GNU Linux-libre 4.19.286-gnu1
[releases.git] / drivers / base / regmap / regmap.c
1 /*
2  * Register map access API
3  *
4  * Copyright 2011 Wolfson Microelectronics plc
5  *
6  * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/mutex.h>
17 #include <linux/err.h>
18 #include <linux/of.h>
19 #include <linux/rbtree.h>
20 #include <linux/sched.h>
21 #include <linux/delay.h>
22 #include <linux/log2.h>
23 #include <linux/hwspinlock.h>
24 #include <asm/unaligned.h>
25
26 #define CREATE_TRACE_POINTS
27 #include "trace.h"
28
29 #include "internal.h"
30
31 /*
32  * Sometimes for failures during very early init the trace
33  * infrastructure isn't available early enough to be used.  For this
34  * sort of problem defining LOG_DEVICE will add printks for basic
35  * register I/O on a specific device.
36  */
37 #undef LOG_DEVICE
38
39 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
40                                unsigned int mask, unsigned int val,
41                                bool *change, bool force_write);
42
43 static int _regmap_bus_reg_read(void *context, unsigned int reg,
44                                 unsigned int *val);
45 static int _regmap_bus_read(void *context, unsigned int reg,
46                             unsigned int *val);
47 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
48                                        unsigned int val);
49 static int _regmap_bus_reg_write(void *context, unsigned int reg,
50                                  unsigned int val);
51 static int _regmap_bus_raw_write(void *context, unsigned int reg,
52                                  unsigned int val);
53
54 bool regmap_reg_in_ranges(unsigned int reg,
55                           const struct regmap_range *ranges,
56                           unsigned int nranges)
57 {
58         const struct regmap_range *r;
59         int i;
60
61         for (i = 0, r = ranges; i < nranges; i++, r++)
62                 if (regmap_reg_in_range(reg, r))
63                         return true;
64         return false;
65 }
66 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
67
68 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
69                               const struct regmap_access_table *table)
70 {
71         /* Check "no ranges" first */
72         if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
73                 return false;
74
75         /* In case zero "yes ranges" are supplied, any reg is OK */
76         if (!table->n_yes_ranges)
77                 return true;
78
79         return regmap_reg_in_ranges(reg, table->yes_ranges,
80                                     table->n_yes_ranges);
81 }
82 EXPORT_SYMBOL_GPL(regmap_check_range_table);
83
84 bool regmap_writeable(struct regmap *map, unsigned int reg)
85 {
86         if (map->max_register && reg > map->max_register)
87                 return false;
88
89         if (map->writeable_reg)
90                 return map->writeable_reg(map->dev, reg);
91
92         if (map->wr_table)
93                 return regmap_check_range_table(map, reg, map->wr_table);
94
95         return true;
96 }
97
98 bool regmap_cached(struct regmap *map, unsigned int reg)
99 {
100         int ret;
101         unsigned int val;
102
103         if (map->cache_type == REGCACHE_NONE)
104                 return false;
105
106         if (!map->cache_ops)
107                 return false;
108
109         if (map->max_register && reg > map->max_register)
110                 return false;
111
112         map->lock(map->lock_arg);
113         ret = regcache_read(map, reg, &val);
114         map->unlock(map->lock_arg);
115         if (ret)
116                 return false;
117
118         return true;
119 }
120
121 bool regmap_readable(struct regmap *map, unsigned int reg)
122 {
123         if (!map->reg_read)
124                 return false;
125
126         if (map->max_register && reg > map->max_register)
127                 return false;
128
129         if (map->format.format_write)
130                 return false;
131
132         if (map->readable_reg)
133                 return map->readable_reg(map->dev, reg);
134
135         if (map->rd_table)
136                 return regmap_check_range_table(map, reg, map->rd_table);
137
138         return true;
139 }
140
141 bool regmap_volatile(struct regmap *map, unsigned int reg)
142 {
143         if (!map->format.format_write && !regmap_readable(map, reg))
144                 return false;
145
146         if (map->volatile_reg)
147                 return map->volatile_reg(map->dev, reg);
148
149         if (map->volatile_table)
150                 return regmap_check_range_table(map, reg, map->volatile_table);
151
152         if (map->cache_ops)
153                 return false;
154         else
155                 return true;
156 }
157
158 bool regmap_precious(struct regmap *map, unsigned int reg)
159 {
160         if (!regmap_readable(map, reg))
161                 return false;
162
163         if (map->precious_reg)
164                 return map->precious_reg(map->dev, reg);
165
166         if (map->precious_table)
167                 return regmap_check_range_table(map, reg, map->precious_table);
168
169         return false;
170 }
171
172 bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
173 {
174         if (map->readable_noinc_reg)
175                 return map->readable_noinc_reg(map->dev, reg);
176
177         if (map->rd_noinc_table)
178                 return regmap_check_range_table(map, reg, map->rd_noinc_table);
179
180         return true;
181 }
182
183 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
184         size_t num)
185 {
186         unsigned int i;
187
188         for (i = 0; i < num; i++)
189                 if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
190                         return false;
191
192         return true;
193 }
194
195 static void regmap_format_2_6_write(struct regmap *map,
196                                      unsigned int reg, unsigned int val)
197 {
198         u8 *out = map->work_buf;
199
200         *out = (reg << 6) | val;
201 }
202
203 static void regmap_format_4_12_write(struct regmap *map,
204                                      unsigned int reg, unsigned int val)
205 {
206         __be16 *out = map->work_buf;
207         *out = cpu_to_be16((reg << 12) | val);
208 }
209
210 static void regmap_format_7_9_write(struct regmap *map,
211                                     unsigned int reg, unsigned int val)
212 {
213         __be16 *out = map->work_buf;
214         *out = cpu_to_be16((reg << 9) | val);
215 }
216
217 static void regmap_format_10_14_write(struct regmap *map,
218                                     unsigned int reg, unsigned int val)
219 {
220         u8 *out = map->work_buf;
221
222         out[2] = val;
223         out[1] = (val >> 8) | (reg << 6);
224         out[0] = reg >> 2;
225 }
226
227 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
228 {
229         u8 *b = buf;
230
231         b[0] = val << shift;
232 }
233
234 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
235 {
236         put_unaligned_be16(val << shift, buf);
237 }
238
239 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
240 {
241         put_unaligned_le16(val << shift, buf);
242 }
243
244 static void regmap_format_16_native(void *buf, unsigned int val,
245                                     unsigned int shift)
246 {
247         u16 v = val << shift;
248
249         memcpy(buf, &v, sizeof(v));
250 }
251
252 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
253 {
254         u8 *b = buf;
255
256         val <<= shift;
257
258         b[0] = val >> 16;
259         b[1] = val >> 8;
260         b[2] = val;
261 }
262
263 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
264 {
265         put_unaligned_be32(val << shift, buf);
266 }
267
268 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
269 {
270         put_unaligned_le32(val << shift, buf);
271 }
272
273 static void regmap_format_32_native(void *buf, unsigned int val,
274                                     unsigned int shift)
275 {
276         u32 v = val << shift;
277
278         memcpy(buf, &v, sizeof(v));
279 }
280
281 #ifdef CONFIG_64BIT
282 static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
283 {
284         put_unaligned_be64((u64) val << shift, buf);
285 }
286
287 static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
288 {
289         put_unaligned_le64((u64) val << shift, buf);
290 }
291
292 static void regmap_format_64_native(void *buf, unsigned int val,
293                                     unsigned int shift)
294 {
295         u64 v = (u64) val << shift;
296
297         memcpy(buf, &v, sizeof(v));
298 }
299 #endif
300
301 static void regmap_parse_inplace_noop(void *buf)
302 {
303 }
304
305 static unsigned int regmap_parse_8(const void *buf)
306 {
307         const u8 *b = buf;
308
309         return b[0];
310 }
311
312 static unsigned int regmap_parse_16_be(const void *buf)
313 {
314         return get_unaligned_be16(buf);
315 }
316
317 static unsigned int regmap_parse_16_le(const void *buf)
318 {
319         return get_unaligned_le16(buf);
320 }
321
322 static void regmap_parse_16_be_inplace(void *buf)
323 {
324         u16 v = get_unaligned_be16(buf);
325
326         memcpy(buf, &v, sizeof(v));
327 }
328
329 static void regmap_parse_16_le_inplace(void *buf)
330 {
331         u16 v = get_unaligned_le16(buf);
332
333         memcpy(buf, &v, sizeof(v));
334 }
335
336 static unsigned int regmap_parse_16_native(const void *buf)
337 {
338         u16 v;
339
340         memcpy(&v, buf, sizeof(v));
341         return v;
342 }
343
344 static unsigned int regmap_parse_24(const void *buf)
345 {
346         const u8 *b = buf;
347         unsigned int ret = b[2];
348         ret |= ((unsigned int)b[1]) << 8;
349         ret |= ((unsigned int)b[0]) << 16;
350
351         return ret;
352 }
353
354 static unsigned int regmap_parse_32_be(const void *buf)
355 {
356         return get_unaligned_be32(buf);
357 }
358
359 static unsigned int regmap_parse_32_le(const void *buf)
360 {
361         return get_unaligned_le32(buf);
362 }
363
364 static void regmap_parse_32_be_inplace(void *buf)
365 {
366         u32 v = get_unaligned_be32(buf);
367
368         memcpy(buf, &v, sizeof(v));
369 }
370
371 static void regmap_parse_32_le_inplace(void *buf)
372 {
373         u32 v = get_unaligned_le32(buf);
374
375         memcpy(buf, &v, sizeof(v));
376 }
377
378 static unsigned int regmap_parse_32_native(const void *buf)
379 {
380         u32 v;
381
382         memcpy(&v, buf, sizeof(v));
383         return v;
384 }
385
386 #ifdef CONFIG_64BIT
387 static unsigned int regmap_parse_64_be(const void *buf)
388 {
389         return get_unaligned_be64(buf);
390 }
391
392 static unsigned int regmap_parse_64_le(const void *buf)
393 {
394         return get_unaligned_le64(buf);
395 }
396
397 static void regmap_parse_64_be_inplace(void *buf)
398 {
399         u64 v =  get_unaligned_be64(buf);
400
401         memcpy(buf, &v, sizeof(v));
402 }
403
404 static void regmap_parse_64_le_inplace(void *buf)
405 {
406         u64 v = get_unaligned_le64(buf);
407
408         memcpy(buf, &v, sizeof(v));
409 }
410
411 static unsigned int regmap_parse_64_native(const void *buf)
412 {
413         u64 v;
414
415         memcpy(&v, buf, sizeof(v));
416         return v;
417 }
418 #endif
419
420 static void regmap_lock_hwlock(void *__map)
421 {
422         struct regmap *map = __map;
423
424         hwspin_lock_timeout(map->hwlock, UINT_MAX);
425 }
426
427 static void regmap_lock_hwlock_irq(void *__map)
428 {
429         struct regmap *map = __map;
430
431         hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
432 }
433
434 static void regmap_lock_hwlock_irqsave(void *__map)
435 {
436         struct regmap *map = __map;
437
438         hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
439                                     &map->spinlock_flags);
440 }
441
442 static void regmap_unlock_hwlock(void *__map)
443 {
444         struct regmap *map = __map;
445
446         hwspin_unlock(map->hwlock);
447 }
448
449 static void regmap_unlock_hwlock_irq(void *__map)
450 {
451         struct regmap *map = __map;
452
453         hwspin_unlock_irq(map->hwlock);
454 }
455
456 static void regmap_unlock_hwlock_irqrestore(void *__map)
457 {
458         struct regmap *map = __map;
459
460         hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
461 }
462
463 static void regmap_lock_unlock_none(void *__map)
464 {
465
466 }
467
468 static void regmap_lock_mutex(void *__map)
469 {
470         struct regmap *map = __map;
471         mutex_lock(&map->mutex);
472 }
473
474 static void regmap_unlock_mutex(void *__map)
475 {
476         struct regmap *map = __map;
477         mutex_unlock(&map->mutex);
478 }
479
480 static void regmap_lock_spinlock(void *__map)
481 __acquires(&map->spinlock)
482 {
483         struct regmap *map = __map;
484         unsigned long flags;
485
486         spin_lock_irqsave(&map->spinlock, flags);
487         map->spinlock_flags = flags;
488 }
489
490 static void regmap_unlock_spinlock(void *__map)
491 __releases(&map->spinlock)
492 {
493         struct regmap *map = __map;
494         spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
495 }
496
497 static void dev_get_regmap_release(struct device *dev, void *res)
498 {
499         /*
500          * We don't actually have anything to do here; the goal here
501          * is not to manage the regmap but to provide a simple way to
502          * get the regmap back given a struct device.
