GNU Linux-libre 4.9.309-gnu1
[releases.git] / drivers / base / regmap / regmap.c
1 /*
2  * Register map access API
3  *
4  * Copyright 2011 Wolfson Microelectronics plc
5  *
6  * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/mutex.h>
17 #include <linux/err.h>
18 #include <linux/of.h>
19 #include <linux/rbtree.h>
20 #include <linux/sched.h>
21 #include <linux/delay.h>
22 #include <linux/log2.h>
23
24 #define CREATE_TRACE_POINTS
25 #include "trace.h"
26
27 #include "internal.h"
28
29 /*
30  * Sometimes for failures during very early init the trace
31  * infrastructure isn't available early enough to be used.  For this
32  * sort of problem defining LOG_DEVICE will add printks for basic
33  * register I/O on a specific device.
34  */
35 #undef LOG_DEVICE
36
37 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
38                                unsigned int mask, unsigned int val,
39                                bool *change, bool force_write);
40
41 static int _regmap_bus_reg_read(void *context, unsigned int reg,
42                                 unsigned int *val);
43 static int _regmap_bus_read(void *context, unsigned int reg,
44                             unsigned int *val);
45 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
46                                        unsigned int val);
47 static int _regmap_bus_reg_write(void *context, unsigned int reg,
48                                  unsigned int val);
49 static int _regmap_bus_raw_write(void *context, unsigned int reg,
50                                  unsigned int val);
51
52 bool regmap_reg_in_ranges(unsigned int reg,
53                           const struct regmap_range *ranges,
54                           unsigned int nranges)
55 {
56         const struct regmap_range *r;
57         int i;
58
59         for (i = 0, r = ranges; i < nranges; i++, r++)
60                 if (regmap_reg_in_range(reg, r))
61                         return true;
62         return false;
63 }
64 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
65
66 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
67                               const struct regmap_access_table *table)
68 {
69         /* Check "no ranges" first */
70         if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
71                 return false;
72
73         /* In case zero "yes ranges" are supplied, any reg is OK */
74         if (!table->n_yes_ranges)
75                 return true;
76
77         return regmap_reg_in_ranges(reg, table->yes_ranges,
78                                     table->n_yes_ranges);
79 }
80 EXPORT_SYMBOL_GPL(regmap_check_range_table);
81
82 bool regmap_writeable(struct regmap *map, unsigned int reg)
83 {
84         if (map->max_register && reg > map->max_register)
85                 return false;
86
87         if (map->writeable_reg)
88                 return map->writeable_reg(map->dev, reg);
89
90         if (map->wr_table)
91                 return regmap_check_range_table(map, reg, map->wr_table);
92
93         return true;
94 }
95
96 bool regmap_cached(struct regmap *map, unsigned int reg)
97 {
98         int ret;
99         unsigned int val;
100
101         if (map->cache_type == REGCACHE_NONE)
102                 return false;
103
104         if (!map->cache_ops)
105                 return false;
106
107         if (map->max_register && reg > map->max_register)
108                 return false;
109
110         map->lock(map->lock_arg);
111         ret = regcache_read(map, reg, &val);
112         map->unlock(map->lock_arg);
113         if (ret)
114                 return false;
115
116         return true;
117 }
118
119 bool regmap_readable(struct regmap *map, unsigned int reg)
120 {
121         if (!map->reg_read)
122                 return false;
123
124         if (map->max_register && reg > map->max_register)
125                 return false;
126
127         if (map->format.format_write)
128                 return false;
129
130         if (map->readable_reg)
131                 return map->readable_reg(map->dev, reg);
132
133         if (map->rd_table)
134                 return regmap_check_range_table(map, reg, map->rd_table);
135
136         return true;
137 }
138
139 bool regmap_volatile(struct regmap *map, unsigned int reg)
140 {
141         if (!map->format.format_write && !regmap_readable(map, reg))
142                 return false;
143
144         if (map->volatile_reg)
145                 return map->volatile_reg(map->dev, reg);
146
147         if (map->volatile_table)
148                 return regmap_check_range_table(map, reg, map->volatile_table);
149
150         if (map->cache_ops)
151                 return false;
152         else
153                 return true;
154 }
155
156 bool regmap_precious(struct regmap *map, unsigned int reg)
157 {
158         if (!regmap_readable(map, reg))
159                 return false;
160
161         if (map->precious_reg)
162                 return map->precious_reg(map->dev, reg);
163
164         if (map->precious_table)
165                 return regmap_check_range_table(map, reg, map->precious_table);
166
167         return false;
168 }
169
170 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
171         size_t num)
172 {
173         unsigned int i;
174
175         for (i = 0; i < num; i++)
176                 if (!regmap_volatile(map, reg + i))
177                         return false;
178
179         return true;
180 }
181
182 static void regmap_format_2_6_write(struct regmap *map,
183                                      unsigned int reg, unsigned int val)
184 {
185         u8 *out = map->work_buf;
186
187         *out = (reg << 6) | val;
188 }
189
190 static void regmap_format_4_12_write(struct regmap *map,
191                                      unsigned int reg, unsigned int val)
192 {
193         __be16 *out = map->work_buf;
194         *out = cpu_to_be16((reg << 12) | val);
195 }
196
197 static void regmap_format_7_9_write(struct regmap *map,
198                                     unsigned int reg, unsigned int val)
199 {
200         __be16 *out = map->work_buf;
201         *out = cpu_to_be16((reg << 9) | val);
202 }
203
204 static void regmap_format_10_14_write(struct regmap *map,
205                                     unsigned int reg, unsigned int val)
206 {
207         u8 *out = map->work_buf;
208
209         out[2] = val;
210         out[1] = (val >> 8) | (reg << 6);
211         out[0] = reg >> 2;
212 }
213
214 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
215 {
216         u8 *b = buf;
217
218         b[0] = val << shift;
219 }
220
221 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
222 {
223         __be16 *b = buf;
224
225         b[0] = cpu_to_be16(val << shift);
226 }
227
228 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
229 {
230         __le16 *b = buf;
231
232         b[0] = cpu_to_le16(val << shift);
233 }
234
235 static void regmap_format_16_native(void *buf, unsigned int val,
236                                     unsigned int shift)
237 {
238         *(u16 *)buf = val << shift;
239 }
240
241 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
242 {
243         u8 *b = buf;
244
245         val <<= shift;
246
247         b[0] = val >> 16;
248         b[1] = val >> 8;
249         b[2] = val;
250 }
251
252 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
253 {
254         __be32 *b = buf;
255
256         b[0] = cpu_to_be32(val << shift);
257 }
258
259 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
260 {
261         __le32 *b = buf;
262
263         b[0] = cpu_to_le32(val << shift);
264 }
265
266 static void regmap_format_32_native(void *buf, unsigned int val,
267                                     unsigned int shift)
268 {
269         *(u32 *)buf = val << shift;
270 }
271
272 #ifdef CONFIG_64BIT
273 static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
274 {
275         __be64 *b = buf;
276
277         b[0] = cpu_to_be64((u64)val << shift);
278 }
279
280 static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
281 {
282         __le64 *b = buf;
283
284         b[0] = cpu_to_le64((u64)val << shift);
285 }
286
287 static void regmap_format_64_native(void *buf, unsigned int val,
288                                     unsigned int shift)
289 {
290         *(u64 *)buf = (u64)val << shift;
291 }
292 #endif
293
294 static void regmap_parse_inplace_noop(void *buf)
295 {
296 }
297
298 static unsigned int regmap_parse_8(const void *buf)
299 {
300         const u8 *b = buf;
301
302         return b[0];
303 }
304
305 static unsigned int regmap_parse_16_be(const void *buf)
306 {
307         const __be16 *b = buf;
308
309         return be16_to_cpu(b[0]);
310 }
311
312 static unsigned int regmap_parse_16_le(const void *buf)
313 {
314         const __le16 *b = buf;
315
316         return le16_to_cpu(b[0]);
317 }
318
319 static void regmap_parse_16_be_inplace(void *buf)
320 {
321         __be16 *b = buf;
322
323         b[0] = be16_to_cpu(b[0]);
324 }
325
326 static void regmap_parse_16_le_inplace(void *buf)
327 {
328         __le16 *b = buf;
329
330         b[0] = le16_to_cpu(b[0]);
331 }
332
333 static unsigned int regmap_parse_16_native(const void *buf)
334 {
335         return *(u16 *)buf;
336 }
337
338 static unsigned int regmap_parse_24(const void *buf)
339 {
340         const u8 *b = buf;
341         unsigned int ret = b[2];
342         ret |= ((unsigned int)b[1]) << 8;
343         ret |= ((unsigned int)b[0]) << 16;
344
345         return ret;
346 }
347
348 static unsigned int regmap_parse_32_be(const void *buf)
349 {
350         const __be32 *b = buf;
351
352         return be32_to_cpu(b[0]);
353 }
354
355 static unsigned int regmap_parse_32_le(const void *buf)
356 {
357         const __le32 *b = buf;
358
359         return le32_to_cpu(b[0]);
360 }
361
362 static void regmap_parse_32_be_inplace(void *buf)
363 {
364         __be32 *b = buf;
365
366         b[0] = be32_to_cpu(b[0]);
367 }
368
369 static void regmap_parse_32_le_inplace(void *buf)
370 {
371         __le32 *b = buf;
372
373         b[0] = le32_to_cpu(b[0]);
374 }
375
376 static unsigned int regmap_parse_32_native(const void *buf)
377 {
378         return *(u32 *)buf;
379 }
380
381 #ifdef CONFIG_64BIT
382 static unsigned int regmap_parse_64_be(const void *buf)
383 {
384         const __be64 *b = buf;
385
386         return be64_to_cpu(b[0]);
387 }
388
389 static unsigned int regmap_parse_64_le(const void *buf)
390 {
391         const __le64 *b = buf;
392
393         return le64_to_cpu(b[0]);
394 }
395
396 static void regmap_parse_64_be_inplace(void *buf)
397 {
398         __be64 *b = buf;
399
400         b[0] = be64_to_cpu(b[0]);
401 }
402
403 static void regmap_parse_64_le_inplace(void *buf)
404 {
405         __le64 *b = buf;
406
407         b[0] = le64_to_cpu(b[0]);
408 }
409
410 static unsigned int regmap_parse_64_native(const void *buf)
411 {
412         return *(u64 *)buf;
413 }
414 #endif
415
416 static void regmap_lock_mutex(void *__map)
417 {
418         struct regmap *map = __map;
419         mutex_lock(&map->mutex);
420 }
421
422 static void regmap_unlock_mutex(void *__map)
423 {
424         struct regmap *map = __map;
425         mutex_unlock(&map->mutex);
426 }
427
428 static void regmap_lock_spinlock(void *__map)
429 __acquires(&map->spinlock)
430 {
431         struct regmap *map = __map;
432         unsigned long flags;
433
434         spin_lock_irqsave(&map->spinlock, flags);
435         map->spinlock_flags = flags;
436 }
437
438 static void regmap_unlock_spinlock(void *__map)
439 __releases(&map->spinlock)
440 {
441         struct regmap *map = __map;
442         spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
443 }
444
445 static void dev_get_regmap_release(struct device *dev, void *res)
446 {
447         /*
448          * We don't actually have anything to do here; the goal here
449          * is not to manage the regmap but to provide a simple way to
450          * get the regmap back given a struct device.
