GNU Linux-libre 4.14.266-gnu1
[releases.git] / drivers / atm / fore200e.c
1 /*
2   A FORE Systems 200E-series driver for ATM on Linux.
3   Christophe Lizzi (lizzi@cnam.fr), October 1999-March 2003.
4
5   Based on the PCA-200E driver from Uwe Dannowski (Uwe.Dannowski@inf.tu-dresden.de).
6
7   This driver simultaneously supports PCA-200E and SBA-200E adapters
8   on i386, alpha (untested), powerpc, sparc and sparc64 architectures.
9
10   This program is free software; you can redistribute it and/or modify
11   it under the terms of the GNU General Public License as published by
12   the Free Software Foundation; either version 2 of the License, or
13   (at your option) any later version.
14
15   This program is distributed in the hope that it will be useful,
16   but WITHOUT ANY WARRANTY; without even the implied warranty of
17   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18   GNU General Public License for more details.
19
20   You should have received a copy of the GNU General Public License
21   along with this program; if not, write to the Free Software
22   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
23 */
24
25
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/init.h>
29 #include <linux/capability.h>
30 #include <linux/interrupt.h>
31 #include <linux/bitops.h>
32 #include <linux/pci.h>
33 #include <linux/module.h>
34 #include <linux/atmdev.h>
35 #include <linux/sonet.h>
36 #include <linux/atm_suni.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/delay.h>
39 #include <linux/firmware.h>
40 #include <asm/io.h>
41 #include <asm/string.h>
42 #include <asm/page.h>
43 #include <asm/irq.h>
44 #include <asm/dma.h>
45 #include <asm/byteorder.h>
46 #include <linux/uaccess.h>
47 #include <linux/atomic.h>
48
49 #ifdef CONFIG_SBUS
50 #include <linux/of.h>
51 #include <linux/of_device.h>
52 #include <asm/idprom.h>
53 #include <asm/openprom.h>
54 #include <asm/oplib.h>
55 #include <asm/pgtable.h>
56 #endif
57
58 #if defined(CONFIG_ATM_FORE200E_USE_TASKLET) /* defer interrupt work to a tasklet */
59 #define FORE200E_USE_TASKLET
60 #endif
61
62 #if 0 /* enable the debugging code of the buffer supply queues */
63 #define FORE200E_BSQ_DEBUG
64 #endif
65
66 #if 1 /* ensure correct handling of 52-byte AAL0 SDUs expected by atmdump-like apps */
67 #define FORE200E_52BYTE_AAL0_SDU
68 #endif
69
70 #include "fore200e.h"
71 #include "suni.h"
72
73 #define FORE200E_VERSION "0.3e"
74
75 #define FORE200E         "fore200e: "
76
77 #if 0 /* override .config */
78 #define CONFIG_ATM_FORE200E_DEBUG 1
79 #endif
80 #if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
81 #define DPRINTK(level, format, args...)  do { if (CONFIG_ATM_FORE200E_DEBUG >= (level)) \
82                                                   printk(FORE200E format, ##args); } while (0)
83 #else
84 #define DPRINTK(level, format, args...)  do {} while (0)
85 #endif
86
87
88 #define FORE200E_ALIGN(addr, alignment) \
89         ((((unsigned long)(addr) + (alignment - 1)) & ~(alignment - 1)) - (unsigned long)(addr))
90
91 #define FORE200E_DMA_INDEX(dma_addr, type, index)  ((dma_addr) + (index) * sizeof(type))
92
93 #define FORE200E_INDEX(virt_addr, type, index)     (&((type *)(virt_addr))[ index ])
94
95 #define FORE200E_NEXT_ENTRY(index, modulo)         (index = ((index) + 1) % (modulo))
96
97 #if 1
98 #define ASSERT(expr)     if (!(expr)) { \
99                              printk(FORE200E "assertion failed! %s[%d]: %s\n", \
100                                     __func__, __LINE__, #expr); \
101                              panic(FORE200E "%s", __func__); \
102                          }
103 #else
104 #define ASSERT(expr)     do {} while (0)
105 #endif
106
107
108 static const struct atmdev_ops   fore200e_ops;
109 static const struct fore200e_bus fore200e_bus[];
110
111 static LIST_HEAD(fore200e_boards);
112
113
114 MODULE_AUTHOR("Christophe Lizzi - credits to Uwe Dannowski and Heikki Vatiainen");
115 MODULE_DESCRIPTION("FORE Systems 200E-series ATM driver - version " FORE200E_VERSION);
116 MODULE_SUPPORTED_DEVICE("PCA-200E, SBA-200E");
117
118
119 static const int fore200e_rx_buf_nbr[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
120     { BUFFER_S1_NBR, BUFFER_L1_NBR },
121     { BUFFER_S2_NBR, BUFFER_L2_NBR }
122 };
123
124 static const int fore200e_rx_buf_size[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
125     { BUFFER_S1_SIZE, BUFFER_L1_SIZE },
126     { BUFFER_S2_SIZE, BUFFER_L2_SIZE }
127 };
128
129
130 #if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
131 static const char* fore200e_traffic_class[] = { "NONE", "UBR", "CBR", "VBR", "ABR", "ANY" };
132 #endif
133
134
135 #if 0 /* currently unused */
136 static int 
137 fore200e_fore2atm_aal(enum fore200e_aal aal)
138 {
139     switch(aal) {
140     case FORE200E_AAL0:  return ATM_AAL0;
141     case FORE200E_AAL34: return ATM_AAL34;
142     case FORE200E_AAL5:  return ATM_AAL5;
143     }
144
145     return -EINVAL;
146 }
147 #endif
148
149
150 static enum fore200e_aal
151 fore200e_atm2fore_aal(int aal)
152 {
153     switch(aal) {
154     case ATM_AAL0:  return FORE200E_AAL0;
155     case ATM_AAL34: return FORE200E_AAL34;
156     case ATM_AAL1:
157     case ATM_AAL2:
158     case ATM_AAL5:  return FORE200E_AAL5;
159     }
160
161     return -EINVAL;
162 }
163
164
165 static char*
166 fore200e_irq_itoa(int irq)
167 {
168     static char str[8];
169     sprintf(str, "%d", irq);
170     return str;
171 }
172
173
174 /* allocate and align a chunk of memory intended to hold the data behing exchanged
175    between the driver and the adapter (using streaming DVMA) */
176
177 static int
178 fore200e_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk, int size, int alignment, int direction)
179 {
180     unsigned long offset = 0;
181
182     if (alignment <= sizeof(int))
183         alignment = 0;
184
185     chunk->alloc_size = size + alignment;
186     chunk->align_size = size;
187     chunk->direction  = direction;
188
189     chunk->alloc_addr = kzalloc(chunk->alloc_size, GFP_KERNEL | GFP_DMA);
190     if (chunk->alloc_addr == NULL)
191         return -ENOMEM;
192
193     if (alignment > 0)
194         offset = FORE200E_ALIGN(chunk->alloc_addr, alignment); 
195     
196     chunk->align_addr = chunk->alloc_addr + offset;
197
198     chunk->dma_addr = fore200e->bus->dma_map(fore200e, chunk->align_addr, chunk->align_size, direction);
199     
200     return 0;
201 }
202
203
204 /* free a chunk of memory */
205
206 static void
207 fore200e_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
208 {
209     fore200e->bus->dma_unmap(fore200e, chunk->dma_addr, chunk->dma_size, chunk->direction);
210
211     kfree(chunk->alloc_addr);
212 }
213
214
215 static void
216 fore200e_spin(int msecs)
217 {
218     unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
219     while (time_before(jiffies, timeout));
220 }
221
222
223 static int
224 fore200e_poll(struct fore200e* fore200e, volatile u32* addr, u32 val, int msecs)
225 {
226     unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
227     int           ok;
228
229     mb();
230     do {
231         if ((ok = (*addr == val)) || (*addr & STATUS_ERROR))
232             break;
233
234     } while (time_before(jiffies, timeout));
235
236 #if 1
237     if (!ok) {
238         printk(FORE200E "cmd polling failed, got status 0x%08x, expected 0x%08x\n",
239                *addr, val);
240     }
241 #endif
242
243     return ok;
244 }
245
246
247 static int
248 fore200e_io_poll(struct fore200e* fore200e, volatile u32 __iomem *addr, u32 val, int msecs)
249 {
250     unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
251     int           ok;
252
253     do {
254         if ((ok = (fore200e->bus->read(addr) == val)))
255             break;
256
257     } while (time_before(jiffies, timeout));
258
259 #if 1
260     if (!ok) {
261         printk(FORE200E "I/O polling failed, got status 0x%08x, expected 0x%08x\n",
262                fore200e->bus->read(addr), val);
263     }
264 #endif
265
266     return ok;
267 }
268
269
270 static void
271 fore200e_free_rx_buf(struct fore200e* fore200e)
272 {
273     int scheme, magn, nbr;
274     struct buffer* buffer;
275
276     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
277         for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
278
279             if ((buffer = fore200e->host_bsq[ scheme ][ magn ].buffer) != NULL) {
280
281                 for (nbr = 0; nbr < fore200e_rx_buf_nbr[ scheme ][ magn ]; nbr++) {
282
283                     struct chunk* data = &buffer[ nbr ].data;
284
285                     if (data->alloc_addr != NULL)
286                         fore200e_chunk_free(fore200e, data);
287                 }
288             }
289         }
290     }
291 }
292
293
294 static void
295 fore200e_uninit_bs_queue(struct fore200e* fore200e)
296 {
297     int scheme, magn;
298     
299     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
300         for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
301
302             struct chunk* status    = &fore200e->host_bsq[ scheme ][ magn ].status;
303             struct chunk* rbd_block = &fore200e->host_bsq[ scheme ][ magn ].rbd_block;
304             
305             if (status->alloc_addr)
306                 fore200e->bus->dma_chunk_free(fore200e, status);
307             
308             if (rbd_block->alloc_addr)
309                 fore200e->bus->dma_chunk_free(fore200e, rbd_block);
310         }
311     }
312 }
313
314
315 static int
316 fore200e_reset(struct fore200e* fore200e, int diag)
317 {
318     int ok;
319
320     fore200e->cp_monitor = fore200e->virt_base + FORE200E_CP_MONITOR_OFFSET;
321     
322     fore200e->bus->write(BSTAT_COLD_START, &fore200e->cp_monitor->bstat);
323
324     fore200e->bus->reset(fore200e);
325
326     if (diag) {
327         ok = fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_SELFTEST_OK, 1000);
328         if (ok == 0) {
329             
330             printk(FORE200E "device %s self-test failed\n", fore200e->name);
331             return -ENODEV;
332         }
333
334         printk(FORE200E "device %s self-test passed\n", fore200e->name);
335         
336         fore200e->state = FORE200E_STATE_RESET;
337     }
338
339     return 0;
340 }
341
342
343 static void
344 fore200e_shutdown(struct fore200e* fore200e)
345 {
346     printk(FORE200E "removing device %s at 0x%lx, IRQ %s\n",
347            fore200e->name, fore200e->phys_base, 
348            fore200e_irq_itoa(fore200e->irq));
349     
350     if (fore200e->state > FORE200E_STATE_RESET) {
351         /* first, reset the board to prevent further interrupts or data transfers */
352         fore200e_reset(fore200e, 0);
353     }
354     
355     /* then, release all allocated resources */
356     switch(fore200e->state) {
357
358     case FORE200E_STATE_COMPLETE:
359         kfree(fore200e->stats);
360
361     case FORE200E_STATE_IRQ:
362         free_irq(fore200e->irq, fore200e->atm_dev);
363
364     case FORE200E_STATE_ALLOC_BUF:
365         fore200e_free_rx_buf(fore200e);
366
367     case FORE200E_STATE_INIT_BSQ:
368         fore200e_uninit_bs_queue(fore200e);
369
370     case FORE200E_STATE_INIT_RXQ:
371         fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_rxq.status);
372         fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_rxq.rpd);
373
374     case FORE200E_STATE_INIT_TXQ:
375         fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_txq.status);
376         fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_txq.tpd);
377
378     case FORE200E_STATE_INIT_CMDQ:
379         fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_cmdq.status);
380
381     case FORE200E_STATE_INITIALIZE:
382         /* nothing to do for that state */
383
384     case FORE200E_STATE_START_FW:
385         /* nothing to do for that state */
386
387     case FORE200E_STATE_RESET:
388         /* nothing to do for that state */
389
390     case FORE200E_STATE_MAP:
391         fore200e->bus->unmap(fore200e);
392
393     case FORE200E_STATE_CONFIGURE:
394         /* nothing to do for that state */
395
396     case FORE200E_STATE_REGISTER:
397         /* XXX shouldn't we *start* by deregistering the device? */
398         atm_dev_deregister(fore200e->atm_dev);
399
400     case FORE200E_STATE_BLANK:
401         /* nothing to do for that state */
402         break;
403     }
404 }
405
406
407 #ifdef CONFIG_PCI
408
409 static u32 fore200e_pca_read(volatile u32 __iomem *addr)
410 {
411     /* on big-endian hosts, the board is configured to convert
412        the endianess of slave RAM accesses  */
413     return le32_to_cpu(readl(addr));
414 }
415
416
417 static void fore200e_pca_write(u32 val, volatile u32 __iomem *addr)
418 {
419     /* on big-endian hosts, the board is configured to convert
420        the endianess of slave RAM accesses  */
421     writel(cpu_to_le32(val), addr);
422 }
423
424
425 static u32
426 fore200e_pca_dma_map(struct fore200e* fore200e, void* virt_addr, int size, int direction)
427 {
428     u32 dma_addr = dma_map_single(&((struct pci_dev *) fore200e->bus_dev)->dev, virt_addr, size, direction);
429
430     DPRINTK(3, "PCI DVMA mapping: virt_addr = 0x%p, size = %d, direction = %d,  --> dma_addr = 0x%08x\n",
431             virt_addr, size, direction, dma_addr);
432     
433     return dma_addr;
434 }
435
436
437 static void
438 fore200e_pca_dma_unmap(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
439 {
440     DPRINTK(3, "PCI DVMA unmapping: dma_addr = 0x%08x, size = %d, direction = %d\n",
441             dma_addr, size, direction);
442
443     dma_unmap_single(&((struct pci_dev *) fore200e->bus_dev)->dev, dma_addr, size, direction);
444 }
445
446
447 static void
448 fore200e_pca_dma_sync_for_cpu(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
449 {
450     DPRINTK(3, "PCI DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
451
452     dma_sync_single_for_cpu(&((struct pci_dev *) fore200e->bus_dev)->dev, dma_addr, size, direction);
453 }
454
455 static void
456 fore200e_pca_dma_sync_for_device(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
457 {
458     DPRINTK(3, "PCI DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
459
460     dma_sync_single_for_device(&((struct pci_dev *) fore200e->bus_dev)->dev, dma_addr, size, direction);
461 }
462
463
464 /* allocate a DMA consistent chunk of memory intended to act as a communication mechanism
465    (to hold descriptors, status, queues, etc.) shared by the driver and the adapter */
466
467 static int
468 fore200e_pca_dma_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk,
469                              int size, int nbr, int alignment)
470 {
471     /* returned chunks are page-aligned */
472     chunk->alloc_size = size * nbr;
473     chunk->alloc_addr = dma_alloc_coherent(&((struct pci_dev *) fore200e->bus_dev)->dev,
474                                            chunk->alloc_size,
