GNU Linux-libre 4.19.264-gnu1
[releases.git] / drivers / block / rbd.c
1
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4
5
6    based on drivers/block/osdblk.c:
7
8    Copyright 2009 Red Hat, Inc.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25    For usage instructions, please refer to:
26
27                  Documentation/ABI/testing/sysfs-bus-rbd
28
29  */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/cls_lock_client.h>
35 #include <linux/ceph/striper.h>
36 #include <linux/ceph/decode.h>
37 #include <linux/parser.h>
38 #include <linux/bsearch.h>
39
40 #include <linux/kernel.h>
41 #include <linux/device.h>
42 #include <linux/module.h>
43 #include <linux/blk-mq.h>
44 #include <linux/fs.h>
45 #include <linux/blkdev.h>
46 #include <linux/slab.h>
47 #include <linux/idr.h>
48 #include <linux/workqueue.h>
49
50 #include "rbd_types.h"
51
52 #define RBD_DEBUG       /* Activate rbd_assert() calls */
53
54 /*
55  * Increment the given counter and return its updated value.
56  * If the counter is already 0 it will not be incremented.
57  * If the counter is already at its maximum value returns
58  * -EINVAL without updating it.
59  */
60 static int atomic_inc_return_safe(atomic_t *v)
61 {
62         unsigned int counter;
63
64         counter = (unsigned int)atomic_fetch_add_unless(v, 1, 0);
65         if (counter <= (unsigned int)INT_MAX)
66                 return (int)counter;
67
68         atomic_dec(v);
69
70         return -EINVAL;
71 }
72
73 /* Decrement the counter.  Return the resulting value, or -EINVAL */
74 static int atomic_dec_return_safe(atomic_t *v)
75 {
76         int counter;
77
78         counter = atomic_dec_return(v);
79         if (counter >= 0)
80                 return counter;
81
82         atomic_inc(v);
83
84         return -EINVAL;
85 }
86
87 #define RBD_DRV_NAME "rbd"
88
89 #define RBD_MINORS_PER_MAJOR            256
90 #define RBD_SINGLE_MAJOR_PART_SHIFT     4
91
92 #define RBD_MAX_PARENT_CHAIN_LEN        16
93
94 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
95 #define RBD_MAX_SNAP_NAME_LEN   \
96                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
97
98 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
99
100 #define RBD_SNAP_HEAD_NAME      "-"
101
102 #define BAD_SNAP_INDEX  U32_MAX         /* invalid index into snap array */
103
104 /* This allows a single page to hold an image name sent by OSD */
105 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
106 #define RBD_IMAGE_ID_LEN_MAX    64
107
108 #define RBD_OBJ_PREFIX_LEN_MAX  64
109
110 #define RBD_NOTIFY_TIMEOUT      5       /* seconds */
111 #define RBD_RETRY_DELAY         msecs_to_jiffies(1000)
112
113 /* Feature bits */
114
115 #define RBD_FEATURE_LAYERING            (1ULL<<0)
116 #define RBD_FEATURE_STRIPINGV2          (1ULL<<1)
117 #define RBD_FEATURE_EXCLUSIVE_LOCK      (1ULL<<2)
118 #define RBD_FEATURE_DATA_POOL           (1ULL<<7)
119 #define RBD_FEATURE_OPERATIONS          (1ULL<<8)
120
121 #define RBD_FEATURES_ALL        (RBD_FEATURE_LAYERING |         \
122                                  RBD_FEATURE_STRIPINGV2 |       \
123                                  RBD_FEATURE_EXCLUSIVE_LOCK |   \
124                                  RBD_FEATURE_DATA_POOL |        \
125                                  RBD_FEATURE_OPERATIONS)
126
127 /* Features supported by this (client software) implementation. */
128
129 #define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
130
131 /*
132  * An RBD device name will be "rbd#", where the "rbd" comes from
133  * RBD_DRV_NAME above, and # is a unique integer identifier.
134  */
135 #define DEV_NAME_LEN            32
136
137 /*
138  * block device image metadata (in-memory version)
139  */
140 struct rbd_image_header {
141         /* These six fields never change for a given rbd image */
142         char *object_prefix;
143         __u8 obj_order;
144         u64 stripe_unit;
145         u64 stripe_count;
146         s64 data_pool_id;
147         u64 features;           /* Might be changeable someday? */
148
149         /* The remaining fields need to be updated occasionally */
150         u64 image_size;
151         struct ceph_snap_context *snapc;
152         char *snap_names;       /* format 1 only */
153         u64 *snap_sizes;        /* format 1 only */
154 };
155
156 /*
157  * An rbd image specification.
158  *
159  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
160  * identify an image.  Each rbd_dev structure includes a pointer to
161  * an rbd_spec structure that encapsulates this identity.
162  *
163  * Each of the id's in an rbd_spec has an associated name.  For a
164  * user-mapped image, the names are supplied and the id's associated
165  * with them are looked up.  For a layered image, a parent image is
166  * defined by the tuple, and the names are looked up.
167  *
168  * An rbd_dev structure contains a parent_spec pointer which is
169  * non-null if the image it represents is a child in a layered
170  * image.  This pointer will refer to the rbd_spec structure used
171  * by the parent rbd_dev for its own identity (i.e., the structure
172  * is shared between the parent and child).
173  *
174  * Since these structures are populated once, during the discovery
175  * phase of image construction, they are effectively immutable so
176  * we make no effort to synchronize access to them.
177  *
178  * Note that code herein does not assume the image name is known (it
179  * could be a null pointer).
180  */
181 struct rbd_spec {
182         u64             pool_id;
183         const char      *pool_name;
184         const char      *pool_ns;       /* NULL if default, never "" */
185
186         const char      *image_id;
187         const char      *image_name;
188
189         u64             snap_id;
190         const char      *snap_name;
191
192         struct kref     kref;
193 };
194
195 /*
196  * an instance of the client.  multiple devices may share an rbd client.
197  */
198 struct rbd_client {
199         struct ceph_client      *client;
200         struct kref             kref;
201         struct list_head        node;
202 };
203
204 struct rbd_img_request;
205
206 enum obj_request_type {
207         OBJ_REQUEST_NODATA = 1,
208         OBJ_REQUEST_BIO,        /* pointer into provided bio (list) */
209         OBJ_REQUEST_BVECS,      /* pointer into provided bio_vec array */
210         OBJ_REQUEST_OWN_BVECS,  /* private bio_vec array, doesn't own pages */
211 };
212
213 enum obj_operation_type {
214         OBJ_OP_READ = 1,
215         OBJ_OP_WRITE,
216         OBJ_OP_DISCARD,
217 };
218
219 /*
220  * Writes go through the following state machine to deal with
221  * layering:
222  *
223  *                       need copyup
224  * RBD_OBJ_WRITE_GUARD ---------------> RBD_OBJ_WRITE_COPYUP
225  *        |     ^                              |
226  *        v     \------------------------------/
227  *      done
228  *        ^
229  *        |
230  * RBD_OBJ_WRITE_FLAT
231  *
232  * Writes start in RBD_OBJ_WRITE_GUARD or _FLAT, depending on whether
233  * there is a parent or not.