451          */
452 }
453
454 static bool _regmap_range_add(struct regmap *map,
455                               struct regmap_range_node *data)
456 {
457         struct rb_root *root = &map->range_tree;
458         struct rb_node **new = &(root->rb_node), *parent = NULL;
459
460         while (*new) {
461                 struct regmap_range_node *this =
462                         container_of(*new, struct regmap_range_node, node);
463
464                 parent = *new;
465                 if (data->range_max < this->range_min)
466                         new = &((*new)->rb_left);
467                 else if (data->range_min > this->range_max)
468                         new = &((*new)->rb_right);
469                 else
470                         return false;
471         }
472
473         rb_link_node(&data->node, parent, new);
474         rb_insert_color(&data->node, root);
475
476         return true;
477 }
478
479 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
480                                                       unsigned int reg)
481 {
482         struct rb_node *node = map->range_tree.rb_node;
483
484         while (node) {
485                 struct regmap_range_node *this =
486                         container_of(node, struct regmap_range_node, node);
487
488                 if (reg < this->range_min)
489                         node = node->rb_left;
490                 else if (reg > this->range_max)
491                         node = node->rb_right;
492                 else
493                         return this;
494         }
495
496         return NULL;
497 }
498
499 static void regmap_range_exit(struct regmap *map)
500 {
501         struct rb_node *next;
502         struct regmap_range_node *range_node;
503
504         next = rb_first(&map->range_tree);
505         while (next) {
506                 range_node = rb_entry(next, struct regmap_range_node, node);
507                 next = rb_next(&range_node->node);
508                 rb_erase(&range_node->node, &map->range_tree);
509                 kfree(range_node);
510         }
511
512         kfree(map->selector_work_buf);
513 }
514
515 int regmap_attach_dev(struct device *dev, struct regmap *map,
516                       const struct regmap_config *config)
517 {
518         struct regmap **m;
519
520         map->dev = dev;
521
522         regmap_debugfs_init(map, config->name);
523
524         /* Add a devres resource for dev_get_regmap() */
525         m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
526         if (!m) {
527                 regmap_debugfs_exit(map);
528                 return -ENOMEM;
529         }
530         *m = map;
531         devres_add(dev, m);
532
533         return 0;
534 }
535 EXPORT_SYMBOL_GPL(regmap_attach_dev);
536
537 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
538                                         const struct regmap_config *config)
539 {
540         enum regmap_endian endian;
541
542         /* Retrieve the endianness specification from the regmap config */
543         endian = config->reg_format_endian;
544
545         /* If the regmap config specified a non-default value, use that */
546         if (endian != REGMAP_ENDIAN_DEFAULT)
547                 return endian;
548
549         /* Retrieve the endianness specification from the bus config */
550         if (bus && bus->reg_format_endian_default)
551                 endian = bus->reg_format_endian_default;
552
553         /* If the bus specified a non-default value, use that */
554         if (endian != REGMAP_ENDIAN_DEFAULT)
555                 return endian;
556
557         /* Use this if no other value was found */
558         return REGMAP_ENDIAN_BIG;
559 }
560
561 enum regmap_endian regmap_get_val_endian(struct device *dev,
562                                          const struct regmap_bus *bus,
563                                          const struct regmap_config *config)
564 {
565         struct device_node *np;
566         enum regmap_endian endian;
567
568         /* Retrieve the endianness specification from the regmap config */
569         endian = config->val_format_endian;
570
571         /* If the regmap config specified a non-default value, use that */
572         if (endian != REGMAP_ENDIAN_DEFAULT)
573                 return endian;
574
575         /* If the dev and dev->of_node exist try to get endianness from DT */
576         if (dev && dev->of_node) {
577                 np = dev->of_node;
578
579                 /* Parse the device's DT node for an endianness specification */
580                 if (of_property_read_bool(np, "big-endian"))
581                         endian = REGMAP_ENDIAN_BIG;
582                 else if (of_property_read_bool(np, "little-endian"))
583                         endian = REGMAP_ENDIAN_LITTLE;
584                 else if (of_property_read_bool(np, "native-endian"))
585                         endian = REGMAP_ENDIAN_NATIVE;
586
587                 /* If the endianness was specified in DT, use that */
588                 if (endian != REGMAP_ENDIAN_DEFAULT)
589                         return endian;
590         }
591
592         /* Retrieve the endianness specification from the bus config */
593         if (bus && bus->val_format_endian_default)
594                 endian = bus->val_format_endian_default;
595
596         /* If the bus specified a non-default value, use that */
597         if (endian != REGMAP_ENDIAN_DEFAULT)
598                 return endian;
599
600         /* Use this if no other value was found */
601         return REGMAP_ENDIAN_BIG;
602 }
603 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
604
605 struct regmap *__regmap_init(struct device *dev,
606                              const struct regmap_bus *bus,
607                              void *bus_context,
608                              const struct regmap_config *config,
609                              struct lock_class_key *lock_key,
610                              const char *lock_name)
611 {
612         struct regmap *map;
613         int ret = -EINVAL;
614         enum regmap_endian reg_endian, val_endian;
615         int i, j;
616
617         if (!config)
618                 goto err;
619
620         map = kzalloc(sizeof(*map), GFP_KERNEL);
621         if (map == NULL) {
622                 ret = -ENOMEM;
623                 goto err;
624         }
625
626         if (config->lock && config->unlock) {
627                 map->lock = config->lock;
628                 map->unlock = config->unlock;
629                 map->lock_arg = config->lock_arg;
630         } else {
631                 if ((bus && bus->fast_io) ||
632                     config->fast_io) {
633                         spin_lock_init(&map->spinlock);
634                         map->lock = regmap_lock_spinlock;
635                         map->unlock = regmap_unlock_spinlock;
636                         lockdep_set_class_and_name(&map->spinlock,
637                                                    lock_key, lock_name);
638                 } else {
639                         mutex_init(&map->mutex);
640                         map->lock = regmap_lock_mutex;
641                         map->unlock = regmap_unlock_mutex;
642                         lockdep_set_class_and_name(&map->mutex,
643                                                    lock_key, lock_name);
644                 }
645                 map->lock_arg = map;
646         }
647
648         /*
649          * When we write in fast-paths with regmap_bulk_write() don't allocate
650          * scratch buffers with sleeping allocations.
651          */
652         if ((bus && bus->fast_io) || config->fast_io)
653                 map->alloc_flags = GFP_ATOMIC;
654         else
655                 map->alloc_flags = GFP_KERNEL;
656
657         map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
658         map->format.pad_bytes = config->pad_bits / 8;
659         map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
660         map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
661                         config->val_bits + config->pad_bits, 8);
662         map->reg_shift = config->pad_bits % 8;
663         if (config->reg_stride)
664                 map->reg_stride = config->reg_stride;
665         else
666                 map->reg_stride = 1;
667         if (is_power_of_2(map->reg_stride))
668                 map->reg_stride_order = ilog2(map->reg_stride);
669         else
670                 map->reg_stride_order = -1;
671         map->use_single_read = config->use_single_rw || !bus || !bus->read;
672         map->use_single_write = config->use_single_rw || !bus || !bus->write;
673         map->can_multi_write = config->can_multi_write && bus && bus->write;
674         if (bus) {
675                 map->max_raw_read = bus->max_raw_read;
676                 map->max_raw_write = bus->max_raw_write;
677         }
678         map->dev = dev;
679         map->bus = bus;
680         map->bus_context = bus_context;
681         map->max_register = config->max_register;
682         map->wr_table = config->wr_table;
683         map->rd_table = config->rd_table;
684         map->volatile_table = config->volatile_table;
685         map->precious_table = config->precious_table;
686         map->writeable_reg = config->writeable_reg;
687         map->readable_reg = config->readable_reg;
688         map->volatile_reg = config->volatile_reg;
689         map->precious_reg = config->precious_reg;
690         map->cache_type = config->cache_type;
691         map->name = config->name;
692
693         spin_lock_init(&map->async_lock);
694         INIT_LIST_HEAD(&map->async_list);
695         INIT_LIST_HEAD(&map->async_free);
696         init_waitqueue_head(&map->async_waitq);
697
698         if (config->read_flag_mask || config->write_flag_mask) {
699                 map->read_flag_mask = config->read_flag_mask;
700                 map->write_flag_mask = config->write_flag_mask;
701         } else if (bus) {
702                 map->read_flag_mask = bus->read_flag_mask;
703         }
704
705         if (!bus) {
706                 map->reg_read  = config->reg_read;
707                 map->reg_write = config->reg_write;
708
709                 map->defer_caching = false;
710                 goto skip_format_initialization;
711         } else if (!bus->read || !bus->write) {
712                 map->reg_read = _regmap_bus_reg_read;
713                 map->reg_write = _regmap_bus_reg_write;
714
715                 map->defer_caching = false;
716                 goto skip_format_initialization;
717         } else {
718                 map->reg_read  = _regmap_bus_read;
719                 map->reg_update_bits = bus->reg_update_bits;
720         }
721
722         reg_endian = regmap_get_reg_endian(bus, config);
723         val_endian = regmap_get_val_endian(dev, bus, config);
724
725         switch (config->reg_bits + map->reg_shift) {
726         case 2:
727                 switch (config->val_bits) {
728                 case 6:
729                         map->format.format_write = regmap_format_2_6_write;
730                         break;
731                 default:
732                         goto err_map;
733                 }
734                 break;
735
736         case 4:
737                 switch (config->val_bits) {
738                 case 12:
739                         map->format.format_write = regmap_format_4_12_write;
740                         break;
741                 default:
742                         goto err_map;
743                 }
744                 break;
745
746         case 7:
747                 switch (config->val_bits) {
748                 case 9:
749                         map->format.format_write = regmap_format_7_9_write;
750                         break;
751                 default:
752                         goto err_map;
753                 }
754                 break;
755
756         case 10:
757                 switch (config->val_bits) {
758                 case 14:
759                         map->format.format_write = regmap_format_10_14_write;
760                         break;
761                 default:
762                         goto err_map;
763                 }
764                 break;
765
766         case 8:
767                 map->format.format_reg = regmap_format_8;
768                 break;
769
770         case 16:
771                 switch (reg_endian) {
772                 case REGMAP_ENDIAN_BIG:
773                         map->format.format_reg = regmap_format_16_be;
774                         break;
775                 case REGMAP_ENDIAN_LITTLE:
776                         map->format.format_reg = regmap_format_16_le;
777                         break;
778                 case REGMAP_ENDIAN_NATIVE:
779                         map->format.format_reg = regmap_format_16_native;
780                         break;
781                 default:
782                         goto err_map;
783                 }
784                 break;
785
786         case 24:
787                 if (reg_endian != REGMAP_ENDIAN_BIG)
788                         goto err_map;
789                 map->format.format_reg = regmap_format_24;
790                 break;
791
792         case 32:
793                 switch (reg_endian) {
794                 case REGMAP_ENDIAN_BIG:
795                         map->format.format_reg = regmap_format_32_be;
796                         break;
797                 case REGMAP_ENDIAN_LITTLE:
798                         map->format.format_reg = regmap_format_32_le;
799                         break;
800                 case REGMAP_ENDIAN_NATIVE:
801                         map->format.format_reg = regmap_format_32_native;
802                         break;
803                 default:
804                         goto err_map;