503          */
504 }
505
506 static bool _regmap_range_add(struct regmap *map,
507                               struct regmap_range_node *data)
508 {
509         struct rb_root *root = &map->range_tree;
510         struct rb_node **new = &(root->rb_node), *parent = NULL;
511
512         while (*new) {
513                 struct regmap_range_node *this =
514                         rb_entry(*new, struct regmap_range_node, node);
515
516                 parent = *new;
517                 if (data->range_max < this->range_min)
518                         new = &((*new)->rb_left);
519                 else if (data->range_min > this->range_max)
520                         new = &((*new)->rb_right);
521                 else
522                         return false;
523         }
524
525         rb_link_node(&data->node, parent, new);
526         rb_insert_color(&data->node, root);
527
528         return true;
529 }
530
531 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
532                                                       unsigned int reg)
533 {
534         struct rb_node *node = map->range_tree.rb_node;
535
536         while (node) {
537                 struct regmap_range_node *this =
538                         rb_entry(node, struct regmap_range_node, node);
539
540                 if (reg < this->range_min)
541                         node = node->rb_left;
542                 else if (reg > this->range_max)
543                         node = node->rb_right;
544                 else
545                         return this;
546         }
547
548         return NULL;
549 }
550
551 static void regmap_range_exit(struct regmap *map)
552 {
553         struct rb_node *next;
554         struct regmap_range_node *range_node;
555
556         next = rb_first(&map->range_tree);
557         while (next) {
558                 range_node = rb_entry(next, struct regmap_range_node, node);
559                 next = rb_next(&range_node->node);
560                 rb_erase(&range_node->node, &map->range_tree);
561                 kfree(range_node);
562         }
563
564         kfree(map->selector_work_buf);
565 }
566
567 int regmap_attach_dev(struct device *dev, struct regmap *map,
568                       const struct regmap_config *config)
569 {
570         struct regmap **m;
571
572         map->dev = dev;
573
574         regmap_debugfs_init(map, config->name);
575
576         /* Add a devres resource for dev_get_regmap() */
577         m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
578         if (!m) {
579                 regmap_debugfs_exit(map);
580                 return -ENOMEM;
581         }
582         *m = map;
583         devres_add(dev, m);
584
585         return 0;
586 }
587 EXPORT_SYMBOL_GPL(regmap_attach_dev);
588
589 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
590                                         const struct regmap_config *config)
591 {
592         enum regmap_endian endian;
593
594         /* Retrieve the endianness specification from the regmap config */
595         endian = config->reg_format_endian;
596
597         /* If the regmap config specified a non-default value, use that */
598         if (endian != REGMAP_ENDIAN_DEFAULT)
599                 return endian;
600
601         /* Retrieve the endianness specification from the bus config */
602         if (bus && bus->reg_format_endian_default)
603                 endian = bus->reg_format_endian_default;
604
605         /* If the bus specified a non-default value, use that */
606         if (endian != REGMAP_ENDIAN_DEFAULT)
607                 return endian;
608
609         /* Use this if no other value was found */
610         return REGMAP_ENDIAN_BIG;
611 }
612
613 enum regmap_endian regmap_get_val_endian(struct device *dev,
614                                          const struct regmap_bus *bus,
615                                          const struct regmap_config *config)
616 {
617         struct device_node *np;
618         enum regmap_endian endian;
619
620         /* Retrieve the endianness specification from the regmap config */
621         endian = config->val_format_endian;
622
623         /* If the regmap config specified a non-default value, use that */
624         if (endian != REGMAP_ENDIAN_DEFAULT)
625                 return endian;
626
627         /* If the dev and dev->of_node exist try to get endianness from DT */
628         if (dev && dev->of_node) {
629                 np = dev->of_node;
630
631                 /* Parse the device's DT node for an endianness specification */
632                 if (of_property_read_bool(np, "big-endian"))
633                         endian = REGMAP_ENDIAN_BIG;
634                 else if (of_property_read_bool(np, "little-endian"))
635                         endian = REGMAP_ENDIAN_LITTLE;
636                 else if (of_property_read_bool(np, "native-endian"))
637                         endian = REGMAP_ENDIAN_NATIVE;
638
639                 /* If the endianness was specified in DT, use that */
640                 if (endian != REGMAP_ENDIAN_DEFAULT)
641                         return endian;
642         }
643
644         /* Retrieve the endianness specification from the bus config */
645         if (bus && bus->val_format_endian_default)
646                 endian = bus->val_format_endian_default;
647
648         /* If the bus specified a non-default value, use that */
649         if (endian != REGMAP_ENDIAN_DEFAULT)
650                 return endian;
651
652         /* Use this if no other value was found */
653         return REGMAP_ENDIAN_BIG;
654 }
655 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
656
657 struct regmap *__regmap_init(struct device *dev,
658                              const struct regmap_bus *bus,
659                              void *bus_context,
660                              const struct regmap_config *config,
661                              struct lock_class_key *lock_key,
662                              const char *lock_name)
663 {
664         struct regmap *map;
665         int ret = -EINVAL;
666         enum regmap_endian reg_endian, val_endian;
667         int i, j;
668
669         if (!config)
670                 goto err;
671
672         map = kzalloc(sizeof(*map), GFP_KERNEL);
673         if (map == NULL) {
674                 ret = -ENOMEM;
675                 goto err;
676         }
677
678         if (config->name) {
679                 map->name = kstrdup_const(config->name, GFP_KERNEL);
680                 if (!map->name) {
681                         ret = -ENOMEM;
682                         goto err_map;
683                 }
684         }
685
686         if (config->disable_locking) {
687                 map->lock = map->unlock = regmap_lock_unlock_none;
688                 regmap_debugfs_disable(map);
689         } else if (config->lock && config->unlock) {
690                 map->lock = config->lock;
691                 map->unlock = config->unlock;
692                 map->lock_arg = config->lock_arg;
693         } else if (config->use_hwlock) {
694                 map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
695                 if (!map->hwlock) {
696                         ret = -ENXIO;
697                         goto err_name;
698                 }
699
700                 switch (config->hwlock_mode) {
701                 case HWLOCK_IRQSTATE:
702                         map->lock = regmap_lock_hwlock_irqsave;
703                         map->unlock = regmap_unlock_hwlock_irqrestore;
704                         break;
705                 case HWLOCK_IRQ:
706                         map->lock = regmap_lock_hwlock_irq;
707                         map->unlock = regmap_unlock_hwlock_irq;
708                         break;
709                 default:
710                         map->lock = regmap_lock_hwlock;
711                         map->unlock = regmap_unlock_hwlock;
712                         break;
713                 }
714
715                 map->lock_arg = map;
716         } else {
717                 if ((bus && bus->fast_io) ||
718                     config->fast_io) {
719                         spin_lock_init(&map->spinlock);
720                         map->lock = regmap_lock_spinlock;
721                         map->unlock = regmap_unlock_spinlock;
722                         lockdep_set_class_and_name(&map->spinlock,
723                                                    lock_key, lock_name);
724                 } else {
725                         mutex_init(&map->mutex);
726                         map->lock = regmap_lock_mutex;
727                         map->unlock = regmap_unlock_mutex;
728                         lockdep_set_class_and_name(&map->mutex,
729                                                    lock_key, lock_name);
730                 }
731                 map->lock_arg = map;
732         }
733
734         /*
735          * When we write in fast-paths with regmap_bulk_write() don't allocate
736          * scratch buffers with sleeping allocations.