234  */
235 enum rbd_obj_write_state {
236         RBD_OBJ_WRITE_FLAT = 1,
237         RBD_OBJ_WRITE_GUARD,
238         RBD_OBJ_WRITE_COPYUP,
239 };
240
241 struct rbd_obj_request {
242         struct ceph_object_extent ex;
243         union {
244                 bool                    tried_parent;   /* for reads */
245                 enum rbd_obj_write_state write_state;   /* for writes */
246         };
247
248         struct rbd_img_request  *img_request;
249         struct ceph_file_extent *img_extents;
250         u32                     num_img_extents;
251
252         union {
253                 struct ceph_bio_iter    bio_pos;
254                 struct {
255                         struct ceph_bvec_iter   bvec_pos;
256                         u32                     bvec_count;
257                         u32                     bvec_idx;
258                 };
259         };
260         struct bio_vec          *copyup_bvecs;
261         u32                     copyup_bvec_count;
262
263         struct ceph_osd_request *osd_req;
264
265         u64                     xferred;        /* bytes transferred */
266         int                     result;
267
268         struct kref             kref;
269 };
270
271 enum img_req_flags {
272         IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
273         IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
274 };
275
276 struct rbd_img_request {
277         struct rbd_device       *rbd_dev;
278         enum obj_operation_type op_type;
279         enum obj_request_type   data_type;
280         unsigned long           flags;
281         union {
282                 u64                     snap_id;        /* for reads */
283                 struct ceph_snap_context *snapc;        /* for writes */
284         };
285         union {
286                 struct request          *rq;            /* block request */
287                 struct rbd_obj_request  *obj_request;   /* obj req initiator */
288         };
289         spinlock_t              completion_lock;
290         u64                     xferred;/* aggregate bytes transferred */
291         int                     result; /* first nonzero obj_request result */
292
293         struct list_head        object_extents; /* obj_req.ex structs */
294         u32                     obj_request_count;
295         u32                     pending_count;
296
297         struct kref             kref;
298 };
299
300 #define for_each_obj_request(ireq, oreq) \
301         list_for_each_entry(oreq, &(ireq)->object_extents, ex.oe_item)
302 #define for_each_obj_request_safe(ireq, oreq, n) \
303         list_for_each_entry_safe(oreq, n, &(ireq)->object_extents, ex.oe_item)
304
305 enum rbd_watch_state {
306         RBD_WATCH_STATE_UNREGISTERED,
307         RBD_WATCH_STATE_REGISTERED,
308         RBD_WATCH_STATE_ERROR,
309 };
310
311 enum rbd_lock_state {
312         RBD_LOCK_STATE_UNLOCKED,
313         RBD_LOCK_STATE_LOCKED,
314         RBD_LOCK_STATE_RELEASING,
315 };
316
317 /* WatchNotify::ClientId */
318 struct rbd_client_id {
319         u64 gid;
320         u64 handle;
321 };
322
323 struct rbd_mapping {
324         u64                     size;
325         u64                     features;
326 };
327
328 /*
329  * a single device
330  */
331 struct rbd_device {
332         int                     dev_id;         /* blkdev unique id */
333
334         int                     major;          /* blkdev assigned major */
335         int                     minor;
336         struct gendisk          *disk;          /* blkdev's gendisk and rq */
337
338         u32                     image_format;   /* Either 1 or 2 */
339         struct rbd_client       *rbd_client;
340
341         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
342
343         spinlock_t              lock;           /* queue, flags, open_count */
344
345         struct rbd_image_header header;
346         unsigned long           flags;          /* possibly lock protected */
347         struct rbd_spec         *spec;
348         struct rbd_options      *opts;
349         char                    *config_info;   /* add{,_single_major} string */
350
351         struct ceph_object_id   header_oid;
352         struct ceph_object_locator header_oloc;
353
354         struct ceph_file_layout layout;         /* used for all rbd requests */
355
356         struct mutex            watch_mutex;
357         enum rbd_watch_state    watch_state;
358         struct ceph_osd_linger_request *watch_handle;
359         u64                     watch_cookie;
360         struct delayed_work     watch_dwork;
361
362         struct rw_semaphore     lock_rwsem;
363         enum rbd_lock_state     lock_state;
364         char                    lock_cookie[32];
365         struct rbd_client_id    owner_cid;
366         struct work_struct      acquired_lock_work;
367         struct work_struct      released_lock_work;
368         struct delayed_work     lock_dwork;
369         struct work_struct      unlock_work;
370         wait_queue_head_t       lock_waitq;
371
372         struct workqueue_struct *task_wq;
373
374         struct rbd_spec         *parent_spec;
375         u64                     parent_overlap;
376         atomic_t                parent_ref;
377         struct rbd_device       *parent;
378
379         /* Block layer tags. */
380         struct blk_mq_tag_set   tag_set;
381
382         /* protects updating the header */
383         struct rw_semaphore     header_rwsem;
384
385         struct rbd_mapping      mapping;
386
387         struct list_head        node;
388
389         /* sysfs related */
390         struct device           dev;
391         unsigned long           open_count;     /* protected by lock */
392 };
393
394 /*
395  * Flag bits for rbd_dev->flags:
396  * - REMOVING (which is coupled with rbd_dev->open_count) is protected
397  *   by rbd_dev->lock
398  * - BLACKLISTED is protected by rbd_dev->lock_rwsem
399  */
400 enum rbd_dev_flags {
401         RBD_DEV_FLAG_EXISTS,    /* mapped snapshot has not been deleted */
402         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
403         RBD_DEV_FLAG_BLACKLISTED, /* our ceph_client is blacklisted */
404 };
405
406 static DEFINE_MUTEX(client_mutex);      /* Serialize client creation */
407
408 static LIST_HEAD(rbd_dev_list);    /* devices */
409 static DEFINE_SPINLOCK(rbd_dev_list_lock);
410
411 static LIST_HEAD(rbd_client_list);              /* clients */
412 static DEFINE_SPINLOCK(rbd_client_list_lock);
413
414 /* Slab caches for frequently-allocated structures */
415
416 static struct kmem_cache        *rbd_img_request_cache;
417 static struct kmem_cache        *rbd_obj_request_cache;
418
419 static int rbd_major;
420 static DEFINE_IDA(rbd_dev_id_ida);
421
422 static struct workqueue_struct *rbd_wq;
423
424 /*
425  * single-major requires >= 0.75 version of userspace rbd utility.
