403     short                   vpi = vcc->vpi;
1404
1405     ASSERT((vpi >= 0) && (vpi < 1<<FORE200E_VPI_BITS));
1406     ASSERT((vci >= 0) && (vci < 1<<FORE200E_VCI_BITS));
1407
1408     spin_lock_irqsave(&fore200e->q_lock, flags);
1409
1410     vc_map = FORE200E_VC_MAP(fore200e, vpi, vci);
1411     if (vc_map->vcc) {
1412
1413         spin_unlock_irqrestore(&fore200e->q_lock, flags);
1414
1415         printk(FORE200E "VC %d.%d.%d already in use\n",
1416                fore200e->atm_dev->number, vpi, vci);
1417
1418         return -EINVAL;
1419     }
1420
1421     vc_map->vcc = vcc;
1422
1423     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1424
1425     fore200e_vcc = kzalloc(sizeof(struct fore200e_vcc), GFP_ATOMIC);
1426     if (fore200e_vcc == NULL) {
1427         vc_map->vcc = NULL;
1428         return -ENOMEM;
1429     }
1430
1431     DPRINTK(2, "opening %d.%d.%d:%d QoS = (tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1432             "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d)\n",
1433             vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1434             fore200e_traffic_class[ vcc->qos.txtp.traffic_class ],
1435             vcc->qos.txtp.min_pcr, vcc->qos.txtp.max_pcr, vcc->qos.txtp.max_cdv, vcc->qos.txtp.max_sdu,
1436             fore200e_traffic_class[ vcc->qos.rxtp.traffic_class ],
1437             vcc->qos.rxtp.min_pcr, vcc->qos.rxtp.max_pcr, vcc->qos.rxtp.max_cdv, vcc->qos.rxtp.max_sdu);
1438     
1439     /* pseudo-CBR bandwidth requested? */
1440     if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1441         
1442         mutex_lock(&fore200e->rate_mtx);
1443         if (fore200e->available_cell_rate < vcc->qos.txtp.max_pcr) {
1444             mutex_unlock(&fore200e->rate_mtx);
1445
1446             kfree(fore200e_vcc);
1447             vc_map->vcc = NULL;
1448             return -EAGAIN;
1449         }
1450
1451         /* reserve bandwidth */
1452         fore200e->available_cell_rate -= vcc->qos.txtp.max_pcr;
1453         mutex_unlock(&fore200e->rate_mtx);
1454     }
1455     
1456     vcc->itf = vcc->dev->number;
1457
1458     set_bit(ATM_VF_PARTIAL,&vcc->flags);
1459     set_bit(ATM_VF_ADDR, &vcc->flags);
1460
1461     vcc->dev_data = fore200e_vcc;
1462     
1463     if (fore200e_activate_vcin(fore200e, 1, vcc, vcc->qos.rxtp.max_sdu) < 0) {
1464
1465         vc_map->vcc = NULL;
1466
1467         clear_bit(ATM_VF_ADDR, &vcc->flags);
1468         clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1469
1470         vcc->dev_data = NULL;
1471
1472         fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1473
1474         kfree(fore200e_vcc);
1475         return -EINVAL;
1476     }
1477     
1478     /* compute rate control parameters */
1479     if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1480         
1481         fore200e_rate_ctrl(&vcc->qos, &fore200e_vcc->rate);
1482         set_bit(ATM_VF_HASQOS, &vcc->flags);
1483
1484         DPRINTK(3, "tx on %d.%d.%d:%d, tx PCR = %d, rx PCR = %d, data_cells = %u, idle_cells = %u\n",
1485                 vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1486                 vcc->qos.txtp.max_pcr, vcc->qos.rxtp.max_pcr, 
1487                 fore200e_vcc->rate.data_cells, fore200e_vcc->rate.idle_cells);
1488     }
1489     
1490     fore200e_vcc->tx_min_pdu = fore200e_vcc->rx_min_pdu = MAX_PDU_SIZE + 1;
1491     fore200e_vcc->tx_max_pdu = fore200e_vcc->rx_max_pdu = 0;
1492     fore200e_vcc->tx_pdu     = fore200e_vcc->rx_pdu     = 0;
1493
1494     /* new incarnation of the vcc */
1495     vc_map->incarn = ++fore200e->incarn_count;
1496
1497     /* VC unusable before this flag is set */
1498     set_bit(ATM_VF_READY, &vcc->flags);
1499
1500     return 0;
1501 }
1502
1503
1504 static void
1505 fore200e_close(struct atm_vcc* vcc)
1506 {
1507     struct fore200e_vcc*    fore200e_vcc;
1508     struct fore200e*        fore200e;
1509     struct fore200e_vc_map* vc_map;
1510     unsigned long           flags;
1511
1512     ASSERT(vcc);
1513     fore200e = FORE200E_DEV(vcc->dev);
1514
1515     ASSERT((vcc->vpi >= 0) && (vcc->vpi < 1<<FORE200E_VPI_BITS));
1516     ASSERT((vcc->vci >= 0) && (vcc->vci < 1<<FORE200E_VCI_BITS));
1517
1518     DPRINTK(2, "closing %d.%d.%d:%d\n", vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal));
1519
1520     clear_bit(ATM_VF_READY, &vcc->flags);
1521
1522     fore200e_activate_vcin(fore200e, 0, vcc, 0);
1523
1524     spin_lock_irqsave(&fore200e->q_lock, flags);
1525
1526     vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1527
1528     /* the vc is no longer considered as "in use" by fore200e_open() */
1529     vc_map->vcc = NULL;
1530
1531     vcc->itf = vcc->vci = vcc->vpi = 0;
1532
1533     fore200e_vcc = FORE200E_VCC(vcc);
1534     vcc->dev_data = NULL;
1535
1536     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1537
1538     /* release reserved bandwidth, if any */
1539     if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1540
1541         mutex_lock(&fore200e->rate_mtx);
1542         fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1543         mutex_unlock(&fore200e->rate_mtx);
1544
1545         clear_bit(ATM_VF_HASQOS, &vcc->flags);
1546     }
1547
1548     clear_bit(ATM_VF_ADDR, &vcc->flags);
1549     clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1550
1551     ASSERT(fore200e_vcc);
1552     kfree(fore200e_vcc);
1553 }
1554
1555
1556 static int
1557 fore200e_send(struct atm_vcc *vcc, struct sk_buff *skb)
1558 {
1559     struct fore200e*        fore200e;
1560     struct fore200e_vcc*    fore200e_vcc;
1561     struct fore200e_vc_map* vc_map;
1562     struct host_txq*        txq;
1563     struct host_txq_entry*  entry;
1564     struct tpd*             tpd;
1565     struct tpd_haddr        tpd_haddr;
1566     int                     retry        = CONFIG_ATM_FORE200E_TX_RETRY;
1567     int                     tx_copy      = 0;
1568     int                     tx_len       = skb->len;
1569     u32*                    cell_header  = NULL;
1570     unsigned char*          skb_data;
1571     int                     skb_len;
1572     unsigned char*          data;
1573     unsigned long           flags;
1574
1575     if (!vcc)
1576         return -EINVAL;
1577
1578     fore200e = FORE200E_DEV(vcc->dev);
1579     fore200e_vcc = FORE200E_VCC(vcc);
1580
1581     if (!fore200e)
1582         return -EINVAL;
1583
1584     txq = &fore200e->host_txq;
1585     if (!fore200e_vcc)
1586         return -EINVAL;
1587
1588     if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1589         DPRINTK(1, "VC %d.%d.%d not ready for tx\n", vcc->itf, vcc->vpi, vcc->vpi);
1590         dev_kfree_skb_any(skb);
1591         return -EINVAL;
1592     }
1593
1594 #ifdef FORE200E_52BYTE_AAL0_SDU
1595     if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.txtp.max_sdu == ATM_AAL0_SDU)) {
1596         cell_header = (u32*) skb->data;
1597         skb_data    = skb->data + 4;    /* skip 4-byte cell header */
1598         skb_len     = tx_len = skb->len  - 4;
1599
1600         DPRINTK(3, "user-supplied cell header = 0x%08x\n", *cell_header);
1601     }
1602     else 
1603 #endif
1604     {
1605         skb_data = skb->data;
1606         skb_len  = skb->len;
1607     }
1608     
1609     if (((unsigned long)skb_data) & 0x3) {
1610
1611         DPRINTK(2, "misaligned tx PDU on device %s\n", fore200e->name);
1612         tx_copy = 1;
1613         tx_len  = skb_len;
1614     }
1615
1616     if ((vcc->qos.aal == ATM_AAL0) && (skb_len % ATM_CELL_PAYLOAD)) {
1617
1618         /* this simply NUKES the PCA board */
1619         DPRINTK(2, "incomplete tx AAL0 PDU on device %s\n", fore200e->name);
1620         tx_copy = 1;
1621         tx_len  = ((skb_len / ATM_CELL_PAYLOAD) + 1) * ATM_CELL_PAYLOAD;
1622     }
1623     
1624     if (tx_copy) {
1625         data = kmalloc(tx_len, GFP_ATOMIC | GFP_DMA);
1626         if (data == NULL) {
1627             if (vcc->pop) {
1628                 vcc->pop(vcc, skb);
1629             }
1630             else {
1631                 dev_kfree_skb_any(skb);
1632             }
1633             return -ENOMEM;
1634         }
1635
1636         memcpy(data, skb_data, skb_len);
1637         if (skb_len < tx_len)
1638             memset(data + skb_len, 0x00, tx_len - skb_len);
1639     }
1640     else {
1641         data = skb_data;
1642     }
1643