737          */
738         if ((bus && bus->fast_io) || config->fast_io)
739                 map->alloc_flags = GFP_ATOMIC;
740         else
741                 map->alloc_flags = GFP_KERNEL;
742
743         map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
744         map->format.pad_bytes = config->pad_bits / 8;
745         map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
746         map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
747                         config->val_bits + config->pad_bits, 8);
748         map->reg_shift = config->pad_bits % 8;
749         if (config->reg_stride)
750                 map->reg_stride = config->reg_stride;
751         else
752                 map->reg_stride = 1;
753         if (is_power_of_2(map->reg_stride))
754                 map->reg_stride_order = ilog2(map->reg_stride);
755         else
756                 map->reg_stride_order = -1;
757         map->use_single_read = config->use_single_rw || !bus || !bus->read;
758         map->use_single_write = config->use_single_rw || !bus || !bus->write;
759         map->can_multi_write = config->can_multi_write && bus && bus->write;
760         if (bus) {
761                 map->max_raw_read = bus->max_raw_read;
762                 map->max_raw_write = bus->max_raw_write;
763         }
764         map->dev = dev;
765         map->bus = bus;
766         map->bus_context = bus_context;
767         map->max_register = config->max_register;
768         map->wr_table = config->wr_table;
769         map->rd_table = config->rd_table;
770         map->volatile_table = config->volatile_table;
771         map->precious_table = config->precious_table;
772         map->rd_noinc_table = config->rd_noinc_table;
773         map->writeable_reg = config->writeable_reg;
774         map->readable_reg = config->readable_reg;
775         map->volatile_reg = config->volatile_reg;
776         map->precious_reg = config->precious_reg;
777         map->readable_noinc_reg = config->readable_noinc_reg;
778         map->cache_type = config->cache_type;
779
780         spin_lock_init(&map->async_lock);
781         INIT_LIST_HEAD(&map->async_list);
782         INIT_LIST_HEAD(&map->async_free);
783         init_waitqueue_head(&map->async_waitq);
784
785         if (config->read_flag_mask ||
786             config->write_flag_mask ||
787             config->zero_flag_mask) {
788                 map->read_flag_mask = config->read_flag_mask;
789                 map->write_flag_mask = config->write_flag_mask;
790         } else if (bus) {
791                 map->read_flag_mask = bus->read_flag_mask;
792         }
793
794         if (!bus) {
795                 map->reg_read  = config->reg_read;
796                 map->reg_write = config->reg_write;
797
798                 map->defer_caching = false;
799                 goto skip_format_initialization;
800         } else if (!bus->read || !bus->write) {
801                 map->reg_read = _regmap_bus_reg_read;
802                 map->reg_write = _regmap_bus_reg_write;
803
804                 map->defer_caching = false;
805                 goto skip_format_initialization;
806         } else {
807                 map->reg_read  = _regmap_bus_read;
808                 map->reg_update_bits = bus->reg_update_bits;
809         }
810
811         reg_endian = regmap_get_reg_endian(bus, config);
812         val_endian = regmap_get_val_endian(dev, bus, config);
813
814         switch (config->reg_bits + map->reg_shift) {
815         case 2:
816                 switch (config->val_bits) {
817                 case 6:
818                         map->format.format_write = regmap_format_2_6_write;
819                         break;
820                 default:
821                         goto err_hwlock;
822                 }
823                 break;
824
825         case 4:
826                 switch (config->val_bits) {
827                 case 12:
828                         map->format.format_write = regmap_format_4_12_write;
829                         break;
830                 default:
831                         goto err_hwlock;
832                 }
833                 break;
834
835         case 7:
836                 switch (config->val_bits) {
837                 case 9:
838                         map->format.format_write = regmap_format_7_9_write;
839                         break;
840                 default:
841                         goto err_hwlock;
842                 }
843                 break;
844
845         case 10:
846                 switch (config->val_bits) {
847                 case 14:
848                         map->format.format_write = regmap_format_10_14_write;
849                         break;
850                 default:
851                         goto err_hwlock;
852                 }
853                 break;
854
855         case 8:
856                 map->format.format_reg = regmap_format_8;
857                 break;
858
859         case 16:
860                 switch (reg_endian) {
861                 case REGMAP_ENDIAN_BIG:
862                         map->format.format_reg = regmap_format_16_be;
863                         break;
864                 case REGMAP_ENDIAN_LITTLE:
865                         map->format.format_reg = regmap_format_16_le;
866                         break;
867                 case REGMAP_ENDIAN_NATIVE:
868                         map->format.format_reg = regmap_format_16_native;
869                         break;
870                 default:
871                         goto err_hwlock;
872                 }
873                 break;
874
875         case 24:
876                 if (reg_endian != REGMAP_ENDIAN_BIG)
877                         goto err_hwlock;
878                 map->format.format_reg = regmap_format_24;
879                 break;
880
881         case 32:
882                 switch (reg_endian) {
883                 case REGMAP_ENDIAN_BIG:
884                         map->format.format_reg = regmap_format_32_be;
885                         break;
886                 case REGMAP_ENDIAN_LITTLE:
887                         map->format.format_reg = regmap_format_32_le;
888                         break;
889                 case REGMAP_ENDIAN_NATIVE:
890                         map->format.format_reg = regmap_format_32_native;
891                         break;
892                 default:
893                         goto err_hwlock;
894                 }
895                 break;
896
897 #ifdef CONFIG_64BIT
898         case 64:
899                 switch (reg_endian) {
900                 case REGMAP_ENDIAN_BIG:
901                         map->format.format_reg = regmap_format_64_be;
902                         break;
903                 case REGMAP_ENDIAN_LITTLE:
904                         map->format.format_reg = regmap_format_64_le;
905                         break;
906                 case REGMAP_ENDIAN_NATIVE:
907                         map->format.format_reg = regmap_format_64_native;
908                         break;
909                 default:
910                         goto err_hwlock;
911                 }
912                 break;
913 #endif
914
915         default:
916                 goto err_hwlock;
917         }
918
919         if (val_endian == REGMAP_ENDIAN_NATIVE)
920                 map->format.parse_inplace = regmap_parse_inplace_noop;
921
922         switch (config->val_bits) {
923         case 8:
924                 map->format.format_val = regmap_format_8;
925                 map->format.parse_val = regmap_parse_8;
926                 map->format.parse_inplace = regmap_parse_inplace_noop;
927                 break;
928         case 16:
929                 switch (val_endian) {
930                 case REGMAP_ENDIAN_BIG:
931                         map->format.format_val = regmap_format_16_be;
932                         map->format.parse_val = regmap_parse_16_be;
933                         map->format.parse_inplace = regmap_parse_16_be_inplace;
934                         break;
935                 case REGMAP_ENDIAN_LITTLE:
936                         map->format.format_val = regmap_format_16_le;
937                         map->format.parse_val = regmap_parse_16_le;
938                         map->format.parse_inplace = regmap_parse_16_le_inplace;
939                         break;
940                 case REGMAP_ENDIAN_NATIVE:
941                         map->format.format_val = regmap_format_16_native;
942                         map->format.parse_val = regmap_parse_16_native;
943                         break;
944                 default:
945                         goto err_hwlock;
946                 }
947                 break;
948         case 24:
949                 if (val_endian != REGMAP_ENDIAN_BIG)
950                         goto err_hwlock;
951                 map->format.format_val = regmap_format_24;
952                 map->format.parse_val = regmap_parse_24;
953                 break;
954         case 32:
955                 switch (val_endian) {
956                 case REGMAP_ENDIAN_BIG:
957                         map->format.format_val = regmap_format_32_be;
958                         map->format.parse_val = regmap_parse_32_be;
959                         map->format.parse_inplace = regmap_parse_32_be_inplace;
960                         break;
961                 case REGMAP_ENDIAN_LITTLE:
962                         map->format.format_val = regmap_format_32_le;
963                         map->format.parse_val = regmap_parse_32_le;
964                         map->format.parse_inplace = regmap_parse_32_le_inplace;
965                         break;
966                 case REGMAP_ENDIAN_NATIVE:
967                         map->format.format_val = regmap_format_32_native;
968                         map->format.parse_val = regmap_parse_32_native;
969                         break;
970                 default:
971                         goto err_hwlock;
972                 }
973                 break;
974 #ifdef CONFIG_64BIT
975         case 64:
976                 switch (val_endian) {
977                 case REGMAP_ENDIAN_BIG:
978                         map->format.format_val = regmap_format_64_be;
979                         map->format.parse_val = regmap_parse_64_be;
980                         map->format.parse_inplace = regmap_parse_64_be_inplace;
981                         break;
982                 case REGMAP_ENDIAN_LITTLE:
983                         map->format.format_val = regmap_format_64_le;
984                         map->format.parse_val = regmap_parse_64_le;
985                         map->format.parse_inplace = regmap_parse_64_le_inplace;
986                         break;
987                 case REGMAP_ENDIAN_NATIVE:
988                         map->format.format_val = regmap_format_64_native;
989                         map->format.parse_val = regmap_parse_64_native;
990                         break;
991                 default:
992                         goto err_hwlock;
993                 }
994                 break;
995 #endif
996         }
997
998         if (map->format.format_write) {
999                 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1000                     (val_endian != REGMAP_ENDIAN_BIG))
1001                         goto err_hwlock;
1002                 map->use_single_write = true;
1003         }
1004
1005         if (!map->format.format_write &&
1006             !(map->format.format_reg && map->format.format_val))
1007                 goto err_hwlock;
1008
1009         map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1010         if (map->work_buf == NULL) {
1011                 ret = -ENOMEM;
1012                 goto err_hwlock;
1013         }
1014
1015         if (map->format.format_write) {
1016                 map->defer_caching = false;
1017                 map->reg_write = _regmap_bus_formatted_write;
1018         } else if (map->format.format_val) {
1019                 map->defer_caching = true;
1020                 map->reg_write = _regmap_bus_raw_write;
1021         }
1022
1023 skip_format_initialization:
1024
1025         map->range_tree = RB_ROOT;
1026         for (i = 0; i < config->num_ranges; i++) {
1027                 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1028                 struct regmap_range_node *new;
1029
1030                 /* Sanity check */
1031                 if (range_cfg->range_max < range_cfg->range_min) {
1032                         dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1033                                 range_cfg->range_max, range_cfg->range_min);
1034                         goto err_range;
1035                 }
1036
1037                 if (range_cfg->range_max > map->max_register) {
1038                         dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1039                                 range_cfg->range_max, map->max_register);
1040                         goto err_range;
1041                 }
1042
1043                 if (range_cfg->selector_reg > map->max_register) {
1044                         dev_err(map->dev,
1045                                 "Invalid range %d: selector out of map\n", i);
1046                         goto err_range;
1047                 }
1048
1049                 if (range_cfg->window_len == 0) {
1050                         dev_err(map->dev, "Invalid range %d: window_len 0\n",
1051                                 i);
1052                         goto err_range;
1053                 }
1054
1055                 /* Make sure, that this register range has no selector
1056                    or data window within its boundary */
1057                 for (j = 0; j < config->num_ranges; j++) {
1058                         unsigned sel_reg = config->ranges[j].selector_reg;
1059                         unsigned win_min = config->ranges[j].window_start;
1060                         unsigned win_max = win_min +
1061                                            config->ranges[j].window_len - 1;
1062
1063                         /* Allow data window inside its own virtual range */
1064                         if (j == i)
1065                                 continue;
1066
1067                         if (range_cfg->range_min <= sel_reg &&
1068                             sel_reg <= range_cfg->range_max) {
1069                                 dev_err(map->dev,
1070                                         "Range %d: selector for %d in window\n",
1071                                         i, j);
1072                                 goto err_range;
1073                         }
1074
1075                         if (!(win_max < range_cfg->range_min ||
1076                               win_min > range_cfg->range_max)) {
1077                                 dev_err(map->dev,
1078                                         "Range %d: window for %d in window\n",
1079                                         i, j);
1080                                 goto err_range;
1081                         }
1082                 }
1083
1084                 new = kzalloc(sizeof(*new), GFP_KERNEL);
1085                 if (new == NULL) {
1086                         ret = -ENOMEM;
1087                         goto err_range;
1088                 }
1089
1090                 new->map = map;
1091                 new->name = range_cfg->name;
1092                 new->range_min = range_cfg->range_min;
1093                 new->range_max = range_cfg->range_max;
1094                 new->selector_reg = range_cfg->selector_reg;
1095                 new->selector_mask = range_cfg->selector_mask;
1096                 new->selector_shift = range_cfg->selector_shift;
1097                 new->window_start = range_cfg->window_start;
1098                 new->window_len = range_cfg->window_len;
1099
1100                 if (!_regmap_range_add(map, new)) {
1101                         dev_err(map->dev, "Failed to add range %d\n", i);
1102                         kfree(new);
1103                         goto err_range;
1104                 }
1105
1106                 if (map->selector_work_buf == NULL) {
1107                         map->selector_work_buf =
1108                                 kzalloc(map->format.buf_size, GFP_KERNEL);
1109                         if (map->selector_work_buf == NULL) {
1110                                 ret = -ENOMEM;
1111                                 goto err_range;
1112                         }
1113                 }
1114         }
1115
1116         ret = regcache_init(map, config);
1117         if (ret != 0)
1118                 goto err_range;
1119
1120         if (dev) {
1121                 ret = regmap_attach_dev(dev, map, config);
1122                 if (ret != 0)
1123                         goto err_regcache;
1124         } else {
1125                 regmap_debugfs_init(map, config->name);
1126         }
1127
1128         return map;
1129
1130 err_regcache:
1131         regcache_exit(map);
1132 err_range:
1133         regmap_range_exit(map);
1134         kfree(map->work_buf);
1135 err_hwlock:
1136         if (map->hwlock)
1137                 hwspin_lock_free(map->hwlock);
1138 err_name:
1139         kfree_const(map->name);
1140 err_map:
1141         kfree(map);
1142 err:
1143         return ERR_PTR(ret);
1144 }
1145 EXPORT_SYMBOL_GPL(__regmap_init);
1146
1147 static void devm_regmap_release(struct device *dev, void *res)
1148 {
1149         regmap_exit(*(struct regmap **)res);
1150 }
1151
1152 struct regmap *__devm_regmap_init(struct device *dev,
1153                                   const struct regmap_bus *bus,
1154                                   void *bus_context,
1155                                   const struct regmap_config *config,
1156                                   struct lock_class_key *lock_key,
1157                                   const char *lock_name)
1158 {
1159         struct regmap **ptr, *regmap;
1160
1161         ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1162         if (!ptr)
1163                 return ERR_PTR(-ENOMEM);
1164
1165         regmap = __regmap_init(dev, bus, bus_context, config,
1166                                lock_key, lock_name);
1167         if (!IS_ERR(regmap)) {
1168                 *ptr = regmap;
1169                 devres_add(dev, ptr);
1170         } else {
1171                 devres_free(ptr);
1172         }
1173
1174         return regmap;
1175 }
1176 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1177
1178 static void regmap_field_init(struct regmap_field *rm_field,
1179         struct regmap *regmap, struct reg_field reg_field)
1180 {
1181         rm_field->regmap = regmap;
1182         rm_field->reg = reg_field.reg;
1183         rm_field->shift = reg_field.lsb;
1184         rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1185         rm_field->id_size = reg_field.id_size;
1186         rm_field->id_offset = reg_field.id_offset;
1187 }
1188
1189 /**
1190  * devm_regmap_field_alloc() - Allocate and initialise a register field.