426  */
427 static bool single_major = true;
428 module_param(single_major, bool, 0444);
429 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: true)");
430
431 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
432                        size_t count);
433 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
434                           size_t count);
435 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
436                                     size_t count);
437 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
438                                        size_t count);
439 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
440
441 static int rbd_dev_id_to_minor(int dev_id)
442 {
443         return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
444 }
445
446 static int minor_to_rbd_dev_id(int minor)
447 {
448         return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
449 }
450
451 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev)
452 {
453         return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED ||
454                rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING;
455 }
456
457 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev)
458 {
459         bool is_lock_owner;
460
461         down_read(&rbd_dev->lock_rwsem);
462         is_lock_owner = __rbd_is_lock_owner(rbd_dev);
463         up_read(&rbd_dev->lock_rwsem);
464         return is_lock_owner;
465 }
466
467 static ssize_t rbd_supported_features_show(struct bus_type *bus, char *buf)
468 {
469         return sprintf(buf, "0x%llx\n", RBD_FEATURES_SUPPORTED);
470 }
471
472 static BUS_ATTR(add, 0200, NULL, rbd_add);
473 static BUS_ATTR(remove, 0200, NULL, rbd_remove);
474 static BUS_ATTR(add_single_major, 0200, NULL, rbd_add_single_major);
475 static BUS_ATTR(remove_single_major, 0200, NULL, rbd_remove_single_major);
476 static BUS_ATTR(supported_features, 0444, rbd_supported_features_show, NULL);
477
478 static struct attribute *rbd_bus_attrs[] = {
479         &bus_attr_add.attr,
480         &bus_attr_remove.attr,
481         &bus_attr_add_single_major.attr,
482         &bus_attr_remove_single_major.attr,
483         &bus_attr_supported_features.attr,
484         NULL,
485 };
486
487 static umode_t rbd_bus_is_visible(struct kobject *kobj,
488                                   struct attribute *attr, int index)
489 {
490         if (!single_major &&
491             (attr == &bus_attr_add_single_major.attr ||
492              attr == &bus_attr_remove_single_major.attr))
493                 return 0;
494
495         return attr->mode;
496 }
497
498 static const struct attribute_group rbd_bus_group = {
499         .attrs = rbd_bus_attrs,
500         .is_visible = rbd_bus_is_visible,
501 };
502 __ATTRIBUTE_GROUPS(rbd_bus);
503
504 static struct bus_type rbd_bus_type = {
505         .name           = "rbd",
506         .bus_groups     = rbd_bus_groups,
507 };
508
509 static void rbd_root_dev_release(struct device *dev)
510 {
511 }
512
513 static struct device rbd_root_dev = {
514         .init_name =    "rbd",
515         .release =      rbd_root_dev_release,
516 };
517
518 static __printf(2, 3)
519 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
520 {
521         struct va_format vaf;
522         va_list args;
523
524         va_start(args, fmt);
525         vaf.fmt = fmt;
526         vaf.va = &args;
527
528         if (!rbd_dev)
529                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
530         else if (rbd_dev->disk)
531                 printk(KERN_WARNING "%s: %s: %pV\n",
532                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
533         else if (rbd_dev->spec && rbd_dev->spec->image_name)
534                 printk(KERN_WARNING "%s: image %s: %pV\n",
535                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
536         else if (rbd_dev->spec && rbd_dev->spec->image_id)
537                 printk(KERN_WARNING "%s: id %s: %pV\n",
538                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
539         else    /* punt */
540                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
541                         RBD_DRV_NAME, rbd_dev, &vaf);
542         va_end(args);
543 }
544
545 #ifdef RBD_DEBUG
546 #define rbd_assert(expr)                                                \
547                 if (unlikely(!(expr))) {                                \
548                         printk(KERN_ERR "\nAssertion failure in %s() "  \
549                                                 "at line %d:\n\n"       \
550                                         "\trbd_assert(%s);\n\n",        \
551                                         __func__, __LINE__, #expr);     \
552                         BUG();                                          \
553                 }
554 #else /* !RBD_DEBUG */
555 #  define rbd_assert(expr)      ((void) 0)
556 #endif /* !RBD_DEBUG */
557
558 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
559
560 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
561 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
562 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
563 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
564 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
565                                         u64 snap_id);
566 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
567                                 u8 *order, u64 *snap_size);
568 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
569                 u64 *snap_features);
570
571 static int rbd_open(struct block_device *bdev, fmode_t mode)
572 {
573         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
574         bool removing = false;
575
576         spin_lock_irq(&rbd_dev->lock);
577         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
578                 removing = true;
579         else
580                 rbd_dev->open_count++;
581         spin_unlock_irq(&rbd_dev->lock);
582         if (removing)
583                 return -ENOENT;
584
585         (void) get_device(&rbd_dev->dev);
586
587         return 0;
588 }
589
590 static void rbd_release(struct gendisk *disk, fmode_t mode)
591 {
592         struct rbd_device *rbd_dev = disk->private_data;
593         unsigned long open_count_before;
594
595         spin_lock_irq(&rbd_dev->lock);
596         open_count_before = rbd_dev->open_count--;
597         spin_unlock_irq(&rbd_dev->lock);
598         rbd_assert(open_count_before > 0);
599
600         put_device(&rbd_dev->dev);
601 }
602
603 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
604 {
605         int ro;
606
607         if (get_user(ro, (int __user *)arg))
608                 return -EFAULT;
609
610         /* Snapshots can't be marked read-write */
611         if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
612                 return -EROFS;
613
614         /* Let blkdev_roset() handle it */
615         return -ENOTTY;
616 }
617
618 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
619                         unsigned int cmd, unsigned long arg)
620 {
621         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
622         int ret;
623
624         switch (cmd) {
625         case BLKROSET:
626                 ret = rbd_ioctl_set_ro(rbd_dev, arg);
627                 break;
628         default:
629                 ret = -ENOTTY;
630         }
631
632         return ret;
633 }
634
635 #ifdef CONFIG_COMPAT
636 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
637                                 unsigned int cmd, unsigned long arg)
638 {
639         return rbd_ioctl(bdev, mode, cmd, arg);
640 }
641 #endif /* CONFIG_COMPAT */
642
643 static const struct block_device_operations rbd_bd_ops = {
644         .owner                  = THIS_MODULE,
645         .open                   = rbd_open,
646         .release                = rbd_release,
647         .ioctl                  = rbd_ioctl,
648 #ifdef CONFIG_COMPAT
649         .compat_ioctl           = rbd_compat_ioctl,
650 #endif
651 };
652
653 /*
654  * Initialize an rbd client instance.  Success or not, this function
655  * consumes ceph_opts.  Caller holds client_mutex.
656  */
657 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
658 {
659         struct rbd_client *rbdc;
660         int ret = -ENOMEM;
661
662         dout("%s:\n", __func__);
663         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
664         if (!rbdc)
665                 goto out_opt;
666
667         kref_init(&rbdc->kref);
668         INIT_LIST_HEAD(&rbdc->node);
669
670         rbdc->client = ceph_create_client(ceph_opts, rbdc);
671         if (IS_ERR(rbdc->client))
672                 goto out_rbdc;
673         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
674
675         ret = ceph_open_session(rbdc->client);
676         if (ret < 0)
677                 goto out_client;
678
679         spin_lock(&rbd_client_list_lock);
680         list_add_tail(&rbdc->node, &rbd_client_list);
681         spin_unlock(&rbd_client_list_lock);
682
683         dout("%s: rbdc %p\n", __func__, rbdc);
684
685         return rbdc;
686 out_client:
687         ceph_destroy_client(rbdc->client);
688 out_rbdc:
689         kfree(rbdc);
690 out_opt:
691         if (ceph_opts)
692                 ceph_destroy_options(ceph_opts);
693         dout("%s: error %d\n", __func__, ret);
694
695         return ERR_PTR(ret);
696 }
697
698 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
699 {
700         kref_get(&rbdc->kref);
701
702         return rbdc;
703 }
704
705 /*
706  * Find a ceph client with specific addr and configuration.  If
707  * found, bump its reference count.