1644     vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1645     ASSERT(vc_map->vcc == vcc);
1646
1647   retry_here:
1648
1649     spin_lock_irqsave(&fore200e->q_lock, flags);
1650
1651     entry = &txq->host_entry[ txq->head ];
1652
1653     if ((*entry->status != STATUS_FREE) || (txq->txing >= QUEUE_SIZE_TX - 2)) {
1654
1655         /* try to free completed tx queue entries */
1656         fore200e_tx_irq(fore200e);
1657
1658         if (*entry->status != STATUS_FREE) {
1659
1660             spin_unlock_irqrestore(&fore200e->q_lock, flags);
1661
1662             /* retry once again? */
1663             if (--retry > 0) {
1664                 udelay(50);
1665                 goto retry_here;
1666             }
1667
1668             atomic_inc(&vcc->stats->tx_err);
1669
1670             fore200e->tx_sat++;
1671             DPRINTK(2, "tx queue of device %s is saturated, PDU dropped - heartbeat is %08x\n",
1672                     fore200e->name, fore200e->cp_queues->heartbeat);
1673             if (vcc->pop) {
1674                 vcc->pop(vcc, skb);
1675             }
1676             else {
1677                 dev_kfree_skb_any(skb);
1678             }
1679
1680             if (tx_copy)
1681                 kfree(data);
1682
1683             return -ENOBUFS;
1684         }
1685     }
1686
1687     entry->incarn = vc_map->incarn;
1688     entry->vc_map = vc_map;
1689     entry->skb    = skb;
1690     entry->data   = tx_copy ? data : NULL;
1691
1692     tpd = entry->tpd;
1693     tpd->tsd[ 0 ].buffer = fore200e->bus->dma_map(fore200e, data, tx_len, DMA_TO_DEVICE);
1694     tpd->tsd[ 0 ].length = tx_len;
1695
1696     FORE200E_NEXT_ENTRY(txq->head, QUEUE_SIZE_TX);
1697     txq->txing++;
1698
1699     /* The dma_map call above implies a dma_sync so the device can use it,
1700      * thus no explicit dma_sync call is necessary here.
1701      */
1702     
1703     DPRINTK(3, "tx on %d.%d.%d:%d, len = %u (%u)\n", 
1704             vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1705             tpd->tsd[0].length, skb_len);
1706
1707     if (skb_len < fore200e_vcc->tx_min_pdu)
1708         fore200e_vcc->tx_min_pdu = skb_len;
1709     if (skb_len > fore200e_vcc->tx_max_pdu)
1710         fore200e_vcc->tx_max_pdu = skb_len;
1711     fore200e_vcc->tx_pdu++;
1712
1713     /* set tx rate control information */
1714     tpd->rate.data_cells = fore200e_vcc->rate.data_cells;
1715     tpd->rate.idle_cells = fore200e_vcc->rate.idle_cells;
1716
1717     if (cell_header) {
1718         tpd->atm_header.clp = (*cell_header & ATM_HDR_CLP);
1719         tpd->atm_header.plt = (*cell_header & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT;
1720         tpd->atm_header.vci = (*cell_header & ATM_HDR_VCI_MASK) >> ATM_HDR_VCI_SHIFT;
1721         tpd->atm_header.vpi = (*cell_header & ATM_HDR_VPI_MASK) >> ATM_HDR_VPI_SHIFT;
1722         tpd->atm_header.gfc = (*cell_header & ATM_HDR_GFC_MASK) >> ATM_HDR_GFC_SHIFT;
1723     }
1724     else {
1725         /* set the ATM header, common to all cells conveying the PDU */
1726         tpd->atm_header.clp = 0;
1727         tpd->atm_header.plt = 0;
1728         tpd->atm_header.vci = vcc->vci;
1729         tpd->atm_header.vpi = vcc->vpi;
1730         tpd->atm_header.gfc = 0;
1731     }
1732
1733     tpd->spec.length = tx_len;
1734     tpd->spec.nseg   = 1;
1735     tpd->spec.aal    = fore200e_atm2fore_aal(vcc->qos.aal);
1736     tpd->spec.intr   = 1;
1737
1738     tpd_haddr.size  = sizeof(struct tpd) / (1<<TPD_HADDR_SHIFT);  /* size is expressed in 32 byte blocks */
1739     tpd_haddr.pad   = 0;
1740     tpd_haddr.haddr = entry->tpd_dma >> TPD_HADDR_SHIFT;          /* shift the address, as we are in a bitfield */
1741
1742     *entry->status = STATUS_PENDING;
1743     fore200e->bus->write(*(u32*)&tpd_haddr, (u32 __iomem *)&entry->cp_entry->tpd_haddr);
1744
1745     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1746
1747     return 0;
1748 }
1749
1750
1751 static int
1752 fore200e_getstats(struct fore200e* fore200e)
1753 {
1754     struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1755     struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1756     struct stats_opcode     opcode;
1757     int                     ok;
1758     u32                     stats_dma_addr;
1759
1760     if (fore200e->stats == NULL) {
1761         fore200e->stats = kzalloc(sizeof(struct stats), GFP_KERNEL | GFP_DMA);
1762         if (fore200e->stats == NULL)
1763             return -ENOMEM;
1764     }
1765     
1766     stats_dma_addr = fore200e->bus->dma_map(fore200e, fore200e->stats,
1767                                             sizeof(struct stats), DMA_FROM_DEVICE);
1768     
1769     FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1770
1771     opcode.opcode = OPCODE_GET_STATS;
1772     opcode.pad    = 0;
1773
1774     fore200e->bus->write(stats_dma_addr, &entry->cp_entry->cmd.stats_block.stats_haddr);
1775     
1776     *entry->status = STATUS_PENDING;
1777
1778     fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.stats_block.opcode);
1779
1780     ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1781
1782     *entry->status = STATUS_FREE;
1783
1784     fore200e->bus->dma_unmap(fore200e, stats_dma_addr, sizeof(struct stats), DMA_FROM_DEVICE);
1785     
1786     if (ok == 0) {
1787         printk(FORE200E "unable to get statistics from device %s\n", fore200e->name);
1788         return -EIO;
1789     }
1790
1791     return 0;
1792 }
1793
1794
1795 static int
1796 fore200e_getsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, int optlen)
1797 {
1798     /* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */
1799
1800     DPRINTK(2, "getsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n",
1801             vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen);
1802
1803     return -EINVAL;
1804 }
1805
1806
1807 static int
1808 fore200e_setsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, unsigned int optlen)
1809 {
1810     /* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */
1811     
1812     DPRINTK(2, "setsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n",
1813             vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen);
1814     
1815     return -EINVAL;
1816 }
1817
1818
1819 #if 0 /* currently unused */
1820 static int
1821 fore200e_get_oc3(struct fore200e* fore200e, struct oc3_regs* regs)
1822 {
1823     struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1824     struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1825     struct oc3_opcode       opcode;
1826     int                     ok;
1827     u32                     oc3_regs_dma_addr;
1828
1829     oc3_regs_dma_addr = fore200e->bus->dma_map(fore200e, regs, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1830
1831     FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1832
1833     opcode.opcode = OPCODE_GET_OC3;
1834     opcode.reg    = 0;
1835     opcode.value  = 0;
1836     opcode.mask   = 0;
1837
1838     fore200e->bus->write(oc3_regs_dma_addr, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1839     
1840     *entry->status = STATUS_PENDING;
1841
1842     fore200e->bus->write(*(u32*)&opcode, (u32*)&entry->cp_entry->cmd.oc3_block.opcode);
1843
1844     ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1845
1846     *entry->status = STATUS_FREE;
1847
1848     fore200e->bus->dma_unmap(fore200e, oc3_regs_dma_addr, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1849     
1850     if (ok == 0) {
1851         printk(FORE200E "unable to get OC-3 regs of device %s\n", fore200e->name);
1852         return -EIO;
1853     }
1854
1855     return 0;
1856 }
1857 #endif
1858
1859
1860 static int
1861 fore200e_set_oc3(struct fore200e* fore200e, u32 reg, u32 value, u32 mask)
1862 {
1863     struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1864     struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1865     struct oc3_opcode       opcode;
1866     int                     ok;
1867
1868     DPRINTK(2, "set OC-3 reg = 0x%02x, value = 0x%02x, mask = 0x%02x\n", reg, value, mask);
1869
1870     FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1871
1872     opcode.opcode = OPCODE_SET_OC3;
1873     opcode.reg    = reg;
1874     opcode.value  = value;
1875     opcode.mask   = mask;
1876
1877     fore200e->bus->write(0, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1878     