475                                            &chunk->dma_addr,
476                                            GFP_KERNEL);
477     
478     if ((chunk->alloc_addr == NULL) || (chunk->dma_addr == 0))
479         return -ENOMEM;
480
481     chunk->align_addr = chunk->alloc_addr;
482     
483     return 0;
484 }
485
486
487 /* free a DMA consistent chunk of memory */
488
489 static void
490 fore200e_pca_dma_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
491 {
492     dma_free_coherent(&((struct pci_dev *) fore200e->bus_dev)->dev,
493                         chunk->alloc_size,
494                         chunk->alloc_addr,
495                         chunk->dma_addr);
496 }
497
498
499 static int
500 fore200e_pca_irq_check(struct fore200e* fore200e)
501 {
502     /* this is a 1 bit register */
503     int irq_posted = readl(fore200e->regs.pca.psr);
504
505 #if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG == 2)
506     if (irq_posted && (readl(fore200e->regs.pca.hcr) & PCA200E_HCR_OUTFULL)) {
507         DPRINTK(2,"FIFO OUT full, device %d\n", fore200e->atm_dev->number);
508     }
509 #endif
510
511     return irq_posted;
512 }
513
514
515 static void
516 fore200e_pca_irq_ack(struct fore200e* fore200e)
517 {
518     writel(PCA200E_HCR_CLRINTR, fore200e->regs.pca.hcr);
519 }
520
521
522 static void
523 fore200e_pca_reset(struct fore200e* fore200e)
524 {
525     writel(PCA200E_HCR_RESET, fore200e->regs.pca.hcr);
526     fore200e_spin(10);
527     writel(0, fore200e->regs.pca.hcr);
528 }
529
530
531 static int fore200e_pca_map(struct fore200e* fore200e)
532 {
533     DPRINTK(2, "device %s being mapped in memory\n", fore200e->name);
534
535     fore200e->virt_base = ioremap(fore200e->phys_base, PCA200E_IOSPACE_LENGTH);
536     
537     if (fore200e->virt_base == NULL) {
538         printk(FORE200E "can't map device %s\n", fore200e->name);
539         return -EFAULT;
540     }
541
542     DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
543
544     /* gain access to the PCA specific registers  */
545     fore200e->regs.pca.hcr = fore200e->virt_base + PCA200E_HCR_OFFSET;
546     fore200e->regs.pca.imr = fore200e->virt_base + PCA200E_IMR_OFFSET;
547     fore200e->regs.pca.psr = fore200e->virt_base + PCA200E_PSR_OFFSET;
548
549     fore200e->state = FORE200E_STATE_MAP;
550     return 0;
551 }
552
553
554 static void
555 fore200e_pca_unmap(struct fore200e* fore200e)
556 {
557     DPRINTK(2, "device %s being unmapped from memory\n", fore200e->name);
558
559     if (fore200e->virt_base != NULL)
560         iounmap(fore200e->virt_base);
561 }
562
563
564 static int fore200e_pca_configure(struct fore200e *fore200e)
565 {
566     struct pci_dev* pci_dev = (struct pci_dev*)fore200e->bus_dev;
567     u8              master_ctrl, latency;
568
569     DPRINTK(2, "device %s being configured\n", fore200e->name);
570
571     if ((pci_dev->irq == 0) || (pci_dev->irq == 0xFF)) {
572         printk(FORE200E "incorrect IRQ setting - misconfigured PCI-PCI bridge?\n");
573         return -EIO;
574     }
575
576     pci_read_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, &master_ctrl);
577
578     master_ctrl = master_ctrl
579 #if defined(__BIG_ENDIAN)
580         /* request the PCA board to convert the endianess of slave RAM accesses */
581         | PCA200E_CTRL_CONVERT_ENDIAN
582 #endif
583 #if 0
584         | PCA200E_CTRL_DIS_CACHE_RD
585         | PCA200E_CTRL_DIS_WRT_INVAL
586         | PCA200E_CTRL_ENA_CONT_REQ_MODE
587         | PCA200E_CTRL_2_CACHE_WRT_INVAL
588 #endif
589         | PCA200E_CTRL_LARGE_PCI_BURSTS;
590     
591     pci_write_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, master_ctrl);
592
593     /* raise latency from 32 (default) to 192, as this seems to prevent NIC
594        lockups (under heavy rx loads) due to continuous 'FIFO OUT full' condition.
595        this may impact the performances of other PCI devices on the same bus, though */
596     latency = 192;
597     pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, latency);
598
599     fore200e->state = FORE200E_STATE_CONFIGURE;
600     return 0;
601 }
602
603
604 static int __init
605 fore200e_pca_prom_read(struct fore200e* fore200e, struct prom_data* prom)
606 {
607     struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
608     struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
609     struct prom_opcode      opcode;
610     int                     ok;
611     u32                     prom_dma;
612
613     FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
614
615     opcode.opcode = OPCODE_GET_PROM;
616     opcode.pad    = 0;
617
618     prom_dma = fore200e->bus->dma_map(fore200e, prom, sizeof(struct prom_data), DMA_FROM_DEVICE);
619
620     fore200e->bus->write(prom_dma, &entry->cp_entry->cmd.prom_block.prom_haddr);
621     
622     *entry->status = STATUS_PENDING;
623
624     fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.prom_block.opcode);
625
626     ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
627
628     *entry->status = STATUS_FREE;
629
630     fore200e->bus->dma_unmap(fore200e, prom_dma, sizeof(struct prom_data), DMA_FROM_DEVICE);
631
632     if (ok == 0) {
633         printk(FORE200E "unable to get PROM data from device %s\n", fore200e->name);
634         return -EIO;
635     }
636
637 #if defined(__BIG_ENDIAN)
638     
639 #define swap_here(addr) (*((u32*)(addr)) = swab32( *((u32*)(addr)) ))
640
641     /* MAC address is stored as little-endian */
642     swap_here(&prom->mac_addr[0]);
643     swap_here(&prom->mac_addr[4]);
644 #endif
645     
646     return 0;
647 }
648
649
650 static int
651 fore200e_pca_proc_read(struct fore200e* fore200e, char *page)
652 {
653     struct pci_dev* pci_dev = (struct pci_dev*)fore200e->bus_dev;
654
655     return sprintf(page, "   PCI bus/slot/function:\t%d/%d/%d\n",
656                    pci_dev->bus->number, PCI_SLOT(pci_dev->devfn), PCI_FUNC(pci_dev->devfn));
657 }
658
659 #endif /* CONFIG_PCI */
660
661
662 #ifdef CONFIG_SBUS
663
664 static u32 fore200e_sba_read(volatile u32 __iomem *addr)
665 {
666     return sbus_readl(addr);
667 }
668
669 static void fore200e_sba_write(u32 val, volatile u32 __iomem *addr)
670 {
671     sbus_writel(val, addr);
672 }
673
674 static u32 fore200e_sba_dma_map(struct fore200e *fore200e, void* virt_addr, int size, int direction)
675 {
676         struct platform_device *op = fore200e->bus_dev;
677         u32 dma_addr;
678
679         dma_addr = dma_map_single(&op->dev, virt_addr, size, direction);
680
681         DPRINTK(3, "SBUS DVMA mapping: virt_addr = 0x%p, size = %d, direction = %d --> dma_addr = 0x%08x\n",
682                 virt_addr, size, direction, dma_addr);
683     
684         return dma_addr;
685 }
686
687 static void fore200e_sba_dma_unmap(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
688 {
689         struct platform_device *op = fore200e->bus_dev;
690
691         DPRINTK(3, "SBUS DVMA unmapping: dma_addr = 0x%08x, size = %d, direction = %d,\n",
692                 dma_addr, size, direction);
693
694         dma_unmap_single(&op->dev, dma_addr, size, direction);
695 }
696
697 static void fore200e_sba_dma_sync_for_cpu(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
698 {
699         struct platform_device *op = fore200e->bus_dev;
700
701         DPRINTK(3, "SBUS DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
702     
703         dma_sync_single_for_cpu(&op->dev, dma_addr, size, direction);
704 }
705
706 static void fore200e_sba_dma_sync_for_device(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
707 {
708         struct platform_device *op = fore200e->bus_dev;
709
710         DPRINTK(3, "SBUS DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
711
712         dma_sync_single_for_device(&op->dev, dma_addr, size, direction);
713 }
714
715 /* Allocate a DVMA consistent chunk of memory intended to act as a communication mechanism
716  * (to hold descriptors, status, queues, etc.) shared by the driver and the adapter.
717  */
718 static int fore200e_sba_dma_chunk_alloc(struct fore200e *fore200e, struct chunk *chunk,
719                                         int size, int nbr, int alignment)
720 {
721         struct platform_device *op = fore200e->bus_dev;
722
723         chunk->alloc_size = chunk->align_size = size * nbr;
724
725         /* returned chunks are page-aligned */
726         chunk->alloc_addr = dma_alloc_coherent(&op->dev, chunk->alloc_size,
727                                                &chunk->dma_addr, GFP_ATOMIC);
728
729         if ((chunk->alloc_addr == NULL) || (chunk->dma_addr == 0))
730                 return -ENOMEM;
731
732         chunk->align_addr = chunk->alloc_addr;
733     
734         return 0;
735 }
736
737 /* free a DVMA consistent chunk of memory */
738 static void fore200e_sba_dma_chunk_free(struct fore200e *fore200e, struct chunk *chunk)
739 {
740         struct platform_device *op = fore200e->bus_dev;
741
742         dma_free_coherent(&op->dev, chunk->alloc_size,
743                           chunk->alloc_addr, chunk->dma_addr);
744 }
745
746 static void fore200e_sba_irq_enable(struct fore200e *fore200e)
747 {
748         u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
749         fore200e->bus->write(hcr | SBA200E_HCR_INTR_ENA, fore200e->regs.sba.hcr);
750 }
751
752 static int fore200e_sba_irq_check(struct fore200e *fore200e)
753 {
754         return fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_INTR_REQ;
755 }
756
757 static void fore200e_sba_irq_ack(struct fore200e *fore200e)
758 {
759         u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
760         fore200e->bus->write(hcr | SBA200E_HCR_INTR_CLR, fore200e->regs.sba.hcr);
761 }
762
763 static void fore200e_sba_reset(struct fore200e *fore200e)
764 {
765         fore200e->bus->write(SBA200E_HCR_RESET, fore200e->regs.sba.hcr);
766         fore200e_spin(10);
767         fore200e->bus->write(0, fore200e->regs.sba.hcr);
768 }
769
770 static int __init fore200e_sba_map(struct fore200e *fore200e)
771 {
772         struct platform_device *op = fore200e->bus_dev;
773         unsigned int bursts;
774
775         /* gain access to the SBA specific registers  */
776         fore200e->regs.sba.hcr = of_ioremap(&op->resource[0], 0, SBA200E_HCR_LENGTH, "SBA HCR");
777         fore200e->regs.sba.bsr = of_ioremap(&op->resource[1], 0, SBA200E_BSR_LENGTH, "SBA BSR");
778         fore200e->regs.sba.isr = of_ioremap(&op->resource[2], 0, SBA200E_ISR_LENGTH, "SBA ISR");
779         fore200e->virt_base    = of_ioremap(&op->resource[3], 0, SBA200E_RAM_LENGTH, "SBA RAM");
780
781         if (!fore200e->virt_base) {
782                 printk(FORE200E "unable to map RAM of device %s\n", fore200e->name);
783                 return -EFAULT;
784         }
785
786         DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
787     
788         fore200e->bus->write(0x02, fore200e->regs.sba.isr); /* XXX hardwired interrupt level */
789
790         /* get the supported DVMA burst sizes */
791         bursts = of_getintprop_default(op->dev.of_node->parent, "burst-sizes", 0x00);
792
793         if (sbus_can_dma_64bit())
794                 sbus_set_sbus64(&op->dev, bursts);
795
796         fore200e->state = FORE200E_STATE_MAP;
797         return 0;
798 }
799
800 static void fore200e_sba_unmap(struct fore200e *fore200e)
801 {
802         struct platform_device *op = fore200e->bus_dev;
803
804         of_iounmap(&op->resource[0], fore200e->regs.sba.hcr, SBA200E_HCR_LENGTH);
805         of_iounmap(&op->resource[1], fore200e->regs.sba.bsr, SBA200E_BSR_LENGTH);
806         of_iounmap(&op->resource[2], fore200e->regs.sba.isr, SBA200E_ISR_LENGTH);
807         of_iounmap(&op->resource[3], fore200e->virt_base,    SBA200E_RAM_LENGTH);
808 }
809
810 static int __init fore200e_sba_configure(struct fore200e *fore200e)
811 {
812         fore200e->state = FORE200E_STATE_CONFIGURE;
813         return 0;
814 }
815
816 static int __init fore200e_sba_prom_read(struct fore200e *fore200e, struct prom_data *prom)
817 {
818         struct platform_device *op = fore200e->bus_dev;
819         const u8 *prop;
820         int len;
821
822         prop = of_get_property(op->dev.of_node, "madaddrlo2", &len);
823         if (!prop)
824                 return -ENODEV;
825         memcpy(&prom->mac_addr[4], prop, 4);
826
827         prop = of_get_property(op->dev.of_node, "madaddrhi4", &len);
828         if (!prop)
829                 return -ENODEV;
830         memcpy(&prom->mac_addr[2], prop, 4);
831
832         prom->serial_number = of_getintprop_default(op->dev.of_node,
833                                                     "serialnumber", 0);
834         prom->hw_revision = of_getintprop_default(op->dev.of_node,
835                                                   "promversion", 0);
836     
837         return 0;
838 }
839
840 static int fore200e_sba_proc_read(struct fore200e *fore200e, char *page)
841 {
842         struct platform_device *op = fore200e->bus_dev;
843         const struct linux_prom_registers *regs;
844
845         regs = of_get_property(op->dev.of_node, "reg", NULL);
846
847         return sprintf(page, "   SBUS slot/device:\t\t%d/'%s'\n",
848                        (regs ? regs->which_io : 0), op->dev.of_node->name);
849 }
850 #endif /* CONFIG_SBUS */
851
852
853 static void
854 fore200e_tx_irq(struct fore200e* fore200e)
855 {
856     struct host_txq*        txq = &fore200e->host_txq;
857     struct host_txq_entry*  entry;
858     struct atm_vcc*         vcc;
859     struct fore200e_vc_map* vc_map;
860
861     if (fore200e->host_txq.txing == 0)
862         return;
863
864     for (;;) {
865         
866         entry = &txq->host_entry[ txq->tail ];
867
868         if ((*entry->status & STATUS_COMPLETE) == 0) {
869             break;
870         }
871
872         DPRINTK(3, "TX COMPLETED: entry = %p [tail = %d], vc_map = %p, skb = %p\n", 
873                 entry, txq->tail, entry->vc_map, entry->skb);
874
875         /* free copy of misaligned data */
876         kfree(entry->data);
877         
878         /* remove DMA mapping */
879         fore200e->bus->dma_unmap(fore200e, entry->tpd->tsd[ 0 ].buffer, entry->tpd->tsd[ 0 ].length,
880                                  DMA_TO_DEVICE);
881
882         vc_map = entry->vc_map;
883
884         /* vcc closed since the time the entry was submitted for tx? */
885         if ((vc_map->vcc == NULL) ||
886             (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
887
888             DPRINTK(1, "no ready vcc found for PDU sent on device %d\n",
889                     fore200e->atm_dev->number);
890
891             dev_kfree_skb_any(entry->skb);
892         }
893         else {
894             ASSERT(vc_map->vcc);
895
896             /* vcc closed then immediately re-opened? */
897             if (vc_map->incarn != entry->incarn) {
898
899                 /* when a vcc is closed, some PDUs may be still pending in the tx queue.