805                 }
806                 break;
807
808 #ifdef CONFIG_64BIT
809         case 64:
810                 switch (reg_endian) {
811                 case REGMAP_ENDIAN_BIG:
812                         map->format.format_reg = regmap_format_64_be;
813                         break;
814                 case REGMAP_ENDIAN_LITTLE:
815                         map->format.format_reg = regmap_format_64_le;
816                         break;
817                 case REGMAP_ENDIAN_NATIVE:
818                         map->format.format_reg = regmap_format_64_native;
819                         break;
820                 default:
821                         goto err_map;
822                 }
823                 break;
824 #endif
825
826         default:
827                 goto err_map;
828         }
829
830         if (val_endian == REGMAP_ENDIAN_NATIVE)
831                 map->format.parse_inplace = regmap_parse_inplace_noop;
832
833         switch (config->val_bits) {
834         case 8:
835                 map->format.format_val = regmap_format_8;
836                 map->format.parse_val = regmap_parse_8;
837                 map->format.parse_inplace = regmap_parse_inplace_noop;
838                 break;
839         case 16:
840                 switch (val_endian) {
841                 case REGMAP_ENDIAN_BIG:
842                         map->format.format_val = regmap_format_16_be;
843                         map->format.parse_val = regmap_parse_16_be;
844                         map->format.parse_inplace = regmap_parse_16_be_inplace;
845                         break;
846                 case REGMAP_ENDIAN_LITTLE:
847                         map->format.format_val = regmap_format_16_le;
848                         map->format.parse_val = regmap_parse_16_le;
849                         map->format.parse_inplace = regmap_parse_16_le_inplace;
850                         break;
851                 case REGMAP_ENDIAN_NATIVE:
852                         map->format.format_val = regmap_format_16_native;
853                         map->format.parse_val = regmap_parse_16_native;
854                         break;
855                 default:
856                         goto err_map;
857                 }
858                 break;
859         case 24:
860                 if (val_endian != REGMAP_ENDIAN_BIG)
861                         goto err_map;
862                 map->format.format_val = regmap_format_24;
863                 map->format.parse_val = regmap_parse_24;
864                 break;
865         case 32:
866                 switch (val_endian) {
867                 case REGMAP_ENDIAN_BIG:
868                         map->format.format_val = regmap_format_32_be;
869                         map->format.parse_val = regmap_parse_32_be;
870                         map->format.parse_inplace = regmap_parse_32_be_inplace;
871                         break;
872                 case REGMAP_ENDIAN_LITTLE:
873                         map->format.format_val = regmap_format_32_le;
874                         map->format.parse_val = regmap_parse_32_le;
875                         map->format.parse_inplace = regmap_parse_32_le_inplace;
876                         break;
877                 case REGMAP_ENDIAN_NATIVE:
878                         map->format.format_val = regmap_format_32_native;
879                         map->format.parse_val = regmap_parse_32_native;
880                         break;
881                 default:
882                         goto err_map;
883                 }
884                 break;
885 #ifdef CONFIG_64BIT
886         case 64:
887                 switch (val_endian) {
888                 case REGMAP_ENDIAN_BIG:
889                         map->format.format_val = regmap_format_64_be;
890                         map->format.parse_val = regmap_parse_64_be;
891                         map->format.parse_inplace = regmap_parse_64_be_inplace;
892                         break;
893                 case REGMAP_ENDIAN_LITTLE:
894                         map->format.format_val = regmap_format_64_le;
895                         map->format.parse_val = regmap_parse_64_le;
896                         map->format.parse_inplace = regmap_parse_64_le_inplace;
897                         break;
898                 case REGMAP_ENDIAN_NATIVE:
899                         map->format.format_val = regmap_format_64_native;
900                         map->format.parse_val = regmap_parse_64_native;
901                         break;
902                 default:
903                         goto err_map;
904                 }
905                 break;
906 #endif
907         }
908
909         if (map->format.format_write) {
910                 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
911                     (val_endian != REGMAP_ENDIAN_BIG))
912                         goto err_map;
913                 map->use_single_write = true;
914         }
915
916         if (!map->format.format_write &&
917             !(map->format.format_reg && map->format.format_val))
918                 goto err_map;
919
920         map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
921         if (map->work_buf == NULL) {
922                 ret = -ENOMEM;
923                 goto err_map;
924         }
925
926         if (map->format.format_write) {
927                 map->defer_caching = false;
928                 map->reg_write = _regmap_bus_formatted_write;
929         } else if (map->format.format_val) {
930                 map->defer_caching = true;
931                 map->reg_write = _regmap_bus_raw_write;
932         }
933
934 skip_format_initialization:
935
936         map->range_tree = RB_ROOT;
937         for (i = 0; i < config->num_ranges; i++) {
938                 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
939                 struct regmap_range_node *new;
940
941                 /* Sanity check */
942                 if (range_cfg->range_max < range_cfg->range_min) {
943                         dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
944                                 range_cfg->range_max, range_cfg->range_min);
945                         goto err_range;
946                 }
947
948                 if (range_cfg->range_max > map->max_register) {
949                         dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
950                                 range_cfg->range_max, map->max_register);
951                         goto err_range;
952                 }
953
954                 if (range_cfg->selector_reg > map->max_register) {
955                         dev_err(map->dev,
956                                 "Invalid range %d: selector out of map\n", i);
957                         goto err_range;
958                 }
959
960                 if (range_cfg->window_len == 0) {
961                         dev_err(map->dev, "Invalid range %d: window_len 0\n",
962                                 i);
963                         goto err_range;
964                 }
965
966                 /* Make sure, that this register range has no selector
967                    or data window within its boundary */
968                 for (j = 0; j < config->num_ranges; j++) {
969                         unsigned sel_reg = config->ranges[j].selector_reg;
970                         unsigned win_min = config->ranges[j].window_start;
971                         unsigned win_max = win_min +
972                                            config->ranges[j].window_len - 1;
973
974                         /* Allow data window inside its own virtual range */
975                         if (j == i)
976                                 continue;
977
978                         if (range_cfg->range_min <= sel_reg &&
979                             sel_reg <= range_cfg->range_max) {
980                                 dev_err(map->dev,
981                                         "Range %d: selector for %d in window\n",
982                                         i, j);
983                                 goto err_range;
984                         }
985
986                         if (!(win_max < range_cfg->range_min ||
987                               win_min > range_cfg->range_max)) {
988                                 dev_err(map->dev,
989                                         "Range %d: window for %d in window\n",
990                                         i, j);
991                                 goto err_range;
992                         }
993                 }
994
995                 new = kzalloc(sizeof(*new), GFP_KERNEL);
996                 if (new == NULL) {
997                         ret = -ENOMEM;
998                         goto err_range;
999                 }
1000
1001                 new->map = map;
1002                 new->name = range_cfg->name;
1003                 new->range_min = range_cfg->range_min;
1004                 new->range_max = range_cfg->range_max;
1005                 new->selector_reg = range_cfg->selector_reg;
1006                 new->selector_mask = range_cfg->selector_mask;
1007                 new->selector_shift = range_cfg->selector_shift;
1008                 new->window_start = range_cfg->window_start;
1009                 new->window_len = range_cfg->window_len;
1010
1011                 if (!_regmap_range_add(map, new)) {
1012                         dev_err(map->dev, "Failed to add range %d\n", i);
1013                         kfree(new);
1014                         goto err_range;
1015                 }
1016
1017                 if (map->selector_work_buf == NULL) {
1018                         map->selector_work_buf =
1019                                 kzalloc(map->format.buf_size, GFP_KERNEL);
1020                         if (map->selector_work_buf == NULL) {
1021                                 ret = -ENOMEM;
1022                                 goto err_range;
1023                         }
1024                 }
1025         }
1026
1027         ret = regcache_init(map, config);
1028         if (ret != 0)
1029                 goto err_range;
1030
1031         if (dev) {
1032                 ret = regmap_attach_dev(dev, map, config);
1033                 if (ret != 0)
1034                         goto err_regcache;
1035         }
1036
1037         return map;
1038
1039 err_regcache:
1040         regcache_exit(map);
1041 err_range:
1042         regmap_range_exit(map);
1043         kfree(map->work_buf);
1044 err_map:
1045         kfree(map);
1046 err:
1047         return ERR_PTR(ret);
1048 }
1049 EXPORT_SYMBOL_GPL(__regmap_init);
1050
1051 static void devm_regmap_release(struct device *dev, void *res)
1052 {
1053         regmap_exit(*(struct regmap **)res);
1054 }
1055
1056 struct regmap *__devm_regmap_init(struct device *dev,
1057                                   const struct regmap_bus *bus,
1058                                   void *bus_context,
1059                                   const struct regmap_config *config,
1060                                   struct lock_class_key *lock_key,
1061                                   const char *lock_name)
1062 {
1063         struct regmap **ptr, *regmap;
1064
1065         ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1066         if (!ptr)
1067                 return ERR_PTR(-ENOMEM);
1068
1069         regmap = __regmap_init(dev, bus, bus_context, config,
1070                                lock_key, lock_name);
1071         if (!IS_ERR(regmap)) {
1072                 *ptr = regmap;
1073                 devres_add(dev, ptr);
1074         } else {
1075                 devres_free(ptr);
1076         }
1077
1078         return regmap;
1079 }
1080 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1081
1082 static void regmap_field_init(struct regmap_field *rm_field,
1083         struct regmap *regmap, struct reg_field reg_field)
1084 {
1085         rm_field->regmap = regmap;
1086         rm_field->reg = reg_field.reg;
1087         rm_field->shift = reg_field.lsb;
1088         rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1089         rm_field->id_size = reg_field.id_size;
1090         rm_field->id_offset = reg_field.id_offset;
1091 }
1092
1093 /**
1094  * devm_regmap_field_alloc(): Allocate and initialise a register field
1095  * in a register map.
1096  *
1097  * @dev: Device that will be interacted with
1098  * @regmap: regmap bank in which this register field is located.
1099  * @reg_field: Register field with in the bank.
1100  *
1101  * The return value will be an ERR_PTR() on error or a valid pointer
1102  * to a struct regmap_field. The regmap_field will be automatically freed
1103  * by the device management code.
1104  */
1105 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1106                 struct regmap *regmap, struct reg_field reg_field)
1107 {
1108         struct regmap_field *rm_field = devm_kzalloc(dev,
1109                                         sizeof(*rm_field), GFP_KERNEL);
1110         if (!rm_field)
1111                 return ERR_PTR(-ENOMEM);
1112
1113         regmap_field_init(rm_field, regmap, reg_field);
1114
1115         return rm_field;
1116
1117 }
1118 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1119
1120 /**
1121  * devm_regmap_field_free(): Free register field allocated using
1122  * devm_regmap_field_alloc. Usally drivers need not call this function,
1123  * as the memory allocated via devm will be freed as per device-driver
1124  * life-cyle.
1125  *
1126  * @dev: Device that will be interacted with
1127  * @field: regmap field which should be freed.
1128  */
1129 void devm_regmap_field_free(struct device *dev,
1130         struct regmap_field *field)
1131 {
1132         devm_kfree(dev, field);
1133 }
1134 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1135
1136 /**
1137  * regmap_field_alloc(): Allocate and initialise a register field
1138  * in a register map.