708  */
709 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
710 {
711         struct rbd_client *client_node;
712         bool found = false;
713
714         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
715                 return NULL;
716
717         spin_lock(&rbd_client_list_lock);
718         list_for_each_entry(client_node, &rbd_client_list, node) {
719                 if (!ceph_compare_options(ceph_opts, client_node->client)) {
720                         __rbd_get_client(client_node);
721
722                         found = true;
723                         break;
724                 }
725         }
726         spin_unlock(&rbd_client_list_lock);
727
728         return found ? client_node : NULL;
729 }
730
731 /*
732  * (Per device) rbd map options
733  */
734 enum {
735         Opt_queue_depth,
736         Opt_lock_timeout,
737         Opt_last_int,
738         /* int args above */
739         Opt_pool_ns,
740         Opt_last_string,
741         /* string args above */
742         Opt_read_only,
743         Opt_read_write,
744         Opt_lock_on_read,
745         Opt_exclusive,
746         Opt_notrim,
747         Opt_err
748 };
749
750 static match_table_t rbd_opts_tokens = {
751         {Opt_queue_depth, "queue_depth=%d"},
752         {Opt_lock_timeout, "lock_timeout=%d"},
753         /* int args above */
754         {Opt_pool_ns, "_pool_ns=%s"},
755         /* string args above */
756         {Opt_read_only, "read_only"},
757         {Opt_read_only, "ro"},          /* Alternate spelling */
758         {Opt_read_write, "read_write"},
759         {Opt_read_write, "rw"},         /* Alternate spelling */
760         {Opt_lock_on_read, "lock_on_read"},
761         {Opt_exclusive, "exclusive"},
762         {Opt_notrim, "notrim"},
763         {Opt_err, NULL}
764 };
765
766 struct rbd_options {
767         int     queue_depth;
768         unsigned long   lock_timeout;
769         bool    read_only;
770         bool    lock_on_read;
771         bool    exclusive;
772         bool    trim;
773 };
774
775 #define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_MAX_RQ
776 #define RBD_LOCK_TIMEOUT_DEFAULT 0  /* no timeout */
777 #define RBD_READ_ONLY_DEFAULT   false
778 #define RBD_LOCK_ON_READ_DEFAULT false
779 #define RBD_EXCLUSIVE_DEFAULT   false
780 #define RBD_TRIM_DEFAULT        true
781
782 struct parse_rbd_opts_ctx {
783         struct rbd_spec         *spec;
784         struct rbd_options      *opts;
785 };
786
787 static int parse_rbd_opts_token(char *c, void *private)
788 {
789         struct parse_rbd_opts_ctx *pctx = private;
790         substring_t argstr[MAX_OPT_ARGS];
791         int token, intval, ret;
792
793         token = match_token(c, rbd_opts_tokens, argstr);
794         if (token < Opt_last_int) {
795                 ret = match_int(&argstr[0], &intval);
796                 if (ret < 0) {
797                         pr_err("bad option arg (not int) at '%s'\n", c);
798                         return ret;
799                 }
800                 dout("got int token %d val %d\n", token, intval);
801         } else if (token > Opt_last_int && token < Opt_last_string) {
802                 dout("got string token %d val %s\n", token, argstr[0].from);
803         } else {
804                 dout("got token %d\n", token);
805         }
806
807         switch (token) {
808         case Opt_queue_depth:
809                 if (intval < 1) {
810                         pr_err("queue_depth out of range\n");
811                         return -EINVAL;
812                 }
813                 pctx->opts->queue_depth = intval;
814                 break;
815         case Opt_lock_timeout:
816                 /* 0 is "wait forever" (i.e. infinite timeout) */
817                 if (intval < 0 || intval > INT_MAX / 1000) {
818                         pr_err("lock_timeout out of range\n");
819                         return -EINVAL;
820                 }
821                 pctx->opts->lock_timeout = msecs_to_jiffies(intval * 1000);
822                 break;
823         case Opt_pool_ns:
824                 kfree(pctx->spec->pool_ns);
825                 pctx->spec->pool_ns = match_strdup(argstr);
826                 if (!pctx->spec->pool_ns)
827                         return -ENOMEM;
828                 break;
829         case Opt_read_only:
830                 pctx->opts->read_only = true;
831                 break;
832         case Opt_read_write:
833                 pctx->opts->read_only = false;
834                 break;
835         case Opt_lock_on_read:
836                 pctx->opts->lock_on_read = true;
837                 break;
838         case Opt_exclusive:
839                 pctx->opts->exclusive = true;
840                 break;
841         case Opt_notrim:
842                 pctx->opts->trim = false;
843                 break;
844         default:
845                 /* libceph prints "bad option" msg */
846                 return -EINVAL;
847         }
848
849         return 0;
850 }
851
852 static char* obj_op_name(enum obj_operation_type op_type)
853 {
854         switch (op_type) {
855         case OBJ_OP_READ:
856                 return "read";
857         case OBJ_OP_WRITE:
858                 return "write";
859         case OBJ_OP_DISCARD:
860                 return "discard";
861         default:
862                 return "???";
863         }
864 }
865
866 /*
867  * Destroy ceph client
868  *
869  * Caller must hold rbd_client_list_lock.
870  */
871 static void rbd_client_release(struct kref *kref)
872 {
873         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
874
875         dout("%s: rbdc %p\n", __func__, rbdc);
876         spin_lock(&rbd_client_list_lock);
877         list_del(&rbdc->node);
878         spin_unlock(&rbd_client_list_lock);
879
880         ceph_destroy_client(rbdc->client);
881         kfree(rbdc);
882 }
883
884 /*
885  * Drop reference to ceph client node. If it's not referenced anymore, release
886  * it.
887  */
888 static void rbd_put_client(struct rbd_client *rbdc)
889 {
890         if (rbdc)
891                 kref_put(&rbdc->kref, rbd_client_release);
892 }
893
894 static int wait_for_latest_osdmap(struct ceph_client *client)
895 {
896         u64 newest_epoch;
897         int ret;
898
899         ret = ceph_monc_get_version(&client->monc, "osdmap", &newest_epoch);
900         if (ret)
901                 return ret;
902
903         if (client->osdc.osdmap->epoch >= newest_epoch)
904                 return 0;
905
906         ceph_osdc_maybe_request_map(&client->osdc);
907         return ceph_monc_wait_osdmap(&client->monc, newest_epoch,
908                                      client->options->mount_timeout);
909 }
910
911 /*
912  * Get a ceph client with specific addr and configuration, if one does
913  * not exist create it.  Either way, ceph_opts is consumed by this
914  * function.
915  */
916 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
917 {
918         struct rbd_client *rbdc;
919         int ret;
920
921         mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
922         rbdc = rbd_client_find(ceph_opts);
923         if (rbdc) {
924                 ceph_destroy_options(ceph_opts);
925
926                 /*
927                  * Using an existing client.  Make sure ->pg_pools is up to
928                  * date before we look up the pool id in do_rbd_add().
929                  */
930                 ret = wait_for_latest_osdmap(rbdc->client);
931                 if (ret) {
932                         rbd_warn(NULL, "failed to get latest osdmap: %d", ret);
933                         rbd_put_client(rbdc);
934                         rbdc = ERR_PTR(ret);
935                 }
936         } else {
937                 rbdc = rbd_client_create(ceph_opts);
938         }
939         mutex_unlock(&client_mutex);
940
941         return rbdc;
942 }
943
944 static bool rbd_image_format_valid(u32 image_format)
945 {
946         return image_format == 1 || image_format == 2;
947 }
948
949 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
950 {
951         size_t size;
952         u32 snap_count;
953
954         /* The header has to start with the magic rbd header text */
955         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
956                 return false;
957
958         /* The bio layer requires at least sector-sized I/O */
959
960         if (ondisk->options.order < SECTOR_SHIFT)
961                 return false;
962
963         /* If we use u64 in a few spots we may be able to loosen this */
964
965         if (ondisk->options.order > 8 * sizeof (int) - 1)
966                 return false;
967
968         /*
969          * The size of a snapshot header has to fit in a size_t, and
970          * that limits the number of snapshots.
971          */
972         snap_count = le32_to_cpu(ondisk->snap_count);
973         size = SIZE_MAX - sizeof (struct ceph_snap_context);
974         if (snap_count > size / sizeof (__le64))
975                 return false;
976
977         /*
978          * Not only that, but the size of the entire the snapshot
979          * header must also be representable in a size_t.
980          */
981         size -= snap_count * sizeof (__le64);
982         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
983                 return false;
984
985         return true;
986 }
987
988 /*
989  * returns the size of an object in the image
990  */
991 static u32 rbd_obj_bytes(struct rbd_image_header *header)
992 {
993         return 1U << header->obj_order;
994 }
995
996 static void rbd_init_layout(struct rbd_device *rbd_dev)
997 {
998         if (rbd_dev->header.stripe_unit == 0 ||
999             rbd_dev->header.stripe_count == 0) {
1000                 rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header);
1001                 rbd_dev->header.stripe_count = 1;
1002         }
1003
1004         rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit;
1005         rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count;
1006         rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header);
1007         rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ?
1008                           rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id;
1009         RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL);
1010 }
1011
1012 /*
1013  * Fill an rbd image header with information from the given format 1
1014  * on-disk header.