1191  *
1192  * @dev: Device that will be interacted with
1193  * @regmap: regmap bank in which this register field is located.
1194  * @reg_field: Register field with in the bank.
1195  *
1196  * The return value will be an ERR_PTR() on error or a valid pointer
1197  * to a struct regmap_field. The regmap_field will be automatically freed
1198  * by the device management code.
1199  */
1200 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1201                 struct regmap *regmap, struct reg_field reg_field)
1202 {
1203         struct regmap_field *rm_field = devm_kzalloc(dev,
1204                                         sizeof(*rm_field), GFP_KERNEL);
1205         if (!rm_field)
1206                 return ERR_PTR(-ENOMEM);
1207
1208         regmap_field_init(rm_field, regmap, reg_field);
1209
1210         return rm_field;
1211
1212 }
1213 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1214
1215 /**
1216  * devm_regmap_field_free() - Free a register field allocated using
1217  *                            devm_regmap_field_alloc.
1218  *
1219  * @dev: Device that will be interacted with
1220  * @field: regmap field which should be freed.
1221  *
1222  * Free register field allocated using devm_regmap_field_alloc(). Usually
1223  * drivers need not call this function, as the memory allocated via devm
1224  * will be freed as per device-driver life-cyle.
1225  */
1226 void devm_regmap_field_free(struct device *dev,
1227         struct regmap_field *field)
1228 {
1229         devm_kfree(dev, field);
1230 }
1231 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1232
1233 /**
1234  * regmap_field_alloc() - Allocate and initialise a register field.
1235  *
1236  * @regmap: regmap bank in which this register field is located.
1237  * @reg_field: Register field with in the bank.
1238  *
1239  * The return value will be an ERR_PTR() on error or a valid pointer
1240  * to a struct regmap_field. The regmap_field should be freed by the
1241  * user once its finished working with it using regmap_field_free().
1242  */
1243 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1244                 struct reg_field reg_field)
1245 {
1246         struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1247
1248         if (!rm_field)
1249                 return ERR_PTR(-ENOMEM);
1250
1251         regmap_field_init(rm_field, regmap, reg_field);
1252
1253         return rm_field;
1254 }
1255 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1256
1257 /**
1258  * regmap_field_free() - Free register field allocated using
1259  *                       regmap_field_alloc.
1260  *
1261  * @field: regmap field which should be freed.
1262  */
1263 void regmap_field_free(struct regmap_field *field)
1264 {
1265         kfree(field);
1266 }
1267 EXPORT_SYMBOL_GPL(regmap_field_free);
1268
1269 /**
1270  * regmap_reinit_cache() - Reinitialise the current register cache
1271  *
1272  * @map: Register map to operate on.
1273  * @config: New configuration.  Only the cache data will be used.
1274  *
1275  * Discard any existing register cache for the map and initialize a
1276  * new cache.  This can be used to restore the cache to defaults or to
1277  * update the cache configuration to reflect runtime discovery of the
1278  * hardware.
1279  *
1280  * No explicit locking is done here, the user needs to ensure that
1281  * this function will not race with other calls to regmap.
1282  */
1283 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1284 {
1285         regcache_exit(map);
1286         regmap_debugfs_exit(map);
1287
1288         map->max_register = config->max_register;
1289         map->writeable_reg = config->writeable_reg;
1290         map->readable_reg = config->readable_reg;
1291         map->volatile_reg = config->volatile_reg;
1292         map->precious_reg = config->precious_reg;
1293         map->readable_noinc_reg = config->readable_noinc_reg;
1294         map->cache_type = config->cache_type;
1295
1296         regmap_debugfs_init(map, config->name);
1297
1298         map->cache_bypass = false;
1299         map->cache_only = false;
1300
1301         return regcache_init(map, config);
1302 }
1303 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1304
1305 /**
1306  * regmap_exit() - Free a previously allocated register map
1307  *
1308  * @map: Register map to operate on.
1309  */
1310 void regmap_exit(struct regmap *map)
1311 {
1312         struct regmap_async *async;
1313
1314         regcache_exit(map);
1315         regmap_debugfs_exit(map);
1316         regmap_range_exit(map);
1317         if (map->bus && map->bus->free_context)
1318                 map->bus->free_context(map->bus_context);
1319         kfree(map->work_buf);
1320         while (!list_empty(&map->async_free)) {
1321                 async = list_first_entry_or_null(&map->async_free,
1322                                                  struct regmap_async,
1323                                                  list);
1324                 list_del(&async->list);
1325                 kfree(async->work_buf);
1326                 kfree(async);
1327         }
1328         if (map->hwlock)
1329                 hwspin_lock_free(map->hwlock);
1330         kfree_const(map->name);
1331         kfree(map->patch);
1332         kfree(map);
1333 }
1334 EXPORT_SYMBOL_GPL(regmap_exit);
1335
1336 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1337 {
1338         struct regmap **r = res;
1339         if (!r || !*r) {
1340                 WARN_ON(!r || !*r);
1341                 return 0;
1342         }
1343
1344         /* If the user didn't specify a name match any */
1345         if (data)
1346                 return !strcmp((*r)->name, data);
1347         else
1348                 return 1;
1349 }
1350
1351 /**
1352  * dev_get_regmap() - Obtain the regmap (if any) for a device
1353  *
1354  * @dev: Device to retrieve the map for
1355  * @name: Optional name for the register map, usually NULL.
1356  *
1357  * Returns the regmap for the device if one is present, or NULL.  If
1358  * name is specified then it must match the name specified when
1359  * registering the device, if it is NULL then the first regmap found
1360  * will be used.  Devices with multiple register maps are very rare,
1361  * generic code should normally not need to specify a name.
1362  */
1363 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1364 {
1365         struct regmap **r = devres_find(dev, dev_get_regmap_release,
1366                                         dev_get_regmap_match, (void *)name);
1367
1368         if (!r)
1369                 return NULL;
1370         return *r;
1371 }
1372 EXPORT_SYMBOL_GPL(dev_get_regmap);
1373
1374 /**
1375  * regmap_get_device() - Obtain the device from a regmap
1376  *
1377  * @map: Register map to operate on.
1378  *
1379  * Returns the underlying device that the regmap has been created for.
1380  */
1381 struct device *regmap_get_device(struct regmap *map)
1382 {
1383         return map->dev;
1384 }
1385 EXPORT_SYMBOL_GPL(regmap_get_device);
1386
1387 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1388                                struct regmap_range_node *range,
1389                                unsigned int val_num)
1390 {
1391         void *orig_work_buf;
1392         unsigned int win_offset;
1393         unsigned int win_page;
1394         bool page_chg;
1395         int ret;
1396
1397         win_offset = (*reg - range->range_min) % range->window_len;
1398         win_page = (*reg - range->range_min) / range->window_len;
1399
1400         if (val_num > 1) {
1401                 /* Bulk write shouldn't cross range boundary */
1402                 if (*reg + val_num - 1 > range->range_max)
1403                         return -EINVAL;
1404
1405                 /* ... or single page boundary */
1406                 if (val_num > range->window_len - win_offset)
1407                         return -EINVAL;
1408         }
1409
1410         /* It is possible to have selector register inside data window.
1411            In that case, selector register is located on every page and
1412            it needs no page switching, when accessed alone. */
1413         if (val_num > 1 ||
1414             range->window_start + win_offset != range->selector_reg) {
1415                 /* Use separate work_buf during page switching */
1416                 orig_work_buf = map->work_buf;
1417                 map->work_buf = map->selector_work_buf;
1418
1419                 ret = _regmap_update_bits(map, range->selector_reg,
1420                                           range->selector_mask,
1421                                           win_page << range->selector_shift,
1422                                           &page_chg, false);
1423
1424                 map->work_buf = orig_work_buf;
1425
1426                 if (ret != 0)
1427                         return ret;
1428         }
1429
1430         *reg = range->window_start + win_offset;
1431
1432         return 0;
1433 }
1434
1435 static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1436                                           unsigned long mask)
1437 {
1438         u8 *buf;
1439         int i;
1440
1441         if (!mask || !map->work_buf)
1442                 return;
1443
1444         buf = map->work_buf;
1445
1446         for (i = 0; i < max_bytes; i++)
1447                 buf[i] |= (mask >> (8 * i)) & 0xff;
1448 }
1449
1450 static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1451                                   const void *val, size_t val_len)
1452 {
1453         struct regmap_range_node *range;
1454         unsigned long flags;
1455         void *work_val = map->work_buf + map->format.reg_bytes +
1456                 map->format.pad_bytes;
1457         void *buf;
1458         int ret = -ENOTSUPP;
1459         size_t len;
1460         int i;
1461
1462         WARN_ON(!map->bus);
1463
1464         /* Check for unwritable registers before we start */
1465         if (map->writeable_reg)
1466                 for (i = 0; i < val_len / map->format.val_bytes; i++)
1467                         if (!map->writeable_reg(map->dev,
1468                                                reg + regmap_get_offset(map, i)))
1469                                 return -EINVAL;
1470
1471         if (!map->cache_bypass && map->format.parse_val) {
1472                 unsigned int ival;
1473                 int val_bytes = map->format.val_bytes;
1474                 for (i = 0; i < val_len / val_bytes; i++) {
1475                         ival = map->format.parse_val(val + (i * val_bytes));
1476                         ret = regcache_write(map,
1477                                              reg + regmap_get_offset(map, i),
1478                                              ival);
1479                         if (ret) {
1480                                 dev_err(map->dev,
1481                                         "Error in caching of register: %x ret: %d\n",
1482                                         reg + regmap_get_offset(map, i), ret);
1483                                 return ret;
1484                         }
1485                 }
1486                 if (map->cache_only) {
1487                         map->cache_dirty = true;
1488                         return 0;
1489                 }
1490         }
1491
1492         range = _regmap_range_lookup(map, reg);
1493         if (range) {
1494                 int val_num = val_len / map->format.val_bytes;
1495                 int win_offset = (reg - range->range_min) % range->window_len;
1496                 int win_residue = range->window_len - win_offset;
1497
1498                 /* If the write goes beyond the end of the window split it */
1499                 while (val_num > win_residue) {
1500                         dev_dbg(map->dev, "Writing window %d/%zu\n",
1501                                 win_residue, val_len / map->format.val_bytes);
1502                         ret = _regmap_raw_write_impl(map, reg, val,
1503                                                      win_residue *
1504                                                      map->format.val_bytes);
1505                         if (ret != 0)
1506                                 return ret;
1507
1508                         reg += win_residue;
1509                         val_num -= win_residue;
1510                         val += win_residue * map->format.val_bytes;
1511                         val_len -= win_residue * map->format.val_bytes;
1512
1513                         win_offset = (reg - range->range_min) %
1514                                 range->window_len;
1515                         win_residue = range->window_len - win_offset;
1516                 }
1517
1518                 ret = _regmap_select_page(map, &reg, range, val_num);
1519                 if (ret != 0)
1520                         return ret;
1521         }
1522
1523         map->format.format_reg(map->work_buf, reg, map->reg_shift);
1524         regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1525                                       map->write_flag_mask);
1526
1527         /*
1528          * Essentially all I/O mechanisms will be faster with a single
1529          * buffer to write.  Since register syncs often generate raw
1530          * writes of single registers optimise that case.