1139  *
1140  * @regmap: regmap bank in which this register field is located.
1141  * @reg_field: Register field with in the bank.
1142  *
1143  * The return value will be an ERR_PTR() on error or a valid pointer
1144  * to a struct regmap_field. The regmap_field should be freed by the
1145  * user once its finished working with it using regmap_field_free().
1146  */
1147 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1148                 struct reg_field reg_field)
1149 {
1150         struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1151
1152         if (!rm_field)
1153                 return ERR_PTR(-ENOMEM);
1154
1155         regmap_field_init(rm_field, regmap, reg_field);
1156
1157         return rm_field;
1158 }
1159 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1160
1161 /**
1162  * regmap_field_free(): Free register field allocated using regmap_field_alloc
1163  *
1164  * @field: regmap field which should be freed.
1165  */
1166 void regmap_field_free(struct regmap_field *field)
1167 {
1168         kfree(field);
1169 }
1170 EXPORT_SYMBOL_GPL(regmap_field_free);
1171
1172 /**
1173  * regmap_reinit_cache(): Reinitialise the current register cache
1174  *
1175  * @map: Register map to operate on.
1176  * @config: New configuration.  Only the cache data will be used.
1177  *
1178  * Discard any existing register cache for the map and initialize a
1179  * new cache.  This can be used to restore the cache to defaults or to
1180  * update the cache configuration to reflect runtime discovery of the
1181  * hardware.
1182  *
1183  * No explicit locking is done here, the user needs to ensure that
1184  * this function will not race with other calls to regmap.
1185  */
1186 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1187 {
1188         regcache_exit(map);
1189         regmap_debugfs_exit(map);
1190
1191         map->max_register = config->max_register;
1192         map->writeable_reg = config->writeable_reg;
1193         map->readable_reg = config->readable_reg;
1194         map->volatile_reg = config->volatile_reg;
1195         map->precious_reg = config->precious_reg;
1196         map->cache_type = config->cache_type;
1197
1198         regmap_debugfs_init(map, config->name);
1199
1200         map->cache_bypass = false;
1201         map->cache_only = false;
1202
1203         return regcache_init(map, config);
1204 }
1205 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1206
1207 /**
1208  * regmap_exit(): Free a previously allocated register map
1209  */
1210 void regmap_exit(struct regmap *map)
1211 {
1212         struct regmap_async *async;
1213
1214         regcache_exit(map);
1215         regmap_debugfs_exit(map);
1216         regmap_range_exit(map);
1217         if (map->bus && map->bus->free_context)
1218                 map->bus->free_context(map->bus_context);
1219         kfree(map->work_buf);
1220         while (!list_empty(&map->async_free)) {
1221                 async = list_first_entry_or_null(&map->async_free,
1222                                                  struct regmap_async,
1223                                                  list);
1224                 list_del(&async->list);
1225                 kfree(async->work_buf);
1226                 kfree(async);
1227         }
1228         kfree(map);
1229 }
1230 EXPORT_SYMBOL_GPL(regmap_exit);
1231
1232 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1233 {
1234         struct regmap **r = res;
1235         if (!r || !*r) {
1236                 WARN_ON(!r || !*r);
1237                 return 0;
1238         }
1239
1240         /* If the user didn't specify a name match any */
1241         if (data)
1242                 return !strcmp((*r)->name, data);
1243         else
1244                 return 1;
1245 }
1246
1247 /**
1248  * dev_get_regmap(): Obtain the regmap (if any) for a device
1249  *
1250  * @dev: Device to retrieve the map for
1251  * @name: Optional name for the register map, usually NULL.
1252  *
1253  * Returns the regmap for the device if one is present, or NULL.  If
1254  * name is specified then it must match the name specified when
1255  * registering the device, if it is NULL then the first regmap found
1256  * will be used.  Devices with multiple register maps are very rare,
1257  * generic code should normally not need to specify a name.
1258  */
1259 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1260 {
1261         struct regmap **r = devres_find(dev, dev_get_regmap_release,
1262                                         dev_get_regmap_match, (void *)name);
1263
1264         if (!r)
1265                 return NULL;
1266         return *r;
1267 }
1268 EXPORT_SYMBOL_GPL(dev_get_regmap);
1269
1270 /**
1271  * regmap_get_device(): Obtain the device from a regmap
1272  *
1273  * @map: Register map to operate on.
1274  *
1275  * Returns the underlying device that the regmap has been created for.
1276  */
1277 struct device *regmap_get_device(struct regmap *map)
1278 {
1279         return map->dev;
1280 }
1281 EXPORT_SYMBOL_GPL(regmap_get_device);
1282
1283 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1284                                struct regmap_range_node *range,
1285                                unsigned int val_num)
1286 {
1287         void *orig_work_buf;
1288         unsigned int win_offset;
1289         unsigned int win_page;
1290         bool page_chg;
1291         int ret;
1292
1293         win_offset = (*reg - range->range_min) % range->window_len;
1294         win_page = (*reg - range->range_min) / range->window_len;
1295
1296         if (val_num > 1) {
1297                 /* Bulk write shouldn't cross range boundary */
1298                 if (*reg + val_num - 1 > range->range_max)
1299                         return -EINVAL;
1300
1301                 /* ... or single page boundary */
1302                 if (val_num > range->window_len - win_offset)
1303                         return -EINVAL;
1304         }
1305
1306         /* It is possible to have selector register inside data window.
1307            In that case, selector register is located on every page and
1308            it needs no page switching, when accessed alone. */
1309         if (val_num > 1 ||
1310             range->window_start + win_offset != range->selector_reg) {
1311                 /* Use separate work_buf during page switching */
1312                 orig_work_buf = map->work_buf;
1313                 map->work_buf = map->selector_work_buf;
1314
1315                 ret = _regmap_update_bits(map, range->selector_reg,
1316                                           range->selector_mask,
1317                                           win_page << range->selector_shift,
1318                                           &page_chg, false);
1319
1320                 map->work_buf = orig_work_buf;
1321
1322                 if (ret != 0)
1323                         return ret;
1324         }
1325
1326         *reg = range->window_start + win_offset;
1327
1328         return 0;
1329 }
1330
1331 static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1332                                           unsigned long mask)
1333 {
1334         u8 *buf;
1335         int i;
1336
1337         if (!mask || !map->work_buf)
1338                 return;
1339
1340         buf = map->work_buf;
1341
1342         for (i = 0; i < max_bytes; i++)
1343                 buf[i] |= (mask >> (8 * i)) & 0xff;
1344 }
1345
1346 int _regmap_raw_write(struct regmap *map, unsigned int reg,
1347                       const void *val, size_t val_len)
1348 {
1349         struct regmap_range_node *range;
1350         unsigned long flags;
1351         void *work_val = map->work_buf + map->format.reg_bytes +
1352                 map->format.pad_bytes;
1353         void *buf;
1354         int ret = -ENOTSUPP;
1355         size_t len;
1356         int i;
1357
1358         WARN_ON(!map->bus);
1359
1360         /* Check for unwritable registers before we start */
1361         if (map->writeable_reg)
1362                 for (i = 0; i < val_len / map->format.val_bytes; i++)
1363                         if (!map->writeable_reg(map->dev,
1364                                                reg + regmap_get_offset(map, i)))
1365                                 return -EINVAL;
1366
1367         if (!map->cache_bypass && map->format.parse_val) {
1368                 unsigned int ival;
1369                 int val_bytes = map->format.val_bytes;
1370                 for (i = 0; i < val_len / val_bytes; i++) {
1371                         ival = map->format.parse_val(val + (i * val_bytes));
1372                         ret = regcache_write(map,
1373                                              reg + regmap_get_offset(map, i),
1374                                              ival);
1375                         if (ret) {
1376                                 dev_err(map->dev,
1377                                         "Error in caching of register: %x ret: %d\n",
1378                                         reg + regmap_get_offset(map, i), ret);
1379                                 return ret;
1380                         }
1381                 }
1382                 if (map->cache_only) {
1383                         map->cache_dirty = true;
1384                         return 0;
1385                 }
1386         }
1387
1388         range = _regmap_range_lookup(map, reg);
1389         if (range) {
1390                 int val_num = val_len / map->format.val_bytes;
1391                 int win_offset = (reg - range->range_min) % range->window_len;
1392                 int win_residue = range->window_len - win_offset;
1393
1394                 /* If the write goes beyond the end of the window split it */
1395                 while (val_num > win_residue) {
1396                         dev_dbg(map->dev, "Writing window %d/%zu\n",
1397                                 win_residue, val_len / map->format.val_bytes);
1398                         ret = _regmap_raw_write(map, reg, val, win_residue *
1399                                                 map->format.val_bytes);
1400                         if (ret != 0)
1401                                 return ret;
1402
1403                         reg += win_residue;
1404                         val_num -= win_residue;
1405                         val += win_residue * map->format.val_bytes;
1406                         val_len -= win_residue * map->format.val_bytes;
1407
1408                         win_offset = (reg - range->range_min) %
1409                                 range->window_len;
1410                         win_residue = range->window_len - win_offset;
1411                 }
1412
1413                 ret = _regmap_select_page(map, &reg, range, val_num);
1414                 if (ret != 0)
1415                         return ret;
1416         }
1417
1418         map->format.format_reg(map->work_buf, reg, map->reg_shift);
1419         regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1420                                       map->write_flag_mask);
1421
1422         /*
1423          * Essentially all I/O mechanisms will be faster with a single
1424          * buffer to write.  Since register syncs often generate raw
1425          * writes of single registers optimise that case.
1426          */
1427         if (val != work_val && val_len == map->format.val_bytes) {
1428                 memcpy(work_val, val, map->format.val_bytes);
1429                 val = work_val;
1430         }
1431
1432         if (map->async && map->bus->async_write) {
1433                 struct regmap_async *async;
1434
1435                 trace_regmap_async_write_start(map, reg, val_len);
1436
1437                 spin_lock_irqsave(&map->async_lock, flags);
1438                 async = list_first_entry_or_null(&map->async_free,
1439                                                  struct regmap_async,
1440                                                  list);
1441                 if (async)
1442                         list_del(&async->list);
1443                 spin_unlock_irqrestore(&map->async_lock, flags);
1444
1445                 if (!async) {
1446                         async = map->bus->async_alloc();
1447                         if (!async)
1448                                 return -ENOMEM;
1449
1450                         async->work_buf = kzalloc(map->format.buf_size,
1451                                                   GFP_KERNEL | GFP_DMA);
1452                         if (!async->work_buf) {
1453                                 kfree(async);
1454                                 return -ENOMEM;
1455                         }
1456                 }
1457
1458                 async->map = map;
1459
1460                 /* If the caller supplied the value we can use it safely. */
1461                 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1462                        map->format.reg_bytes + map->format.val_bytes);
1463
1464                 spin_lock_irqsave(&map->async_lock, flags);
1465                 list_add_tail(&async->list, &map->async_list);
1466                 spin_unlock_irqrestore(&map->async_lock, flags);
1467
1468                 if (val != work_val)
1469                         ret = map->bus->async_write(map->bus_context,
1470                                                     async->work_buf,
1471                                                     map->format.reg_bytes +
1472                                                     map->format.pad_bytes,
1473                                                     val, val_len, async);
1474                 else
1475                         ret = map->bus->async_write(map->bus_context,
1476                                                     async->work_buf,
1477                                                     map->format.reg_bytes +
1478                                                     map->format.pad_bytes +
1479                                                     val_len, NULL, 0, async);
1480
1481                 if (ret != 0) {
1482                         dev_err(map->dev, "Failed to schedule write: %d\n",
1483                                 ret);
1484
1485                         spin_lock_irqsave(&map->async_lock, flags);
1486                         list_move(&async->list, &map->async_free);
1487                         spin_unlock_irqrestore(&map->async_lock, flags);
1488                 }
1489
1490                 return ret;
1491         }
1492
1493         trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1494
1495         /* If we're doing a single register write we can probably just
1496          * send the work_buf directly, otherwise try to do a gather
1497          * write.