900                    if the same vcc is immediately re-opened, those pending PDUs must
901                    not be popped after the completion of their emission, as they refer
902                    to the prior incarnation of that vcc. otherwise, sk_atm(vcc)->sk_wmem_alloc
903                    would be decremented by the size of the (unrelated) skb, possibly
904                    leading to a negative sk->sk_wmem_alloc count, ultimately freezing the vcc.
905                    we thus bind the tx entry to the current incarnation of the vcc
906                    when the entry is submitted for tx. When the tx later completes,
907                    if the incarnation number of the tx entry does not match the one
908                    of the vcc, then this implies that the vcc has been closed then re-opened.
909                    we thus just drop the skb here. */
910
911                 DPRINTK(1, "vcc closed-then-re-opened; dropping PDU sent on device %d\n",
912                         fore200e->atm_dev->number);
913
914                 dev_kfree_skb_any(entry->skb);
915             }
916             else {
917                 vcc = vc_map->vcc;
918                 ASSERT(vcc);
919
920                 /* notify tx completion */
921                 if (vcc->pop) {
922                     vcc->pop(vcc, entry->skb);
923                 }
924                 else {
925                     dev_kfree_skb_any(entry->skb);
926                 }
927
928                 /* check error condition */
929                 if (*entry->status & STATUS_ERROR)
930                     atomic_inc(&vcc->stats->tx_err);
931                 else
932                     atomic_inc(&vcc->stats->tx);
933             }
934         }
935
936         *entry->status = STATUS_FREE;
937
938         fore200e->host_txq.txing--;
939
940         FORE200E_NEXT_ENTRY(txq->tail, QUEUE_SIZE_TX);
941     }
942 }
943
944
945 #ifdef FORE200E_BSQ_DEBUG
946 int bsq_audit(int where, struct host_bsq* bsq, int scheme, int magn)
947 {
948     struct buffer* buffer;
949     int count = 0;
950
951     buffer = bsq->freebuf;
952     while (buffer) {
953
954         if (buffer->supplied) {
955             printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld supplied but in free list!\n",
956                    where, scheme, magn, buffer->index);
957         }
958
959         if (buffer->magn != magn) {
960             printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected magn = %d\n",
961                    where, scheme, magn, buffer->index, buffer->magn);
962         }
963
964         if (buffer->scheme != scheme) {
965             printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected scheme = %d\n",
966                    where, scheme, magn, buffer->index, buffer->scheme);
967         }
968
969         if ((buffer->index < 0) || (buffer->index >= fore200e_rx_buf_nbr[ scheme ][ magn ])) {
970             printk(FORE200E "bsq_audit(%d): queue %d.%d, out of range buffer index = %ld !\n",
971                    where, scheme, magn, buffer->index);
972         }
973
974         count++;
975         buffer = buffer->next;
976     }
977
978     if (count != bsq->freebuf_count) {
979         printk(FORE200E "bsq_audit(%d): queue %d.%d, %d bufs in free list, but freebuf_count = %d\n",
980                where, scheme, magn, count, bsq->freebuf_count);
981     }
982     return 0;
983 }
984 #endif
985
986
987 static void
988 fore200e_supply(struct fore200e* fore200e)
989 {
990     int  scheme, magn, i;
991
992     struct host_bsq*       bsq;
993     struct host_bsq_entry* entry;
994     struct buffer*         buffer;
995
996     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
997         for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
998
999             bsq = &fore200e->host_bsq[ scheme ][ magn ];
1000
1001 #ifdef FORE200E_BSQ_DEBUG
1002             bsq_audit(1, bsq, scheme, magn);
1003 #endif
1004             while (bsq->freebuf_count >= RBD_BLK_SIZE) {
1005
1006                 DPRINTK(2, "supplying %d rx buffers to queue %d / %d, freebuf_count = %d\n",
1007                         RBD_BLK_SIZE, scheme, magn, bsq->freebuf_count);
1008
1009                 entry = &bsq->host_entry[ bsq->head ];
1010
1011                 for (i = 0; i < RBD_BLK_SIZE; i++) {
1012
1013                     /* take the first buffer in the free buffer list */
1014                     buffer = bsq->freebuf;
1015                     if (!buffer) {
1016                         printk(FORE200E "no more free bufs in queue %d.%d, but freebuf_count = %d\n",
1017                                scheme, magn, bsq->freebuf_count);
1018                         return;
1019                     }
1020                     bsq->freebuf = buffer->next;
1021                     
1022 #ifdef FORE200E_BSQ_DEBUG
1023                     if (buffer->supplied)
1024                         printk(FORE200E "queue %d.%d, buffer %lu already supplied\n",
1025                                scheme, magn, buffer->index);
1026                     buffer->supplied = 1;
1027 #endif
1028                     entry->rbd_block->rbd[ i ].buffer_haddr = buffer->data.dma_addr;
1029                     entry->rbd_block->rbd[ i ].handle       = FORE200E_BUF2HDL(buffer);
1030                 }
1031
1032                 FORE200E_NEXT_ENTRY(bsq->head, QUEUE_SIZE_BS);
1033
1034                 /* decrease accordingly the number of free rx buffers */
1035                 bsq->freebuf_count -= RBD_BLK_SIZE;
1036
1037                 *entry->status = STATUS_PENDING;
1038                 fore200e->bus->write(entry->rbd_block_dma, &entry->cp_entry->rbd_block_haddr);
1039             }
1040         }
1041     }
1042 }
1043
1044
1045 static int
1046 fore200e_push_rpd(struct fore200e* fore200e, struct atm_vcc* vcc, struct rpd* rpd)
1047 {
1048     struct sk_buff*      skb;
1049     struct buffer*       buffer;
1050     struct fore200e_vcc* fore200e_vcc;
1051     int                  i, pdu_len = 0;
1052 #ifdef FORE200E_52BYTE_AAL0_SDU
1053     u32                  cell_header = 0;
1054 #endif
1055
1056     ASSERT(vcc);
1057     
1058     fore200e_vcc = FORE200E_VCC(vcc);
1059     ASSERT(fore200e_vcc);
1060
1061 #ifdef FORE200E_52BYTE_AAL0_SDU
1062     if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.rxtp.max_sdu == ATM_AAL0_SDU)) {
1063
1064         cell_header = (rpd->atm_header.gfc << ATM_HDR_GFC_SHIFT) |
1065                       (rpd->atm_header.vpi << ATM_HDR_VPI_SHIFT) |
1066                       (rpd->atm_header.vci << ATM_HDR_VCI_SHIFT) |
1067                       (rpd->atm_header.plt << ATM_HDR_PTI_SHIFT) | 
1068                        rpd->atm_header.clp;
1069         pdu_len = 4;
1070     }
1071 #endif
1072     
1073     /* compute total PDU length */
1074     for (i = 0; i < rpd->nseg; i++)
1075         pdu_len += rpd->rsd[ i ].length;
1076     
1077     skb = alloc_skb(pdu_len, GFP_ATOMIC);
1078     if (skb == NULL) {
1079         DPRINTK(2, "unable to alloc new skb, rx PDU length = %d\n", pdu_len);
1080
1081         atomic_inc(&vcc->stats->rx_drop);
1082         return -ENOMEM;
1083     } 
1084
1085     __net_timestamp(skb);
1086     
1087 #ifdef FORE200E_52BYTE_AAL0_SDU
1088     if (cell_header) {
1089         *((u32*)skb_put(skb, 4)) = cell_header;
1090     }
1091 #endif
1092
1093     /* reassemble segments */
1094     for (i = 0; i < rpd->nseg; i++) {
1095         
1096         /* rebuild rx buffer address from rsd handle */
1097         buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1098         
1099         /* Make device DMA transfer visible to CPU.  */
1100         fore200e->bus->dma_sync_for_cpu(fore200e, buffer->data.dma_addr, rpd->rsd[ i ].length, DMA_FROM_DEVICE);
1101         
1102         skb_put_data(skb, buffer->data.align_addr, rpd->rsd[i].length);
1103
1104         /* Now let the device get at it again.  */
1105         fore200e->bus->dma_sync_for_device(fore200e, buffer->data.dma_addr, rpd->rsd[ i ].length, DMA_FROM_DEVICE);
1106     }
1107
1108     DPRINTK(3, "rx skb: len = %d, truesize = %d\n", skb->len, skb->truesize);
1109     
1110     if (pdu_len < fore200e_vcc->rx_min_pdu)
1111         fore200e_vcc->rx_min_pdu = pdu_len;
1112     if (pdu_len > fore200e_vcc->rx_max_pdu)
1113         fore200e_vcc->rx_max_pdu = pdu_len;
1114     fore200e_vcc->rx_pdu++;
1115
1116     /* push PDU */
1117     if (atm_charge(vcc, skb->truesize) == 0) {
1118
1119         DPRINTK(2, "receive buffers saturated for %d.%d.%d - PDU dropped\n",
1120                 vcc->itf, vcc->vpi, vcc->vci);
1121
1122         dev_kfree_skb_any(skb);
1123
1124         atomic_inc(&vcc->stats->rx_drop);
1125         return -ENOMEM;
1126     }
1127
1128     vcc->push(vcc, skb);
1129     atomic_inc(&vcc->stats->rx);
1130
1131     return 0;
1132 }
1133
1134
1135 static void
1136 fore200e_collect_rpd(struct fore200e* fore200e, struct rpd* rpd)
1137 {
1138     struct host_bsq* bsq;
1139     struct buffer*   buffer;
1140     int              i;
1141     
1142     for (i = 0; i < rpd->nseg; i++) {
1143
1144         /* rebuild rx buffer address from rsd handle */
1145         buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1146
1147         bsq = &fore200e->host_bsq[ buffer->scheme ][ buffer->magn ];
1148
1149 #ifdef FORE200E_BSQ_DEBUG
1150         bsq_audit(2, bsq, buffer->scheme, buffer->magn);
1151
1152         if (buffer->supplied == 0)
1153             printk(FORE200E "queue %d.%d, buffer %ld was not supplied\n",
1154                    buffer->scheme, buffer->magn, buffer->index);
1155         buffer->supplied = 0;
1156 #endif
1157
1158         /* re-insert the buffer into the free buffer list */
1159         buffer->next = bsq->freebuf;
1160         bsq->freebuf = buffer;
1161
1162         /* then increment the number of free rx buffers */
1163         bsq->freebuf_count++;
1164     }
1165 }
1166
1167
1168 static void
1169 fore200e_rx_irq(struct fore200e* fore200e)
1170 {
1171     struct host_rxq*        rxq = &fore200e->host_rxq;
1172     struct host_rxq_entry*  entry;
1173     struct atm_vcc*         vcc;
1174     struct fore200e_vc_map* vc_map;
1175
1176     for (;;) {
1177         
1178         entry = &rxq->host_entry[ rxq->head ];
1179
1180         /* no more received PDUs */
1181         if ((*entry->status & STATUS_COMPLETE) == 0)
1182             break;
1183
1184         vc_map = FORE200E_VC_MAP(fore200e, entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1185
1186         if ((vc_map->vcc == NULL) ||
1187             (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
1188
1189             DPRINTK(1, "no ready VC found for PDU received on %d.%d.%d\n",
1190                     fore200e->atm_dev->number,
1191                     entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1192         }
1193         else {
1194             vcc = vc_map->vcc;
1195             ASSERT(vcc);
1196
1197             if ((*entry->status & STATUS_ERROR) == 0) {
1198
1199                 fore200e_push_rpd(fore200e, vcc, entry->rpd);
1200             }
1201             else {
1202                 DPRINTK(2, "damaged PDU on %d.%d.%d\n",
1203                         fore200e->atm_dev->number,
1204                         entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1205                 atomic_inc(&vcc->stats->rx_err);
1206             }
1207         }
1208
1209         FORE200E_NEXT_ENTRY(rxq->head, QUEUE_SIZE_RX);
1210
1211         fore200e_collect_rpd(fore200e, entry->rpd);
1212
1213         /* rewrite the rpd address to ack the received PDU */
1214         fore200e->bus->write(entry->rpd_dma, &entry->cp_entry->rpd_haddr);
1215         *entry->status = STATUS_FREE;
1216
1217         fore200e_supply(fore200e);
1218     }
1219 }
1220
1221
1222 #ifndef FORE200E_USE_TASKLET
1223 static void
1224 fore200e_irq(struct fore200e* fore200e)
1225 {
1226     unsigned long flags;
1227
1228     spin_lock_irqsave(&fore200e->q_lock, flags);
1229     fore200e_rx_irq(fore200e);
1230     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1231
1232     spin_lock_irqsave(&fore200e->q_lock, flags);
1233     fore200e_tx_irq(fore200e);
1234     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1235 }
1236 #endif
1237
1238
1239 static irqreturn_t
1240 fore200e_interrupt(int irq, void* dev)
1241 {
1242     struct fore200e* fore200e = FORE200E_DEV((struct atm_dev*)dev);
1243
1244     if (fore200e->bus->irq_check(fore200e) == 0) {
1245         
1246         DPRINTK(3, "interrupt NOT triggered by device %d\n", fore200e->atm_dev->number);
1247         return IRQ_NONE;
1248     }
1249     DPRINTK(3, "interrupt triggered by device %d\n", fore200e->atm_dev->number);
1250
1251 #ifdef FORE200E_USE_TASKLET
1252     tasklet_schedule(&fore200e->tx_tasklet);
1253     tasklet_schedule(&fore200e->rx_tasklet);
1254 #else
1255     fore200e_irq(fore200e);
1256 #endif
1257     
1258     fore200e->bus->irq_ack(fore200e);
1259     return IRQ_HANDLED;
1260 }
1261
1262
1263 #ifdef FORE200E_USE_TASKLET
1264 static void
1265 fore200e_tx_tasklet(unsigned long data)
1266 {
1267     struct fore200e* fore200e = (struct fore200e*) data;
1268     unsigned long flags;
1269
1270     DPRINTK(3, "tx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1271
1272     spin_lock_irqsave(&fore200e->q_lock, flags);
1273     fore200e_tx_irq(fore200e);
1274     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1275 }
1276
1277
1278 static void
1279 fore200e_rx_tasklet(unsigned long data)
1280 {
1281     struct fore200e* fore200e = (struct fore200e*) data;
1282     unsigned long    flags;
1283
1284     DPRINTK(3, "rx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1285
1286     spin_lock_irqsave(&fore200e->q_lock, flags);
1287     fore200e_rx_irq((struct fore200e*) data);
1288     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1289 }
1290 #endif
1291
1292
1293 static int