1531          */
1532         if (val != work_val && val_len == map->format.val_bytes) {
1533                 memcpy(work_val, val, map->format.val_bytes);
1534                 val = work_val;
1535         }
1536
1537         if (map->async && map->bus->async_write) {
1538                 struct regmap_async *async;
1539
1540                 trace_regmap_async_write_start(map, reg, val_len);
1541
1542                 spin_lock_irqsave(&map->async_lock, flags);
1543                 async = list_first_entry_or_null(&map->async_free,
1544                                                  struct regmap_async,
1545                                                  list);
1546                 if (async)
1547                         list_del(&async->list);
1548                 spin_unlock_irqrestore(&map->async_lock, flags);
1549
1550                 if (!async) {
1551                         async = map->bus->async_alloc();
1552                         if (!async)
1553                                 return -ENOMEM;
1554
1555                         async->work_buf = kzalloc(map->format.buf_size,
1556                                                   GFP_KERNEL | GFP_DMA);
1557                         if (!async->work_buf) {
1558                                 kfree(async);
1559                                 return -ENOMEM;
1560                         }
1561                 }
1562
1563                 async->map = map;
1564
1565                 /* If the caller supplied the value we can use it safely. */
1566                 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1567                        map->format.reg_bytes + map->format.val_bytes);
1568
1569                 spin_lock_irqsave(&map->async_lock, flags);
1570                 list_add_tail(&async->list, &map->async_list);
1571                 spin_unlock_irqrestore(&map->async_lock, flags);
1572
1573                 if (val != work_val)
1574                         ret = map->bus->async_write(map->bus_context,
1575                                                     async->work_buf,
1576                                                     map->format.reg_bytes +
1577                                                     map->format.pad_bytes,
1578                                                     val, val_len, async);
1579                 else
1580                         ret = map->bus->async_write(map->bus_context,
1581                                                     async->work_buf,
1582                                                     map->format.reg_bytes +
1583                                                     map->format.pad_bytes +
1584                                                     val_len, NULL, 0, async);
1585
1586                 if (ret != 0) {
1587                         dev_err(map->dev, "Failed to schedule write: %d\n",
1588                                 ret);
1589
1590                         spin_lock_irqsave(&map->async_lock, flags);
1591                         list_move(&async->list, &map->async_free);
1592                         spin_unlock_irqrestore(&map->async_lock, flags);
1593                 }
1594
1595                 return ret;
1596         }
1597
1598         trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1599
1600         /* If we're doing a single register write we can probably just
1601          * send the work_buf directly, otherwise try to do a gather
1602          * write.
1603          */
1604         if (val == work_val)
1605                 ret = map->bus->write(map->bus_context, map->work_buf,
1606                                       map->format.reg_bytes +
1607                                       map->format.pad_bytes +
1608                                       val_len);
1609         else if (map->bus->gather_write)
1610                 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1611                                              map->format.reg_bytes +
1612                                              map->format.pad_bytes,
1613                                              val, val_len);
1614         else
1615                 ret = -ENOTSUPP;
1616
1617         /* If that didn't work fall back on linearising by hand. */
1618         if (ret == -ENOTSUPP) {
1619                 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1620                 buf = kzalloc(len, GFP_KERNEL);
1621                 if (!buf)
1622                         return -ENOMEM;
1623
1624                 memcpy(buf, map->work_buf, map->format.reg_bytes);
1625                 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1626                        val, val_len);
1627                 ret = map->bus->write(map->bus_context, buf, len);
1628
1629                 kfree(buf);
1630         } else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1631                 /* regcache_drop_region() takes lock that we already have,
1632                  * thus call map->cache_ops->drop() directly
1633                  */
1634                 if (map->cache_ops && map->cache_ops->drop)
1635                         map->cache_ops->drop(map, reg, reg + 1);
1636         }
1637
1638         trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1639
1640         return ret;
1641 }
1642
1643 /**
1644  * regmap_can_raw_write - Test if regmap_raw_write() is supported
1645  *
1646  * @map: Map to check.
1647  */
1648 bool regmap_can_raw_write(struct regmap *map)
1649 {
1650         return map->bus && map->bus->write && map->format.format_val &&
1651                 map->format.format_reg;
1652 }
1653 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1654
1655 /**
1656  * regmap_get_raw_read_max - Get the maximum size we can read
1657  *
1658  * @map: Map to check.
1659  */
1660 size_t regmap_get_raw_read_max(struct regmap *map)
1661 {
1662         return map->max_raw_read;
1663 }
1664 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1665
1666 /**
1667  * regmap_get_raw_write_max - Get the maximum size we can read
1668  *
1669  * @map: Map to check.
1670  */
1671 size_t regmap_get_raw_write_max(struct regmap *map)
1672 {
1673         return map->max_raw_write;
1674 }
1675 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1676
1677 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1678                                        unsigned int val)
1679 {
1680         int ret;
1681         struct regmap_range_node *range;
1682         struct regmap *map = context;
1683
1684         WARN_ON(!map->bus || !map->format.format_write);
1685
1686         range = _regmap_range_lookup(map, reg);
1687         if (range) {
1688                 ret = _regmap_select_page(map, &reg, range, 1);
1689                 if (ret != 0)
1690                         return ret;
1691         }
1692
1693         map->format.format_write(map, reg, val);
1694
1695         trace_regmap_hw_write_start(map, reg, 1);
1696
1697         ret = map->bus->write(map->bus_context, map->work_buf,
1698                               map->format.buf_size);
1699
1700         trace_regmap_hw_write_done(map, reg, 1);
1701
1702         return ret;
1703 }
1704
1705 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1706                                  unsigned int val)
1707 {
1708         struct regmap *map = context;
1709
1710         return map->bus->reg_write(map->bus_context, reg, val);
1711 }
1712
1713 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1714                                  unsigned int val)
1715 {
1716         struct regmap *map = context;
1717
1718         WARN_ON(!map->bus || !map->format.format_val);
1719
1720         map->format.format_val(map->work_buf + map->format.reg_bytes
1721                                + map->format.pad_bytes, val, 0);
1722         return _regmap_raw_write_impl(map, reg,
1723                                       map->work_buf +
1724                                       map->format.reg_bytes +
1725                                       map->format.pad_bytes,
1726                                       map->format.val_bytes);
1727 }
1728
1729 static inline void *_regmap_map_get_context(struct regmap *map)
1730 {
1731         return (map->bus) ? map : map->bus_context;
1732 }
1733
1734 int _regmap_write(struct regmap *map, unsigned int reg,
1735                   unsigned int val)
1736 {
1737         int ret;
1738         void *context = _regmap_map_get_context(map);
1739
1740         if (!regmap_writeable(map, reg))
1741                 return -EIO;
1742
1743         if (!map->cache_bypass && !map->defer_caching) {
1744                 ret = regcache_write(map, reg, val);
1745                 if (ret != 0)
1746                         return ret;
1747                 if (map->cache_only) {
1748                         map->cache_dirty = true;
1749                         return 0;
1750                 }
1751         }
1752
1753 #ifdef LOG_DEVICE
1754         if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1755                 dev_info(map->dev, "%x <= %x\n", reg, val);
1756 #endif
1757
1758         trace_regmap_reg_write(map, reg, val);
1759
1760         return map->reg_write(context, reg, val);
1761 }
1762
1763 /**
1764  * regmap_write() - Write a value to a single register
1765  *
1766  * @map: Register map to write to
1767  * @reg: Register to write to
1768  * @val: Value to be written
1769  *
1770  * A value of zero will be returned on success, a negative errno will
1771  * be returned in error cases.
1772  */
1773 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1774 {
1775         int ret;
1776
1777         if (!IS_ALIGNED(reg, map->reg_stride))
1778                 return -EINVAL;
1779
1780         map->lock(map->lock_arg);
1781
1782         ret = _regmap_write(map, reg, val);
1783
1784         map->unlock(map->lock_arg);
1785
1786         return ret;
1787 }
1788 EXPORT_SYMBOL_GPL(regmap_write);
1789
1790 /**
1791  * regmap_write_async() - Write a value to a single register asynchronously
1792  *
1793  * @map: Register map to write to
1794  * @reg: Register to write to
1795  * @val: Value to be written
1796  *
1797  * A value of zero will be returned on success, a negative errno will
1798  * be returned in error cases.
1799  */
1800 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1801 {
1802         int ret;
1803
1804         if (!IS_ALIGNED(reg, map->reg_stride))
1805                 return -EINVAL;
1806
1807         map->lock(map->lock_arg);
1808
1809         map->async = true;
1810
1811         ret = _regmap_write(map, reg, val);
1812
1813         map->async = false;
1814
1815         map->unlock(map->lock_arg);
1816
1817         return ret;
1818 }
1819 EXPORT_SYMBOL_GPL(regmap_write_async);
1820
1821 int _regmap_raw_write(struct regmap *map, unsigned int reg,
1822                       const void *val, size_t val_len)
1823 {
1824         size_t val_bytes = map->format.val_bytes;
1825         size_t val_count = val_len / val_bytes;
1826         size_t chunk_count, chunk_bytes;
1827         size_t chunk_regs = val_count;
1828         size_t max_data = map->max_raw_write - map->format.reg_bytes -
1829                         map->format.pad_bytes;
1830         int ret, i;
1831
1832         if (!val_count)
1833                 return -EINVAL;
1834
1835         if (map->use_single_write)
1836                 chunk_regs = 1;
1837         else if (map->max_raw_write && val_len > max_data)
1838                 chunk_regs = max_data / val_bytes;
1839
1840         chunk_count = val_count / chunk_regs;
1841         chunk_bytes = chunk_regs * val_bytes;
1842
1843         /* Write as many bytes as possible with chunk_size */
1844         for (i = 0; i < chunk_count; i++) {
1845                 ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes);
1846                 if (ret)
1847                         return ret;
1848
1849                 reg += regmap_get_offset(map, chunk_regs);
1850                 val += chunk_bytes;
1851                 val_len -= chunk_bytes;
1852         }
1853
1854         /* Write remaining bytes */
1855         if (val_len)
1856                 ret = _regmap_raw_write_impl(map, reg, val, val_len);
1857
1858         return ret;
1859 }
1860
1861 /**
1862  * regmap_raw_write() - Write raw values to one or more registers
1863  *
1864  * @map: Register map to write to
1865  * @reg: Initial register to write to
1866  * @val: Block of data to be written, laid out for direct transmission to the
1867  *       device
1868  * @val_len: Length of data pointed to by val.
1869  *
1870  * This function is intended to be used for things like firmware
1871  * download where a large block of data needs to be transferred to the
1872  * device.  No formatting will be done on the data provided.
1873  *
1874  * A value of zero will be returned on success, a negative errno will
1875  * be returned in error cases.
1876  */
1877 int regmap_raw_write(struct regmap *map, unsigned int reg,
1878                      const void *val, size_t val_len)
1879 {
1880         int ret;
1881
1882         if (!regmap_can_raw_write(map))
1883                 return -EINVAL;
1884         if (val_len % map->format.val_bytes)
1885                 return -EINVAL;
1886
1887         map->lock(map->lock_arg);
1888
1889         ret = _regmap_raw_write(map, reg, val, val_len);
1890
1891         map->unlock(map->lock_arg);
1892
1893         return ret;
1894 }
1895 EXPORT_SYMBOL_GPL(regmap_raw_write);
1896
1897 /**
1898  * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
1899  *                                   register field.