1015  */
1016 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
1017                                  struct rbd_image_header_ondisk *ondisk)
1018 {
1019         struct rbd_image_header *header = &rbd_dev->header;
1020         bool first_time = header->object_prefix == NULL;
1021         struct ceph_snap_context *snapc;
1022         char *object_prefix = NULL;
1023         char *snap_names = NULL;
1024         u64 *snap_sizes = NULL;
1025         u32 snap_count;
1026         int ret = -ENOMEM;
1027         u32 i;
1028
1029         /* Allocate this now to avoid having to handle failure below */
1030
1031         if (first_time) {
1032                 object_prefix = kstrndup(ondisk->object_prefix,
1033                                          sizeof(ondisk->object_prefix),
1034                                          GFP_KERNEL);
1035                 if (!object_prefix)
1036                         return -ENOMEM;
1037         }
1038
1039         /* Allocate the snapshot context and fill it in */
1040
1041         snap_count = le32_to_cpu(ondisk->snap_count);
1042         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
1043         if (!snapc)
1044                 goto out_err;
1045         snapc->seq = le64_to_cpu(ondisk->snap_seq);
1046         if (snap_count) {
1047                 struct rbd_image_snap_ondisk *snaps;
1048                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
1049
1050                 /* We'll keep a copy of the snapshot names... */
1051
1052                 if (snap_names_len > (u64)SIZE_MAX)
1053                         goto out_2big;
1054                 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
1055                 if (!snap_names)
1056                         goto out_err;
1057
1058                 /* ...as well as the array of their sizes. */
1059                 snap_sizes = kmalloc_array(snap_count,
1060                                            sizeof(*header->snap_sizes),
1061                                            GFP_KERNEL);
1062                 if (!snap_sizes)
1063                         goto out_err;
1064
1065                 /*
1066                  * Copy the names, and fill in each snapshot's id
1067                  * and size.
1068                  *
1069                  * Note that rbd_dev_v1_header_info() guarantees the
1070                  * ondisk buffer we're working with has
1071                  * snap_names_len bytes beyond the end of the
1072                  * snapshot id array, this memcpy() is safe.
1073                  */
1074                 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
1075                 snaps = ondisk->snaps;
1076                 for (i = 0; i < snap_count; i++) {
1077                         snapc->snaps[i] = le64_to_cpu(snaps[i].id);
1078                         snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
1079                 }
1080         }
1081
1082         /* We won't fail any more, fill in the header */
1083
1084         if (first_time) {
1085                 header->object_prefix = object_prefix;
1086                 header->obj_order = ondisk->options.order;
1087                 rbd_init_layout(rbd_dev);
1088         } else {
1089                 ceph_put_snap_context(header->snapc);
1090                 kfree(header->snap_names);
1091                 kfree(header->snap_sizes);
1092         }
1093
1094         /* The remaining fields always get updated (when we refresh) */
1095
1096         header->image_size = le64_to_cpu(ondisk->image_size);
1097         header->snapc = snapc;
1098         header->snap_names = snap_names;
1099         header->snap_sizes = snap_sizes;
1100
1101         return 0;
1102 out_2big:
1103         ret = -EIO;
1104 out_err:
1105         kfree(snap_sizes);
1106         kfree(snap_names);
1107         ceph_put_snap_context(snapc);
1108         kfree(object_prefix);
1109
1110         return ret;
1111 }
1112
1113 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1114 {
1115         const char *snap_name;
1116
1117         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1118
1119         /* Skip over names until we find the one we are looking for */
1120
1121         snap_name = rbd_dev->header.snap_names;
1122         while (which--)
1123                 snap_name += strlen(snap_name) + 1;
1124
1125         return kstrdup(snap_name, GFP_KERNEL);
1126 }
1127
1128 /*
1129  * Snapshot id comparison function for use with qsort()/bsearch().
1130  * Note that result is for snapshots in *descending* order.
1131  */
1132 static int snapid_compare_reverse(const void *s1, const void *s2)
1133 {
1134         u64 snap_id1 = *(u64 *)s1;
1135         u64 snap_id2 = *(u64 *)s2;
1136
1137         if (snap_id1 < snap_id2)
1138                 return 1;
1139         return snap_id1 == snap_id2 ? 0 : -1;
1140 }
1141
1142 /*
1143  * Search a snapshot context to see if the given snapshot id is
1144  * present.
1145  *
1146  * Returns the position of the snapshot id in the array if it's found,
1147  * or BAD_SNAP_INDEX otherwise.
1148  *
1149  * Note: The snapshot array is in kept sorted (by the osd) in
1150  * reverse order, highest snapshot id first.
1151  */
1152 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1153 {
1154         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1155         u64 *found;
1156
1157         found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1158                                 sizeof (snap_id), snapid_compare_reverse);
1159
1160         return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1161 }
1162
1163 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1164                                         u64 snap_id)
1165 {
1166         u32 which;
1167         const char *snap_name;
1168
1169         which = rbd_dev_snap_index(rbd_dev, snap_id);
1170         if (which == BAD_SNAP_INDEX)
1171                 return ERR_PTR(-ENOENT);
1172
1173         snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1174         return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1175 }
1176
1177 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1178 {
1179         if (snap_id == CEPH_NOSNAP)
1180                 return RBD_SNAP_HEAD_NAME;
1181
1182         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1183         if (rbd_dev->image_format == 1)
1184                 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1185
1186         return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1187 }
1188
1189 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1190                                 u64 *snap_size)
1191 {
1192         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1193         if (snap_id == CEPH_NOSNAP) {
1194                 *snap_size = rbd_dev->header.image_size;
1195         } else if (rbd_dev->image_format == 1) {
1196                 u32 which;
1197
1198                 which = rbd_dev_snap_index(rbd_dev, snap_id);
1199                 if (which == BAD_SNAP_INDEX)
1200                         return -ENOENT;
1201
1202                 *snap_size = rbd_dev->header.snap_sizes[which];
1203         } else {
1204                 u64 size = 0;
1205                 int ret;
1206
1207                 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1208                 if (ret)
1209                         return ret;
1210
1211                 *snap_size = size;
1212         }
1213         return 0;
1214 }
1215
1216 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1217                         u64 *snap_features)
1218 {
1219         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1220         if (snap_id == CEPH_NOSNAP) {
1221                 *snap_features = rbd_dev->header.features;
1222         } else if (rbd_dev->image_format == 1) {
1223                 *snap_features = 0;     /* No features for format 1 */
1224         } else {
1225                 u64 features = 0;
1226                 int ret;
1227
1228                 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1229                 if (ret)
1230                         return ret;
1231
1232                 *snap_features = features;
1233         }
1234         return 0;
1235 }
1236
1237 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1238 {
1239         u64 snap_id = rbd_dev->spec->snap_id;
1240         u64 size = 0;
1241         u64 features = 0;
1242         int ret;
1243
1244         ret = rbd_snap_size(rbd_dev, snap_id, &size);
1245         if (ret)
1246                 return ret;
1247         ret = rbd_snap_features(rbd_dev, snap_id, &features);
1248         if (ret)
1249                 return ret;
1250
1251         rbd_dev->mapping.size = size;
1252         rbd_dev->mapping.features = features;
1253
1254         return 0;
1255 }
1256
1257 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1258 {
1259         rbd_dev->mapping.size = 0;
1260         rbd_dev->mapping.features = 0;
1261 }
1262
1263 static void zero_bvec(struct bio_vec *bv)
1264 {
1265         void *buf;
1266         unsigned long flags;
1267
1268         buf = bvec_kmap_irq(bv, &flags);
1269         memset(buf, 0, bv->bv_len);
1270         flush_dcache_page(bv->bv_page);
1271         bvec_kunmap_irq(buf, &flags);
1272 }
1273
1274 static void zero_bios(struct ceph_bio_iter *bio_pos, u32 off, u32 bytes)
1275 {
1276         struct ceph_bio_iter it = *bio_pos;
1277
1278         ceph_bio_iter_advance(&it, off);
1279         ceph_bio_iter_advance_step(&it, bytes, ({
1280                 zero_bvec(&bv);
1281         }));
1282 }
1283
1284 static void zero_bvecs(struct ceph_bvec_iter *bvec_pos, u32 off, u32 bytes)
1285 {
1286         struct ceph_bvec_iter it = *bvec_pos;
1287
1288         ceph_bvec_iter_advance(&it, off);
1289         ceph_bvec_iter_advance_step(&it, bytes, ({
1290                 zero_bvec(&bv);
1291         }));
1292 }
1293
1294 /*
1295  * Zero a range in @obj_req data buffer defined by a bio (list) or
1296  * (private) bio_vec array.