1294 fore200e_select_scheme(struct atm_vcc* vcc)
1295 {
1296     /* fairly balance the VCs over (identical) buffer schemes */
1297     int scheme = vcc->vci % 2 ? BUFFER_SCHEME_ONE : BUFFER_SCHEME_TWO;
1298
1299     DPRINTK(1, "VC %d.%d.%d uses buffer scheme %d\n",
1300             vcc->itf, vcc->vpi, vcc->vci, scheme);
1301
1302     return scheme;
1303 }
1304
1305
1306 static int 
1307 fore200e_activate_vcin(struct fore200e* fore200e, int activate, struct atm_vcc* vcc, int mtu)
1308 {
1309     struct host_cmdq*        cmdq  = &fore200e->host_cmdq;
1310     struct host_cmdq_entry*  entry = &cmdq->host_entry[ cmdq->head ];
1311     struct activate_opcode   activ_opcode;
1312     struct deactivate_opcode deactiv_opcode;
1313     struct vpvc              vpvc;
1314     int                      ok;
1315     enum fore200e_aal        aal = fore200e_atm2fore_aal(vcc->qos.aal);
1316
1317     FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1318     
1319     if (activate) {
1320         FORE200E_VCC(vcc)->scheme = fore200e_select_scheme(vcc);
1321         
1322         activ_opcode.opcode = OPCODE_ACTIVATE_VCIN;
1323         activ_opcode.aal    = aal;
1324         activ_opcode.scheme = FORE200E_VCC(vcc)->scheme;
1325         activ_opcode.pad    = 0;
1326     }
1327     else {
1328         deactiv_opcode.opcode = OPCODE_DEACTIVATE_VCIN;
1329         deactiv_opcode.pad    = 0;
1330     }
1331
1332     vpvc.vci = vcc->vci;
1333     vpvc.vpi = vcc->vpi;
1334
1335     *entry->status = STATUS_PENDING;
1336
1337     if (activate) {
1338
1339 #ifdef FORE200E_52BYTE_AAL0_SDU
1340         mtu = 48;
1341 #endif
1342         /* the MTU is not used by the cp, except in the case of AAL0 */
1343         fore200e->bus->write(mtu,                        &entry->cp_entry->cmd.activate_block.mtu);
1344         fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.activate_block.vpvc);
1345         fore200e->bus->write(*(u32*)&activ_opcode, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.opcode);
1346     }
1347     else {
1348         fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.vpvc);
1349         fore200e->bus->write(*(u32*)&deactiv_opcode, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.opcode);
1350     }
1351
1352     ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1353
1354     *entry->status = STATUS_FREE;
1355
1356     if (ok == 0) {
1357         printk(FORE200E "unable to %s VC %d.%d.%d\n",
1358                activate ? "open" : "close", vcc->itf, vcc->vpi, vcc->vci);
1359         return -EIO;
1360     }
1361
1362     DPRINTK(1, "VC %d.%d.%d %sed\n", vcc->itf, vcc->vpi, vcc->vci, 
1363             activate ? "open" : "clos");
1364
1365     return 0;
1366 }
1367
1368
1369 #define FORE200E_MAX_BACK2BACK_CELLS 255    /* XXX depends on CDVT */
1370
1371 static void
1372 fore200e_rate_ctrl(struct atm_qos* qos, struct tpd_rate* rate)
1373 {
1374     if (qos->txtp.max_pcr < ATM_OC3_PCR) {
1375     
1376         /* compute the data cells to idle cells ratio from the tx PCR */
1377         rate->data_cells = qos->txtp.max_pcr * FORE200E_MAX_BACK2BACK_CELLS / ATM_OC3_PCR;
1378         rate->idle_cells = FORE200E_MAX_BACK2BACK_CELLS - rate->data_cells;
1379     }
1380     else {
1381         /* disable rate control */
1382         rate->data_cells = rate->idle_cells = 0;
1383     }
1384 }
1385
1386
1387 static int
1388 fore200e_open(struct atm_vcc *vcc)
1389 {
1390     struct fore200e*        fore200e = FORE200E_DEV(vcc->dev);
1391     struct fore200e_vcc*    fore200e_vcc;
1392     struct fore200e_vc_map* vc_map;
1393     unsigned long           flags;
1394     int                     vci = vcc->vci;
1395     short                   vpi = vcc->vpi;
1396
1397     ASSERT((vpi >= 0) && (vpi < 1<<FORE200E_VPI_BITS));
1398     ASSERT((vci >= 0) && (vci < 1<<FORE200E_VCI_BITS));
1399
1400     spin_lock_irqsave(&fore200e->q_lock, flags);
1401
1402     vc_map = FORE200E_VC_MAP(fore200e, vpi, vci);
1403     if (vc_map->vcc) {
1404
1405         spin_unlock_irqrestore(&fore200e->q_lock, flags);
1406
1407         printk(FORE200E "VC %d.%d.%d already in use\n",
1408                fore200e->atm_dev->number, vpi, vci);
1409
1410         return -EINVAL;
1411     }
1412
1413     vc_map->vcc = vcc;
1414
1415     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1416
1417     fore200e_vcc = kzalloc(sizeof(struct fore200e_vcc), GFP_ATOMIC);
1418     if (fore200e_vcc == NULL) {
1419         vc_map->vcc = NULL;
1420         return -ENOMEM;
1421     }
1422
1423     DPRINTK(2, "opening %d.%d.%d:%d QoS = (tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1424             "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d)\n",
1425             vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1426             fore200e_traffic_class[ vcc->qos.txtp.traffic_class ],
1427             vcc->qos.txtp.min_pcr, vcc->qos.txtp.max_pcr, vcc->qos.txtp.max_cdv, vcc->qos.txtp.max_sdu,
1428             fore200e_traffic_class[ vcc->qos.rxtp.traffic_class ],
1429             vcc->qos.rxtp.min_pcr, vcc->qos.rxtp.max_pcr, vcc->qos.rxtp.max_cdv, vcc->qos.rxtp.max_sdu);
1430     
1431     /* pseudo-CBR bandwidth requested? */
1432     if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1433         
1434         mutex_lock(&fore200e->rate_mtx);
1435         if (fore200e->available_cell_rate < vcc->qos.txtp.max_pcr) {
1436             mutex_unlock(&fore200e->rate_mtx);
1437
1438             kfree(fore200e_vcc);
1439             vc_map->vcc = NULL;
1440             return -EAGAIN;
1441         }
1442
1443         /* reserve bandwidth */
1444         fore200e->available_cell_rate -= vcc->qos.txtp.max_pcr;
1445         mutex_unlock(&fore200e->rate_mtx);
1446     }
1447     
1448     vcc->itf = vcc->dev->number;
1449
1450     set_bit(ATM_VF_PARTIAL,&vcc->flags);
1451     set_bit(ATM_VF_ADDR, &vcc->flags);
1452
1453     vcc->dev_data = fore200e_vcc;
1454     
1455     if (fore200e_activate_vcin(fore200e, 1, vcc, vcc->qos.rxtp.max_sdu) < 0) {
1456
1457         vc_map->vcc = NULL;
1458
1459         clear_bit(ATM_VF_ADDR, &vcc->flags);
1460         clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1461
1462         vcc->dev_data = NULL;
1463
1464         fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1465
1466         kfree(fore200e_vcc);
1467         return -EINVAL;
1468     }
1469     
1470     /* compute rate control parameters */
1471     if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1472         
1473         fore200e_rate_ctrl(&vcc->qos, &fore200e_vcc->rate);
1474         set_bit(ATM_VF_HASQOS, &vcc->flags);
1475
1476         DPRINTK(3, "tx on %d.%d.%d:%d, tx PCR = %d, rx PCR = %d, data_cells = %u, idle_cells = %u\n",
1477                 vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1478                 vcc->qos.txtp.max_pcr, vcc->qos.rxtp.max_pcr, 
1479                 fore200e_vcc->rate.data_cells, fore200e_vcc->rate.idle_cells);
1480     }
1481     
1482     fore200e_vcc->tx_min_pdu = fore200e_vcc->rx_min_pdu = MAX_PDU_SIZE + 1;
1483     fore200e_vcc->tx_max_pdu = fore200e_vcc->rx_max_pdu = 0;
1484     fore200e_vcc->tx_pdu     = fore200e_vcc->rx_pdu     = 0;
1485
1486     /* new incarnation of the vcc */
1487     vc_map->incarn = ++fore200e->incarn_count;
1488
1489     /* VC unusable before this flag is set */
1490     set_bit(ATM_VF_READY, &vcc->flags);
1491
1492     return 0;
1493 }
1494
1495
1496 static void
1497 fore200e_close(struct atm_vcc* vcc)
1498 {
1499     struct fore200e_vcc*    fore200e_vcc;
1500     struct fore200e*        fore200e;
1501     struct fore200e_vc_map* vc_map;
1502     unsigned long           flags;
1503
1504     ASSERT(vcc);
1505     fore200e = FORE200E_DEV(vcc->dev);
1506
1507     ASSERT((vcc->vpi >= 0) && (vcc->vpi < 1<<FORE200E_VPI_BITS));
1508     ASSERT((vcc->vci >= 0) && (vcc->vci < 1<<FORE200E_VCI_BITS));
1509
1510     DPRINTK(2, "closing %d.%d.%d:%d\n", vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal));
1511
1512     clear_bit(ATM_VF_READY, &vcc->flags);
1513
1514     fore200e_activate_vcin(fore200e, 0, vcc, 0);
1515
1516     spin_lock_irqsave(&fore200e->q_lock, flags);
1517
1518     vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1519
1520     /* the vc is no longer considered as "in use" by fore200e_open() */
1521     vc_map->vcc = NULL;
1522
1523     vcc->itf = vcc->vci = vcc->vpi = 0;
1524
1525     fore200e_vcc = FORE200E_VCC(vcc);
1526     vcc->dev_data = NULL;
1527
1528     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1529
1530     /* release reserved bandwidth, if any */
1531     if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1532
1533         mutex_lock(&fore200e->rate_mtx);
1534         fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1535         mutex_unlock(&fore200e->rate_mtx);
1536
1537         clear_bit(ATM_VF_HASQOS, &vcc->flags);
1538     }
1539
1540     clear_bit(ATM_VF_ADDR, &vcc->flags);
1541     clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1542
1543     ASSERT(fore200e_vcc);
1544     kfree(fore200e_vcc);
1545 }
1546
1547
1548 static int
1549 fore200e_send(struct atm_vcc *vcc, struct sk_buff *skb)
1550 {
1551     struct fore200e*        fore200e;
1552     struct fore200e_vcc*    fore200e_vcc;
1553     struct fore200e_vc_map* vc_map;
1554     struct host_txq*        txq;
1555     struct host_txq_entry*  entry;
1556     struct tpd*             tpd;
1557     struct tpd_haddr        tpd_haddr;
1558     int                     retry        = CONFIG_ATM_FORE200E_TX_RETRY;
1559     int                     tx_copy      = 0;
1560     int                     tx_len       = skb->len;
1561     u32*                    cell_header  = NULL;
1562     unsigned char*          skb_data;
1563     int                     skb_len;
1564     unsigned char*          data;
1565     unsigned long           flags;
1566
1567     if (!vcc)
1568         return -EINVAL;
1569
1570     fore200e = FORE200E_DEV(vcc->dev);
1571     fore200e_vcc = FORE200E_VCC(vcc);
1572
1573     if (!fore200e)
1574         return -EINVAL;
1575
1576     txq = &fore200e->host_txq;
1577     if (!fore200e_vcc)
1578         return -EINVAL;
1579
1580     if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1581         DPRINTK(1, "VC %d.%d.%d not ready for tx\n", vcc->itf, vcc->vpi, vcc->vpi);
1582         dev_kfree_skb_any(skb);
1583         return -EINVAL;
1584     }
1585
1586 #ifdef FORE200E_52BYTE_AAL0_SDU
1587     if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.txtp.max_sdu == ATM_AAL0_SDU)) {
1588         cell_header = (u32*) skb->data;
1589         skb_data    = skb->data + 4;    /* skip 4-byte cell header */
1590         skb_len     = tx_len = skb->len  - 4;
1591
1592         DPRINTK(3, "user-supplied cell header = 0x%08x\n", *cell_header);
1593     }
1594     else 
1595 #endif
1596     {
1597         skb_data = skb->data;
1598         skb_len  = skb->len;
1599     }
1600     
1601     if (((unsigned long)skb_data) & 0x3) {
1602
1603         DPRINTK(2, "misaligned tx PDU on device %s\n", fore200e->name);
1604         tx_copy = 1;
1605         tx_len  = skb_len;
1606     }
1607
1608     if ((vcc->qos.aal == ATM_AAL0) && (skb_len % ATM_CELL_PAYLOAD)) {
1609
1610         /* this simply NUKES the PCA board */
1611         DPRINTK(2, "incomplete tx AAL0 PDU on device %s\n", fore200e->name);
1612         tx_copy = 1;
1613         tx_len  = ((skb_len / ATM_CELL_PAYLOAD) + 1) * ATM_CELL_PAYLOAD;
1614     }
1615     
1616     if (tx_copy) {
1617         data = kmalloc(tx_len, GFP_ATOMIC | GFP_DMA);
1618         if (data == NULL) {
1619             if (vcc->pop) {
1620                 vcc->pop(vcc, skb);
1621             }
1622             else {
1623                 dev_kfree_skb_any(skb);
1624             }
1625             return -ENOMEM;
1626         }
1627
1628         memcpy(data, skb_data, skb_len);
1629         if (skb_len < tx_len)
1630             memset(data + skb_len, 0x00, tx_len - skb_len);
1631     }
1632     else {
1633         data = skb_data;
1634     }
1635
1636     vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1637     ASSERT(vc_map->vcc == vcc);
1638
1639   retry_here:
1640
1641     spin_lock_irqsave(&fore200e->q_lock, flags);
1642
1643     entry = &txq->host_entry[ txq->head ];
1644
1645     if ((*entry->status != STATUS_FREE) || (txq->txing >= QUEUE_SIZE_TX - 2)) {
1646
1647         /* try to free completed tx queue entries */
1648         fore200e_tx_irq(fore200e);
1649
1650         if (*entry->status != STATUS_FREE) {
1651
1652             spin_unlock_irqrestore(&fore200e->q_lock, flags);
1653
1654             /* retry once again? */
1655             if (--retry > 0) {
1656                 udelay(50);
1657                 goto retry_here;
1658             }
1659
1660             atomic_inc(&vcc->stats->tx_err);
1661
1662             fore200e->tx_sat++;
1663             DPRINTK(2, "tx queue of device %s is saturated, PDU dropped - heartbeat is %08x\n",
1664                     fore200e->name, fore200e->cp_queues->heartbeat);
1665             if (vcc->pop) {
1666                 vcc->pop(vcc, skb);
1667             }
1668             else {
1669                 dev_kfree_skb_any(skb);
1670             }
1671
1672             if (tx_copy)
1673                 kfree(data);
1674
1675             return -ENOBUFS;
1676         }
1677     }
1678
1679     entry->incarn = vc_map->incarn;
1680     entry->vc_map = vc_map;
1681     entry->skb    = skb;
1682     entry->data   = tx_copy ? data : NULL;
1683
1684     tpd = entry->tpd;
1685     tpd->tsd[ 0 ].buffer = fore200e->bus->dma_map(fore200e, data, tx_len, DMA_TO_DEVICE);
1686     tpd->tsd[ 0 ].length = tx_len;
1687
1688     FORE200E_NEXT_ENTRY(txq->head, QUEUE_SIZE_TX);
1689     txq->txing++;
1690
1691     /* The dma_map call above implies a dma_sync so the device can use it,
1692      * thus no explicit dma_sync call is necessary here.