1900  *
1901  * @field: Register field to write to
1902  * @mask: Bitmask to change
1903  * @val: Value to be written
1904  * @change: Boolean indicating if a write was done
1905  * @async: Boolean indicating asynchronously
1906  * @force: Boolean indicating use force update
1907  *
1908  * Perform a read/modify/write cycle on the register field with change,
1909  * async, force option.
1910  *
1911  * A value of zero will be returned on success, a negative errno will
1912  * be returned in error cases.
1913  */
1914 int regmap_field_update_bits_base(struct regmap_field *field,
1915                                   unsigned int mask, unsigned int val,
1916                                   bool *change, bool async, bool force)
1917 {
1918         mask = (mask << field->shift) & field->mask;
1919
1920         return regmap_update_bits_base(field->regmap, field->reg,
1921                                        mask, val << field->shift,
1922                                        change, async, force);
1923 }
1924 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
1925
1926 /**
1927  * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
1928  *                                    register field with port ID
1929  *
1930  * @field: Register field to write to
1931  * @id: port ID
1932  * @mask: Bitmask to change
1933  * @val: Value to be written
1934  * @change: Boolean indicating if a write was done
1935  * @async: Boolean indicating asynchronously
1936  * @force: Boolean indicating use force update
1937  *
1938  * A value of zero will be returned on success, a negative errno will
1939  * be returned in error cases.
1940  */
1941 int regmap_fields_update_bits_base(struct regmap_field *field,  unsigned int id,
1942                                    unsigned int mask, unsigned int val,
1943                                    bool *change, bool async, bool force)
1944 {
1945         if (id >= field->id_size)
1946                 return -EINVAL;
1947
1948         mask = (mask << field->shift) & field->mask;
1949
1950         return regmap_update_bits_base(field->regmap,
1951                                        field->reg + (field->id_offset * id),
1952                                        mask, val << field->shift,
1953                                        change, async, force);
1954 }
1955 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
1956
1957 /**
1958  * regmap_bulk_write() - Write multiple registers to the device
1959  *
1960  * @map: Register map to write to
1961  * @reg: First register to be write from
1962  * @val: Block of data to be written, in native register size for device
1963  * @val_count: Number of registers to write
1964  *
1965  * This function is intended to be used for writing a large block of
1966  * data to the device either in single transfer or multiple transfer.
1967  *
1968  * A value of zero will be returned on success, a negative errno will
1969  * be returned in error cases.
1970  */
1971 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1972                      size_t val_count)
1973 {
1974         int ret = 0, i;
1975         size_t val_bytes = map->format.val_bytes;
1976
1977         if (!IS_ALIGNED(reg, map->reg_stride))
1978                 return -EINVAL;
1979
1980         /*
1981          * Some devices don't support bulk write, for them we have a series of
1982          * single write operations.
1983          */
1984         if (!map->bus || !map->format.parse_inplace) {
1985                 map->lock(map->lock_arg);
1986                 for (i = 0; i < val_count; i++) {
1987                         unsigned int ival;
1988
1989                         switch (val_bytes) {
1990                         case 1:
1991                                 ival = *(u8 *)(val + (i * val_bytes));
1992                                 break;
1993                         case 2:
1994                                 ival = *(u16 *)(val + (i * val_bytes));
1995                                 break;
1996                         case 4:
1997                                 ival = *(u32 *)(val + (i * val_bytes));
1998                                 break;
1999 #ifdef CONFIG_64BIT
2000                         case 8:
2001                                 ival = *(u64 *)(val + (i * val_bytes));
2002                                 break;
2003 #endif
2004                         default:
2005                                 ret = -EINVAL;
2006                                 goto out;
2007                         }
2008
2009                         ret = _regmap_write(map,
2010                                             reg + regmap_get_offset(map, i),
2011                                             ival);
2012                         if (ret != 0)
2013                                 goto out;
2014                 }
2015 out:
2016                 map->unlock(map->lock_arg);
2017         } else {
2018                 void *wval;
2019
2020                 wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2021                 if (!wval)
2022                         return -ENOMEM;
2023
2024                 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2025                         map->format.parse_inplace(wval + i);
2026
2027                 ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2028
2029                 kfree(wval);
2030         }
2031         return ret;
2032 }
2033 EXPORT_SYMBOL_GPL(regmap_bulk_write);
2034
2035 /*
2036  * _regmap_raw_multi_reg_write()
2037  *
2038  * the (register,newvalue) pairs in regs have not been formatted, but
2039  * they are all in the same page and have been changed to being page
2040  * relative. The page register has been written if that was necessary.
2041  */
2042 static int _regmap_raw_multi_reg_write(struct regmap *map,
2043                                        const struct reg_sequence *regs,
2044                                        size_t num_regs)
2045 {
2046         int ret;
2047         void *buf;
2048         int i;
2049         u8 *u8;
2050         size_t val_bytes = map->format.val_bytes;
2051         size_t reg_bytes = map->format.reg_bytes;
2052         size_t pad_bytes = map->format.pad_bytes;
2053         size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2054         size_t len = pair_size * num_regs;
2055
2056         if (!len)
2057                 return -EINVAL;
2058
2059         buf = kzalloc(len, GFP_KERNEL);
2060         if (!buf)
2061                 return -ENOMEM;
2062
2063         /* We have to linearise by hand. */
2064
2065         u8 = buf;
2066
2067         for (i = 0; i < num_regs; i++) {
2068                 unsigned int reg = regs[i].reg;
2069                 unsigned int val = regs[i].def;
2070                 trace_regmap_hw_write_start(map, reg, 1);
2071                 map->format.format_reg(u8, reg, map->reg_shift);
2072                 u8 += reg_bytes + pad_bytes;
2073                 map->format.format_val(u8, val, 0);
2074                 u8 += val_bytes;
2075         }
2076         u8 = buf;
2077         *u8 |= map->write_flag_mask;
2078
2079         ret = map->bus->write(map->bus_context, buf, len);
2080
2081         kfree(buf);
2082
2083         for (i = 0; i < num_regs; i++) {
2084                 int reg = regs[i].reg;
2085                 trace_regmap_hw_write_done(map, reg, 1);
2086         }
2087         return ret;
2088 }
2089
2090 static unsigned int _regmap_register_page(struct regmap *map,
2091                                           unsigned int reg,
2092                                           struct regmap_range_node *range)
2093 {
2094         unsigned int win_page = (reg - range->range_min) / range->window_len;
2095
2096         return win_page;
2097 }
2098
2099 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2100                                                struct reg_sequence *regs,
2101                                                size_t num_regs)
2102 {
2103         int ret;
2104         int i, n;
2105         struct reg_sequence *base;
2106         unsigned int this_page = 0;
2107         unsigned int page_change = 0;
2108         /*
2109          * the set of registers are not neccessarily in order, but
2110          * since the order of write must be preserved this algorithm
2111          * chops the set each time the page changes. This also applies
2112          * if there is a delay required at any point in the sequence.
2113          */
2114         base = regs;
2115         for (i = 0, n = 0; i < num_regs; i++, n++) {
2116                 unsigned int reg = regs[i].reg;
2117                 struct regmap_range_node *range;
2118
2119                 range = _regmap_range_lookup(map, reg);
2120                 if (range) {
2121                         unsigned int win_page = _regmap_register_page(map, reg,
2122                                                                       range);
2123
2124                         if (i == 0)
2125                                 this_page = win_page;
2126                         if (win_page != this_page) {
2127                                 this_page = win_page;
2128                                 page_change = 1;
2129                         }
2130                 }
2131
2132                 /* If we have both a page change and a delay make sure to
2133                  * write the regs and apply the delay before we change the
2134                  * page.
2135                  */
2136
2137                 if (page_change || regs[i].delay_us) {
2138
2139                                 /* For situations where the first write requires
2140                                  * a delay we need to make sure we don't call
2141                                  * raw_multi_reg_write with n=0
2142                                  * This can't occur with page breaks as we
2143                                  * never write on the first iteration
2144                                  */
2145                                 if (regs[i].delay_us && i == 0)
2146                                         n = 1;
2147
2148                                 ret = _regmap_raw_multi_reg_write(map, base, n);
2149                                 if (ret != 0)
2150                                         return ret;
2151
2152                                 if (regs[i].delay_us)
2153                                         udelay(regs[i].delay_us);
2154
2155                                 base += n;
2156                                 n = 0;
2157
2158                                 if (page_change) {
2159                                         ret = _regmap_select_page(map,
2160                                                                   &base[n].reg,
2161                                                                   range, 1);
2162                                         if (ret != 0)
2163                                                 return ret;
2164
2165                                         page_change = 0;
2166                                 }
2167
2168                 }
2169
2170         }
2171         if (n > 0)
2172                 return _regmap_raw_multi_reg_write(map, base, n);
2173         return 0;
2174 }
2175
2176 static int _regmap_multi_reg_write(struct regmap *map,
2177                                    const struct reg_sequence *regs,
2178                                    size_t num_regs)
2179 {
2180         int i;
2181         int ret;
2182
2183         if (!map->can_multi_write) {
2184                 for (i = 0; i < num_regs; i++) {
2185                         ret = _regmap_write(map, regs[i].reg, regs[i].def);
2186                         if (ret != 0)
2187                                 return ret;
2188
2189                         if (regs[i].delay_us)
2190                                 udelay(regs[i].delay_us);
2191                 }
2192                 return 0;
2193         }
2194
2195         if (!map->format.parse_inplace)
2196                 return -EINVAL;
2197
2198         if (map->writeable_reg)
2199                 for (i = 0; i < num_regs; i++) {
2200                         int reg = regs[i].reg;
2201                         if (!map->writeable_reg(map->dev, reg))
2202                                 return -EINVAL;
2203                         if (!IS_ALIGNED(reg, map->reg_stride))
2204                                 return -EINVAL;
2205                 }
2206
2207         if (!map->cache_bypass) {
2208                 for (i = 0; i < num_regs; i++) {
2209                         unsigned int val = regs[i].def;
2210                         unsigned int reg = regs[i].reg;
2211                         ret = regcache_write(map, reg, val);
2212                         if (ret) {
2213                                 dev_err(map->dev,
2214                                 "Error in caching of register: %x ret: %d\n",
2215                                                                 reg, ret);
2216                                 return ret;
2217                         }
2218                 }
2219                 if (map->cache_only) {
2220                         map->cache_dirty = true;
2221                         return 0;
2222                 }
2223         }
2224
2225         WARN_ON(!map->bus);
2226
2227         for (i = 0; i < num_regs; i++) {
2228                 unsigned int reg = regs[i].reg;
2229                 struct regmap_range_node *range;
2230
2231                 /* Coalesce all the writes between a page break or a delay
2232                  * in a sequence
2233                  */
2234                 range = _regmap_range_lookup(map, reg);
2235                 if (range || regs[i].delay_us) {
2236                         size_t len = sizeof(struct reg_sequence)*num_regs;
2237                         struct reg_sequence *base = kmemdup(regs, len,
2238                                                            GFP_KERNEL);
2239                         if (!base)
2240                                 return -ENOMEM;
2241                         ret = _regmap_range_multi_paged_reg_write(map, base,
2242                                                                   num_regs);
2243                         kfree(base);
2244
2245                         return ret;
2246                 }
2247         }
2248         return _regmap_raw_multi_reg_write(map, regs, num_regs);
2249 }
2250
2251 /**
2252  * regmap_multi_reg_write() - Write multiple registers to the device
2253  *
2254  * @map: Register map to write to
2255  * @regs: Array of structures containing register,value to be written
2256  * @num_regs: Number of registers to write
2257  *
2258  * Write multiple registers to the device where the set of register, value
2259  * pairs are supplied in any order, possibly not all in a single range.