1879     *entry->status = STATUS_PENDING;
1880
1881     fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.oc3_block.opcode);
1882
1883     ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1884
1885     *entry->status = STATUS_FREE;
1886
1887     if (ok == 0) {
1888         printk(FORE200E "unable to set OC-3 reg 0x%02x of device %s\n", reg, fore200e->name);
1889         return -EIO;
1890     }
1891
1892     return 0;
1893 }
1894
1895
1896 static int
1897 fore200e_setloop(struct fore200e* fore200e, int loop_mode)
1898 {
1899     u32 mct_value, mct_mask;
1900     int error;
1901
1902     if (!capable(CAP_NET_ADMIN))
1903         return -EPERM;
1904     
1905     switch (loop_mode) {
1906
1907     case ATM_LM_NONE:
1908         mct_value = 0; 
1909         mct_mask  = SUNI_MCT_DLE | SUNI_MCT_LLE;
1910         break;
1911         
1912     case ATM_LM_LOC_PHY:
1913         mct_value = mct_mask = SUNI_MCT_DLE;
1914         break;
1915
1916     case ATM_LM_RMT_PHY:
1917         mct_value = mct_mask = SUNI_MCT_LLE;
1918         break;
1919
1920     default:
1921         return -EINVAL;
1922     }
1923
1924     error = fore200e_set_oc3(fore200e, SUNI_MCT, mct_value, mct_mask);
1925     if (error == 0)
1926         fore200e->loop_mode = loop_mode;
1927
1928     return error;
1929 }
1930
1931
1932 static int
1933 fore200e_fetch_stats(struct fore200e* fore200e, struct sonet_stats __user *arg)
1934 {
1935     struct sonet_stats tmp;
1936
1937     if (fore200e_getstats(fore200e) < 0)
1938         return -EIO;
1939
1940     tmp.section_bip = be32_to_cpu(fore200e->stats->oc3.section_bip8_errors);
1941     tmp.line_bip    = be32_to_cpu(fore200e->stats->oc3.line_bip24_errors);
1942     tmp.path_bip    = be32_to_cpu(fore200e->stats->oc3.path_bip8_errors);
1943     tmp.line_febe   = be32_to_cpu(fore200e->stats->oc3.line_febe_errors);
1944     tmp.path_febe   = be32_to_cpu(fore200e->stats->oc3.path_febe_errors);
1945     tmp.corr_hcs    = be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors);
1946     tmp.uncorr_hcs  = be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors);
1947     tmp.tx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_transmitted)  +
1948                       be32_to_cpu(fore200e->stats->aal34.cells_transmitted) +
1949                       be32_to_cpu(fore200e->stats->aal5.cells_transmitted);
1950     tmp.rx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_received)     +
1951                       be32_to_cpu(fore200e->stats->aal34.cells_received)    +
1952                       be32_to_cpu(fore200e->stats->aal5.cells_received);
1953
1954     if (arg)
1955         return copy_to_user(arg, &tmp, sizeof(struct sonet_stats)) ? -EFAULT : 0;       
1956     
1957     return 0;
1958 }
1959
1960
1961 static int
1962 fore200e_ioctl(struct atm_dev* dev, unsigned int cmd, void __user * arg)
1963 {
1964     struct fore200e* fore200e = FORE200E_DEV(dev);
1965     
1966     DPRINTK(2, "ioctl cmd = 0x%x (%u), arg = 0x%p (%lu)\n", cmd, cmd, arg, (unsigned long)arg);
1967
1968     switch (cmd) {
1969
1970     case SONET_GETSTAT:
1971         return fore200e_fetch_stats(fore200e, (struct sonet_stats __user *)arg);
1972
1973     case SONET_GETDIAG:
1974         return put_user(0, (int __user *)arg) ? -EFAULT : 0;
1975
1976     case ATM_SETLOOP:
1977         return fore200e_setloop(fore200e, (int)(unsigned long)arg);
1978
1979     case ATM_GETLOOP:
1980         return put_user(fore200e->loop_mode, (int __user *)arg) ? -EFAULT : 0;
1981
1982     case ATM_QUERYLOOP:
1983         return put_user(ATM_LM_LOC_PHY | ATM_LM_RMT_PHY, (int __user *)arg) ? -EFAULT : 0;
1984     }
1985
1986     return -ENOSYS; /* not implemented */
1987 }
1988
1989
1990 static int
1991 fore200e_change_qos(struct atm_vcc* vcc,struct atm_qos* qos, int flags)
1992 {
1993     struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc);
1994     struct fore200e*     fore200e     = FORE200E_DEV(vcc->dev);
1995
1996     if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1997         DPRINTK(1, "VC %d.%d.%d not ready for QoS change\n", vcc->itf, vcc->vpi, vcc->vpi);
1998         return -EINVAL;
1999     }
2000
2001     DPRINTK(2, "change_qos %d.%d.%d, "
2002             "(tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
2003             "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d), flags = 0x%x\n"
2004             "available_cell_rate = %u",
2005             vcc->itf, vcc->vpi, vcc->vci,
2006             fore200e_traffic_class[ qos->txtp.traffic_class ],
2007             qos->txtp.min_pcr, qos->txtp.max_pcr, qos->txtp.max_cdv, qos->txtp.max_sdu,
2008             fore200e_traffic_class[ qos->rxtp.traffic_class ],
2009             qos->rxtp.min_pcr, qos->rxtp.max_pcr, qos->rxtp.max_cdv, qos->rxtp.max_sdu,
2010             flags, fore200e->available_cell_rate);
2011
2012     if ((qos->txtp.traffic_class == ATM_CBR) && (qos->txtp.max_pcr > 0)) {
2013
2014         mutex_lock(&fore200e->rate_mtx);
2015         if (fore200e->available_cell_rate + vcc->qos.txtp.max_pcr < qos->txtp.max_pcr) {
2016             mutex_unlock(&fore200e->rate_mtx);
2017             return -EAGAIN;
2018         }
2019
2020         fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
2021         fore200e->available_cell_rate -= qos->txtp.max_pcr;
2022
2023         mutex_unlock(&fore200e->rate_mtx);
2024         
2025         memcpy(&vcc->qos, qos, sizeof(struct atm_qos));
2026         
2027         /* update rate control parameters */
2028         fore200e_rate_ctrl(qos, &fore200e_vcc->rate);
2029
2030         set_bit(ATM_VF_HASQOS, &vcc->flags);
2031
2032         return 0;
2033     }
2034     
2035     return -EINVAL;
2036 }
2037     
2038
2039 static int fore200e_irq_request(struct fore200e *fore200e)
2040 {
2041     if (request_irq(fore200e->irq, fore200e_interrupt, IRQF_SHARED, fore200e->name, fore200e->atm_dev) < 0) {
2042
2043         printk(FORE200E "unable to reserve IRQ %s for device %s\n",
2044                fore200e_irq_itoa(fore200e->irq), fore200e->name);
2045         return -EBUSY;
2046     }
2047
2048     printk(FORE200E "IRQ %s reserved for device %s\n",
2049            fore200e_irq_itoa(fore200e->irq), fore200e->name);
2050
2051 #ifdef FORE200E_USE_TASKLET
2052     tasklet_init(&fore200e->tx_tasklet, fore200e_tx_tasklet, (unsigned long)fore200e);
2053     tasklet_init(&fore200e->rx_tasklet, fore200e_rx_tasklet, (unsigned long)fore200e);
2054 #endif
2055
2056     fore200e->state = FORE200E_STATE_IRQ;
2057     return 0;
2058 }
2059
2060
2061 static int fore200e_get_esi(struct fore200e *fore200e)
2062 {
2063     struct prom_data* prom = kzalloc(sizeof(struct prom_data), GFP_KERNEL | GFP_DMA);
2064     int ok, i;
2065
2066     if (!prom)
2067         return -ENOMEM;
2068
2069     ok = fore200e->bus->prom_read(fore200e, prom);
2070     if (ok < 0) {
2071         kfree(prom);
2072         return -EBUSY;
2073     }
2074         
2075     printk(FORE200E "device %s, rev. %c, S/N: %d, ESI: %pM\n",
2076            fore200e->name, 
2077            (prom->hw_revision & 0xFF) + '@',    /* probably meaningless with SBA boards */
2078            prom->serial_number & 0xFFFF, &prom->mac_addr[2]);
2079         
2080     for (i = 0; i < ESI_LEN; i++) {
2081         fore200e->esi[ i ] = fore200e->atm_dev->esi[ i ] = prom->mac_addr[ i + 2 ];
2082     }
2083     
2084     kfree(prom);
2085
2086     return 0;
2087 }
2088
2089
2090 static int fore200e_alloc_rx_buf(struct fore200e *fore200e)
2091 {
2092     int scheme, magn, nbr, size, i;
2093
2094     struct host_bsq* bsq;
2095     struct buffer*   buffer;
2096
2097     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2098         for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2099
2100             bsq = &fore200e->host_bsq[ scheme ][ magn ];
2101
2102             nbr  = fore200e_rx_buf_nbr[ scheme ][ magn ];
2103             size = fore200e_rx_buf_size[ scheme ][ magn ];
2104
2105             DPRINTK(2, "rx buffers %d / %d are being allocated\n", scheme, magn);
2106
2107             /* allocate the array of receive buffers */
2108             buffer = bsq->buffer = kcalloc(nbr, sizeof(struct buffer),
2109                                            GFP_KERNEL);
2110
2111             if (buffer == NULL)
2112                 return -ENOMEM;
2113
2114             bsq->freebuf = NULL;
2115
2116             for (i = 0; i < nbr; i++) {