1498          */
1499         if (val == work_val)
1500                 ret = map->bus->write(map->bus_context, map->work_buf,
1501                                       map->format.reg_bytes +
1502                                       map->format.pad_bytes +
1503                                       val_len);
1504         else if (map->bus->gather_write)
1505                 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1506                                              map->format.reg_bytes +
1507                                              map->format.pad_bytes,
1508                                              val, val_len);
1509         else
1510                 ret = -ENOTSUPP;
1511
1512         /* If that didn't work fall back on linearising by hand. */
1513         if (ret == -ENOTSUPP) {
1514                 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1515                 buf = kzalloc(len, GFP_KERNEL);
1516                 if (!buf)
1517                         return -ENOMEM;
1518
1519                 memcpy(buf, map->work_buf, map->format.reg_bytes);
1520                 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1521                        val, val_len);
1522                 ret = map->bus->write(map->bus_context, buf, len);
1523
1524                 kfree(buf);
1525         } else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1526                 /* regcache_drop_region() takes lock that we already have,
1527                  * thus call map->cache_ops->drop() directly
1528                  */
1529                 if (map->cache_ops && map->cache_ops->drop)
1530                         map->cache_ops->drop(map, reg, reg + 1);
1531         }
1532
1533         trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1534
1535         return ret;
1536 }
1537
1538 /**
1539  * regmap_can_raw_write - Test if regmap_raw_write() is supported
1540  *
1541  * @map: Map to check.
1542  */
1543 bool regmap_can_raw_write(struct regmap *map)
1544 {
1545         return map->bus && map->bus->write && map->format.format_val &&
1546                 map->format.format_reg;
1547 }
1548 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1549
1550 /**
1551  * regmap_get_raw_read_max - Get the maximum size we can read
1552  *
1553  * @map: Map to check.
1554  */
1555 size_t regmap_get_raw_read_max(struct regmap *map)
1556 {
1557         return map->max_raw_read;
1558 }
1559 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1560
1561 /**
1562  * regmap_get_raw_write_max - Get the maximum size we can read
1563  *
1564  * @map: Map to check.
1565  */
1566 size_t regmap_get_raw_write_max(struct regmap *map)
1567 {
1568         return map->max_raw_write;
1569 }
1570 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1571
1572 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1573                                        unsigned int val)
1574 {
1575         int ret;
1576         struct regmap_range_node *range;
1577         struct regmap *map = context;
1578
1579         WARN_ON(!map->bus || !map->format.format_write);
1580
1581         range = _regmap_range_lookup(map, reg);
1582         if (range) {
1583                 ret = _regmap_select_page(map, &reg, range, 1);
1584                 if (ret != 0)
1585                         return ret;
1586         }
1587
1588         map->format.format_write(map, reg, val);
1589
1590         trace_regmap_hw_write_start(map, reg, 1);
1591
1592         ret = map->bus->write(map->bus_context, map->work_buf,
1593                               map->format.buf_size);
1594
1595         trace_regmap_hw_write_done(map, reg, 1);
1596
1597         return ret;
1598 }
1599
1600 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1601                                  unsigned int val)
1602 {
1603         struct regmap *map = context;
1604
1605         return map->bus->reg_write(map->bus_context, reg, val);
1606 }
1607
1608 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1609                                  unsigned int val)
1610 {
1611         struct regmap *map = context;
1612
1613         WARN_ON(!map->bus || !map->format.format_val);
1614
1615         map->format.format_val(map->work_buf + map->format.reg_bytes
1616                                + map->format.pad_bytes, val, 0);
1617         return _regmap_raw_write(map, reg,
1618                                  map->work_buf +
1619                                  map->format.reg_bytes +
1620                                  map->format.pad_bytes,
1621                                  map->format.val_bytes);
1622 }
1623
1624 static inline void *_regmap_map_get_context(struct regmap *map)
1625 {
1626         return (map->bus) ? map : map->bus_context;
1627 }
1628
1629 int _regmap_write(struct regmap *map, unsigned int reg,
1630                   unsigned int val)
1631 {
1632         int ret;
1633         void *context = _regmap_map_get_context(map);
1634
1635         if (!regmap_writeable(map, reg))
1636                 return -EIO;
1637
1638         if (!map->cache_bypass && !map->defer_caching) {
1639                 ret = regcache_write(map, reg, val);
1640                 if (ret != 0)
1641                         return ret;
1642                 if (map->cache_only) {
1643                         map->cache_dirty = true;
1644                         return 0;
1645                 }
1646         }
1647
1648 #ifdef LOG_DEVICE
1649         if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1650                 dev_info(map->dev, "%x <= %x\n", reg, val);
1651 #endif
1652
1653         trace_regmap_reg_write(map, reg, val);
1654
1655         return map->reg_write(context, reg, val);
1656 }
1657
1658 /**
1659  * regmap_write(): Write a value to a single register
1660  *
1661  * @map: Register map to write to
1662  * @reg: Register to write to
1663  * @val: Value to be written
1664  *
1665  * A value of zero will be returned on success, a negative errno will
1666  * be returned in error cases.
1667  */
1668 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1669 {
1670         int ret;
1671
1672         if (!IS_ALIGNED(reg, map->reg_stride))
1673                 return -EINVAL;
1674
1675         map->lock(map->lock_arg);
1676
1677         ret = _regmap_write(map, reg, val);
1678
1679         map->unlock(map->lock_arg);
1680
1681         return ret;
1682 }
1683 EXPORT_SYMBOL_GPL(regmap_write);
1684
1685 /**
1686  * regmap_write_async(): Write a value to a single register asynchronously
1687  *
1688  * @map: Register map to write to
1689  * @reg: Register to write to
1690  * @val: Value to be written
1691  *
1692  * A value of zero will be returned on success, a negative errno will
1693  * be returned in error cases.
1694  */
1695 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1696 {
1697         int ret;
1698
1699         if (!IS_ALIGNED(reg, map->reg_stride))
1700                 return -EINVAL;
1701
1702         map->lock(map->lock_arg);
1703
1704         map->async = true;
1705
1706         ret = _regmap_write(map, reg, val);
1707
1708         map->async = false;
1709
1710         map->unlock(map->lock_arg);
1711
1712         return ret;
1713 }
1714 EXPORT_SYMBOL_GPL(regmap_write_async);
1715
1716 /**
1717  * regmap_raw_write(): Write raw values to one or more registers
1718  *
1719  * @map: Register map to write to
1720  * @reg: Initial register to write to
1721  * @val: Block of data to be written, laid out for direct transmission to the
1722  *       device
1723  * @val_len: Length of data pointed to by val.
1724  *
1725  * This function is intended to be used for things like firmware
1726  * download where a large block of data needs to be transferred to the
1727  * device.  No formatting will be done on the data provided.
1728  *
1729  * A value of zero will be returned on success, a negative errno will
1730  * be returned in error cases.
1731  */
1732 int regmap_raw_write(struct regmap *map, unsigned int reg,
1733                      const void *val, size_t val_len)
1734 {
1735         int ret;
1736
1737         if (!regmap_can_raw_write(map))
1738                 return -EINVAL;
1739         if (val_len % map->format.val_bytes)
1740                 return -EINVAL;
1741         if (map->max_raw_write && map->max_raw_write < val_len)
1742                 return -E2BIG;
1743
1744         map->lock(map->lock_arg);
1745
1746         ret = _regmap_raw_write(map, reg, val, val_len);
1747
1748         map->unlock(map->lock_arg);
1749
1750         return ret;
1751 }
1752 EXPORT_SYMBOL_GPL(regmap_raw_write);
1753
1754 /**
1755  * regmap_field_update_bits_base():
1756  *      Perform a read/modify/write cycle on the register field
1757  *      with change, async, force option
1758  *
1759  * @field: Register field to write to
1760  * @mask: Bitmask to change
1761  * @val: Value to be written
1762  * @change: Boolean indicating if a write was done
1763  * @async: Boolean indicating asynchronously
1764  * @force: Boolean indicating use force update
1765  *
1766  * A value of zero will be returned on success, a negative errno will
1767  * be returned in error cases.
1768  */
1769 int regmap_field_update_bits_base(struct regmap_field *field,
1770                                   unsigned int mask, unsigned int val,
1771                                   bool *change, bool async, bool force)
1772 {
1773         mask = (mask << field->shift) & field->mask;
1774
1775         return regmap_update_bits_base(field->regmap, field->reg,
1776                                        mask, val << field->shift,
1777                                        change, async, force);
1778 }
1779 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
1780
1781 /**
1782  * regmap_fields_update_bits_base():
1783  *      Perform a read/modify/write cycle on the register field
1784  *      with change, async, force option
1785  *
1786  * @field: Register field to write to
1787  * @id: port ID
1788  * @mask: Bitmask to change
1789  * @val: Value to be written
1790  * @change: Boolean indicating if a write was done
1791  * @async: Boolean indicating asynchronously
1792  * @force: Boolean indicating use force update
1793  *
1794  * A value of zero will be returned on success, a negative errno will
1795  * be returned in error cases.
1796  */
1797 int regmap_fields_update_bits_base(struct regmap_field *field,  unsigned int id,
1798                                    unsigned int mask, unsigned int val,
1799                                    bool *change, bool async, bool force)
1800 {
1801         if (id >= field->id_size)
1802                 return -EINVAL;
1803
1804         mask = (mask << field->shift) & field->mask;
1805
1806         return regmap_update_bits_base(field->regmap,
1807                                        field->reg + (field->id_offset * id),
1808                                        mask, val << field->shift,
1809                                        change, async, force);
1810 }
1811 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
1812
1813 /*
1814  * regmap_bulk_write(): Write multiple registers to the device
1815  *
1816  * @map: Register map to write to
1817  * @reg: First register to be write from
1818  * @val: Block of data to be written, in native register size for device
1819  * @val_count: Number of registers to write
1820  *
1821  * This function is intended to be used for writing a large block of
1822  * data to the device either in single transfer or multiple transfer.
1823  *
1824  * A value of zero will be returned on success, a negative errno will
1825  * be returned in error cases.
1826  */
1827 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1828                      size_t val_count)
1829 {
1830         int ret = 0, i;
1831         size_t val_bytes = map->format.val_bytes;
1832         size_t total_size = val_bytes * val_count;
1833
1834         if (!IS_ALIGNED(reg, map->reg_stride))
1835                 return -EINVAL;
1836
1837         /*
1838          * Some devices don't support bulk write, for
1839          * them we have a series of single write operations in the first two if
1840          * blocks.