1297  *
1298  * @off is relative to the start of the data buffer.
1299  */
1300 static void rbd_obj_zero_range(struct rbd_obj_request *obj_req, u32 off,
1301                                u32 bytes)
1302 {
1303         switch (obj_req->img_request->data_type) {
1304         case OBJ_REQUEST_BIO:
1305                 zero_bios(&obj_req->bio_pos, off, bytes);
1306                 break;
1307         case OBJ_REQUEST_BVECS:
1308         case OBJ_REQUEST_OWN_BVECS:
1309                 zero_bvecs(&obj_req->bvec_pos, off, bytes);
1310                 break;
1311         default:
1312                 rbd_assert(0);
1313         }
1314 }
1315
1316 static void rbd_obj_request_destroy(struct kref *kref);
1317 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1318 {
1319         rbd_assert(obj_request != NULL);
1320         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1321                 kref_read(&obj_request->kref));
1322         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1323 }
1324
1325 static void rbd_img_request_get(struct rbd_img_request *img_request)
1326 {
1327         dout("%s: img %p (was %d)\n", __func__, img_request,
1328              kref_read(&img_request->kref));
1329         kref_get(&img_request->kref);
1330 }
1331
1332 static void rbd_img_request_destroy(struct kref *kref);
1333 static void rbd_img_request_put(struct rbd_img_request *img_request)
1334 {
1335         rbd_assert(img_request != NULL);
1336         dout("%s: img %p (was %d)\n", __func__, img_request,
1337                 kref_read(&img_request->kref));
1338         kref_put(&img_request->kref, rbd_img_request_destroy);
1339 }
1340
1341 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1342                                         struct rbd_obj_request *obj_request)
1343 {
1344         rbd_assert(obj_request->img_request == NULL);
1345
1346         /* Image request now owns object's original reference */
1347         obj_request->img_request = img_request;
1348         img_request->obj_request_count++;
1349         img_request->pending_count++;
1350         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1351 }
1352
1353 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1354                                         struct rbd_obj_request *obj_request)
1355 {
1356         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1357         list_del(&obj_request->ex.oe_item);
1358         rbd_assert(img_request->obj_request_count > 0);
1359         img_request->obj_request_count--;
1360         rbd_assert(obj_request->img_request == img_request);
1361         rbd_obj_request_put(obj_request);
1362 }
1363
1364 static void rbd_obj_request_submit(struct rbd_obj_request *obj_request)
1365 {
1366         struct ceph_osd_request *osd_req = obj_request->osd_req;
1367
1368         dout("%s %p object_no %016llx %llu~%llu osd_req %p\n", __func__,
1369              obj_request, obj_request->ex.oe_objno, obj_request->ex.oe_off,
1370              obj_request->ex.oe_len, osd_req);
1371         ceph_osdc_start_request(osd_req->r_osdc, osd_req, false);
1372 }
1373
1374 /*
1375  * The default/initial value for all image request flags is 0.  Each
1376  * is conditionally set to 1 at image request initialization time
1377  * and currently never change thereafter.
1378  */
1379 static void img_request_layered_set(struct rbd_img_request *img_request)
1380 {
1381         set_bit(IMG_REQ_LAYERED, &img_request->flags);
1382         smp_mb();
1383 }
1384
1385 static void img_request_layered_clear(struct rbd_img_request *img_request)
1386 {
1387         clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1388         smp_mb();
1389 }
1390
1391 static bool img_request_layered_test(struct rbd_img_request *img_request)
1392 {
1393         smp_mb();
1394         return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1395 }
1396
1397 static bool rbd_obj_is_entire(struct rbd_obj_request *obj_req)
1398 {
1399         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1400
1401         return !obj_req->ex.oe_off &&
1402                obj_req->ex.oe_len == rbd_dev->layout.object_size;
1403 }
1404
1405 static bool rbd_obj_is_tail(struct rbd_obj_request *obj_req)
1406 {
1407         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1408
1409         return obj_req->ex.oe_off + obj_req->ex.oe_len ==
1410                                         rbd_dev->layout.object_size;
1411 }
1412
1413 static u64 rbd_obj_img_extents_bytes(struct rbd_obj_request *obj_req)
1414 {
1415         return ceph_file_extents_bytes(obj_req->img_extents,
1416                                        obj_req->num_img_extents);
1417 }
1418
1419 static bool rbd_img_is_write(struct rbd_img_request *img_req)
1420 {
1421         switch (img_req->op_type) {
1422         case OBJ_OP_READ:
1423                 return false;
1424         case OBJ_OP_WRITE:
1425         case OBJ_OP_DISCARD:
1426                 return true;
1427         default:
1428                 BUG();
1429         }
1430 }
1431
1432 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req);
1433
1434 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req)
1435 {
1436         struct rbd_obj_request *obj_req = osd_req->r_priv;
1437
1438         dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
1439              osd_req->r_result, obj_req);
1440         rbd_assert(osd_req == obj_req->osd_req);
1441
1442         obj_req->result = osd_req->r_result < 0 ? osd_req->r_result : 0;
1443         if (!obj_req->result && !rbd_img_is_write(obj_req->img_request))
1444                 obj_req->xferred = osd_req->r_result;
1445         else
1446                 /*
1447                  * Writes aren't allowed to return a data payload.  In some
1448                  * guarded write cases (e.g. stat + zero on an empty object)
1449                  * a stat response makes it through, but we don't care.
1450                  */
1451                 obj_req->xferred = 0;
1452
1453         rbd_obj_handle_request(obj_req);
1454 }
1455
1456 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1457 {
1458         struct ceph_osd_request *osd_req = obj_request->osd_req;
1459
1460         osd_req->r_flags = CEPH_OSD_FLAG_READ;
1461         osd_req->r_snapid = obj_request->img_request->snap_id;
1462 }
1463
1464 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1465 {
1466         struct ceph_osd_request *osd_req = obj_request->osd_req;
1467
1468         osd_req->r_flags = CEPH_OSD_FLAG_WRITE;
1469         ktime_get_real_ts64(&osd_req->r_mtime);
1470         osd_req->r_data_offset = obj_request->ex.oe_off;
1471 }
1472
1473 static struct ceph_osd_request *
1474 rbd_osd_req_create(struct rbd_obj_request *obj_req, unsigned int num_ops)
1475 {
1476         struct rbd_img_request *img_req = obj_req->img_request;
1477         struct rbd_device *rbd_dev = img_req->rbd_dev;
1478         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1479         struct ceph_osd_request *req;
1480         const char *name_format = rbd_dev->image_format == 1 ?
1481                                       RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT;
1482
1483         req = ceph_osdc_alloc_request(osdc,
1484                         (rbd_img_is_write(img_req) ? img_req->snapc : NULL),
1485                         num_ops, false, GFP_NOIO);
1486         if (!req)
1487                 return NULL;
1488
1489         req->r_callback = rbd_osd_req_callback;
1490         req->r_priv = obj_req;
1491
1492         /*
1493          * Data objects may be stored in a separate pool, but always in
1494          * the same namespace in that pool as the header in its pool.