2260  *
2261  * The 'normal' block write mode will send ultimately send data on the
2262  * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2263  * addressed. However, this alternative block multi write mode will send
2264  * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2265  * must of course support the mode.
2266  *
2267  * A value of zero will be returned on success, a negative errno will be
2268  * returned in error cases.
2269  */
2270 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2271                            int num_regs)
2272 {
2273         int ret;
2274
2275         map->lock(map->lock_arg);
2276
2277         ret = _regmap_multi_reg_write(map, regs, num_regs);
2278
2279         map->unlock(map->lock_arg);
2280
2281         return ret;
2282 }
2283 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2284
2285 /**
2286  * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2287  *                                     device but not the cache
2288  *
2289  * @map: Register map to write to
2290  * @regs: Array of structures containing register,value to be written
2291  * @num_regs: Number of registers to write
2292  *
2293  * Write multiple registers to the device but not the cache where the set
2294  * of register are supplied in any order.
2295  *
2296  * This function is intended to be used for writing a large block of data
2297  * atomically to the device in single transfer for those I2C client devices
2298  * that implement this alternative block write mode.
2299  *
2300  * A value of zero will be returned on success, a negative errno will
2301  * be returned in error cases.
2302  */
2303 int regmap_multi_reg_write_bypassed(struct regmap *map,
2304                                     const struct reg_sequence *regs,
2305                                     int num_regs)
2306 {
2307         int ret;
2308         bool bypass;
2309
2310         map->lock(map->lock_arg);
2311
2312         bypass = map->cache_bypass;
2313         map->cache_bypass = true;
2314
2315         ret = _regmap_multi_reg_write(map, regs, num_regs);
2316
2317         map->cache_bypass = bypass;
2318
2319         map->unlock(map->lock_arg);
2320
2321         return ret;
2322 }
2323 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2324
2325 /**
2326  * regmap_raw_write_async() - Write raw values to one or more registers
2327  *                            asynchronously
2328  *
2329  * @map: Register map to write to
2330  * @reg: Initial register to write to
2331  * @val: Block of data to be written, laid out for direct transmission to the
2332  *       device.  Must be valid until regmap_async_complete() is called.
2333  * @val_len: Length of data pointed to by val.
2334  *
2335  * This function is intended to be used for things like firmware
2336  * download where a large block of data needs to be transferred to the
2337  * device.  No formatting will be done on the data provided.
2338  *
2339  * If supported by the underlying bus the write will be scheduled
2340  * asynchronously, helping maximise I/O speed on higher speed buses
2341  * like SPI.  regmap_async_complete() can be called to ensure that all
2342  * asynchrnous writes have been completed.
2343  *
2344  * A value of zero will be returned on success, a negative errno will
2345  * be returned in error cases.
2346  */
2347 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2348                            const void *val, size_t val_len)
2349 {
2350         int ret;
2351
2352         if (val_len % map->format.val_bytes)
2353                 return -EINVAL;
2354         if (!IS_ALIGNED(reg, map->reg_stride))
2355                 return -EINVAL;
2356
2357         map->lock(map->lock_arg);
2358
2359         map->async = true;
2360
2361         ret = _regmap_raw_write(map, reg, val, val_len);
2362
2363         map->async = false;
2364
2365         map->unlock(map->lock_arg);
2366
2367         return ret;
2368 }
2369 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2370
2371 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2372                             unsigned int val_len, bool noinc)
2373 {
2374         struct regmap_range_node *range;
2375         int ret;
2376
2377         WARN_ON(!map->bus);
2378
2379         if (!map->bus || !map->bus->read)
2380                 return -EINVAL;
2381
2382         range = _regmap_range_lookup(map, reg);
2383         if (range) {
2384                 ret = _regmap_select_page(map, &reg, range,
2385                                           noinc ? 1 : val_len / map->format.val_bytes);
2386                 if (ret != 0)
2387                         return ret;
2388         }
2389
2390         map->format.format_reg(map->work_buf, reg, map->reg_shift);
2391         regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2392                                       map->read_flag_mask);
2393         trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2394
2395         ret = map->bus->read(map->bus_context, map->work_buf,
2396                              map->format.reg_bytes + map->format.pad_bytes,
2397                              val, val_len);
2398
2399         trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2400
2401         return ret;
2402 }
2403
2404 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2405                                 unsigned int *val)
2406 {
2407         struct regmap *map = context;
2408
2409         return map->bus->reg_read(map->bus_context, reg, val);
2410 }
2411
2412 static int _regmap_bus_read(void *context, unsigned int reg,
2413                             unsigned int *val)
2414 {
2415         int ret;
2416         struct regmap *map = context;
2417         void *work_val = map->work_buf + map->format.reg_bytes +
2418                 map->format.pad_bytes;
2419
2420         if (!map->format.parse_val)
2421                 return -EINVAL;
2422
2423         ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2424         if (ret == 0)
2425                 *val = map->format.parse_val(work_val);
2426
2427         return ret;
2428 }
2429
2430 static int _regmap_read(struct regmap *map, unsigned int reg,
2431                         unsigned int *val)
2432 {
2433         int ret;
2434         void *context = _regmap_map_get_context(map);
2435
2436         if (!map->cache_bypass) {
2437                 ret = regcache_read(map, reg, val);
2438                 if (ret == 0)
2439                         return 0;
2440         }
2441
2442         if (map->cache_only)
2443                 return -EBUSY;
2444
2445         if (!regmap_readable(map, reg))
2446                 return -EIO;
2447
2448         ret = map->reg_read(context, reg, val);
2449         if (ret == 0) {
2450 #ifdef LOG_DEVICE
2451                 if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
2452                         dev_info(map->dev, "%x => %x\n", reg, *val);
2453 #endif
2454
2455                 trace_regmap_reg_read(map, reg, *val);
2456
2457                 if (!map->cache_bypass)
2458                         regcache_write(map, reg, *val);
2459         }
2460
2461         return ret;
2462 }
2463
2464 /**
2465  * regmap_read() - Read a value from a single register
2466  *
2467  * @map: Register map to read from
2468  * @reg: Register to be read from
2469  * @val: Pointer to store read value
2470  *
2471  * A value of zero will be returned on success, a negative errno will
2472  * be returned in error cases.
2473  */
2474 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2475 {
2476         int ret;
2477
2478         if (!IS_ALIGNED(reg, map->reg_stride))
2479                 return -EINVAL;
2480
2481         map->lock(map->lock_arg);
2482
2483         ret = _regmap_read(map, reg, val);
2484
2485         map->unlock(map->lock_arg);
2486
2487         return ret;
2488 }
2489 EXPORT_SYMBOL_GPL(regmap_read);
2490
2491 /**
2492  * regmap_raw_read() - Read raw data from the device
2493  *
2494  * @map: Register map to read from
2495  * @reg: First register to be read from
2496  * @val: Pointer to store read value
2497  * @val_len: Size of data to read
2498  *
2499  * A value of zero will be returned on success, a negative errno will
2500  * be returned in error cases.
2501  */
2502 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2503                     size_t val_len)
2504 {
2505         size_t val_bytes = map->format.val_bytes;
2506         size_t val_count = val_len / val_bytes;
2507         unsigned int v;
2508         int ret, i;
2509
2510         if (!map->bus)
2511                 return -EINVAL;
2512         if (val_len % map->format.val_bytes)
2513                 return -EINVAL;
2514         if (!IS_ALIGNED(reg, map->reg_stride))
2515                 return -EINVAL;
2516         if (val_count == 0)
2517                 return -EINVAL;
2518
2519         map->lock(map->lock_arg);
2520
2521         if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2522             map->cache_type == REGCACHE_NONE) {
2523                 size_t chunk_count, chunk_bytes;
2524                 size_t chunk_regs = val_count;
2525
2526                 if (!map->bus->read) {
2527                         ret = -ENOTSUPP;
2528                         goto out;
2529                 }
2530
2531                 if (map->use_single_read)
2532                         chunk_regs = 1;
2533                 else if (map->max_raw_read && val_len > map->max_raw_read)
2534                         chunk_regs = map->max_raw_read / val_bytes;
2535
2536                 chunk_count = val_count / chunk_regs;
2537                 chunk_bytes = chunk_regs * val_bytes;
2538
2539                 /* Read bytes that fit into whole chunks */
2540                 for (i = 0; i < chunk_count; i++) {
2541                         ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
2542                         if (ret != 0)
2543                                 goto out;
2544
2545                         reg += regmap_get_offset(map, chunk_regs);
2546                         val += chunk_bytes;
2547                         val_len -= chunk_bytes;
2548                 }
2549
2550                 /* Read remaining bytes */
2551                 if (val_len) {
2552                         ret = _regmap_raw_read(map, reg, val, val_len, false);
2553                         if (ret != 0)
2554                                 goto out;
2555                 }
2556         } else {
2557                 /* Otherwise go word by word for the cache; should be low
2558                  * cost as we expect to hit the cache.
2559                  */
2560                 for (i = 0; i < val_count; i++) {
2561                         ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2562                                            &v);
2563                         if (ret != 0)
2564                                 goto out;
2565
2566                         map->format.format_val(val + (i * val_bytes), v, 0);
2567                 }
2568         }
2569
2570  out:
2571         map->unlock(map->lock_arg);
2572
2573         return ret;
2574 }
2575 EXPORT_SYMBOL_GPL(regmap_raw_read);
2576
2577 /**
2578  * regmap_noinc_read(): Read data from a register without incrementing the
2579  *                      register number
2580  *
2581  * @map: Register map to read from
2582  * @reg: Register to read from
2583  * @val: Pointer to data buffer
2584  * @val_len: Length of output buffer in bytes.
2585  *
2586  * The regmap API usually assumes that bulk bus read operations will read a
2587  * range of registers. Some devices have certain registers for which a read
2588  * operation read will read from an internal FIFO.
2589  *
2590  * The target register must be volatile but registers after it can be
2591  * completely unrelated cacheable registers.
2592  *
2593  * This will attempt multiple reads as required to read val_len bytes.
2594  *
2595  * A value of zero will be returned on success, a negative errno will be
2596  * returned in error cases.
2597  */
2598 int regmap_noinc_read(struct regmap *map, unsigned int reg,
2599                       void *val, size_t val_len)
2600 {
2601         size_t read_len;
2602         int ret;
2603
2604         if (!map->bus)
2605                 return -EINVAL;
2606         if (!map->bus->read)
2607                 return -ENOTSUPP;
2608         if (val_len % map->format.val_bytes)
2609                 return -EINVAL;
2610         if (!IS_ALIGNED(reg, map->reg_stride))
2611                 return -EINVAL;
2612         if (val_len == 0)
2613                 return -EINVAL;
2614
2615         map->lock(map->lock_arg);
2616
2617         if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
2618                 ret = -EINVAL;
2619                 goto out_unlock;
2620         }
2621
2622         while (val_len) {
2623                 if (map->max_raw_read && map->max_raw_read < val_len)
2624                         read_len = map->max_raw_read;
2625                 else
2626                         read_len = val_len;
2627                 ret = _regmap_raw_read(map, reg, val, read_len, true);
2628                 if (ret)
2629                         goto out_unlock;
2630                 val = ((u8 *)val) + read_len;
2631                 val_len -= read_len;
2632         }
2633
2634 out_unlock:
2635         map->unlock(map->lock_arg);
2636         return ret;
2637 }
2638 EXPORT_SYMBOL_GPL(regmap_noinc_read);
2639
2640 /**
2641  * regmap_field_read(): Read a value to a single register field
2642  *
2643  * @field: Register field to read from
2644  * @val: Pointer to store read value
2645  *
2646  * A value of zero will be returned on success, a negative errno will
2647  * be returned in error cases.