1693      */
1694     
1695     DPRINTK(3, "tx on %d.%d.%d:%d, len = %u (%u)\n", 
1696             vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1697             tpd->tsd[0].length, skb_len);
1698
1699     if (skb_len < fore200e_vcc->tx_min_pdu)
1700         fore200e_vcc->tx_min_pdu = skb_len;
1701     if (skb_len > fore200e_vcc->tx_max_pdu)
1702         fore200e_vcc->tx_max_pdu = skb_len;
1703     fore200e_vcc->tx_pdu++;
1704
1705     /* set tx rate control information */
1706     tpd->rate.data_cells = fore200e_vcc->rate.data_cells;
1707     tpd->rate.idle_cells = fore200e_vcc->rate.idle_cells;
1708
1709     if (cell_header) {
1710         tpd->atm_header.clp = (*cell_header & ATM_HDR_CLP);
1711         tpd->atm_header.plt = (*cell_header & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT;
1712         tpd->atm_header.vci = (*cell_header & ATM_HDR_VCI_MASK) >> ATM_HDR_VCI_SHIFT;
1713         tpd->atm_header.vpi = (*cell_header & ATM_HDR_VPI_MASK) >> ATM_HDR_VPI_SHIFT;
1714         tpd->atm_header.gfc = (*cell_header & ATM_HDR_GFC_MASK) >> ATM_HDR_GFC_SHIFT;
1715     }
1716     else {
1717         /* set the ATM header, common to all cells conveying the PDU */
1718         tpd->atm_header.clp = 0;
1719         tpd->atm_header.plt = 0;
1720         tpd->atm_header.vci = vcc->vci;
1721         tpd->atm_header.vpi = vcc->vpi;
1722         tpd->atm_header.gfc = 0;
1723     }
1724
1725     tpd->spec.length = tx_len;
1726     tpd->spec.nseg   = 1;
1727     tpd->spec.aal    = fore200e_atm2fore_aal(vcc->qos.aal);
1728     tpd->spec.intr   = 1;
1729
1730     tpd_haddr.size  = sizeof(struct tpd) / (1<<TPD_HADDR_SHIFT);  /* size is expressed in 32 byte blocks */
1731     tpd_haddr.pad   = 0;
1732     tpd_haddr.haddr = entry->tpd_dma >> TPD_HADDR_SHIFT;          /* shift the address, as we are in a bitfield */
1733
1734     *entry->status = STATUS_PENDING;
1735     fore200e->bus->write(*(u32*)&tpd_haddr, (u32 __iomem *)&entry->cp_entry->tpd_haddr);
1736
1737     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1738
1739     return 0;
1740 }
1741
1742
1743 static int
1744 fore200e_getstats(struct fore200e* fore200e)
1745 {
1746     struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1747     struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1748     struct stats_opcode     opcode;
1749     int                     ok;
1750     u32                     stats_dma_addr;
1751
1752     if (fore200e->stats == NULL) {
1753         fore200e->stats = kzalloc(sizeof(struct stats), GFP_KERNEL | GFP_DMA);
1754         if (fore200e->stats == NULL)
1755             return -ENOMEM;
1756     }
1757     
1758     stats_dma_addr = fore200e->bus->dma_map(fore200e, fore200e->stats,
1759                                             sizeof(struct stats), DMA_FROM_DEVICE);
1760     
1761     FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1762
1763     opcode.opcode = OPCODE_GET_STATS;
1764     opcode.pad    = 0;
1765
1766     fore200e->bus->write(stats_dma_addr, &entry->cp_entry->cmd.stats_block.stats_haddr);
1767     
1768     *entry->status = STATUS_PENDING;
1769
1770     fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.stats_block.opcode);
1771
1772     ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1773
1774     *entry->status = STATUS_FREE;
1775
1776     fore200e->bus->dma_unmap(fore200e, stats_dma_addr, sizeof(struct stats), DMA_FROM_DEVICE);
1777     
1778     if (ok == 0) {
1779         printk(FORE200E "unable to get statistics from device %s\n", fore200e->name);
1780         return -EIO;
1781     }
1782
1783     return 0;
1784 }
1785
1786
1787 static int
1788 fore200e_getsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, int optlen)
1789 {
1790     /* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */
1791
1792     DPRINTK(2, "getsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n",
1793             vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen);
1794
1795     return -EINVAL;
1796 }
1797
1798
1799 static int
1800 fore200e_setsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, unsigned int optlen)
1801 {
1802     /* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */
1803     
1804     DPRINTK(2, "setsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n",
1805             vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen);
1806     
1807     return -EINVAL;
1808 }
1809
1810
1811 #if 0 /* currently unused */
1812 static int
1813 fore200e_get_oc3(struct fore200e* fore200e, struct oc3_regs* regs)
1814 {
1815     struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1816     struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1817     struct oc3_opcode       opcode;
1818     int                     ok;
1819     u32                     oc3_regs_dma_addr;
1820
1821     oc3_regs_dma_addr = fore200e->bus->dma_map(fore200e, regs, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1822
1823     FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1824
1825     opcode.opcode = OPCODE_GET_OC3;
1826     opcode.reg    = 0;
1827     opcode.value  = 0;
1828     opcode.mask   = 0;
1829
1830     fore200e->bus->write(oc3_regs_dma_addr, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1831     
1832     *entry->status = STATUS_PENDING;
1833
1834     fore200e->bus->write(*(u32*)&opcode, (u32*)&entry->cp_entry->cmd.oc3_block.opcode);
1835
1836     ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1837
1838     *entry->status = STATUS_FREE;
1839
1840     fore200e->bus->dma_unmap(fore200e, oc3_regs_dma_addr, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1841     
1842     if (ok == 0) {
1843         printk(FORE200E "unable to get OC-3 regs of device %s\n", fore200e->name);
1844         return -EIO;
1845     }
1846
1847     return 0;
1848 }
1849 #endif
1850
1851
1852 static int
1853 fore200e_set_oc3(struct fore200e* fore200e, u32 reg, u32 value, u32 mask)
1854 {
1855     struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1856     struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1857     struct oc3_opcode       opcode;
1858     int                     ok;
1859
1860     DPRINTK(2, "set OC-3 reg = 0x%02x, value = 0x%02x, mask = 0x%02x\n", reg, value, mask);
1861
1862     FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1863
1864     opcode.opcode = OPCODE_SET_OC3;
1865     opcode.reg    = reg;
1866     opcode.value  = value;
1867     opcode.mask   = mask;
1868
1869     fore200e->bus->write(0, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1870     
1871     *entry->status = STATUS_PENDING;
1872
1873     fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.oc3_block.opcode);
1874
1875     ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1876
1877     *entry->status = STATUS_FREE;
1878
1879     if (ok == 0) {
1880         printk(FORE200E "unable to set OC-3 reg 0x%02x of device %s\n", reg, fore200e->name);
1881         return -EIO;
1882     }
1883
1884     return 0;
1885 }
1886
1887
1888 static int
1889 fore200e_setloop(struct fore200e* fore200e, int loop_mode)
1890 {
1891     u32 mct_value, mct_mask;
1892     int error;
1893
1894     if (!capable(CAP_NET_ADMIN))
1895         return -EPERM;
1896     
1897     switch (loop_mode) {
1898
1899     case ATM_LM_NONE:
1900         mct_value = 0; 
1901         mct_mask  = SUNI_MCT_DLE | SUNI_MCT_LLE;
1902         break;
1903         
1904     case ATM_LM_LOC_PHY:
1905         mct_value = mct_mask = SUNI_MCT_DLE;
1906         break;
1907
1908     case ATM_LM_RMT_PHY:
1909         mct_value = mct_mask = SUNI_MCT_LLE;
1910         break;
1911
1912     default:
1913         return -EINVAL;
1914     }
1915
1916     error = fore200e_set_oc3(fore200e, SUNI_MCT, mct_value, mct_mask);
1917     if (error == 0)
1918         fore200e->loop_mode = loop_mode;
1919
1920     return error;
1921 }
1922
1923
1924 static int
1925 fore200e_fetch_stats(struct fore200e* fore200e, struct sonet_stats __user *arg)
1926 {
1927     struct sonet_stats tmp;
1928
1929     if (fore200e_getstats(fore200e) < 0)
1930         return -EIO;
1931
1932     tmp.section_bip = be32_to_cpu(fore200e->stats->oc3.section_bip8_errors);
1933     tmp.line_bip    = be32_to_cpu(fore200e->stats->oc3.line_bip24_errors);
1934     tmp.path_bip    = be32_to_cpu(fore200e->stats->oc3.path_bip8_errors);
1935     tmp.line_febe   = be32_to_cpu(fore200e->stats->oc3.line_febe_errors);
1936     tmp.path_febe   = be32_to_cpu(fore200e->stats->oc3.path_febe_errors);
1937     tmp.corr_hcs    = be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors);
1938     tmp.uncorr_hcs  = be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors);
1939     tmp.tx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_transmitted)  +
1940                       be32_to_cpu(fore200e->stats->aal34.cells_transmitted) +
1941                       be32_to_cpu(fore200e->stats->aal5.cells_transmitted);
1942     tmp.rx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_received)     +
1943                       be32_to_cpu(fore200e->stats->aal34.cells_received)    +
1944                       be32_to_cpu(fore200e->stats->aal5.cells_received);
1945
1946     if (arg)
1947         return copy_to_user(arg, &tmp, sizeof(struct sonet_stats)) ? -EFAULT : 0;       
1948     
1949     return 0;
1950 }
1951
1952
1953 static int
1954 fore200e_ioctl(struct atm_dev* dev, unsigned int cmd, void __user * arg)
1955 {
1956     struct fore200e* fore200e = FORE200E_DEV(dev);
1957     
1958     DPRINTK(2, "ioctl cmd = 0x%x (%u), arg = 0x%p (%lu)\n", cmd, cmd, arg, (unsigned long)arg);
1959
1960     switch (cmd) {
1961
1962     case SONET_GETSTAT:
1963         return fore200e_fetch_stats(fore200e, (struct sonet_stats __user *)arg);
1964
1965     case SONET_GETDIAG:
1966         return put_user(0, (int __user *)arg) ? -EFAULT : 0;
1967
1968     case ATM_SETLOOP:
1969         return fore200e_setloop(fore200e, (int)(unsigned long)arg);
1970
1971     case ATM_GETLOOP:
1972         return put_user(fore200e->loop_mode, (int __user *)arg) ? -EFAULT : 0;
1973
1974     case ATM_QUERYLOOP:
1975         return put_user(ATM_LM_LOC_PHY | ATM_LM_RMT_PHY, (int __user *)arg) ? -EFAULT : 0;
1976     }
1977
1978     return -ENOSYS; /* not implemented */
1979 }
1980
1981
1982 static int
1983 fore200e_change_qos(struct atm_vcc* vcc,struct atm_qos* qos, int flags)
1984 {
1985     struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc);
1986     struct fore200e*     fore200e     = FORE200E_DEV(vcc->dev);
1987
1988     if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1989         DPRINTK(1, "VC %d.%d.%d not ready for QoS change\n", vcc->itf, vcc->vpi, vcc->vpi);
1990         return -EINVAL;
1991     }
1992
1993     DPRINTK(2, "change_qos %d.%d.%d, "
1994             "(tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1995             "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d), flags = 0x%x\n"
1996             "available_cell_rate = %u",
1997             vcc->itf, vcc->vpi, vcc->vci,
1998             fore200e_traffic_class[ qos->txtp.traffic_class ],
1999             qos->txtp.min_pcr, qos->txtp.max_pcr, qos->txtp.max_cdv, qos->txtp.max_sdu,
2000             fore200e_traffic_class[ qos->rxtp.traffic_class ],
2001             qos->rxtp.min_pcr, qos->rxtp.max_pcr, qos->rxtp.max_cdv, qos->rxtp.max_sdu,
2002             flags, fore200e->available_cell_rate);
2003
2004     if ((qos->txtp.traffic_class == ATM_CBR) && (qos->txtp.max_pcr > 0)) {
2005
2006         mutex_lock(&fore200e->rate_mtx);
2007         if (fore200e->available_cell_rate + vcc->qos.txtp.max_pcr < qos->txtp.max_pcr) {
2008             mutex_unlock(&fore200e->rate_mtx);
2009             return -EAGAIN;
2010         }
2011
2012         fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
2013         fore200e->available_cell_rate -= qos->txtp.max_pcr;
2014
2015         mutex_unlock(&fore200e->rate_mtx);
2016         
2017         memcpy(&vcc->qos, qos, sizeof(struct atm_qos));
2018         
2019         /* update rate control parameters */
2020         fore200e_rate_ctrl(qos, &fore200e_vcc->rate);
2021
2022         set_bit(ATM_VF_HASQOS, &vcc->flags);
2023
2024         return 0;
2025     }
2026     
2027     return -EINVAL;
2028 }
2029     
2030
2031 static int fore200e_irq_request(struct fore200e *fore200e)
2032 {
2033     if (request_irq(fore200e->irq, fore200e_interrupt, IRQF_SHARED, fore200e->name, fore200e->atm_dev) < 0) {
2034
2035         printk(FORE200E "unable to reserve IRQ %s for device %s\n",
2036                fore200e_irq_itoa(fore200e->irq), fore200e->name);
2037         return -EBUSY;
2038     }
2039
2040     printk(FORE200E "IRQ %s reserved for device %s\n",
2041            fore200e_irq_itoa(fore200e->irq), fore200e->name);
2042
2043 #ifdef FORE200E_USE_TASKLET
2044     tasklet_init(&fore200e->tx_tasklet, fore200e_tx_tasklet, (unsigned long)fore200e);
2045     tasklet_init(&fore200e->rx_tasklet, fore200e_rx_tasklet, (unsigned long)fore200e);
2046 #endif
2047
2048     fore200e->state = FORE200E_STATE_IRQ;
2049     return 0;
2050 }
2051
2052
2053 static int fore200e_get_esi(struct fore200e *fore200e)
2054 {
2055     struct prom_data* prom = kzalloc(sizeof(struct prom_data), GFP_KERNEL | GFP_DMA);
2056     int ok, i;
2057
2058     if (!prom)
2059         return -ENOMEM;
2060
2061     ok = fore200e->bus->prom_read(fore200e, prom);
2062     if (ok < 0) {
2063         kfree(prom);
2064         return -EBUSY;
2065     }
2066         
2067     printk(FORE200E "device %s, rev. %c, S/N: %d, ESI: %pM\n",
2068            fore200e->name, 
2069            (prom->hw_revision & 0xFF) + '@',    /* probably meaningless with SBA boards */
2070            prom->serial_number & 0xFFFF, &prom->mac_addr[2]);
2071         
2072     for (i = 0; i < ESI_LEN; i++) {
2073         fore200e->esi[ i ] = fore200e->atm_dev->esi[ i ] = prom->mac_addr[ i + 2 ];
2074     }
2075     
2076     kfree(prom);
2077
2078     return 0;
2079 }
2080
2081
2082 static int fore200e_alloc_rx_buf(struct fore200e *fore200e)
2083 {
2084     int scheme, magn, nbr, size, i;
2085
2086     struct host_bsq* bsq;
2087     struct buffer*   buffer;
2088