2117
2118                 buffer[ i ].scheme = scheme;
2119                 buffer[ i ].magn   = magn;
2120 #ifdef FORE200E_BSQ_DEBUG
2121                 buffer[ i ].index  = i;
2122                 buffer[ i ].supplied = 0;
2123 #endif
2124
2125                 /* allocate the receive buffer body */
2126                 if (fore200e_chunk_alloc(fore200e,
2127                                          &buffer[ i ].data, size, fore200e->bus->buffer_alignment,
2128                                          DMA_FROM_DEVICE) < 0) {
2129                     
2130                     while (i > 0)
2131                         fore200e_chunk_free(fore200e, &buffer[ --i ].data);
2132                     kfree(buffer);
2133                     
2134                     return -ENOMEM;
2135                 }
2136
2137                 /* insert the buffer into the free buffer list */
2138                 buffer[ i ].next = bsq->freebuf;
2139                 bsq->freebuf = &buffer[ i ];
2140             }
2141             /* all the buffers are free, initially */
2142             bsq->freebuf_count = nbr;
2143
2144 #ifdef FORE200E_BSQ_DEBUG
2145             bsq_audit(3, bsq, scheme, magn);
2146 #endif
2147         }
2148     }
2149
2150     fore200e->state = FORE200E_STATE_ALLOC_BUF;
2151     return 0;
2152 }
2153
2154
2155 static int fore200e_init_bs_queue(struct fore200e *fore200e)
2156 {
2157     int scheme, magn, i;
2158
2159     struct host_bsq*     bsq;
2160     struct cp_bsq_entry __iomem * cp_entry;
2161
2162     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2163         for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2164
2165             DPRINTK(2, "buffer supply queue %d / %d is being initialized\n", scheme, magn);
2166
2167             bsq = &fore200e->host_bsq[ scheme ][ magn ];
2168
2169             /* allocate and align the array of status words */
2170             if (fore200e->bus->dma_chunk_alloc(fore200e,
2171                                                &bsq->status,
2172                                                sizeof(enum status), 
2173                                                QUEUE_SIZE_BS,
2174                                                fore200e->bus->status_alignment) < 0) {
2175                 return -ENOMEM;
2176             }
2177
2178             /* allocate and align the array of receive buffer descriptors */
2179             if (fore200e->bus->dma_chunk_alloc(fore200e,
2180                                                &bsq->rbd_block,
2181                                                sizeof(struct rbd_block),
2182                                                QUEUE_SIZE_BS,
2183                                                fore200e->bus->descr_alignment) < 0) {
2184                 
2185                 fore200e->bus->dma_chunk_free(fore200e, &bsq->status);
2186                 return -ENOMEM;
2187             }
2188             
2189             /* get the base address of the cp resident buffer supply queue entries */
2190             cp_entry = fore200e->virt_base + 
2191                        fore200e->bus->read(&fore200e->cp_queues->cp_bsq[ scheme ][ magn ]);
2192             
2193             /* fill the host resident and cp resident buffer supply queue entries */
2194             for (i = 0; i < QUEUE_SIZE_BS; i++) {
2195                 
2196                 bsq->host_entry[ i ].status = 
2197                                      FORE200E_INDEX(bsq->status.align_addr, enum status, i);
2198                 bsq->host_entry[ i ].rbd_block =
2199                                      FORE200E_INDEX(bsq->rbd_block.align_addr, struct rbd_block, i);
2200                 bsq->host_entry[ i ].rbd_block_dma =
2201                                      FORE200E_DMA_INDEX(bsq->rbd_block.dma_addr, struct rbd_block, i);
2202                 bsq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2203                 
2204                 *bsq->host_entry[ i ].status = STATUS_FREE;
2205                 
2206                 fore200e->bus->write(FORE200E_DMA_INDEX(bsq->status.dma_addr, enum status, i), 
2207                                      &cp_entry[ i ].status_haddr);
2208             }
2209         }
2210     }
2211
2212     fore200e->state = FORE200E_STATE_INIT_BSQ;
2213     return 0;
2214 }
2215
2216
2217 static int fore200e_init_rx_queue(struct fore200e *fore200e)
2218 {
2219     struct host_rxq*     rxq =  &fore200e->host_rxq;
2220     struct cp_rxq_entry __iomem * cp_entry;
2221     int i;
2222
2223     DPRINTK(2, "receive queue is being initialized\n");
2224
2225     /* allocate and align the array of status words */
2226     if (fore200e->bus->dma_chunk_alloc(fore200e,
2227                                        &rxq->status,
2228                                        sizeof(enum status), 
2229                                        QUEUE_SIZE_RX,
2230                                        fore200e->bus->status_alignment) < 0) {
2231         return -ENOMEM;
2232     }
2233
2234     /* allocate and align the array of receive PDU descriptors */
2235     if (fore200e->bus->dma_chunk_alloc(fore200e,
2236                                        &rxq->rpd,
2237                                        sizeof(struct rpd), 
2238                                        QUEUE_SIZE_RX,
2239                                        fore200e->bus->descr_alignment) < 0) {
2240         
2241         fore200e->bus->dma_chunk_free(fore200e, &rxq->status);
2242         return -ENOMEM;
2243     }
2244
2245     /* get the base address of the cp resident rx queue entries */
2246     cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_rxq);
2247
2248     /* fill the host resident and cp resident rx entries */
2249     for (i=0; i < QUEUE_SIZE_RX; i++) {
2250         
2251         rxq->host_entry[ i ].status = 
2252                              FORE200E_INDEX(rxq->status.align_addr, enum status, i);
2253         rxq->host_entry[ i ].rpd = 
2254                              FORE200E_INDEX(rxq->rpd.align_addr, struct rpd, i);
2255         rxq->host_entry[ i ].rpd_dma = 
2256                              FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i);
2257         rxq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2258
2259         *rxq->host_entry[ i ].status = STATUS_FREE;
2260
2261         fore200e->bus->write(FORE200E_DMA_INDEX(rxq->status.dma_addr, enum status, i), 
2262                              &cp_entry[ i ].status_haddr);
2263
2264         fore200e->bus->write(FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i),
2265                              &cp_entry[ i ].rpd_haddr);
2266     }
2267
2268     /* set the head entry of the queue */
2269     rxq->head = 0;
2270
2271     fore200e->state = FORE200E_STATE_INIT_RXQ;
2272     return 0;
2273 }
2274
2275
2276 static int fore200e_init_tx_queue(struct fore200e *fore200e)
2277 {
2278     struct host_txq*     txq =  &fore200e->host_txq;
2279     struct cp_txq_entry __iomem * cp_entry;
2280     int i;
2281
2282     DPRINTK(2, "transmit queue is being initialized\n");
2283
2284     /* allocate and align the array of status words */
2285     if (fore200e->bus->dma_chunk_alloc(fore200e,
2286                                        &txq->status,
2287                                        sizeof(enum status), 
2288                                        QUEUE_SIZE_TX,
2289                                        fore200e->bus->status_alignment) < 0) {
2290         return -ENOMEM;
2291     }
2292
2293     /* allocate and align the array of transmit PDU descriptors */
2294     if (fore200e->bus->dma_chunk_alloc(fore200e,
2295                                        &txq->tpd,
2296                                        sizeof(struct tpd), 
2297                                        QUEUE_SIZE_TX,
2298                                        fore200e->bus->descr_alignment) < 0) {
2299         
2300         fore200e->bus->dma_chunk_free(fore200e, &txq->status);
2301         return -ENOMEM;
2302     }
2303
2304     /* get the base address of the cp resident tx queue entries */
2305     cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_txq);
2306
2307     /* fill the host resident and cp resident tx entries */
2308     for (i=0; i < QUEUE_SIZE_TX; i++) {
2309         
2310         txq->host_entry[ i ].status = 