2648  */
2649 int regmap_field_read(struct regmap_field *field, unsigned int *val)
2650 {
2651         int ret;
2652         unsigned int reg_val;
2653         ret = regmap_read(field->regmap, field->reg, &reg_val);
2654         if (ret != 0)
2655                 return ret;
2656
2657         reg_val &= field->mask;
2658         reg_val >>= field->shift;
2659         *val = reg_val;
2660
2661         return ret;
2662 }
2663 EXPORT_SYMBOL_GPL(regmap_field_read);
2664
2665 /**
2666  * regmap_fields_read() - Read a value to a single register field with port ID
2667  *
2668  * @field: Register field to read from
2669  * @id: port ID
2670  * @val: Pointer to store read value
2671  *
2672  * A value of zero will be returned on success, a negative errno will
2673  * be returned in error cases.
2674  */
2675 int regmap_fields_read(struct regmap_field *field, unsigned int id,
2676                        unsigned int *val)
2677 {
2678         int ret;
2679         unsigned int reg_val;
2680
2681         if (id >= field->id_size)
2682                 return -EINVAL;
2683
2684         ret = regmap_read(field->regmap,
2685                           field->reg + (field->id_offset * id),
2686                           &reg_val);
2687         if (ret != 0)
2688                 return ret;
2689
2690         reg_val &= field->mask;
2691         reg_val >>= field->shift;
2692         *val = reg_val;
2693
2694         return ret;
2695 }
2696 EXPORT_SYMBOL_GPL(regmap_fields_read);
2697
2698 /**
2699  * regmap_bulk_read() - Read multiple registers from the device
2700  *
2701  * @map: Register map to read from
2702  * @reg: First register to be read from
2703  * @val: Pointer to store read value, in native register size for device
2704  * @val_count: Number of registers to read
2705  *
2706  * A value of zero will be returned on success, a negative errno will
2707  * be returned in error cases.
2708  */
2709 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2710                      size_t val_count)
2711 {
2712         int ret, i;
2713         size_t val_bytes = map->format.val_bytes;
2714         bool vol = regmap_volatile_range(map, reg, val_count);
2715
2716         if (!IS_ALIGNED(reg, map->reg_stride))
2717                 return -EINVAL;
2718         if (val_count == 0)
2719                 return -EINVAL;
2720
2721         if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2722                 ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
2723                 if (ret != 0)
2724                         return ret;
2725
2726                 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2727                         map->format.parse_inplace(val + i);
2728         } else {
2729 #ifdef CONFIG_64BIT
2730                 u64 *u64 = val;
2731 #endif
2732                 u32 *u32 = val;
2733                 u16 *u16 = val;
2734                 u8 *u8 = val;
2735
2736                 map->lock(map->lock_arg);
2737
2738                 for (i = 0; i < val_count; i++) {
2739                         unsigned int ival;
2740
2741                         ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2742                                            &ival);
2743                         if (ret != 0)
2744                                 goto out;
2745
2746                         switch (map->format.val_bytes) {
2747 #ifdef CONFIG_64BIT
2748                         case 8:
2749                                 u64[i] = ival;
2750                                 break;
2751 #endif
2752                         case 4:
2753                                 u32[i] = ival;
2754                                 break;
2755                         case 2:
2756                                 u16[i] = ival;
2757                                 break;
2758                         case 1:
2759                                 u8[i] = ival;
2760                                 break;
2761                         default:
2762                                 ret = -EINVAL;
2763                                 goto out;
2764                         }
2765                 }
2766
2767 out:
2768                 map->unlock(map->lock_arg);
2769         }
2770
2771         return ret;
2772 }
2773 EXPORT_SYMBOL_GPL(regmap_bulk_read);
2774
2775 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2776                                unsigned int mask, unsigned int val,
2777                                bool *change, bool force_write)
2778 {
2779         int ret;
2780         unsigned int tmp, orig;
2781
2782         if (change)
2783                 *change = false;
2784
2785         if (regmap_volatile(map, reg) && map->reg_update_bits) {
2786                 ret = map->reg_update_bits(map->bus_context, reg, mask, val);
2787                 if (ret == 0 && change)
2788                         *change = true;
2789         } else {
2790                 ret = _regmap_read(map, reg, &orig);
2791                 if (ret != 0)
2792                         return ret;
2793
2794                 tmp = orig & ~mask;
2795                 tmp |= val & mask;
2796
2797                 if (force_write || (tmp != orig)) {
2798                         ret = _regmap_write(map, reg, tmp);
2799                         if (ret == 0 && change)
2800                                 *change = true;
2801                 }
2802         }
2803
2804         return ret;
2805 }
2806
2807 /**
2808  * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
2809  *
2810  * @map: Register map to update
2811  * @reg: Register to update
2812  * @mask: Bitmask to change
2813  * @val: New value for bitmask
2814  * @change: Boolean indicating if a write was done
2815  * @async: Boolean indicating asynchronously
2816  * @force: Boolean indicating use force update
2817  *
2818  * Perform a read/modify/write cycle on a register map with change, async, force
2819  * options.
2820  *
2821  * If async is true:
2822  *
2823  * With most buses the read must be done synchronously so this is most useful
2824  * for devices with a cache which do not need to interact with the hardware to
2825  * determine the current register value.
2826  *
2827  * Returns zero for success, a negative number on error.
2828  */
2829 int regmap_update_bits_base(struct regmap *map, unsigned int reg,
2830                             unsigned int mask, unsigned int val,
2831                             bool *change, bool async, bool force)
2832 {
2833         int ret;
2834
2835         map->lock(map->lock_arg);
2836
2837         map->async = async;
2838
2839         ret = _regmap_update_bits(map, reg, mask, val, change, force);
2840
2841         map->async = false;
2842
2843         map->unlock(map->lock_arg);
2844
2845         return ret;
2846 }
2847 EXPORT_SYMBOL_GPL(regmap_update_bits_base);
2848
2849 void regmap_async_complete_cb(struct regmap_async *async, int ret)
2850 {
2851         struct regmap *map = async->map;
2852         bool wake;
2853
2854         trace_regmap_async_io_complete(map);
2855
2856         spin_lock(&map->async_lock);
2857         list_move(&async->list, &map->async_free);
2858         wake = list_empty(&map->async_list);
2859
2860         if (ret != 0)
2861                 map->async_ret = ret;
2862
2863         spin_unlock(&map->async_lock);
2864
2865         if (wake)
2866                 wake_up(&map->async_waitq);
2867 }
2868 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2869
2870 static int regmap_async_is_done(struct regmap *map)
2871 {
2872         unsigned long flags;
2873         int ret;
2874
2875         spin_lock_irqsave(&map->async_lock, flags);
2876         ret = list_empty(&map->async_list);
2877         spin_unlock_irqrestore(&map->async_lock, flags);
2878
2879         return ret;
2880 }
2881
2882 /**
2883  * regmap_async_complete - Ensure all asynchronous I/O has completed.
2884  *
2885  * @map: Map to operate on.
2886  *
2887  * Blocks until any pending asynchronous I/O has completed.  Returns
2888  * an error code for any failed I/O operations.
2889  */
2890 int regmap_async_complete(struct regmap *map)
2891 {
2892         unsigned long flags;
2893         int ret;
2894
2895         /* Nothing to do with no async support */
2896         if (!map->bus || !map->bus->async_write)
2897                 return 0;
2898
2899         trace_regmap_async_complete_start(map);
2900
2901         wait_event(map->async_waitq, regmap_async_is_done(map));
2902
2903         spin_lock_irqsave(&map->async_lock, flags);
2904         ret = map->async_ret;
2905         map->async_ret = 0;
2906         spin_unlock_irqrestore(&map->async_lock, flags);
2907
2908         trace_regmap_async_complete_done(map);
2909
2910         return ret;
2911 }
2912 EXPORT_SYMBOL_GPL(regmap_async_complete);
2913
2914 /**
2915  * regmap_register_patch - Register and apply register updates to be applied
2916  *                         on device initialistion
2917  *
2918  * @map: Register map to apply updates to.
2919  * @regs: Values to update.
2920  * @num_regs: Number of entries in regs.
2921  *
2922  * Register a set of register updates to be applied to the device
2923  * whenever the device registers are synchronised with the cache and
2924  * apply them immediately.  Typically this is used to apply
2925  * corrections to be applied to the device defaults on startup, such
2926  * as the updates some vendors provide to undocumented registers.
2927  *
2928  * The caller must ensure that this function cannot be called
2929  * concurrently with either itself or regcache_sync().
2930  */
2931 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
2932                           int num_regs)
2933 {
2934         struct reg_sequence *p;
2935         int ret;
2936         bool bypass;
2937
2938         if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
2939             num_regs))
2940                 return 0;
2941
2942         p = krealloc(map->patch,
2943                      sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
2944                      GFP_KERNEL);
2945         if (p) {
2946                 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
2947                 map->patch = p;
2948                 map->patch_regs += num_regs;
2949         } else {
2950                 return -ENOMEM;
2951         }
2952
2953         map->lock(map->lock_arg);
2954
2955         bypass = map->cache_bypass;
2956
2957         map->cache_bypass = true;
2958         map->async = true;
2959
2960         ret = _regmap_multi_reg_write(map, regs, num_regs);
2961
2962         map->async = false;
2963         map->cache_bypass = bypass;
2964
2965         map->unlock(map->lock_arg);
2966
2967         regmap_async_complete(map);
2968
2969         return ret;
2970 }
2971 EXPORT_SYMBOL_GPL(regmap_register_patch);
2972
2973 /**
2974  * regmap_get_val_bytes() - Report the size of a register value
2975  *
2976  * @map: Register map to operate on.
2977  *
2978  * Report the size of a register value, mainly intended to for use by
2979  * generic infrastructure built on top of regmap.
2980  */
2981 int regmap_get_val_bytes(struct regmap *map)
2982 {
2983         if (map->format.format_write)
2984                 return -EINVAL;
2985
2986         return map->format.val_bytes;
2987 }
2988 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
2989
2990 /**
2991  * regmap_get_max_register() - Report the max register value
2992  *
2993  * @map: Register map to operate on.
2994  *
2995  * Report the max register value, mainly intended to for use by
2996  * generic infrastructure built on top of regmap.
2997  */
2998 int regmap_get_max_register(struct regmap *map)
2999 {
3000         return map->max_register ? map->max_register : -EINVAL;
3001 }
3002 EXPORT_SYMBOL_GPL(regmap_get_max_register);
3003
3004 /**
3005  * regmap_get_reg_stride() - Report the register address stride
3006  *
3007  * @map: Register map to operate on.
3008  *
3009  * Report the register address stride, mainly intended to for use by
3010  * generic infrastructure built on top of regmap.
3011  */
3012 int regmap_get_reg_stride(struct regmap *map)
3013 {
3014         return map->reg_stride;
3015 }
3016 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3017
3018 int regmap_parse_val(struct regmap *map, const void *buf,
3019                         unsigned int *val)
3020 {
3021         if (!map->format.parse_val)
3022                 return -EINVAL;
3023
3024         *val = map->format.parse_val(buf);
3025
3026         return 0;
3027 }
3028 EXPORT_SYMBOL_GPL(regmap_parse_val);
3029
3030 static int __init regmap_initcall(void)
3031 {
3032         regmap_debugfs_initcall();
3033
3034         return 0;
3035 }
3036 postcore_initcall(regmap_initcall);