1841          *
1842          * The first if block is used for memory mapped io. It does not allow
1843          * val_bytes of 3 for example.
1844          * The second one is for busses that do not provide raw I/O.
1845          * The third one is used for busses which do not have these limitations
1846          * and can write arbitrary value lengths.
1847          */
1848         if (!map->bus) {
1849                 map->lock(map->lock_arg);
1850                 for (i = 0; i < val_count; i++) {
1851                         unsigned int ival;
1852
1853                         switch (val_bytes) {
1854                         case 1:
1855                                 ival = *(u8 *)(val + (i * val_bytes));
1856                                 break;
1857                         case 2:
1858                                 ival = *(u16 *)(val + (i * val_bytes));
1859                                 break;
1860                         case 4:
1861                                 ival = *(u32 *)(val + (i * val_bytes));
1862                                 break;
1863 #ifdef CONFIG_64BIT
1864                         case 8:
1865                                 ival = *(u64 *)(val + (i * val_bytes));
1866                                 break;
1867 #endif
1868                         default:
1869                                 ret = -EINVAL;
1870                                 goto out;
1871                         }
1872
1873                         ret = _regmap_write(map,
1874                                             reg + regmap_get_offset(map, i),
1875                                             ival);
1876                         if (ret != 0)
1877                                 goto out;
1878                 }
1879 out:
1880                 map->unlock(map->lock_arg);
1881         } else if (map->bus && !map->format.parse_inplace) {
1882                 const u8 *u8 = val;
1883                 const u16 *u16 = val;
1884                 const u32 *u32 = val;
1885                 unsigned int ival;
1886
1887                 for (i = 0; i < val_count; i++) {
1888                         switch (map->format.val_bytes) {
1889                         case 4:
1890                                 ival = u32[i];
1891                                 break;
1892                         case 2:
1893                                 ival = u16[i];
1894                                 break;
1895                         case 1:
1896                                 ival = u8[i];
1897                                 break;
1898                         default:
1899                                 return -EINVAL;
1900                         }
1901
1902                         ret = regmap_write(map, reg + (i * map->reg_stride),
1903                                            ival);
1904                         if (ret)
1905                                 return ret;
1906                 }
1907         } else if (map->use_single_write ||
1908                    (map->max_raw_write && map->max_raw_write < total_size)) {
1909                 int chunk_stride = map->reg_stride;
1910                 size_t chunk_size = val_bytes;
1911                 size_t chunk_count = val_count;
1912
1913                 if (!map->use_single_write) {
1914                         chunk_size = map->max_raw_write;
1915                         if (chunk_size % val_bytes)
1916                                 chunk_size -= chunk_size % val_bytes;
1917                         chunk_count = total_size / chunk_size;
1918                         chunk_stride *= chunk_size / val_bytes;
1919                 }
1920
1921                 map->lock(map->lock_arg);
1922                 /* Write as many bytes as possible with chunk_size */
1923                 for (i = 0; i < chunk_count; i++) {
1924                         ret = _regmap_raw_write(map,
1925                                                 reg + (i * chunk_stride),
1926                                                 val + (i * chunk_size),
1927                                                 chunk_size);
1928                         if (ret)
1929                                 break;
1930                 }
1931
1932                 /* Write remaining bytes */
1933                 if (!ret && chunk_size * i < total_size) {
1934                         ret = _regmap_raw_write(map, reg + (i * chunk_stride),
1935                                                 val + (i * chunk_size),
1936                                                 total_size - i * chunk_size);
1937                 }
1938                 map->unlock(map->lock_arg);
1939         } else {
1940                 void *wval;
1941
1942                 if (!val_count)
1943                         return -EINVAL;
1944
1945                 wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
1946                 if (!wval) {
1947                         dev_err(map->dev, "Error in memory allocation\n");
1948                         return -ENOMEM;
1949                 }
1950                 for (i = 0; i < val_count * val_bytes; i += val_bytes)
1951                         map->format.parse_inplace(wval + i);
1952
1953                 map->lock(map->lock_arg);
1954                 ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1955                 map->unlock(map->lock_arg);
1956
1957                 kfree(wval);
1958         }
1959         return ret;
1960 }
1961 EXPORT_SYMBOL_GPL(regmap_bulk_write);
1962
1963 /*
1964  * _regmap_raw_multi_reg_write()
1965  *
1966  * the (register,newvalue) pairs in regs have not been formatted, but
1967  * they are all in the same page and have been changed to being page
1968  * relative. The page register has been written if that was necessary.
1969  */
1970 static int _regmap_raw_multi_reg_write(struct regmap *map,
1971                                        const struct reg_sequence *regs,
1972                                        size_t num_regs)
1973 {
1974         int ret;
1975         void *buf;
1976         int i;
1977         u8 *u8;
1978         size_t val_bytes = map->format.val_bytes;
1979         size_t reg_bytes = map->format.reg_bytes;
1980         size_t pad_bytes = map->format.pad_bytes;
1981         size_t pair_size = reg_bytes + pad_bytes + val_bytes;
1982         size_t len = pair_size * num_regs;
1983
1984         if (!len)
1985                 return -EINVAL;
1986
1987         buf = kzalloc(len, GFP_KERNEL);
1988         if (!buf)
1989                 return -ENOMEM;
1990
1991         /* We have to linearise by hand. */
1992
1993         u8 = buf;
1994
1995         for (i = 0; i < num_regs; i++) {
1996                 unsigned int reg = regs[i].reg;
1997                 unsigned int val = regs[i].def;
1998                 trace_regmap_hw_write_start(map, reg, 1);
1999                 map->format.format_reg(u8, reg, map->reg_shift);
2000                 u8 += reg_bytes + pad_bytes;
2001                 map->format.format_val(u8, val, 0);
2002                 u8 += val_bytes;
2003         }
2004         u8 = buf;
2005         *u8 |= map->write_flag_mask;
2006
2007         ret = map->bus->write(map->bus_context, buf, len);
2008
2009         kfree(buf);
2010
2011         for (i = 0; i < num_regs; i++) {
2012                 int reg = regs[i].reg;
2013                 trace_regmap_hw_write_done(map, reg, 1);
2014         }
2015         return ret;
2016 }
2017
2018 static unsigned int _regmap_register_page(struct regmap *map,
2019                                           unsigned int reg,
2020                                           struct regmap_range_node *range)
2021 {
2022         unsigned int win_page = (reg - range->range_min) / range->window_len;
2023
2024         return win_page;
2025 }
2026
2027 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2028                                                struct reg_sequence *regs,
2029                                                size_t num_regs)
2030 {
2031         int ret;
2032         int i, n;
2033         struct reg_sequence *base;
2034         unsigned int this_page = 0;
2035         unsigned int page_change = 0;
2036         /*
2037          * the set of registers are not neccessarily in order, but
2038          * since the order of write must be preserved this algorithm
2039          * chops the set each time the page changes. This also applies
2040          * if there is a delay required at any point in the sequence.
2041          */
2042         base = regs;
2043         for (i = 0, n = 0; i < num_regs; i++, n++) {
2044                 unsigned int reg = regs[i].reg;
2045                 struct regmap_range_node *range;
2046
2047                 range = _regmap_range_lookup(map, reg);
2048                 if (range) {
2049                         unsigned int win_page = _regmap_register_page(map, reg,
2050                                                                       range);
2051
2052                         if (i == 0)
2053                                 this_page = win_page;
2054                         if (win_page != this_page) {
2055                                 this_page = win_page;
2056                                 page_change = 1;
2057                         }
2058                 }
2059
2060                 /* If we have both a page change and a delay make sure to
2061                  * write the regs and apply the delay before we change the
2062                  * page.
2063                  */
2064
2065                 if (page_change || regs[i].delay_us) {
2066
2067                                 /* For situations where the first write requires
2068                                  * a delay we need to make sure we don't call
2069                                  * raw_multi_reg_write with n=0
2070                                  * This can't occur with page breaks as we
2071                                  * never write on the first iteration
2072                                  */
2073                                 if (regs[i].delay_us && i == 0)
2074                                         n = 1;
2075
2076                                 ret = _regmap_raw_multi_reg_write(map, base, n);
2077                                 if (ret != 0)
2078                                         return ret;
2079
2080                                 if (regs[i].delay_us)
2081                                         udelay(regs[i].delay_us);
2082
2083                                 base += n;
2084                                 n = 0;
2085
2086                                 if (page_change) {
2087                                         ret = _regmap_select_page(map,
2088                                                                   &base[n].reg,
2089                                                                   range, 1);
2090                                         if (ret != 0)
2091                                                 return ret;
2092
2093                                         page_change = 0;
2094                                 }
2095
2096                 }
2097
2098         }
2099         if (n > 0)
2100                 return _regmap_raw_multi_reg_write(map, base, n);
2101         return 0;
2102 }
2103
2104 static int _regmap_multi_reg_write(struct regmap *map,
2105                                    const struct reg_sequence *regs,
2106                                    size_t num_regs)
2107 {
2108         int i;
2109         int ret;
2110
2111         if (!map->can_multi_write) {
2112                 for (i = 0; i < num_regs; i++) {
2113                         ret = _regmap_write(map, regs[i].reg, regs[i].def);
2114                         if (ret != 0)
2115                                 return ret;
2116
2117                         if (regs[i].delay_us)
2118                                 udelay(regs[i].delay_us);
2119                 }
2120                 return 0;
2121         }
2122
2123         if (!map->format.parse_inplace)
2124                 return -EINVAL;
2125
2126         if (map->writeable_reg)
2127                 for (i = 0; i < num_regs; i++) {
2128                         int reg = regs[i].reg;
2129                         if (!map->writeable_reg(map->dev, reg))
2130                                 return -EINVAL;
2131                         if (!IS_ALIGNED(reg, map->reg_stride))
2132                                 return -EINVAL;
2133                 }
2134
2135         if (!map->cache_bypass) {
2136                 for (i = 0; i < num_regs; i++) {
2137                         unsigned int val = regs[i].def;
2138                         unsigned int reg = regs[i].reg;
2139                         ret = regcache_write(map, reg, val);
2140                         if (ret) {
2141                                 dev_err(map->dev,
2142                                 "Error in caching of register: %x ret: %d\n",
2143                                                                 reg, ret);
2144                                 return ret;
2145                         }
2146                 }
2147                 if (map->cache_only) {
2148                         map->cache_dirty = true;
2149                         return 0;
2150                 }
2151         }
2152
2153         WARN_ON(!map->bus);
2154
2155         for (i = 0; i < num_regs; i++) {
2156                 unsigned int reg = regs[i].reg;
2157                 struct regmap_range_node *range;
2158
2159                 /* Coalesce all the writes between a page break or a delay
2160                  * in a sequence
2161                  */
2162                 range = _regmap_range_lookup(map, reg);
2163                 if (range || regs[i].delay_us) {
2164                         size_t len = sizeof(struct reg_sequence)*num_regs;
2165                         struct reg_sequence *base = kmemdup(regs, len,
2166                                                            GFP_KERNEL);
2167                         if (!base)
2168                                 return -ENOMEM;
2169                         ret = _regmap_range_multi_paged_reg_write(map, base,
2170                                                                   num_regs);
2171                         kfree(base);
2172
2173                         return ret;
2174                 }
2175         }
2176         return _regmap_raw_multi_reg_write(map, regs, num_regs);
2177 }
2178
2179 /*
2180  * regmap_multi_reg_write(): Write multiple registers to the device
2181  *
2182  * where the set of register,value pairs are supplied in any order,
2183  * possibly not all in a single range.