2089     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2090         for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2091
2092             bsq = &fore200e->host_bsq[ scheme ][ magn ];
2093
2094             nbr  = fore200e_rx_buf_nbr[ scheme ][ magn ];
2095             size = fore200e_rx_buf_size[ scheme ][ magn ];
2096
2097             DPRINTK(2, "rx buffers %d / %d are being allocated\n", scheme, magn);
2098
2099             /* allocate the array of receive buffers */
2100             buffer = bsq->buffer = kzalloc(nbr * sizeof(struct buffer), GFP_KERNEL);
2101
2102             if (buffer == NULL)
2103                 return -ENOMEM;
2104
2105             bsq->freebuf = NULL;
2106
2107             for (i = 0; i < nbr; i++) {
2108
2109                 buffer[ i ].scheme = scheme;
2110                 buffer[ i ].magn   = magn;
2111 #ifdef FORE200E_BSQ_DEBUG
2112                 buffer[ i ].index  = i;
2113                 buffer[ i ].supplied = 0;
2114 #endif
2115
2116                 /* allocate the receive buffer body */
2117                 if (fore200e_chunk_alloc(fore200e,
2118                                          &buffer[ i ].data, size, fore200e->bus->buffer_alignment,
2119                                          DMA_FROM_DEVICE) < 0) {
2120                     
2121                     while (i > 0)
2122                         fore200e_chunk_free(fore200e, &buffer[ --i ].data);
2123                     kfree(buffer);
2124                     
2125                     return -ENOMEM;
2126                 }
2127
2128                 /* insert the buffer into the free buffer list */
2129                 buffer[ i ].next = bsq->freebuf;
2130                 bsq->freebuf = &buffer[ i ];
2131             }
2132             /* all the buffers are free, initially */
2133             bsq->freebuf_count = nbr;
2134
2135 #ifdef FORE200E_BSQ_DEBUG
2136             bsq_audit(3, bsq, scheme, magn);
2137 #endif
2138         }
2139     }
2140
2141     fore200e->state = FORE200E_STATE_ALLOC_BUF;
2142     return 0;
2143 }
2144
2145
2146 static int fore200e_init_bs_queue(struct fore200e *fore200e)
2147 {
2148     int scheme, magn, i;
2149
2150     struct host_bsq*     bsq;
2151     struct cp_bsq_entry __iomem * cp_entry;
2152
2153     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2154         for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2155
2156             DPRINTK(2, "buffer supply queue %d / %d is being initialized\n", scheme, magn);
2157
2158             bsq = &fore200e->host_bsq[ scheme ][ magn ];
2159
2160             /* allocate and align the array of status words */
2161             if (fore200e->bus->dma_chunk_alloc(fore200e,
2162                                                &bsq->status,
2163                                                sizeof(enum status), 
2164                                                QUEUE_SIZE_BS,
2165                                                fore200e->bus->status_alignment) < 0) {
2166                 return -ENOMEM;
2167             }
2168
2169             /* allocate and align the array of receive buffer descriptors */
2170             if (fore200e->bus->dma_chunk_alloc(fore200e,
2171                                                &bsq->rbd_block,
2172                                                sizeof(struct rbd_block),
2173                                                QUEUE_SIZE_BS,
2174                                                fore200e->bus->descr_alignment) < 0) {
2175                 
2176                 fore200e->bus->dma_chunk_free(fore200e, &bsq->status);
2177                 return -ENOMEM;
2178             }
2179             
2180             /* get the base address of the cp resident buffer supply queue entries */
2181             cp_entry = fore200e->virt_base + 
2182                        fore200e->bus->read(&fore200e->cp_queues->cp_bsq[ scheme ][ magn ]);
2183             
2184             /* fill the host resident and cp resident buffer supply queue entries */
2185             for (i = 0; i < QUEUE_SIZE_BS; i++) {
2186                 
2187                 bsq->host_entry[ i ].status = 
2188                                      FORE200E_INDEX(bsq->status.align_addr, enum status, i);
2189                 bsq->host_entry[ i ].rbd_block =
2190                                      FORE200E_INDEX(bsq->rbd_block.align_addr, struct rbd_block, i);
2191                 bsq->host_entry[ i ].rbd_block_dma =
2192                                      FORE200E_DMA_INDEX(bsq->rbd_block.dma_addr, struct rbd_block, i);
2193                 bsq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2194                 
2195                 *bsq->host_entry[ i ].status = STATUS_FREE;
2196                 
2197                 fore200e->bus->write(FORE200E_DMA_INDEX(bsq->status.dma_addr, enum status, i), 
2198                                      &cp_entry[ i ].status_haddr);
2199             }
2200         }
2201     }
2202
2203     fore200e->state = FORE200E_STATE_INIT_BSQ;
2204     return 0;
2205 }
2206
2207
2208 static int fore200e_init_rx_queue(struct fore200e *fore200e)
2209 {
2210     struct host_rxq*     rxq =  &fore200e->host_rxq;
2211     struct cp_rxq_entry __iomem * cp_entry;
2212     int i;
2213
2214     DPRINTK(2, "receive queue is being initialized\n");
2215
2216     /* allocate and align the array of status words */
2217     if (fore200e->bus->dma_chunk_alloc(fore200e,
2218                                        &rxq->status,
2219                                        sizeof(enum status), 
2220                                        QUEUE_SIZE_RX,
2221                                        fore200e->bus->status_alignment) < 0) {
2222         return -ENOMEM;
2223     }
2224
2225     /* allocate and align the array of receive PDU descriptors */
2226     if (fore200e->bus->dma_chunk_alloc(fore200e,
2227                                        &rxq->rpd,
2228                                        sizeof(struct rpd), 
2229                                        QUEUE_SIZE_RX,
2230                                        fore200e->bus->descr_alignment) < 0) {
2231         
2232         fore200e->bus->dma_chunk_free(fore200e, &rxq->status);
2233         return -ENOMEM;
2234     }
2235
2236     /* get the base address of the cp resident rx queue entries */
2237     cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_rxq);
2238
2239     /* fill the host resident and cp resident rx entries */
2240     for (i=0; i < QUEUE_SIZE_RX; i++) {
2241         
2242         rxq->host_entry[ i ].status = 
2243                              FORE200E_INDEX(rxq->status.align_addr, enum status, i);
2244         rxq->host_entry[ i ].rpd = 
2245                              FORE200E_INDEX(rxq->rpd.align_addr, struct rpd, i);
2246         rxq->host_entry[ i ].rpd_dma = 
2247                              FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i);
2248         rxq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2249
2250         *rxq->host_entry[ i ].status = STATUS_FREE;
2251
2252         fore200e->bus->write(FORE200E_DMA_INDEX(rxq->status.dma_addr, enum status, i), 
2253                              &cp_entry[ i ].status_haddr);
2254
2255         fore200e->bus->write(FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i),
2256                              &cp_entry[ i ].rpd_haddr);
2257     }
2258
2259     /* set the head entry of the queue */
2260     rxq->head = 0;
2261
2262     fore200e->state = FORE200E_STATE_INIT_RXQ;
2263     return 0;
2264 }
2265
2266
2267 static int fore200e_init_tx_queue(struct fore200e *fore200e)
2268 {
2269     struct host_txq*     txq =  &fore200e->host_txq;
2270     struct cp_txq_entry __iomem * cp_entry;
2271     int i;
2272
2273     DPRINTK(2, "transmit queue is being initialized\n");
2274
2275     /* allocate and align the array of status words */
2276     if (fore200e->bus->dma_chunk_alloc(fore200e,
2277                                        &txq->status,
2278                                        sizeof(enum status), 
2279                                        QUEUE_SIZE_TX,
2280                                        fore200e->bus->status_alignment) < 0) {
2281         return -ENOMEM;
2282     }
2283
2284     /* allocate and align the array of transmit PDU descriptors */
2285     if (fore200e->bus->dma_chunk_alloc(fore200e,
2286                                        &txq->tpd,
2287                                        sizeof(struct tpd), 
2288                                        QUEUE_SIZE_TX,
2289                                        fore200e->bus->descr_alignment) < 0) {
2290         
2291         fore200e->bus->dma_chunk_free(fore200e, &txq->status);
2292         return -ENOMEM;
2293     }
2294
2295     /* get the base address of the cp resident tx queue entries */
2296     cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_txq);
2297
2298     /* fill the host resident and cp resident tx entries */
2299     for (i=0; i < QUEUE_SIZE_TX; i++) {
2300         
2301         txq->host_entry[ i ].status = 
2302                              FORE200E_INDEX(txq->status.align_addr, enum status, i);
2303         txq->host_entry[ i ].tpd = 
2304                              FORE200E_INDEX(txq->tpd.align_addr, struct tpd, i);
2305         txq->host_entry[ i ].tpd_dma  = 
2306                              FORE200E_DMA_INDEX(txq->tpd.dma_addr, struct tpd, i);
2307         txq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2308
2309         *txq->host_entry[ i ].status = STATUS_FREE;
2310         
2311         fore200e->bus->write(FORE200E_DMA_INDEX(txq->status.dma_addr, enum status, i), 
2312                              &cp_entry[ i ].status_haddr);
2313         
2314         /* although there is a one-to-one mapping of tx queue entries and tpds,
2315            we do not write here the DMA (physical) base address of each tpd into
2316            the related cp resident entry, because the cp relies on this write
2317            operation to detect that a new pdu has been submitted for tx */
2318     }
2319
2320     /* set the head and tail entries of the queue */
2321     txq->head = 0;
2322     txq->tail = 0;
2323
2324     fore200e->state = FORE200E_STATE_INIT_TXQ;
2325     return 0;
2326 }
2327
2328
2329 static int fore200e_init_cmd_queue(struct fore200e *fore200e)
2330 {
2331     struct host_cmdq*     cmdq =  &fore200e->host_cmdq;
2332     struct cp_cmdq_entry __iomem * cp_entry;
2333     int i;
2334
2335     DPRINTK(2, "command queue is being initialized\n");
2336
2337     /* allocate and align the array of status words */
2338     if (fore200e->bus->dma_chunk_alloc(fore200e,
2339                                        &cmdq->status,
2340                                        sizeof(enum status), 
2341                                        QUEUE_SIZE_CMD,
2342                                        fore200e->bus->status_alignment) < 0) {
2343         return -ENOMEM;
2344     }
2345     
2346     /* get the base address of the cp resident cmd queue entries */
2347     cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_cmdq);
2348
2349     /* fill the host resident and cp resident cmd entries */
2350     for (i=0; i < QUEUE_SIZE_CMD; i++) {
2351         
2352         cmdq->host_entry[ i ].status   = 
2353                               FORE200E_INDEX(cmdq->status.align_addr, enum status, i);
2354         cmdq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2355
2356         *cmdq->host_entry[ i ].status = STATUS_FREE;
2357
2358         fore200e->bus->write(FORE200E_DMA_INDEX(cmdq->status.dma_addr, enum status, i), 
2359                              &cp_entry[ i ].status_haddr);
2360     }
2361
2362     /* set the head entry of the queue */
2363     cmdq->head = 0;
2364
2365     fore200e->state = FORE200E_STATE_INIT_CMDQ;
2366     return 0;
2367 }
2368
2369
2370 static void fore200e_param_bs_queue(struct fore200e *fore200e,
2371                                     enum buffer_scheme scheme,
2372                                     enum buffer_magn magn, int queue_length,
2373                                     int pool_size, int supply_blksize)
2374 {
2375     struct bs_spec __iomem * bs_spec = &fore200e->cp_queues->init.bs_spec[ scheme ][ magn ];
2376
2377     fore200e->bus->write(queue_length,                           &bs_spec->queue_length);
2378     fore200e->bus->write(fore200e_rx_buf_size[ scheme ][ magn ], &bs_spec->buffer_size);
2379     fore200e->bus->write(pool_size,                              &bs_spec->pool_size);
2380     fore200e->bus->write(supply_blksize,                         &bs_spec->supply_blksize);
2381 }
2382
2383
2384 static int fore200e_initialize(struct fore200e *fore200e)
2385 {
2386     struct cp_queues __iomem * cpq;
2387     int               ok, scheme, magn;
2388
2389     DPRINTK(2, "device %s being initialized\n", fore200e->name);
2390
2391     mutex_init(&fore200e->rate_mtx);
2392     spin_lock_init(&fore200e->q_lock);
2393
2394     cpq = fore200e->cp_queues = fore200e->virt_base + FORE200E_CP_QUEUES_OFFSET;
2395
2396     /* enable cp to host interrupts */
2397     fore200e->bus->write(1, &cpq->imask);
2398
2399     if (fore200e->bus->irq_enable)
2400         fore200e->bus->irq_enable(fore200e);
2401     
2402     fore200e->bus->write(NBR_CONNECT, &cpq->init.num_connect);
2403
2404     fore200e->bus->write(QUEUE_SIZE_CMD, &cpq->init.cmd_queue_len);
2405     fore200e->bus->write(QUEUE_SIZE_RX,  &cpq->init.rx_queue_len);
2406     fore200e->bus->write(QUEUE_SIZE_TX,  &cpq->init.tx_queue_len);
2407
2408     fore200e->bus->write(RSD_EXTENSION,  &cpq->init.rsd_extension);
2409     fore200e->bus->write(TSD_EXTENSION,  &cpq->init.tsd_extension);
2410
2411     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++)
2412         for (magn = 0; magn < BUFFER_MAGN_NBR; magn++)
2413             fore200e_param_bs_queue(fore200e, scheme, magn,
2414                                     QUEUE_SIZE_BS, 
2415                                     fore200e_rx_buf_nbr[ scheme ][ magn ],
2416                                     RBD_BLK_SIZE);
2417
2418     /* issue the initialize command */
2419     fore200e->bus->write(STATUS_PENDING,    &cpq->init.status);