2311                              FORE200E_INDEX(txq->status.align_addr, enum status, i);
2312         txq->host_entry[ i ].tpd = 
2313                              FORE200E_INDEX(txq->tpd.align_addr, struct tpd, i);
2314         txq->host_entry[ i ].tpd_dma  = 
2315                              FORE200E_DMA_INDEX(txq->tpd.dma_addr, struct tpd, i);
2316         txq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2317
2318         *txq->host_entry[ i ].status = STATUS_FREE;
2319         
2320         fore200e->bus->write(FORE200E_DMA_INDEX(txq->status.dma_addr, enum status, i), 
2321                              &cp_entry[ i ].status_haddr);
2322         
2323         /* although there is a one-to-one mapping of tx queue entries and tpds,
2324            we do not write here the DMA (physical) base address of each tpd into
2325            the related cp resident entry, because the cp relies on this write
2326            operation to detect that a new pdu has been submitted for tx */
2327     }
2328
2329     /* set the head and tail entries of the queue */
2330     txq->head = 0;
2331     txq->tail = 0;
2332
2333     fore200e->state = FORE200E_STATE_INIT_TXQ;
2334     return 0;
2335 }
2336
2337
2338 static int fore200e_init_cmd_queue(struct fore200e *fore200e)
2339 {
2340     struct host_cmdq*     cmdq =  &fore200e->host_cmdq;
2341     struct cp_cmdq_entry __iomem * cp_entry;
2342     int i;
2343
2344     DPRINTK(2, "command queue is being initialized\n");
2345
2346     /* allocate and align the array of status words */
2347     if (fore200e->bus->dma_chunk_alloc(fore200e,
2348                                        &cmdq->status,
2349                                        sizeof(enum status), 
2350                                        QUEUE_SIZE_CMD,
2351                                        fore200e->bus->status_alignment) < 0) {
2352         return -ENOMEM;
2353     }
2354     
2355     /* get the base address of the cp resident cmd queue entries */
2356     cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_cmdq);
2357
2358     /* fill the host resident and cp resident cmd entries */
2359     for (i=0; i < QUEUE_SIZE_CMD; i++) {
2360         
2361         cmdq->host_entry[ i ].status   = 
2362                               FORE200E_INDEX(cmdq->status.align_addr, enum status, i);
2363         cmdq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2364
2365         *cmdq->host_entry[ i ].status = STATUS_FREE;
2366
2367         fore200e->bus->write(FORE200E_DMA_INDEX(cmdq->status.dma_addr, enum status, i), 
2368                              &cp_entry[ i ].status_haddr);
2369     }
2370
2371     /* set the head entry of the queue */
2372     cmdq->head = 0;
2373
2374     fore200e->state = FORE200E_STATE_INIT_CMDQ;
2375     return 0;
2376 }
2377
2378
2379 static void fore200e_param_bs_queue(struct fore200e *fore200e,
2380                                     enum buffer_scheme scheme,
2381                                     enum buffer_magn magn, int queue_length,
2382                                     int pool_size, int supply_blksize)
2383 {
2384     struct bs_spec __iomem * bs_spec = &fore200e->cp_queues->init.bs_spec[ scheme ][ magn ];
2385
2386     fore200e->bus->write(queue_length,                           &bs_spec->queue_length);
2387     fore200e->bus->write(fore200e_rx_buf_size[ scheme ][ magn ], &bs_spec->buffer_size);
2388     fore200e->bus->write(pool_size,                              &bs_spec->pool_size);
2389     fore200e->bus->write(supply_blksize,                         &bs_spec->supply_blksize);
2390 }
2391
2392
2393 static int fore200e_initialize(struct fore200e *fore200e)
2394 {
2395     struct cp_queues __iomem * cpq;
2396     int               ok, scheme, magn;
2397
2398     DPRINTK(2, "device %s being initialized\n", fore200e->name);
2399
2400     mutex_init(&fore200e->rate_mtx);
2401     spin_lock_init(&fore200e->q_lock);
2402
2403     cpq = fore200e->cp_queues = fore200e->virt_base + FORE200E_CP_QUEUES_OFFSET;
2404
2405     /* enable cp to host interrupts */
2406     fore200e->bus->write(1, &cpq->imask);
2407
2408     if (fore200e->bus->irq_enable)
2409         fore200e->bus->irq_enable(fore200e);
2410     
2411     fore200e->bus->write(NBR_CONNECT, &cpq->init.num_connect);
2412
2413     fore200e->bus->write(QUEUE_SIZE_CMD, &cpq->init.cmd_queue_len);
2414     fore200e->bus->write(QUEUE_SIZE_RX,  &cpq->init.rx_queue_len);
2415     fore200e->bus->write(QUEUE_SIZE_TX,  &cpq->init.tx_queue_len);
2416
2417     fore200e->bus->write(RSD_EXTENSION,  &cpq->init.rsd_extension);
2418     fore200e->bus->write(TSD_EXTENSION,  &cpq->init.tsd_extension);
2419
2420     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++)
2421         for (magn = 0; magn < BUFFER_MAGN_NBR; magn++)
2422             fore200e_param_bs_queue(fore200e, scheme, magn,
2423                                     QUEUE_SIZE_BS, 
2424                                     fore200e_rx_buf_nbr[ scheme ][ magn ],
2425                                     RBD_BLK_SIZE);
2426
2427     /* issue the initialize command */
2428     fore200e->bus->write(STATUS_PENDING,    &cpq->init.status);
2429     fore200e->bus->write(OPCODE_INITIALIZE, &cpq->init.opcode);
2430
2431     ok = fore200e_io_poll(fore200e, &cpq->init.status, STATUS_COMPLETE, 3000);
2432     if (ok == 0) {
2433         printk(FORE200E "device %s initialization failed\n", fore200e->name);
2434         return -ENODEV;
2435     }
2436
2437     printk(FORE200E "device %s initialized\n", fore200e->name);
2438
2439     fore200e->state = FORE200E_STATE_INITIALIZE;
2440     return 0;
2441 }
2442
2443
2444 static void fore200e_monitor_putc(struct fore200e *fore200e, char c)
2445 {
2446     struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2447
2448 #if 0
2449     printk("%c", c);
2450 #endif
2451     fore200e->bus->write(((u32) c) | FORE200E_CP_MONITOR_UART_AVAIL, &monitor->soft_uart.send);
2452 }
2453
2454
2455 static int fore200e_monitor_getc(struct fore200e *fore200e)
2456 {
2457     struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2458     unsigned long      timeout = jiffies + msecs_to_jiffies(50);
2459     int                c;
2460
2461     while (time_before(jiffies, timeout)) {
2462
2463         c = (int) fore200e->bus->read(&monitor->soft_uart.recv);
2464
2465         if (c & FORE200E_CP_MONITOR_UART_AVAIL) {
2466
2467             fore200e->bus->write(FORE200E_CP_MONITOR_UART_FREE, &monitor->soft_uart.recv);
2468 #if 0
2469             printk("%c", c & 0xFF);
2470 #endif
2471             return c & 0xFF;
2472         }
2473     }
2474
2475     return -1;
2476 }
2477
2478
2479 static void fore200e_monitor_puts(struct fore200e *fore200e, char *str)
2480 {
2481     while (*str) {
2482
2483         /* the i960 monitor doesn't accept any new character if it has something to say */
2484         while (fore200e_monitor_getc(fore200e) >= 0);
2485         
2486         fore200e_monitor_putc(fore200e, *str++);
2487     }
2488
2489     while (fore200e_monitor_getc(fore200e) >= 0);
2490 }
2491
2492 /*(DEBLOBBED)*/
2493
2494 static int fore200e_load_and_start_fw(struct fore200e *fore200e)
2495 {
2496     const struct firmware *firmware;
2497     struct device *device;
2498     const struct fw_header *fw_header;
2499     const __le32 *fw_data;
2500     u32 fw_size;
2501     u32 __iomem *load_addr;
2502     char buf[48];
2503     int err = -ENODEV;
2504
2505     if (strcmp(fore200e->bus->model_name, "PCA-200E") == 0)
2506         device = &((struct pci_dev *) fore200e->bus_dev)->dev;
2507 #ifdef CONFIG_SBUS
2508     else if (strcmp(fore200e->bus->model_name, "SBA-200E") == 0)
2509         device = &((struct platform_device *) fore200e->bus_dev)->dev;
2510 #endif
2511     else
2512         return err;
2513
2514     /*(DEBLOBBED)*/
2515     if ((err = reject_firmware(&firmware, buf, device)) < 0) {
2516         printk(FORE200E "problem loading firmware image %s\n", fore200e->bus->model_name);
2517         return err;
2518     }
2519
2520     fw_data = (const __le32 *)firmware->data;
2521     fw_size = firmware->size / sizeof(u32);
2522     fw_header = (const struct fw_header *)firmware->data;
2523     load_addr = fore200e->virt_base + le32_to_cpu(fw_header->load_offset);
2524
2525     DPRINTK(2, "device %s firmware being loaded at 0x%p (%d words)\n",
2526             fore200e->name, load_addr, fw_size);
2527