2184  *
2185  * @map: Register map to write to
2186  * @regs: Array of structures containing register,value to be written
2187  * @num_regs: Number of registers to write
2188  *
2189  * The 'normal' block write mode will send ultimately send data on the
2190  * target bus as R,V1,V2,V3,..,Vn where successively higer registers are
2191  * addressed. However, this alternative block multi write mode will send
2192  * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2193  * must of course support the mode.
2194  *
2195  * A value of zero will be returned on success, a negative errno will be
2196  * returned in error cases.
2197  */
2198 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2199                            int num_regs)
2200 {
2201         int ret;
2202
2203         map->lock(map->lock_arg);
2204
2205         ret = _regmap_multi_reg_write(map, regs, num_regs);
2206
2207         map->unlock(map->lock_arg);
2208
2209         return ret;
2210 }
2211 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2212
2213 /*
2214  * regmap_multi_reg_write_bypassed(): Write multiple registers to the
2215  *                                    device but not the cache
2216  *
2217  * where the set of register are supplied in any order
2218  *
2219  * @map: Register map to write to
2220  * @regs: Array of structures containing register,value to be written
2221  * @num_regs: Number of registers to write
2222  *
2223  * This function is intended to be used for writing a large block of data
2224  * atomically to the device in single transfer for those I2C client devices
2225  * that implement this alternative block write mode.
2226  *
2227  * A value of zero will be returned on success, a negative errno will
2228  * be returned in error cases.
2229  */
2230 int regmap_multi_reg_write_bypassed(struct regmap *map,
2231                                     const struct reg_sequence *regs,
2232                                     int num_regs)
2233 {
2234         int ret;
2235         bool bypass;
2236
2237         map->lock(map->lock_arg);
2238
2239         bypass = map->cache_bypass;
2240         map->cache_bypass = true;
2241
2242         ret = _regmap_multi_reg_write(map, regs, num_regs);
2243
2244         map->cache_bypass = bypass;
2245
2246         map->unlock(map->lock_arg);
2247
2248         return ret;
2249 }
2250 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2251
2252 /**
2253  * regmap_raw_write_async(): Write raw values to one or more registers
2254  *                           asynchronously
2255  *
2256  * @map: Register map to write to
2257  * @reg: Initial register to write to
2258  * @val: Block of data to be written, laid out for direct transmission to the
2259  *       device.  Must be valid until regmap_async_complete() is called.
2260  * @val_len: Length of data pointed to by val.
2261  *
2262  * This function is intended to be used for things like firmware
2263  * download where a large block of data needs to be transferred to the
2264  * device.  No formatting will be done on the data provided.
2265  *
2266  * If supported by the underlying bus the write will be scheduled
2267  * asynchronously, helping maximise I/O speed on higher speed buses
2268  * like SPI.  regmap_async_complete() can be called to ensure that all
2269  * asynchrnous writes have been completed.
2270  *
2271  * A value of zero will be returned on success, a negative errno will
2272  * be returned in error cases.
2273  */
2274 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2275                            const void *val, size_t val_len)
2276 {
2277         int ret;
2278
2279         if (val_len % map->format.val_bytes)
2280                 return -EINVAL;
2281         if (!IS_ALIGNED(reg, map->reg_stride))
2282                 return -EINVAL;
2283
2284         map->lock(map->lock_arg);
2285
2286         map->async = true;
2287
2288         ret = _regmap_raw_write(map, reg, val, val_len);
2289
2290         map->async = false;
2291
2292         map->unlock(map->lock_arg);
2293
2294         return ret;
2295 }
2296 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2297
2298 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2299                             unsigned int val_len)
2300 {
2301         struct regmap_range_node *range;
2302         int ret;
2303
2304         WARN_ON(!map->bus);
2305
2306         if (!map->bus || !map->bus->read)
2307                 return -EINVAL;
2308
2309         range = _regmap_range_lookup(map, reg);
2310         if (range) {
2311                 ret = _regmap_select_page(map, &reg, range,
2312                                           val_len / map->format.val_bytes);
2313                 if (ret != 0)
2314                         return ret;
2315         }
2316
2317         map->format.format_reg(map->work_buf, reg, map->reg_shift);
2318         regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2319                                       map->read_flag_mask);
2320         trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2321
2322         ret = map->bus->read(map->bus_context, map->work_buf,
2323                              map->format.reg_bytes + map->format.pad_bytes,
2324                              val, val_len);
2325
2326         trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2327
2328         return ret;
2329 }
2330
2331 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2332                                 unsigned int *val)
2333 {
2334         struct regmap *map = context;
2335
2336         return map->bus->reg_read(map->bus_context, reg, val);
2337 }
2338
2339 static int _regmap_bus_read(void *context, unsigned int reg,
2340                             unsigned int *val)
2341 {
2342         int ret;
2343         struct regmap *map = context;
2344
2345         if (!map->format.parse_val)
2346                 return -EINVAL;
2347
2348         ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
2349         if (ret == 0)
2350                 *val = map->format.parse_val(map->work_buf);
2351
2352         return ret;
2353 }
2354
2355 static int _regmap_read(struct regmap *map, unsigned int reg,
2356                         unsigned int *val)
2357 {
2358         int ret;
2359         void *context = _regmap_map_get_context(map);
2360
2361         if (!map->cache_bypass) {
2362                 ret = regcache_read(map, reg, val);
2363                 if (ret == 0)
2364                         return 0;
2365         }
2366
2367         if (map->cache_only)
2368                 return -EBUSY;
2369
2370         if (!regmap_readable(map, reg))
2371                 return -EIO;
2372
2373         ret = map->reg_read(context, reg, val);
2374         if (ret == 0) {
2375 #ifdef LOG_DEVICE
2376                 if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
2377                         dev_info(map->dev, "%x => %x\n", reg, *val);
2378 #endif
2379
2380                 trace_regmap_reg_read(map, reg, *val);
2381
2382                 if (!map->cache_bypass)
2383                         regcache_write(map, reg, *val);
2384         }
2385
2386         return ret;
2387 }
2388
2389 /**
2390  * regmap_read(): Read a value from a single register
2391  *
2392  * @map: Register map to read from
2393  * @reg: Register to be read from
2394  * @val: Pointer to store read value
2395  *
2396  * A value of zero will be returned on success, a negative errno will
2397  * be returned in error cases.
2398  */
2399 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2400 {
2401         int ret;
2402
2403         if (!IS_ALIGNED(reg, map->reg_stride))
2404                 return -EINVAL;
2405
2406         map->lock(map->lock_arg);
2407
2408         ret = _regmap_read(map, reg, val);
2409
2410         map->unlock(map->lock_arg);
2411
2412         return ret;
2413 }
2414 EXPORT_SYMBOL_GPL(regmap_read);
2415
2416 /**
2417  * regmap_raw_read(): Read raw data from the device
2418  *
2419  * @map: Register map to read from
2420  * @reg: First register to be read from
2421  * @val: Pointer to store read value
2422  * @val_len: Size of data to read
2423  *
2424  * A value of zero will be returned on success, a negative errno will
2425  * be returned in error cases.
2426  */
2427 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2428                     size_t val_len)
2429 {
2430         size_t val_bytes = map->format.val_bytes;
2431         size_t val_count = val_len / val_bytes;
2432         unsigned int v;
2433         int ret, i;
2434
2435         if (!map->bus)
2436                 return -EINVAL;
2437         if (val_len % map->format.val_bytes)
2438                 return -EINVAL;
2439         if (!IS_ALIGNED(reg, map->reg_stride))
2440                 return -EINVAL;
2441         if (val_count == 0)
2442                 return -EINVAL;
2443
2444         map->lock(map->lock_arg);
2445
2446         if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2447             map->cache_type == REGCACHE_NONE) {
2448                 if (!map->bus->read) {
2449                         ret = -ENOTSUPP;
2450                         goto out;
2451                 }
2452                 if (map->max_raw_read && map->max_raw_read < val_len) {
2453                         ret = -E2BIG;
2454                         goto out;
2455                 }
2456
2457                 /* Physical block read if there's no cache involved */
2458                 ret = _regmap_raw_read(map, reg, val, val_len);
2459
2460         } else {
2461                 /* Otherwise go word by word for the cache; should be low
2462                  * cost as we expect to hit the cache.
2463                  */
2464                 for (i = 0; i < val_count; i++) {
2465                         ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2466                                            &v);
2467                         if (ret != 0)
2468                                 goto out;
2469
2470                         map->format.format_val(val + (i * val_bytes), v, 0);
2471                 }
2472         }
2473
2474  out:
2475         map->unlock(map->lock_arg);
2476
2477         return ret;
2478 }
2479 EXPORT_SYMBOL_GPL(regmap_raw_read);
2480
2481 /**
2482  * regmap_field_read(): Read a value to a single register field
2483  *
2484  * @field: Register field to read from
2485  * @val: Pointer to store read value
2486  *
2487  * A value of zero will be returned on success, a negative errno will
2488  * be returned in error cases.
2489  */
2490 int regmap_field_read(struct regmap_field *field, unsigned int *val)
2491 {
2492         int ret;
2493         unsigned int reg_val;
2494         ret = regmap_read(field->regmap, field->reg, &reg_val);
2495         if (ret != 0)
2496                 return ret;
2497
2498         reg_val &= field->mask;
2499         reg_val >>= field->shift;
2500         *val = reg_val;
2501
2502         return ret;
2503 }
2504 EXPORT_SYMBOL_GPL(regmap_field_read);
2505
2506 /**
2507  * regmap_fields_read(): Read a value to a single register field with port ID
2508  *
2509  * @field: Register field to read from
2510  * @id: port ID
2511  * @val: Pointer to store read value
2512  *
2513  * A value of zero will be returned on success, a negative errno will
2514  * be returned in error cases.
2515  */
2516 int regmap_fields_read(struct regmap_field *field, unsigned int id,
2517                        unsigned int *val)
2518 {
2519         int ret;
2520         unsigned int reg_val;
2521
2522         if (id >= field->id_size)
2523                 return -EINVAL;
2524
2525         ret = regmap_read(field->regmap,
2526                           field->reg + (field->id_offset * id),
2527                           &reg_val);
2528         if (ret != 0)
2529                 return ret;
2530
2531         reg_val &= field->mask;
2532         reg_val >>= field->shift;
2533         *val = reg_val;
2534
2535         return ret;
2536 }
2537 EXPORT_SYMBOL_GPL(regmap_fields_read);
2538
2539 /**
2540  * regmap_bulk_read(): Read multiple registers from the device
2541  *
2542  * @map: Register map to read from
2543  * @reg: First register to be read from
2544  * @val: Pointer to store read value, in native register size for device
2545  * @val_count: Number of registers to read
2546  *
2547  * A value of zero will be returned on success, a negative errno will
2548  * be returned in error cases.