2420     fore200e->bus->write(OPCODE_INITIALIZE, &cpq->init.opcode);
2421
2422     ok = fore200e_io_poll(fore200e, &cpq->init.status, STATUS_COMPLETE, 3000);
2423     if (ok == 0) {
2424         printk(FORE200E "device %s initialization failed\n", fore200e->name);
2425         return -ENODEV;
2426     }
2427
2428     printk(FORE200E "device %s initialized\n", fore200e->name);
2429
2430     fore200e->state = FORE200E_STATE_INITIALIZE;
2431     return 0;
2432 }
2433
2434
2435 static void fore200e_monitor_putc(struct fore200e *fore200e, char c)
2436 {
2437     struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2438
2439 #if 0
2440     printk("%c", c);
2441 #endif
2442     fore200e->bus->write(((u32) c) | FORE200E_CP_MONITOR_UART_AVAIL, &monitor->soft_uart.send);
2443 }
2444
2445
2446 static int fore200e_monitor_getc(struct fore200e *fore200e)
2447 {
2448     struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2449     unsigned long      timeout = jiffies + msecs_to_jiffies(50);
2450     int                c;
2451
2452     while (time_before(jiffies, timeout)) {
2453
2454         c = (int) fore200e->bus->read(&monitor->soft_uart.recv);
2455
2456         if (c & FORE200E_CP_MONITOR_UART_AVAIL) {
2457
2458             fore200e->bus->write(FORE200E_CP_MONITOR_UART_FREE, &monitor->soft_uart.recv);
2459 #if 0
2460             printk("%c", c & 0xFF);
2461 #endif
2462             return c & 0xFF;
2463         }
2464     }
2465
2466     return -1;
2467 }
2468
2469
2470 static void fore200e_monitor_puts(struct fore200e *fore200e, char *str)
2471 {
2472     while (*str) {
2473
2474         /* the i960 monitor doesn't accept any new character if it has something to say */
2475         while (fore200e_monitor_getc(fore200e) >= 0);
2476         
2477         fore200e_monitor_putc(fore200e, *str++);
2478     }
2479
2480     while (fore200e_monitor_getc(fore200e) >= 0);
2481 }
2482
2483 /*(DEBLOBBED)*/
2484
2485 static int fore200e_load_and_start_fw(struct fore200e *fore200e)
2486 {
2487     const struct firmware *firmware;
2488     struct device *device;
2489     const struct fw_header *fw_header;
2490     const __le32 *fw_data;
2491     u32 fw_size;
2492     u32 __iomem *load_addr;
2493     char buf[48];
2494     int err = -ENODEV;
2495
2496     if (strcmp(fore200e->bus->model_name, "PCA-200E") == 0)
2497         device = &((struct pci_dev *) fore200e->bus_dev)->dev;
2498 #ifdef CONFIG_SBUS
2499     else if (strcmp(fore200e->bus->model_name, "SBA-200E") == 0)
2500         device = &((struct platform_device *) fore200e->bus_dev)->dev;
2501 #endif
2502     else
2503         return err;
2504
2505     /*(DEBLOBBED)*/
2506     if ((err = reject_firmware(&firmware, buf, device)) < 0) {
2507         printk(FORE200E "problem loading firmware image %s\n", fore200e->bus->model_name);
2508         return err;
2509     }
2510
2511     fw_data = (const __le32 *)firmware->data;
2512     fw_size = firmware->size / sizeof(u32);
2513     fw_header = (const struct fw_header *)firmware->data;
2514     load_addr = fore200e->virt_base + le32_to_cpu(fw_header->load_offset);
2515
2516     DPRINTK(2, "device %s firmware being loaded at 0x%p (%d words)\n",
2517             fore200e->name, load_addr, fw_size);
2518
2519     if (le32_to_cpu(fw_header->magic) != FW_HEADER_MAGIC) {
2520         printk(FORE200E "corrupted %s firmware image\n", fore200e->bus->model_name);
2521         goto release;
2522     }
2523
2524     for (; fw_size--; fw_data++, load_addr++)
2525         fore200e->bus->write(le32_to_cpu(*fw_data), load_addr);
2526
2527     DPRINTK(2, "device %s firmware being started\n", fore200e->name);
2528
2529 #if defined(__sparc_v9__)
2530     /* reported to be required by SBA cards on some sparc64 hosts */
2531     fore200e_spin(100);
2532 #endif
2533
2534     sprintf(buf, "\rgo %x\r", le32_to_cpu(fw_header->start_offset));
2535     fore200e_monitor_puts(fore200e, buf);
2536
2537     if (fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_CP_RUNNING, 1000) == 0) {
2538         printk(FORE200E "device %s firmware didn't start\n", fore200e->name);
2539         goto release;
2540     }
2541
2542     printk(FORE200E "device %s firmware started\n", fore200e->name);
2543
2544     fore200e->state = FORE200E_STATE_START_FW;
2545     err = 0;
2546
2547 release:
2548     release_firmware(firmware);
2549     return err;
2550 }
2551
2552
2553 static int fore200e_register(struct fore200e *fore200e, struct device *parent)
2554 {
2555     struct atm_dev* atm_dev;
2556
2557     DPRINTK(2, "device %s being registered\n", fore200e->name);
2558
2559     atm_dev = atm_dev_register(fore200e->bus->proc_name, parent, &fore200e_ops,
2560                                -1, NULL);
2561     if (atm_dev == NULL) {
2562         printk(FORE200E "unable to register device %s\n", fore200e->name);
2563         return -ENODEV;
2564     }
2565
2566     atm_dev->dev_data = fore200e;
2567     fore200e->atm_dev = atm_dev;
2568
2569     atm_dev->ci_range.vpi_bits = FORE200E_VPI_BITS;
2570     atm_dev->ci_range.vci_bits = FORE200E_VCI_BITS;
2571
2572     fore200e->available_cell_rate = ATM_OC3_PCR;
2573
2574     fore200e->state = FORE200E_STATE_REGISTER;
2575     return 0;
2576 }
2577
2578
2579 static int fore200e_init(struct fore200e *fore200e, struct device *parent)
2580 {
2581     if (fore200e_register(fore200e, parent) < 0)
2582         return -ENODEV;
2583     
2584     if (fore200e->bus->configure(fore200e) < 0)
2585         return -ENODEV;
2586
2587     if (fore200e->bus->map(fore200e) < 0)
2588         return -ENODEV;
2589
2590     if (fore200e_reset(fore200e, 1) < 0)
2591         return -ENODEV;
2592
2593     if (fore200e_load_and_start_fw(fore200e) < 0)
2594         return -ENODEV;
2595
2596     if (fore200e_initialize(fore200e) < 0)
2597         return -ENODEV;
2598
2599     if (fore200e_init_cmd_queue(fore200e) < 0)
2600         return -ENOMEM;
2601
2602     if (fore200e_init_tx_queue(fore200e) < 0)
2603         return -ENOMEM;
2604
2605     if (fore200e_init_rx_queue(fore200e) < 0)
2606         return -ENOMEM;
2607
2608     if (fore200e_init_bs_queue(fore200e) < 0)
2609         return -ENOMEM;
2610
2611     if (fore200e_alloc_rx_buf(fore200e) < 0)
2612         return -ENOMEM;
2613
2614     if (fore200e_get_esi(fore200e) < 0)
2615         return -EIO;
2616
2617     if (fore200e_irq_request(fore200e) < 0)
2618         return -EBUSY;
2619
2620     fore200e_supply(fore200e);
2621
2622     /* all done, board initialization is now complete */
2623     fore200e->state = FORE200E_STATE_COMPLETE;
2624     return 0;
2625 }
2626
2627 #ifdef CONFIG_SBUS
2628 static const struct of_device_id fore200e_sba_match[];
2629 static int fore200e_sba_probe(struct platform_device *op)
2630 {
2631         const struct of_device_id *match;
2632         const struct fore200e_bus *bus;
2633         struct fore200e *fore200e;
2634         static int index = 0;
2635         int err;
2636
2637         match = of_match_device(fore200e_sba_match, &op->dev);
2638         if (!match)
2639                 return -EINVAL;
2640         bus = match->data;
2641
2642         fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2643         if (!fore200e)
2644                 return -ENOMEM;
2645
2646         fore200e->bus = bus;
2647         fore200e->bus_dev = op;
2648         fore200e->irq = op->archdata.irqs[0];
2649         fore200e->phys_base = op->resource[0].start;
2650
2651         sprintf(fore200e->name, "%s-%d", bus->model_name, index);
2652
2653         err = fore200e_init(fore200e, &op->dev);
2654         if (err < 0) {
2655                 fore200e_shutdown(fore200e);
2656                 kfree(fore200e);
2657                 return err;
2658         }
2659
2660         index++;
2661         dev_set_drvdata(&op->dev, fore200e);
2662
2663         return 0;
2664 }
2665
2666 static int fore200e_sba_remove(struct platform_device *op)
2667 {
2668         struct fore200e *fore200e = dev_get_drvdata(&op->dev);
2669
2670         fore200e_shutdown(fore200e);
2671         kfree(fore200e);
2672
2673         return 0;
2674 }
2675
2676 static const struct of_device_id fore200e_sba_match[] = {
2677         {
2678                 .name = SBA200E_PROM_NAME,
2679                 .data = (void *) &fore200e_bus[1],
2680         },
2681         {},
2682 };
2683 MODULE_DEVICE_TABLE(of, fore200e_sba_match);
2684
2685 static struct platform_driver fore200e_sba_driver = {
2686         .driver = {
2687                 .name = "fore_200e",
2688                 .of_match_table = fore200e_sba_match,
2689         },
2690         .probe          = fore200e_sba_probe,
2691         .remove         = fore200e_sba_remove,
2692 };
2693 #endif
2694
2695 #ifdef CONFIG_PCI
2696 static int fore200e_pca_detect(struct pci_dev *pci_dev,
2697                                const struct pci_device_id *pci_ent)
2698 {
2699     const struct fore200e_bus* bus = (struct fore200e_bus*) pci_ent->driver_data;
2700     struct fore200e* fore200e;
2701     int err = 0;
2702     static int index = 0;
2703
2704     if (pci_enable_device(pci_dev)) {
2705         err = -EINVAL;
2706         goto out;
2707     }
2708
2709     if (dma_set_mask_and_coherent(&pci_dev->dev, DMA_BIT_MASK(32))) {
2710         err = -EINVAL;
2711         goto out;
2712     }
2713     
2714     fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2715     if (fore200e == NULL) {
2716         err = -ENOMEM;
2717         goto out_disable;
2718     }
2719
2720     fore200e->bus       = bus;
2721     fore200e->bus_dev   = pci_dev;    
2722     fore200e->irq       = pci_dev->irq;
2723     fore200e->phys_base = pci_resource_start(pci_dev, 0);
2724
2725     sprintf(fore200e->name, "%s-%d", bus->model_name, index - 1);
2726
2727     pci_set_master(pci_dev);
2728
2729     printk(FORE200E "device %s found at 0x%lx, IRQ %s\n",
2730            fore200e->bus->model_name, 
2731            fore200e->phys_base, fore200e_irq_itoa(fore200e->irq));
2732
2733     sprintf(fore200e->name, "%s-%d", bus->model_name, index);
2734
2735     err = fore200e_init(fore200e, &pci_dev->dev);
2736     if (err < 0) {
2737         fore200e_shutdown(fore200e);
2738         goto out_free;
2739     }
2740
2741     ++index;
2742     pci_set_drvdata(pci_dev, fore200e);
2743
2744 out:
2745     return err;
2746
2747 out_free:
2748     kfree(fore200e);
2749 out_disable:
2750     pci_disable_device(pci_dev);
2751     goto out;
2752 }
2753
2754
2755 static void fore200e_pca_remove_one(struct pci_dev *pci_dev)
2756 {
2757     struct fore200e *fore200e;
2758
2759     fore200e = pci_get_drvdata(pci_dev);
2760
2761     fore200e_shutdown(fore200e);
2762     kfree(fore200e);
2763     pci_disable_device(pci_dev);
2764 }
2765
2766
2767 static const struct pci_device_id fore200e_pca_tbl[] = {
2768     { PCI_VENDOR_ID_FORE, PCI_DEVICE_ID_FORE_PCA200E, PCI_ANY_ID, PCI_ANY_ID,
2769       0, 0, (unsigned long) &fore200e_bus[0] },
2770     { 0, }
2771 };
2772
2773 MODULE_DEVICE_TABLE(pci, fore200e_pca_tbl);
2774
2775 static struct pci_driver fore200e_pca_driver = {
2776     .name =     "fore_200e",
2777     .probe =    fore200e_pca_detect,
2778     .remove =   fore200e_pca_remove_one,
2779     .id_table = fore200e_pca_tbl,
2780 };
2781 #endif
2782
2783 static int __init fore200e_module_init(void)
2784 {
2785         int err = 0;
2786
2787         printk(FORE200E "FORE Systems 200E-series ATM driver - version " FORE200E_VERSION "\n");
2788
2789 #ifdef CONFIG_SBUS
2790         err = platform_driver_register(&fore200e_sba_driver);
2791         if (err)
2792                 return err;
2793 #endif
2794
2795 #ifdef CONFIG_PCI
2796         err = pci_register_driver(&fore200e_pca_driver);
2797 #endif
2798
2799 #ifdef CONFIG_SBUS
2800         if (err)
2801                 platform_driver_unregister(&fore200e_sba_driver);
2802 #endif
2803
2804         return err;
2805 }
2806
2807 static void __exit fore200e_module_cleanup(void)
2808 {
2809 #ifdef CONFIG_PCI
2810         pci_unregister_driver(&fore200e_pca_driver);
2811 #endif
2812 #ifdef CONFIG_SBUS
2813         platform_driver_unregister(&fore200e_sba_driver);
2814 #endif
2815 }
2816
2817 static int
2818 fore200e_proc_read(struct atm_dev *dev, loff_t* pos, char* page)
2819 {
2820     struct fore200e*     fore200e  = FORE200E_DEV(dev);
2821     struct fore200e_vcc* fore200e_vcc;
2822     struct atm_vcc*      vcc;
2823     int                  i, len, left = *pos;
2824     unsigned long        flags;
2825
2826     if (!left--) {
2827
2828         if (fore200e_getstats(fore200e) < 0)
2829             return -EIO;
2830
2831         len = sprintf(page,"\n"
2832                        " device:\n"
2833                        "   internal name:\t\t%s\n", fore200e->name);
2834
2835         /* print bus-specific information */
2836         if (fore200e->bus->proc_read)
2837             len += fore200e->bus->proc_read(fore200e, page + len);
2838         
2839         len += sprintf(page + len,
2840                 "   interrupt line:\t\t%s\n"
2841                 "   physical base address:\t0x%p\n"
2842                 "   virtual base address:\t0x%p\n"
2843                 "   factory address (ESI):\t%pM\n"
2844                 "   board serial number:\t\t%d\n\n",
2845                 fore200e_irq_itoa(fore200e->irq),
2846                 (void*)fore200e->phys_base,
2847                 fore200e->virt_base,
2848                 fore200e->esi,
2849                 fore200e->esi[4] * 256 + fore200e->esi[5]);
2850
2851         return len;
2852     }
2853
2854     if (!left--)
2855         return sprintf(page,
2856                        "   free small bufs, scheme 1:\t%d\n"
2857                        "   free large bufs, scheme 1:\t%d\n"
2858                        "   free small bufs, scheme 2:\t%d\n"
2859                        "   free large bufs, scheme 2:\t%d\n",
2860                        fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_SMALL ].freebuf_count,
2861                        fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_LARGE ].freebuf_count,
2862                        fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_SMALL ].freebuf_count,
2863                        fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_LARGE ].freebuf_count);