2528     if (le32_to_cpu(fw_header->magic) != FW_HEADER_MAGIC) {
2529         printk(FORE200E "corrupted %s firmware image\n", fore200e->bus->model_name);
2530         goto release;
2531     }
2532
2533     for (; fw_size--; fw_data++, load_addr++)
2534         fore200e->bus->write(le32_to_cpu(*fw_data), load_addr);
2535
2536     DPRINTK(2, "device %s firmware being started\n", fore200e->name);
2537
2538 #if defined(__sparc_v9__)
2539     /* reported to be required by SBA cards on some sparc64 hosts */
2540     fore200e_spin(100);
2541 #endif
2542
2543     sprintf(buf, "\rgo %x\r", le32_to_cpu(fw_header->start_offset));
2544     fore200e_monitor_puts(fore200e, buf);
2545
2546     if (fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_CP_RUNNING, 1000) == 0) {
2547         printk(FORE200E "device %s firmware didn't start\n", fore200e->name);
2548         goto release;
2549     }
2550
2551     printk(FORE200E "device %s firmware started\n", fore200e->name);
2552
2553     fore200e->state = FORE200E_STATE_START_FW;
2554     err = 0;
2555
2556 release:
2557     release_firmware(firmware);
2558     return err;
2559 }
2560
2561
2562 static int fore200e_register(struct fore200e *fore200e, struct device *parent)
2563 {
2564     struct atm_dev* atm_dev;
2565
2566     DPRINTK(2, "device %s being registered\n", fore200e->name);
2567
2568     atm_dev = atm_dev_register(fore200e->bus->proc_name, parent, &fore200e_ops,
2569                                -1, NULL);
2570     if (atm_dev == NULL) {
2571         printk(FORE200E "unable to register device %s\n", fore200e->name);
2572         return -ENODEV;
2573     }
2574
2575     atm_dev->dev_data = fore200e;
2576     fore200e->atm_dev = atm_dev;
2577
2578     atm_dev->ci_range.vpi_bits = FORE200E_VPI_BITS;
2579     atm_dev->ci_range.vci_bits = FORE200E_VCI_BITS;
2580
2581     fore200e->available_cell_rate = ATM_OC3_PCR;
2582
2583     fore200e->state = FORE200E_STATE_REGISTER;
2584     return 0;
2585 }
2586
2587
2588 static int fore200e_init(struct fore200e *fore200e, struct device *parent)
2589 {
2590     if (fore200e_register(fore200e, parent) < 0)
2591         return -ENODEV;
2592     
2593     if (fore200e->bus->configure(fore200e) < 0)
2594         return -ENODEV;
2595
2596     if (fore200e->bus->map(fore200e) < 0)
2597         return -ENODEV;
2598
2599     if (fore200e_reset(fore200e, 1) < 0)
2600         return -ENODEV;
2601
2602     if (fore200e_load_and_start_fw(fore200e) < 0)
2603         return -ENODEV;
2604
2605     if (fore200e_initialize(fore200e) < 0)
2606         return -ENODEV;
2607
2608     if (fore200e_init_cmd_queue(fore200e) < 0)
2609         return -ENOMEM;
2610
2611     if (fore200e_init_tx_queue(fore200e) < 0)
2612         return -ENOMEM;
2613
2614     if (fore200e_init_rx_queue(fore200e) < 0)
2615         return -ENOMEM;
2616
2617     if (fore200e_init_bs_queue(fore200e) < 0)
2618         return -ENOMEM;
2619
2620     if (fore200e_alloc_rx_buf(fore200e) < 0)
2621         return -ENOMEM;
2622
2623     if (fore200e_get_esi(fore200e) < 0)
2624         return -EIO;
2625
2626     if (fore200e_irq_request(fore200e) < 0)
2627         return -EBUSY;
2628
2629     fore200e_supply(fore200e);
2630
2631     /* all done, board initialization is now complete */
2632     fore200e->state = FORE200E_STATE_COMPLETE;
2633     return 0;
2634 }
2635
2636 #ifdef CONFIG_SBUS
2637 static const struct of_device_id fore200e_sba_match[];
2638 static int fore200e_sba_probe(struct platform_device *op)
2639 {
2640         const struct of_device_id *match;
2641         const struct fore200e_bus *bus;
2642         struct fore200e *fore200e;
2643         static int index = 0;
2644         int err;
2645
2646         match = of_match_device(fore200e_sba_match, &op->dev);
2647         if (!match)
2648                 return -EINVAL;
2649         bus = match->data;
2650
2651         fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2652         if (!fore200e)
2653                 return -ENOMEM;
2654
2655         fore200e->bus = bus;
2656         fore200e->bus_dev = op;
2657         fore200e->irq = op->archdata.irqs[0];
2658         fore200e->phys_base = op->resource[0].start;
2659
2660         sprintf(fore200e->name, "%s-%d", bus->model_name, index);
2661
2662         err = fore200e_init(fore200e, &op->dev);
2663         if (err < 0) {
2664                 fore200e_shutdown(fore200e);
2665                 kfree(fore200e);
2666                 return err;
2667         }
2668
2669         index++;
2670         dev_set_drvdata(&op->dev, fore200e);
2671
2672         return 0;
2673 }
2674
2675 static int fore200e_sba_remove(struct platform_device *op)
2676 {
2677         struct fore200e *fore200e = dev_get_drvdata(&op->dev);
2678
2679         fore200e_shutdown(fore200e);
2680         kfree(fore200e);
2681
2682         return 0;
2683 }
2684
2685 static const struct of_device_id fore200e_sba_match[] = {
2686         {
2687                 .name = SBA200E_PROM_NAME,
2688                 .data = (void *) &fore200e_bus[1],
2689         },
2690         {},
2691 };
2692 MODULE_DEVICE_TABLE(of, fore200e_sba_match);
2693
2694 static struct platform_driver fore200e_sba_driver = {
2695         .driver = {
2696                 .name = "fore_200e",
2697                 .of_match_table = fore200e_sba_match,
2698         },
2699         .probe          = fore200e_sba_probe,
2700         .remove         = fore200e_sba_remove,
2701 };
2702 #endif
2703
2704 #ifdef CONFIG_PCI
2705 static int fore200e_pca_detect(struct pci_dev *pci_dev,
2706                                const struct pci_device_id *pci_ent)
2707 {
2708     const struct fore200e_bus* bus = (struct fore200e_bus*) pci_ent->driver_data;
2709     struct fore200e* fore200e;
2710     int err = 0;
2711     static int index = 0;
2712
2713     if (pci_enable_device(pci_dev)) {
2714         err = -EINVAL;
2715         goto out;
2716     }
2717
2718     if (dma_set_mask_and_coherent(&pci_dev->dev, DMA_BIT_MASK(32))) {
2719         err = -EINVAL;
2720         goto out;
2721     }
2722     
2723     fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2724     if (fore200e == NULL) {
2725         err = -ENOMEM;
2726         goto out_disable;
2727     }
2728
2729     fore200e->bus       = bus;
2730     fore200e->bus_dev   = pci_dev;    
2731     fore200e->irq       = pci_dev->irq;
2732     fore200e->phys_base = pci_resource_start(pci_dev, 0);
2733
2734     sprintf(fore200e->name, "%s-%d", bus->model_name, index - 1);
2735
2736     pci_set_master(pci_dev);
2737
2738     printk(FORE200E "device %s found at 0x%lx, IRQ %s\n",
2739            fore200e->bus->model_name, 
2740            fore200e->phys_base, fore200e_irq_itoa(fore200e->irq));
2741
2742     sprintf(fore200e->name, "%s-%d", bus->model_name, index);
2743
2744     err = fore200e_init(fore200e, &pci_dev->dev);
2745     if (err < 0) {
2746         fore200e_shutdown(fore200e);
2747         goto out_free;
2748     }
2749
2750     ++index;
2751     pci_set_drvdata(pci_dev, fore200e);
2752
2753 out:
2754     return err;
2755
2756 out_free:
2757     kfree(fore200e);
2758 out_disable:
2759     pci_disable_device(pci_dev);
2760     goto out;
2761 }
2762
2763
2764 static void fore200e_pca_remove_one(struct pci_dev *pci_dev)
2765 {
2766     struct fore200e *fore200e;
2767
2768     fore200e = pci_get_drvdata(pci_dev);
2769
2770     fore200e_shutdown(fore200e);
2771     kfree(fore200e);
2772     pci_disable_device(pci_dev);
2773 }
2774
2775
2776 static const struct pci_device_id fore200e_pca_tbl[] = {
2777     { PCI_VENDOR_ID_FORE, PCI_DEVICE_ID_FORE_PCA200E, PCI_ANY_ID, PCI_ANY_ID,
2778       0, 0, (unsigned long) &fore200e_bus[0] },
2779     { 0, }
2780 };
2781
2782 MODULE_DEVICE_TABLE(pci, fore200e_pca_tbl);
2783
2784 static struct pci_driver fore200e_pca_driver = {
2785     .name =     "fore_200e",
2786     .probe =    fore200e_pca_detect,
2787     .remove =   fore200e_pca_remove_one,
2788     .id_table = fore200e_pca_tbl,
2789 };
2790 #endif
2791
2792 static int __init fore200e_module_init(void)
2793 {
2794         int err = 0;
2795
2796         printk(FORE200E "FORE Systems 200E-series ATM driver - version " FORE200E_VERSION "\n");
2797
2798 #ifdef CONFIG_SBUS
2799         err = platform_driver_register(&fore200e_sba_driver);
2800         if (err)
2801                 return err;
2802 #endif
2803
2804 #ifdef CONFIG_PCI