2549  */
2550 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2551                      size_t val_count)
2552 {
2553         int ret, i;
2554         size_t val_bytes = map->format.val_bytes;
2555         bool vol = regmap_volatile_range(map, reg, val_count);
2556
2557         if (!IS_ALIGNED(reg, map->reg_stride))
2558                 return -EINVAL;
2559
2560         if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2561                 /*
2562                  * Some devices does not support bulk read, for
2563                  * them we have a series of single read operations.
2564                  */
2565                 size_t total_size = val_bytes * val_count;
2566
2567                 if (!map->use_single_read &&
2568                     (!map->max_raw_read || map->max_raw_read > total_size)) {
2569                         ret = regmap_raw_read(map, reg, val,
2570                                               val_bytes * val_count);
2571                         if (ret != 0)
2572                                 return ret;
2573                 } else {
2574                         /*
2575                          * Some devices do not support bulk read or do not
2576                          * support large bulk reads, for them we have a series
2577                          * of read operations.
2578                          */
2579                         int chunk_stride = map->reg_stride;
2580                         size_t chunk_size = val_bytes;
2581                         size_t chunk_count = val_count;
2582
2583                         if (!map->use_single_read) {
2584                                 chunk_size = map->max_raw_read;
2585                                 if (chunk_size % val_bytes)
2586                                         chunk_size -= chunk_size % val_bytes;
2587                                 chunk_count = total_size / chunk_size;
2588                                 chunk_stride *= chunk_size / val_bytes;
2589                         }
2590
2591                         /* Read bytes that fit into a multiple of chunk_size */
2592                         for (i = 0; i < chunk_count; i++) {
2593                                 ret = regmap_raw_read(map,
2594                                                       reg + (i * chunk_stride),
2595                                                       val + (i * chunk_size),
2596                                                       chunk_size);
2597                                 if (ret != 0)
2598                                         return ret;
2599                         }
2600
2601                         /* Read remaining bytes */
2602                         if (chunk_size * i < total_size) {
2603                                 ret = regmap_raw_read(map,
2604                                                       reg + (i * chunk_stride),
2605                                                       val + (i * chunk_size),
2606                                                       total_size - i * chunk_size);
2607                                 if (ret != 0)
2608                                         return ret;
2609                         }
2610                 }
2611
2612                 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2613                         map->format.parse_inplace(val + i);
2614         } else {
2615                 for (i = 0; i < val_count; i++) {
2616                         unsigned int ival;
2617                         ret = regmap_read(map, reg + regmap_get_offset(map, i),
2618                                           &ival);
2619                         if (ret != 0)
2620                                 return ret;
2621
2622                         if (map->format.format_val) {
2623                                 map->format.format_val(val + (i * val_bytes), ival, 0);
2624                         } else {
2625                                 /* Devices providing read and write
2626                                  * operations can use the bulk I/O
2627                                  * functions if they define a val_bytes,
2628                                  * we assume that the values are native
2629                                  * endian.
2630                                  */
2631 #ifdef CONFIG_64BIT
2632                                 u64 *u64 = val;
2633 #endif
2634                                 u32 *u32 = val;
2635                                 u16 *u16 = val;
2636                                 u8 *u8 = val;
2637
2638                                 switch (map->format.val_bytes) {
2639 #ifdef CONFIG_64BIT
2640                                 case 8:
2641                                         u64[i] = ival;
2642                                         break;
2643 #endif
2644                                 case 4:
2645                                         u32[i] = ival;
2646                                         break;
2647                                 case 2:
2648                                         u16[i] = ival;
2649                                         break;
2650                                 case 1:
2651                                         u8[i] = ival;
2652                                         break;
2653                                 default:
2654                                         return -EINVAL;
2655                                 }
2656                         }
2657                 }
2658         }
2659
2660         return 0;
2661 }
2662 EXPORT_SYMBOL_GPL(regmap_bulk_read);
2663
2664 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2665                                unsigned int mask, unsigned int val,
2666                                bool *change, bool force_write)
2667 {
2668         int ret;
2669         unsigned int tmp, orig;
2670
2671         if (change)
2672                 *change = false;
2673
2674         if (regmap_volatile(map, reg) && map->reg_update_bits) {
2675                 ret = map->reg_update_bits(map->bus_context, reg, mask, val);
2676                 if (ret == 0 && change)
2677                         *change = true;
2678         } else {
2679                 ret = _regmap_read(map, reg, &orig);
2680                 if (ret != 0)
2681                         return ret;
2682
2683                 tmp = orig & ~mask;
2684                 tmp |= val & mask;
2685
2686                 if (force_write || (tmp != orig)) {
2687                         ret = _regmap_write(map, reg, tmp);
2688                         if (ret == 0 && change)
2689                                 *change = true;
2690                 }
2691         }
2692
2693         return ret;
2694 }
2695
2696 /**
2697  * regmap_update_bits_base:
2698  *      Perform a read/modify/write cycle on the
2699  *      register map with change, async, force option
2700  *
2701  * @map: Register map to update
2702  * @reg: Register to update
2703  * @mask: Bitmask to change
2704  * @val: New value for bitmask
2705  * @change: Boolean indicating if a write was done
2706  * @async: Boolean indicating asynchronously
2707  * @force: Boolean indicating use force update
2708  *
2709  * if async was true,
2710  * With most buses the read must be done synchronously so this is most
2711  * useful for devices with a cache which do not need to interact with
2712  * the hardware to determine the current register value.
2713  *
2714  * Returns zero for success, a negative number on error.
2715  */
2716 int regmap_update_bits_base(struct regmap *map, unsigned int reg,
2717                             unsigned int mask, unsigned int val,
2718                             bool *change, bool async, bool force)
2719 {
2720         int ret;
2721
2722         map->lock(map->lock_arg);
2723
2724         map->async = async;
2725
2726         ret = _regmap_update_bits(map, reg, mask, val, change, force);
2727
2728         map->async = false;
2729
2730         map->unlock(map->lock_arg);
2731
2732         return ret;
2733 }
2734 EXPORT_SYMBOL_GPL(regmap_update_bits_base);
2735
2736 void regmap_async_complete_cb(struct regmap_async *async, int ret)
2737 {
2738         struct regmap *map = async->map;
2739         bool wake;
2740
2741         trace_regmap_async_io_complete(map);
2742
2743         spin_lock(&map->async_lock);
2744         list_move(&async->list, &map->async_free);
2745         wake = list_empty(&map->async_list);
2746
2747         if (ret != 0)
2748                 map->async_ret = ret;
2749
2750         spin_unlock(&map->async_lock);
2751
2752         if (wake)
2753                 wake_up(&map->async_waitq);
2754 }
2755 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2756
2757 static int regmap_async_is_done(struct regmap *map)
2758 {
2759         unsigned long flags;
2760         int ret;
2761
2762         spin_lock_irqsave(&map->async_lock, flags);
2763         ret = list_empty(&map->async_list);
2764         spin_unlock_irqrestore(&map->async_lock, flags);
2765
2766         return ret;
2767 }
2768
2769 /**
2770  * regmap_async_complete: Ensure all asynchronous I/O has completed.
2771  *
2772  * @map: Map to operate on.
2773  *
2774  * Blocks until any pending asynchronous I/O has completed.  Returns
2775  * an error code for any failed I/O operations.
2776  */
2777 int regmap_async_complete(struct regmap *map)
2778 {
2779         unsigned long flags;
2780         int ret;
2781
2782         /* Nothing to do with no async support */
2783         if (!map->bus || !map->bus->async_write)
2784                 return 0;
2785
2786         trace_regmap_async_complete_start(map);
2787
2788         wait_event(map->async_waitq, regmap_async_is_done(map));
2789
2790         spin_lock_irqsave(&map->async_lock, flags);
2791         ret = map->async_ret;
2792         map->async_ret = 0;
2793         spin_unlock_irqrestore(&map->async_lock, flags);
2794
2795         trace_regmap_async_complete_done(map);
2796
2797         return ret;
2798 }
2799 EXPORT_SYMBOL_GPL(regmap_async_complete);
2800
2801 /**
2802  * regmap_register_patch: Register and apply register updates to be applied
2803  *                        on device initialistion
2804  *
2805  * @map: Register map to apply updates to.
2806  * @regs: Values to update.
2807  * @num_regs: Number of entries in regs.
2808  *
2809  * Register a set of register updates to be applied to the device
2810  * whenever the device registers are synchronised with the cache and
2811  * apply them immediately.  Typically this is used to apply
2812  * corrections to be applied to the device defaults on startup, such
2813  * as the updates some vendors provide to undocumented registers.
2814  *
2815  * The caller must ensure that this function cannot be called
2816  * concurrently with either itself or regcache_sync().
2817  */
2818 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
2819                           int num_regs)
2820 {
2821         struct reg_sequence *p;
2822         int ret;
2823         bool bypass;
2824
2825         if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
2826             num_regs))
2827                 return 0;
2828
2829         p = krealloc(map->patch,
2830                      sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
2831                      GFP_KERNEL);
2832         if (p) {
2833                 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
2834                 map->patch = p;
2835                 map->patch_regs += num_regs;
2836         } else {
2837                 return -ENOMEM;
2838         }
2839
2840         map->lock(map->lock_arg);
2841
2842         bypass = map->cache_bypass;
2843
2844         map->cache_bypass = true;
2845         map->async = true;
2846
2847         ret = _regmap_multi_reg_write(map, regs, num_regs);
2848
2849         map->async = false;
2850         map->cache_bypass = bypass;
2851
2852         map->unlock(map->lock_arg);
2853
2854         regmap_async_complete(map);
2855
2856         return ret;
2857 }
2858 EXPORT_SYMBOL_GPL(regmap_register_patch);
2859
2860 /*
2861  * regmap_get_val_bytes(): Report the size of a register value
2862  *
2863  * Report the size of a register value, mainly intended to for use by
2864  * generic infrastructure built on top of regmap.
2865  */
2866 int regmap_get_val_bytes(struct regmap *map)
2867 {
2868         if (map->format.format_write)
2869                 return -EINVAL;
2870
2871         return map->format.val_bytes;
2872 }
2873 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
2874
2875 /**
2876  * regmap_get_max_register(): Report the max register value
2877  *
2878  * Report the max register value, mainly intended to for use by
2879  * generic infrastructure built on top of regmap.
2880  */
2881 int regmap_get_max_register(struct regmap *map)
2882 {
2883         return map->max_register ? map->max_register : -EINVAL;
2884 }
2885 EXPORT_SYMBOL_GPL(regmap_get_max_register);
2886
2887 /**
2888  * regmap_get_reg_stride(): Report the register address stride
2889  *
2890  * Report the register address stride, mainly intended to for use by
2891  * generic infrastructure built on top of regmap.
2892  */
2893 int regmap_get_reg_stride(struct regmap *map)
2894 {
2895         return map->reg_stride;
2896 }
2897 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
2898
2899 int regmap_parse_val(struct regmap *map, const void *buf,
2900                         unsigned int *val)
2901 {
2902         if (!map->format.parse_val)
2903                 return -EINVAL;
2904
2905         *val = map->format.parse_val(buf);
2906
2907         return 0;
2908 }
2909 EXPORT_SYMBOL_GPL(regmap_parse_val);
2910
2911 static int __init regmap_initcall(void)
2912 {
2913         regmap_debugfs_initcall();
2914
2915         return 0;
2916 }
2917 postcore_initcall(regmap_initcall);