1495          */
1496         ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
1497         req->r_base_oloc.pool = rbd_dev->layout.pool_id;
1498
1499         if (ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format,
1500                         rbd_dev->header.object_prefix, obj_req->ex.oe_objno))
1501                 goto err_req;
1502
1503         if (ceph_osdc_alloc_messages(req, GFP_NOIO))
1504                 goto err_req;
1505
1506         return req;
1507
1508 err_req:
1509         ceph_osdc_put_request(req);
1510         return NULL;
1511 }
1512
1513 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1514 {
1515         ceph_osdc_put_request(osd_req);
1516 }
1517
1518 static struct rbd_obj_request *rbd_obj_request_create(void)
1519 {
1520         struct rbd_obj_request *obj_request;
1521
1522         obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
1523         if (!obj_request)
1524                 return NULL;
1525
1526         ceph_object_extent_init(&obj_request->ex);
1527         kref_init(&obj_request->kref);
1528
1529         dout("%s %p\n", __func__, obj_request);
1530         return obj_request;
1531 }
1532
1533 static void rbd_obj_request_destroy(struct kref *kref)
1534 {
1535         struct rbd_obj_request *obj_request;
1536         u32 i;
1537
1538         obj_request = container_of(kref, struct rbd_obj_request, kref);
1539
1540         dout("%s: obj %p\n", __func__, obj_request);
1541
1542         if (obj_request->osd_req)
1543                 rbd_osd_req_destroy(obj_request->osd_req);
1544
1545         switch (obj_request->img_request->data_type) {
1546         case OBJ_REQUEST_NODATA:
1547         case OBJ_REQUEST_BIO:
1548         case OBJ_REQUEST_BVECS:
1549                 break;          /* Nothing to do */
1550         case OBJ_REQUEST_OWN_BVECS:
1551                 kfree(obj_request->bvec_pos.bvecs);
1552                 break;
1553         default:
1554                 rbd_assert(0);
1555         }
1556
1557         kfree(obj_request->img_extents);
1558         if (obj_request->copyup_bvecs) {
1559                 for (i = 0; i < obj_request->copyup_bvec_count; i++) {
1560                         if (obj_request->copyup_bvecs[i].bv_page)
1561                                 __free_page(obj_request->copyup_bvecs[i].bv_page);
1562                 }
1563                 kfree(obj_request->copyup_bvecs);
1564         }
1565
1566         kmem_cache_free(rbd_obj_request_cache, obj_request);
1567 }
1568
1569 /* It's OK to call this for a device with no parent */
1570
1571 static void rbd_spec_put(struct rbd_spec *spec);
1572 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1573 {
1574         rbd_dev_remove_parent(rbd_dev);
1575         rbd_spec_put(rbd_dev->parent_spec);
1576         rbd_dev->parent_spec = NULL;
1577         rbd_dev->parent_overlap = 0;
1578 }
1579
1580 /*
1581  * Parent image reference counting is used to determine when an
1582  * image's parent fields can be safely torn down--after there are no
1583  * more in-flight requests to the parent image.  When the last
1584  * reference is dropped, cleaning them up is safe.
1585  */
1586 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1587 {
1588         int counter;
1589
1590         if (!rbd_dev->parent_spec)
1591                 return;
1592
1593         counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1594         if (counter > 0)
1595                 return;
1596
1597         /* Last reference; clean up parent data structures */
1598
1599         if (!counter)
1600                 rbd_dev_unparent(rbd_dev);
1601         else
1602                 rbd_warn(rbd_dev, "parent reference underflow");
1603 }
1604
1605 /*
1606  * If an image has a non-zero parent overlap, get a reference to its
1607  * parent.
1608  *
1609  * Returns true if the rbd device has a parent with a non-zero
1610  * overlap and a reference for it was successfully taken, or
1611  * false otherwise.
1612  */
1613 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1614 {
1615         int counter = 0;
1616
1617         if (!rbd_dev->parent_spec)
1618                 return false;
1619
1620         down_read(&rbd_dev->header_rwsem);
1621         if (rbd_dev->parent_overlap)
1622                 counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1623         up_read(&rbd_dev->header_rwsem);
1624
1625         if (counter < 0)
1626                 rbd_warn(rbd_dev, "parent reference overflow");
1627
1628         return counter > 0;
1629 }
1630
1631 /*
1632  * Caller is responsible for filling in the list of object requests
1633  * that comprises the image request, and the Linux request pointer
1634  * (if there is one).
1635  */
1636 static struct rbd_img_request *rbd_img_request_create(
1637                                         struct rbd_device *rbd_dev,
1638                                         enum obj_operation_type op_type,
1639                                         struct ceph_snap_context *snapc)
1640 {
1641         struct rbd_img_request *img_request;
1642
1643         img_request = kmem_cache_zalloc(rbd_img_request_cache, GFP_NOIO);
1644         if (!img_request)
1645                 return NULL;
1646
1647         img_request->rbd_dev = rbd_dev;
1648         img_request->op_type = op_type;
1649         if (!rbd_img_is_write(img_request))
1650                 img_request->snap_id = rbd_dev->spec->snap_id;
1651         else
1652                 img_request->snapc = snapc;
1653
1654         if (rbd_dev_parent_get(rbd_dev))
1655                 img_request_layered_set(img_request);
1656
1657         spin_lock_init(&img_request->completion_lock);
1658         INIT_LIST_HEAD(&img_request->object_extents);
1659         kref_init(&img_request->kref);
1660
1661         dout("%s: rbd_dev %p %s -> img %p\n", __func__, rbd_dev,
1662              obj_op_name(op_type), img_request);
1663         return img_request;
1664 }
1665
1666 static void rbd_img_request_destroy(struct kref *kref)
1667 {
1668         struct rbd_img_request *img_request;
1669         struct rbd_obj_request *obj_request;
1670         struct rbd_obj_request *next_obj_request;
1671
1672         img_request = container_of(kref, struct rbd_img_request, kref);
1673
1674         dout("%s: img %p\n", __func__, img_request);
1675
1676         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1677                 rbd_img_obj_request_del(img_request, obj_request);
1678         rbd_assert(img_request->obj_request_count == 0);
1679
1680         if (img_request_layered_test(img_request)) {
1681                 img_request_layered_clear(img_request);
1682                 rbd_dev_parent_put(img_request->rbd_dev);
1683         }
1684
1685         if (rbd_img_is_write(img_request))
1686                 ceph_put_snap_context(img_request->snapc);
1687
1688         kmem_cache_free(rbd_img_request_cache, img_request);
1689 }
1690
1691 static void prune_extents(struct ceph_file_extent *img_extents,
1692                           u32 *num_img_extents, u64 overlap)
1693 {
1694         u32 cnt = *num_img_extents;
1695
1696         /* drop extents completely beyond the overlap */
1697         while (cnt && img_extents[cnt - 1].fe_off >= overlap)
1698                 cnt--;
1699
1700         if (cnt) {
1701                 struct ceph_file_extent *ex = &img_extents[cnt - 1];
1702
1703                 /* trim final overlapping extent */
1704                 if (ex->fe_off + ex->fe_len > overlap)
1705                         ex->fe_len = overlap - ex->fe_off;
1706         }
1707
1708         *num_img_extents = cnt;
1709 }
1710
1711 /*
1712  * Determine the byte range(s) covered by either just the object extent
1713  * or the entire object in the parent image.