2805         err = pci_register_driver(&fore200e_pca_driver);
2806 #endif
2807
2808 #ifdef CONFIG_SBUS
2809         if (err)
2810                 platform_driver_unregister(&fore200e_sba_driver);
2811 #endif
2812
2813         return err;
2814 }
2815
2816 static void __exit fore200e_module_cleanup(void)
2817 {
2818 #ifdef CONFIG_PCI
2819         pci_unregister_driver(&fore200e_pca_driver);
2820 #endif
2821 #ifdef CONFIG_SBUS
2822         platform_driver_unregister(&fore200e_sba_driver);
2823 #endif
2824 }
2825
2826 static int
2827 fore200e_proc_read(struct atm_dev *dev, loff_t* pos, char* page)
2828 {
2829     struct fore200e*     fore200e  = FORE200E_DEV(dev);
2830     struct fore200e_vcc* fore200e_vcc;
2831     struct atm_vcc*      vcc;
2832     int                  i, len, left = *pos;
2833     unsigned long        flags;
2834
2835     if (!left--) {
2836
2837         if (fore200e_getstats(fore200e) < 0)
2838             return -EIO;
2839
2840         len = sprintf(page,"\n"
2841                        " device:\n"
2842                        "   internal name:\t\t%s\n", fore200e->name);
2843
2844         /* print bus-specific information */
2845         if (fore200e->bus->proc_read)
2846             len += fore200e->bus->proc_read(fore200e, page + len);
2847         
2848         len += sprintf(page + len,
2849                 "   interrupt line:\t\t%s\n"
2850                 "   physical base address:\t0x%p\n"
2851                 "   virtual base address:\t0x%p\n"
2852                 "   factory address (ESI):\t%pM\n"
2853                 "   board serial number:\t\t%d\n\n",
2854                 fore200e_irq_itoa(fore200e->irq),
2855                 (void*)fore200e->phys_base,
2856                 fore200e->virt_base,
2857                 fore200e->esi,
2858                 fore200e->esi[4] * 256 + fore200e->esi[5]);
2859
2860         return len;
2861     }
2862
2863     if (!left--)
2864         return sprintf(page,
2865                        "   free small bufs, scheme 1:\t%d\n"
2866                        "   free large bufs, scheme 1:\t%d\n"
2867                        "   free small bufs, scheme 2:\t%d\n"
2868                        "   free large bufs, scheme 2:\t%d\n",
2869                        fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_SMALL ].freebuf_count,
2870                        fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_LARGE ].freebuf_count,
2871                        fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_SMALL ].freebuf_count,
2872                        fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_LARGE ].freebuf_count);
2873
2874     if (!left--) {
2875         u32 hb = fore200e->bus->read(&fore200e->cp_queues->heartbeat);
2876
2877         len = sprintf(page,"\n\n"
2878                       " cell processor:\n"
2879                       "   heartbeat state:\t\t");
2880         
2881         if (hb >> 16 != 0xDEAD)
2882             len += sprintf(page + len, "0x%08x\n", hb);
2883         else
2884             len += sprintf(page + len, "*** FATAL ERROR %04x ***\n", hb & 0xFFFF);
2885
2886         return len;
2887     }
2888
2889     if (!left--) {
2890         static const char* media_name[] = {
2891             "unshielded twisted pair",
2892             "multimode optical fiber ST",
2893             "multimode optical fiber SC",
2894             "single-mode optical fiber ST",
2895             "single-mode optical fiber SC",
2896             "unknown"
2897         };
2898
2899         static const char* oc3_mode[] = {
2900             "normal operation",
2901             "diagnostic loopback",
2902             "line loopback",
2903             "unknown"
2904         };
2905
2906         u32 fw_release     = fore200e->bus->read(&fore200e->cp_queues->fw_release);
2907         u32 mon960_release = fore200e->bus->read(&fore200e->cp_queues->mon960_release);
2908         u32 oc3_revision   = fore200e->bus->read(&fore200e->cp_queues->oc3_revision);
2909         u32 media_index    = FORE200E_MEDIA_INDEX(fore200e->bus->read(&fore200e->cp_queues->media_type));
2910         u32 oc3_index;
2911
2912         if (media_index > 4)
2913                 media_index = 5;
2914         
2915         switch (fore200e->loop_mode) {
2916             case ATM_LM_NONE:    oc3_index = 0;
2917                                  break;
2918             case ATM_LM_LOC_PHY: oc3_index = 1;
2919                                  break;
2920             case ATM_LM_RMT_PHY: oc3_index = 2;
2921                                  break;
2922             default:             oc3_index = 3;
2923         }
2924
2925         return sprintf(page,
2926                        "   firmware release:\t\t%d.%d.%d\n"
2927                        "   monitor release:\t\t%d.%d\n"
2928                        "   media type:\t\t\t%s\n"
2929                        "   OC-3 revision:\t\t0x%x\n"
2930                        "   OC-3 mode:\t\t\t%s",
2931                        fw_release >> 16, fw_release << 16 >> 24,  fw_release << 24 >> 24,
2932                        mon960_release >> 16, mon960_release << 16 >> 16,
2933                        media_name[ media_index ],
2934                        oc3_revision,
2935                        oc3_mode[ oc3_index ]);
2936     }
2937
2938     if (!left--) {
2939         struct cp_monitor __iomem * cp_monitor = fore200e->cp_monitor;
2940
2941         return sprintf(page,
2942                        "\n\n"
2943                        " monitor:\n"
2944                        "   version number:\t\t%d\n"
2945                        "   boot status word:\t\t0x%08x\n",
2946                        fore200e->bus->read(&cp_monitor->mon_version),
2947                        fore200e->bus->read(&cp_monitor->bstat));
2948     }
2949
2950     if (!left--)
2951         return sprintf(page,
2952                        "\n"
2953                        " device statistics:\n"
2954                        "  4b5b:\n"
2955                        "     crc_header_errors:\t\t%10u\n"
2956                        "     framing_errors:\t\t%10u\n",
2957                        be32_to_cpu(fore200e->stats->phy.crc_header_errors),
2958                        be32_to_cpu(fore200e->stats->phy.framing_errors));
2959     
2960     if (!left--)
2961         return sprintf(page, "\n"
2962                        "  OC-3:\n"
2963                        "     section_bip8_errors:\t%10u\n"
2964                        "     path_bip8_errors:\t\t%10u\n"
2965                        "     line_bip24_errors:\t\t%10u\n"
2966                        "     line_febe_errors:\t\t%10u\n"
2967                        "     path_febe_errors:\t\t%10u\n"
2968                        "     corr_hcs_errors:\t\t%10u\n"
2969                        "     ucorr_hcs_errors:\t\t%10u\n",
2970                        be32_to_cpu(fore200e->stats->oc3.section_bip8_errors),
2971                        be32_to_cpu(fore200e->stats->oc3.path_bip8_errors),
2972                        be32_to_cpu(fore200e->stats->oc3.line_bip24_errors),
2973                        be32_to_cpu(fore200e->stats->oc3.line_febe_errors),
2974                        be32_to_cpu(fore200e->stats->oc3.path_febe_errors),
2975                        be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors),
2976                        be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors));
2977
2978     if (!left--)
2979         return sprintf(page,"\n"
2980                        "   ATM:\t\t\t\t     cells\n"
2981                        "     TX:\t\t\t%10u\n"
2982                        "     RX:\t\t\t%10u\n"
2983                        "     vpi out of range:\t\t%10u\n"
2984                        "     vpi no conn:\t\t%10u\n"
2985                        "     vci out of range:\t\t%10u\n"
2986                        "     vci no conn:\t\t%10u\n",
2987                        be32_to_cpu(fore200e->stats->atm.cells_transmitted),
2988                        be32_to_cpu(fore200e->stats->atm.cells_received),
2989                        be32_to_cpu(fore200e->stats->atm.vpi_bad_range),
2990                        be32_to_cpu(fore200e->stats->atm.vpi_no_conn),
2991                        be32_to_cpu(fore200e->stats->atm.vci_bad_range),
2992                        be32_to_cpu(fore200e->stats->atm.vci_no_conn));
2993     
2994     if (!left--)
2995         return sprintf(page,"\n"