2864
2865     if (!left--) {
2866         u32 hb = fore200e->bus->read(&fore200e->cp_queues->heartbeat);
2867
2868         len = sprintf(page,"\n\n"
2869                       " cell processor:\n"
2870                       "   heartbeat state:\t\t");
2871         
2872         if (hb >> 16 != 0xDEAD)
2873             len += sprintf(page + len, "0x%08x\n", hb);
2874         else
2875             len += sprintf(page + len, "*** FATAL ERROR %04x ***\n", hb & 0xFFFF);
2876
2877         return len;
2878     }
2879
2880     if (!left--) {
2881         static const char* media_name[] = {
2882             "unshielded twisted pair",
2883             "multimode optical fiber ST",
2884             "multimode optical fiber SC",
2885             "single-mode optical fiber ST",
2886             "single-mode optical fiber SC",
2887             "unknown"
2888         };
2889
2890         static const char* oc3_mode[] = {
2891             "normal operation",
2892             "diagnostic loopback",
2893             "line loopback",
2894             "unknown"
2895         };
2896
2897         u32 fw_release     = fore200e->bus->read(&fore200e->cp_queues->fw_release);
2898         u32 mon960_release = fore200e->bus->read(&fore200e->cp_queues->mon960_release);
2899         u32 oc3_revision   = fore200e->bus->read(&fore200e->cp_queues->oc3_revision);
2900         u32 media_index    = FORE200E_MEDIA_INDEX(fore200e->bus->read(&fore200e->cp_queues->media_type));
2901         u32 oc3_index;
2902
2903         if (media_index > 4)
2904                 media_index = 5;
2905         
2906         switch (fore200e->loop_mode) {
2907             case ATM_LM_NONE:    oc3_index = 0;
2908                                  break;
2909             case ATM_LM_LOC_PHY: oc3_index = 1;
2910                                  break;
2911             case ATM_LM_RMT_PHY: oc3_index = 2;
2912                                  break;
2913             default:             oc3_index = 3;
2914         }
2915
2916         return sprintf(page,
2917                        "   firmware release:\t\t%d.%d.%d\n"
2918                        "   monitor release:\t\t%d.%d\n"
2919                        "   media type:\t\t\t%s\n"
2920                        "   OC-3 revision:\t\t0x%x\n"
2921                        "   OC-3 mode:\t\t\t%s",
2922                        fw_release >> 16, fw_release << 16 >> 24,  fw_release << 24 >> 24,
2923                        mon960_release >> 16, mon960_release << 16 >> 16,
2924                        media_name[ media_index ],
2925                        oc3_revision,
2926                        oc3_mode[ oc3_index ]);
2927     }
2928
2929     if (!left--) {
2930         struct cp_monitor __iomem * cp_monitor = fore200e->cp_monitor;
2931
2932         return sprintf(page,
2933                        "\n\n"
2934                        " monitor:\n"
2935                        "   version number:\t\t%d\n"
2936                        "   boot status word:\t\t0x%08x\n",
2937                        fore200e->bus->read(&cp_monitor->mon_version),
2938                        fore200e->bus->read(&cp_monitor->bstat));
2939     }
2940
2941     if (!left--)
2942         return sprintf(page,
2943                        "\n"
2944                        " device statistics:\n"
2945                        "  4b5b:\n"
2946                        "     crc_header_errors:\t\t%10u\n"
2947                        "     framing_errors:\t\t%10u\n",
2948                        be32_to_cpu(fore200e->stats->phy.crc_header_errors),
2949                        be32_to_cpu(fore200e->stats->phy.framing_errors));
2950     
2951     if (!left--)
2952         return sprintf(page, "\n"
2953                        "  OC-3:\n"
2954                        "     section_bip8_errors:\t%10u\n"
2955                        "     path_bip8_errors:\t\t%10u\n"
2956                        "     line_bip24_errors:\t\t%10u\n"
2957                        "     line_febe_errors:\t\t%10u\n"
2958                        "     path_febe_errors:\t\t%10u\n"
2959                        "     corr_hcs_errors:\t\t%10u\n"
2960                        "     ucorr_hcs_errors:\t\t%10u\n",
2961                        be32_to_cpu(fore200e->stats->oc3.section_bip8_errors),
2962                        be32_to_cpu(fore200e->stats->oc3.path_bip8_errors),
2963                        be32_to_cpu(fore200e->stats->oc3.line_bip24_errors),
2964                        be32_to_cpu(fore200e->stats->oc3.line_febe_errors),
2965                        be32_to_cpu(fore200e->stats->oc3.path_febe_errors),
2966                        be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors),
2967                        be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors));
2968
2969     if (!left--)
2970         return sprintf(page,"\n"
2971                        "   ATM:\t\t\t\t     cells\n"
2972                        "     TX:\t\t\t%10u\n"
2973                        "     RX:\t\t\t%10u\n"
2974                        "     vpi out of range:\t\t%10u\n"
2975                        "     vpi no conn:\t\t%10u\n"
2976                        "     vci out of range:\t\t%10u\n"
2977                        "     vci no conn:\t\t%10u\n",
2978                        be32_to_cpu(fore200e->stats->atm.cells_transmitted),
2979                        be32_to_cpu(fore200e->stats->atm.cells_received),
2980                        be32_to_cpu(fore200e->stats->atm.vpi_bad_range),
2981                        be32_to_cpu(fore200e->stats->atm.vpi_no_conn),
2982                        be32_to_cpu(fore200e->stats->atm.vci_bad_range),
2983                        be32_to_cpu(fore200e->stats->atm.vci_no_conn));
2984     
2985     if (!left--)
2986         return sprintf(page,"\n"
2987                        "   AAL0:\t\t\t     cells\n"
2988                        "     TX:\t\t\t%10u\n"
2989                        "     RX:\t\t\t%10u\n"
2990                        "     dropped:\t\t\t%10u\n",
2991                        be32_to_cpu(fore200e->stats->aal0.cells_transmitted),
2992                        be32_to_cpu(fore200e->stats->aal0.cells_received),
2993                        be32_to_cpu(fore200e->stats->aal0.cells_dropped));
2994     
2995     if (!left--)
2996         return sprintf(page,"\n"
2997                        "   AAL3/4:\n"
2998                        "     SAR sublayer:\t\t     cells\n"
2999                        "       TX:\t\t\t%10u\n"
3000                        "       RX:\t\t\t%10u\n"
3001                        "       dropped:\t\t\t%10u\n"
3002                        "       CRC errors:\t\t%10u\n"
3003                        "       protocol errors:\t\t%10u\n\n"
3004                        "     CS  sublayer:\t\t      PDUs\n"
3005                        "       TX:\t\t\t%10u\n"
3006                        "       RX:\t\t\t%10u\n"
3007                        "       dropped:\t\t\t%10u\n"
3008                        "       protocol errors:\t\t%10u\n",
3009                        be32_to_cpu(fore200e->stats->aal34.cells_transmitted),
3010                        be32_to_cpu(fore200e->stats->aal34.cells_received),
3011                        be32_to_cpu(fore200e->stats->aal34.cells_dropped),
3012                        be32_to_cpu(fore200e->stats->aal34.cells_crc_errors),
3013                        be32_to_cpu(fore200e->stats->aal34.cells_protocol_errors),
3014                        be32_to_cpu(fore200e->stats->aal34.cspdus_transmitted),
3015                        be32_to_cpu(fore200e->stats->aal34.cspdus_received),
3016                        be32_to_cpu(fore200e->stats->aal34.cspdus_dropped),
3017                        be32_to_cpu(fore200e->stats->aal34.cspdus_protocol_errors));
3018     
3019     if (!left--)
3020         return sprintf(page,"\n"
3021                        "   AAL5:\n"
3022                        "     SAR sublayer:\t\t     cells\n"
3023                        "       TX:\t\t\t%10u\n"
3024                        "       RX:\t\t\t%10u\n"
3025                        "       dropped:\t\t\t%10u\n"
3026                        "       congestions:\t\t%10u\n\n"
3027                        "     CS  sublayer:\t\t      PDUs\n"
3028                        "       TX:\t\t\t%10u\n"
3029                        "       RX:\t\t\t%10u\n"
3030                        "       dropped:\t\t\t%10u\n"
3031                        "       CRC errors:\t\t%10u\n"
3032                        "       protocol errors:\t\t%10u\n",
3033                        be32_to_cpu(fore200e->stats->aal5.cells_transmitted),
3034                        be32_to_cpu(fore200e->stats->aal5.cells_received),
3035                        be32_to_cpu(fore200e->stats->aal5.cells_dropped),
3036                        be32_to_cpu(fore200e->stats->aal5.congestion_experienced),
3037                        be32_to_cpu(fore200e->stats->aal5.cspdus_transmitted),
3038                        be32_to_cpu(fore200e->stats->aal5.cspdus_received),
3039                        be32_to_cpu(fore200e->stats->aal5.cspdus_dropped),
3040                        be32_to_cpu(fore200e->stats->aal5.cspdus_crc_errors),
3041                        be32_to_cpu(fore200e->stats->aal5.cspdus_protocol_errors));
3042     
3043     if (!left--)
3044         return sprintf(page,"\n"
3045                        "   AUX:\t\t       allocation failures\n"
3046                        "     small b1:\t\t\t%10u\n"
3047                        "     large b1:\t\t\t%10u\n"
3048                        "     small b2:\t\t\t%10u\n"
3049                        "     large b2:\t\t\t%10u\n"
3050                        "     RX PDUs:\t\t\t%10u\n"
3051                        "     TX PDUs:\t\t\t%10lu\n",
3052                        be32_to_cpu(fore200e->stats->aux.small_b1_failed),
3053                        be32_to_cpu(fore200e->stats->aux.large_b1_failed),
3054                        be32_to_cpu(fore200e->stats->aux.small_b2_failed),
3055                        be32_to_cpu(fore200e->stats->aux.large_b2_failed),
3056                        be32_to_cpu(fore200e->stats->aux.rpd_alloc_failed),
3057                        fore200e->tx_sat);
3058     
3059     if (!left--)
3060         return sprintf(page,"\n"
3061                        " receive carrier:\t\t\t%s\n",
3062                        fore200e->stats->aux.receive_carrier ? "ON" : "OFF!");
3063     
3064     if (!left--) {
3065         return sprintf(page,"\n"
3066                        " VCCs:\n  address   VPI VCI   AAL "
3067                        "TX PDUs   TX min/max size  RX PDUs   RX min/max size\n");
3068     }
3069
3070     for (i = 0; i < NBR_CONNECT; i++) {
3071
3072         vcc = fore200e->vc_map[i].vcc;
3073
3074         if (vcc == NULL)
3075             continue;
3076
3077         spin_lock_irqsave(&fore200e->q_lock, flags);
3078
3079         if (vcc && test_bit(ATM_VF_READY, &vcc->flags) && !left--) {
3080
3081             fore200e_vcc = FORE200E_VCC(vcc);
3082             ASSERT(fore200e_vcc);
3083
3084             len = sprintf(page,
3085                           "  %08x  %03d %05d %1d   %09lu %05d/%05d      %09lu %05d/%05d\n",
3086                           (u32)(unsigned long)vcc,
3087                           vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
3088                           fore200e_vcc->tx_pdu,
3089                           fore200e_vcc->tx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->tx_min_pdu,
3090                           fore200e_vcc->tx_max_pdu,
3091                           fore200e_vcc->rx_pdu,
3092                           fore200e_vcc->rx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->rx_min_pdu,
3093                           fore200e_vcc->rx_max_pdu);
3094
3095             spin_unlock_irqrestore(&fore200e->q_lock, flags);
3096             return len;
3097         }
3098
3099         spin_unlock_irqrestore(&fore200e->q_lock, flags);
3100     }
3101     
3102     return 0;
3103 }
3104
3105 module_init(fore200e_module_init);
3106 module_exit(fore200e_module_cleanup);
3107
3108
3109 static const struct atmdev_ops fore200e_ops =
3110 {
3111         .open       = fore200e_open,
3112         .close      = fore200e_close,
3113         .ioctl      = fore200e_ioctl,
3114         .getsockopt = fore200e_getsockopt,
3115         .setsockopt = fore200e_setsockopt,
3116         .send       = fore200e_send,
3117         .change_qos = fore200e_change_qos,
3118         .proc_read  = fore200e_proc_read,
3119         .owner      = THIS_MODULE
3120 };
3121
3122
3123 static const struct fore200e_bus fore200e_bus[] = {
3124 #ifdef CONFIG_PCI
3125     { "PCA-200E", "pca200e", 32, 4, 32, 
3126       fore200e_pca_read,
3127       fore200e_pca_write,
3128       fore200e_pca_dma_map,
3129       fore200e_pca_dma_unmap,
3130       fore200e_pca_dma_sync_for_cpu,
3131       fore200e_pca_dma_sync_for_device,
3132       fore200e_pca_dma_chunk_alloc,
3133       fore200e_pca_dma_chunk_free,
3134       fore200e_pca_configure,
3135       fore200e_pca_map,
3136       fore200e_pca_reset,
3137       fore200e_pca_prom_read,
3138       fore200e_pca_unmap,
3139       NULL,
3140       fore200e_pca_irq_check,
3141       fore200e_pca_irq_ack,
3142       fore200e_pca_proc_read,
3143     },
3144 #endif
3145 #ifdef CONFIG_SBUS
3146     { "SBA-200E", "sba200e", 32, 64, 32,
3147       fore200e_sba_read,
3148       fore200e_sba_write,
3149       fore200e_sba_dma_map,
3150       fore200e_sba_dma_unmap,
3151       fore200e_sba_dma_sync_for_cpu,
3152       fore200e_sba_dma_sync_for_device,
3153       fore200e_sba_dma_chunk_alloc,
3154       fore200e_sba_dma_chunk_free,
3155       fore200e_sba_configure,
3156       fore200e_sba_map,
3157       fore200e_sba_reset,
3158       fore200e_sba_prom_read,
3159       fore200e_sba_unmap,
3160       fore200e_sba_irq_enable,
3161       fore200e_sba_irq_check,
3162       fore200e_sba_irq_ack,
3163       fore200e_sba_proc_read,
3164     },
3165 #endif
3166     {}
3167 };
3168
3169 MODULE_LICENSE("GPL");
3170 #ifdef CONFIG_PCI
3171 #ifdef __LITTLE_ENDIAN__
3172 /*(DEBLOBBED)*/
3173 #else
3174 /*(DEBLOBBED)*/
3175 #endif
3176 #endif /* CONFIG_PCI */
3177 #ifdef CONFIG_SBUS
3178 /*(DEBLOBBED)*/
3179 #endif