2996                        "   AAL0:\t\t\t     cells\n"
2997                        "     TX:\t\t\t%10u\n"
2998                        "     RX:\t\t\t%10u\n"
2999                        "     dropped:\t\t\t%10u\n",
3000                        be32_to_cpu(fore200e->stats->aal0.cells_transmitted),
3001                        be32_to_cpu(fore200e->stats->aal0.cells_received),
3002                        be32_to_cpu(fore200e->stats->aal0.cells_dropped));
3003     
3004     if (!left--)
3005         return sprintf(page,"\n"
3006                        "   AAL3/4:\n"
3007                        "     SAR sublayer:\t\t     cells\n"
3008                        "       TX:\t\t\t%10u\n"
3009                        "       RX:\t\t\t%10u\n"
3010                        "       dropped:\t\t\t%10u\n"
3011                        "       CRC errors:\t\t%10u\n"
3012                        "       protocol errors:\t\t%10u\n\n"
3013                        "     CS  sublayer:\t\t      PDUs\n"
3014                        "       TX:\t\t\t%10u\n"
3015                        "       RX:\t\t\t%10u\n"
3016                        "       dropped:\t\t\t%10u\n"
3017                        "       protocol errors:\t\t%10u\n",
3018                        be32_to_cpu(fore200e->stats->aal34.cells_transmitted),
3019                        be32_to_cpu(fore200e->stats->aal34.cells_received),
3020                        be32_to_cpu(fore200e->stats->aal34.cells_dropped),
3021                        be32_to_cpu(fore200e->stats->aal34.cells_crc_errors),
3022                        be32_to_cpu(fore200e->stats->aal34.cells_protocol_errors),
3023                        be32_to_cpu(fore200e->stats->aal34.cspdus_transmitted),
3024                        be32_to_cpu(fore200e->stats->aal34.cspdus_received),
3025                        be32_to_cpu(fore200e->stats->aal34.cspdus_dropped),
3026                        be32_to_cpu(fore200e->stats->aal34.cspdus_protocol_errors));
3027     
3028     if (!left--)
3029         return sprintf(page,"\n"
3030                        "   AAL5:\n"
3031                        "     SAR sublayer:\t\t     cells\n"
3032                        "       TX:\t\t\t%10u\n"
3033                        "       RX:\t\t\t%10u\n"
3034                        "       dropped:\t\t\t%10u\n"
3035                        "       congestions:\t\t%10u\n\n"
3036                        "     CS  sublayer:\t\t      PDUs\n"
3037                        "       TX:\t\t\t%10u\n"
3038                        "       RX:\t\t\t%10u\n"
3039                        "       dropped:\t\t\t%10u\n"
3040                        "       CRC errors:\t\t%10u\n"
3041                        "       protocol errors:\t\t%10u\n",
3042                        be32_to_cpu(fore200e->stats->aal5.cells_transmitted),
3043                        be32_to_cpu(fore200e->stats->aal5.cells_received),
3044                        be32_to_cpu(fore200e->stats->aal5.cells_dropped),
3045                        be32_to_cpu(fore200e->stats->aal5.congestion_experienced),
3046                        be32_to_cpu(fore200e->stats->aal5.cspdus_transmitted),
3047                        be32_to_cpu(fore200e->stats->aal5.cspdus_received),
3048                        be32_to_cpu(fore200e->stats->aal5.cspdus_dropped),
3049                        be32_to_cpu(fore200e->stats->aal5.cspdus_crc_errors),
3050                        be32_to_cpu(fore200e->stats->aal5.cspdus_protocol_errors));
3051     
3052     if (!left--)
3053         return sprintf(page,"\n"
3054                        "   AUX:\t\t       allocation failures\n"
3055                        "     small b1:\t\t\t%10u\n"
3056                        "     large b1:\t\t\t%10u\n"
3057                        "     small b2:\t\t\t%10u\n"
3058                        "     large b2:\t\t\t%10u\n"
3059                        "     RX PDUs:\t\t\t%10u\n"
3060                        "     TX PDUs:\t\t\t%10lu\n",
3061                        be32_to_cpu(fore200e->stats->aux.small_b1_failed),
3062                        be32_to_cpu(fore200e->stats->aux.large_b1_failed),
3063                        be32_to_cpu(fore200e->stats->aux.small_b2_failed),
3064                        be32_to_cpu(fore200e->stats->aux.large_b2_failed),
3065                        be32_to_cpu(fore200e->stats->aux.rpd_alloc_failed),
3066                        fore200e->tx_sat);
3067     
3068     if (!left--)
3069         return sprintf(page,"\n"
3070                        " receive carrier:\t\t\t%s\n",
3071                        fore200e->stats->aux.receive_carrier ? "ON" : "OFF!");
3072     
3073     if (!left--) {
3074         return sprintf(page,"\n"
3075                        " VCCs:\n  address   VPI VCI   AAL "
3076                        "TX PDUs   TX min/max size  RX PDUs   RX min/max size\n");
3077     }
3078
3079     for (i = 0; i < NBR_CONNECT; i++) {
3080
3081         vcc = fore200e->vc_map[i].vcc;
3082
3083         if (vcc == NULL)
3084             continue;
3085
3086         spin_lock_irqsave(&fore200e->q_lock, flags);
3087
3088         if (vcc && test_bit(ATM_VF_READY, &vcc->flags) && !left--) {
3089
3090             fore200e_vcc = FORE200E_VCC(vcc);
3091             ASSERT(fore200e_vcc);
3092
3093             len = sprintf(page,
3094                           "  %pK  %03d %05d %1d   %09lu %05d/%05d      %09lu %05d/%05d\n",
3095                           vcc,
3096                           vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
3097                           fore200e_vcc->tx_pdu,
3098                           fore200e_vcc->tx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->tx_min_pdu,
3099                           fore200e_vcc->tx_max_pdu,
3100                           fore200e_vcc->rx_pdu,
3101                           fore200e_vcc->rx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->rx_min_pdu,
3102                           fore200e_vcc->rx_max_pdu);
3103
3104             spin_unlock_irqrestore(&fore200e->q_lock, flags);
3105             return len;
3106         }
3107
3108         spin_unlock_irqrestore(&fore200e->q_lock, flags);
3109     }
3110     
3111     return 0;
3112 }
3113
3114 module_init(fore200e_module_init);
3115 module_exit(fore200e_module_cleanup);
3116
3117
3118 static const struct atmdev_ops fore200e_ops =
3119 {
3120         .open       = fore200e_open,
3121         .close      = fore200e_close,
3122         .ioctl      = fore200e_ioctl,
3123         .getsockopt = fore200e_getsockopt,
3124         .setsockopt = fore200e_setsockopt,
3125         .send       = fore200e_send,
3126         .change_qos = fore200e_change_qos,
3127         .proc_read  = fore200e_proc_read,
3128         .owner      = THIS_MODULE
3129 };
3130
3131
3132 static const struct fore200e_bus fore200e_bus[] = {
3133 #ifdef CONFIG_PCI
3134     { "PCA-200E", "pca200e", 32, 4, 32, 
3135       fore200e_pca_read,
3136       fore200e_pca_write,
3137       fore200e_pca_dma_map,
3138       fore200e_pca_dma_unmap,
3139       fore200e_pca_dma_sync_for_cpu,
3140       fore200e_pca_dma_sync_for_device,
3141       fore200e_pca_dma_chunk_alloc,
3142       fore200e_pca_dma_chunk_free,
3143       fore200e_pca_configure,
3144       fore200e_pca_map,
3145       fore200e_pca_reset,
3146       fore200e_pca_prom_read,
3147       fore200e_pca_unmap,
3148       NULL,
3149       fore200e_pca_irq_check,
3150       fore200e_pca_irq_ack,
3151       fore200e_pca_proc_read,
3152     },
3153 #endif
3154 #ifdef CONFIG_SBUS
3155     { "SBA-200E", "sba200e", 32, 64, 32,
3156       fore200e_sba_read,
3157       fore200e_sba_write,
3158       fore200e_sba_dma_map,
3159       fore200e_sba_dma_unmap,
3160       fore200e_sba_dma_sync_for_cpu,
3161       fore200e_sba_dma_sync_for_device,
3162       fore200e_sba_dma_chunk_alloc,
3163       fore200e_sba_dma_chunk_free,
3164       fore200e_sba_configure,
3165       fore200e_sba_map,
3166       fore200e_sba_reset,
3167       fore200e_sba_prom_read,
3168       fore200e_sba_unmap,
3169       fore200e_sba_irq_enable,
3170       fore200e_sba_irq_check,
3171       fore200e_sba_irq_ack,
3172       fore200e_sba_proc_read,
3173     },
3174 #endif
3175     {}
3176 };
3177
3178 MODULE_LICENSE("GPL");
3179 #ifdef CONFIG_PCI
3180 #ifdef __LITTLE_ENDIAN__
3181 /*(DEBLOBBED)*/
3182 #else
3183 /*(DEBLOBBED)*/
3184 #endif
3185 #endif /* CONFIG_PCI */
3186 #ifdef CONFIG_SBUS
3187 /*(DEBLOBBED)*/
3188 #endif