1714  */
1715 static int rbd_obj_calc_img_extents(struct rbd_obj_request *obj_req,
1716                                     bool entire)
1717 {
1718         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1719         int ret;
1720
1721         if (!rbd_dev->parent_overlap)
1722                 return 0;
1723
1724         ret = ceph_extent_to_file(&rbd_dev->layout, obj_req->ex.oe_objno,
1725                                   entire ? 0 : obj_req->ex.oe_off,
1726                                   entire ? rbd_dev->layout.object_size :
1727                                                         obj_req->ex.oe_len,
1728                                   &obj_req->img_extents,
1729                                   &obj_req->num_img_extents);
1730         if (ret)
1731                 return ret;
1732
1733         prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
1734                       rbd_dev->parent_overlap);
1735         return 0;
1736 }
1737
1738 static void rbd_osd_req_setup_data(struct rbd_obj_request *obj_req, u32 which)
1739 {
1740         switch (obj_req->img_request->data_type) {
1741         case OBJ_REQUEST_BIO:
1742                 osd_req_op_extent_osd_data_bio(obj_req->osd_req, which,
1743                                                &obj_req->bio_pos,
1744                                                obj_req->ex.oe_len);
1745                 break;
1746         case OBJ_REQUEST_BVECS:
1747         case OBJ_REQUEST_OWN_BVECS:
1748                 rbd_assert(obj_req->bvec_pos.iter.bi_size ==
1749                                                         obj_req->ex.oe_len);
1750                 rbd_assert(obj_req->bvec_idx == obj_req->bvec_count);
1751                 osd_req_op_extent_osd_data_bvec_pos(obj_req->osd_req, which,
1752                                                     &obj_req->bvec_pos);
1753                 break;
1754         default:
1755                 rbd_assert(0);
1756         }
1757 }
1758
1759 static int rbd_obj_setup_read(struct rbd_obj_request *obj_req)
1760 {
1761         obj_req->osd_req = rbd_osd_req_create(obj_req, 1);
1762         if (!obj_req->osd_req)
1763                 return -ENOMEM;
1764
1765         osd_req_op_extent_init(obj_req->osd_req, 0, CEPH_OSD_OP_READ,
1766                                obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
1767         rbd_osd_req_setup_data(obj_req, 0);
1768
1769         rbd_osd_req_format_read(obj_req);
1770         return 0;
1771 }
1772
1773 static int __rbd_obj_setup_stat(struct rbd_obj_request *obj_req,
1774                                 unsigned int which)
1775 {
1776         struct page **pages;
1777
1778         /*
1779          * The response data for a STAT call consists of:
1780          *     le64 length;
1781          *     struct {
1782          *         le32 tv_sec;
1783          *         le32 tv_nsec;
1784          *     } mtime;
1785          */
1786         pages = ceph_alloc_page_vector(1, GFP_NOIO);
1787         if (IS_ERR(pages))
1788                 return PTR_ERR(pages);
1789
1790         osd_req_op_init(obj_req->osd_req, which, CEPH_OSD_OP_STAT, 0);
1791         osd_req_op_raw_data_in_pages(obj_req->osd_req, which, pages,
1792                                      8 + sizeof(struct ceph_timespec),
1793                                      0, false, true);
1794         return 0;
1795 }
1796
1797 static void __rbd_obj_setup_write(struct rbd_obj_request *obj_req,
1798                                   unsigned int which)
1799 {
1800         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1801         u16 opcode;
1802
1803         osd_req_op_alloc_hint_init(obj_req->osd_req, which++,
1804                                    rbd_dev->layout.object_size,
1805                                    rbd_dev->layout.object_size);
1806
1807         if (rbd_obj_is_entire(obj_req))
1808                 opcode = CEPH_OSD_OP_WRITEFULL;
1809         else
1810                 opcode = CEPH_OSD_OP_WRITE;
1811
1812         osd_req_op_extent_init(obj_req->osd_req, which, opcode,
1813                                obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
1814         rbd_osd_req_setup_data(obj_req, which++);
1815
1816         rbd_assert(which == obj_req->osd_req->r_num_ops);
1817         rbd_osd_req_format_write(obj_req);
1818 }
1819
1820 static int rbd_obj_setup_write(struct rbd_obj_request *obj_req)
1821 {
1822         unsigned int num_osd_ops, which = 0;
1823         int ret;
1824
1825         /* reverse map the entire object onto the parent */
1826         ret = rbd_obj_calc_img_extents(obj_req, true);
1827         if (ret)
1828                 return ret;
1829
1830         if (obj_req->num_img_extents) {
1831                 obj_req->write_state = RBD_OBJ_WRITE_GUARD;
1832                 num_osd_ops = 3; /* stat + setallochint + write/writefull */
1833         } else {
1834                 obj_req->write_state = RBD_OBJ_WRITE_FLAT;
1835                 num_osd_ops = 2; /* setallochint + write/writefull */
1836         }
1837
1838         obj_req->osd_req = rbd_osd_req_create(obj_req, num_osd_ops);
1839         if (!obj_req->osd_req)
1840                 return -ENOMEM;
1841
1842         if (obj_req->num_img_extents) {
1843                 ret = __rbd_obj_setup_stat(obj_req, which++);
1844                 if (ret)
1845                         return ret;
1846         }
1847
1848         __rbd_obj_setup_write(obj_req, which);
1849         return 0;
1850 }
1851
1852 static void __rbd_obj_setup_discard(struct rbd_obj_request *obj_req,
1853                                     unsigned int which)
1854 {
1855         u16 opcode;
1856
1857         if (rbd_obj_is_entire(obj_req)) {
1858                 if (obj_req->num_img_extents) {
1859                         osd_req_op_init(obj_req->osd_req, which++,
1860                                         CEPH_OSD_OP_CREATE, 0);
1861                         opcode = CEPH_OSD_OP_TRUNCATE;
1862                 } else {
1863                         osd_req_op_init(obj_req->osd_req, which++,
1864                                         CEPH_OSD_OP_DELETE, 0);
1865                         opcode = 0;
1866                 }
1867         } else if (rbd_obj_is_tail(obj_req)) {
1868                 opcode = CEPH_OSD_OP_TRUNCATE;
1869         } else {
1870                 opcode = CEPH_OSD_OP_ZERO;
1871         }
1872
1873         if (opcode)
1874                 osd_req_op_extent_init(obj_req->osd_req, which++, opcode,
1875                                        obj_req->ex.oe_off, obj_req->ex.oe_len,
1876                                        0, 0);
1877
1878         rbd_assert(which == obj_req->osd_req->r_num_ops);
1879         rbd_osd_req_format_write(obj_req);
1880 }
1881
1882 static int rbd_obj_setup_discard(struct rbd_obj_request *obj_req)
1883 {
1884         unsigned int num_osd_ops, which = 0;
1885         int ret;
1886
1887         /* reverse map the entire object onto the parent */
1888         ret = rbd_obj_calc_img_extents(obj_req, true);
1889         if (ret)
1890                 return ret;
1891
1892         if (rbd_obj_is_entire(obj_req)) {
1893                 obj_req->write_state = RBD_OBJ_WRITE_FLAT;
1894                 if (obj_req->num_img_extents)
1895                         num_osd_ops = 2; /* create + truncate */
1896                 else
1897                         num_osd_ops = 1; /* delete */
1898         } else {
1899                 if (obj_req->num_img_extents) {
1900                         obj_req->write_state = RBD_OBJ_WRITE_GUARD;
1901                         num_osd_ops = 2; /* stat + truncate/zero */
1902                 } else {
1903                         obj_req->write_state = RBD_OBJ_WRITE_FLAT;
1904                         num_osd_ops = 1; /* truncate/zero */
1905                 }
1906         }
1907
1908         obj_req->osd_req = rbd_osd_req_create(obj_req, num_osd_ops);
1909         if (!obj_req->osd_req)
1910                 return -ENOMEM;
1911
1912         if (!rbd_obj_is_entire(obj_req) && obj_req->num_img_extents) {
1913                 ret = __rbd_obj_setup_stat(obj_req, which++);
1914                 if (ret)
1915                         return ret;
1916         }
1917
1918         __rbd_obj_setup_discard(obj_req, which);
1919         return 0;
1920 }
1921
1922 /*
1923  * For each object request in @img_req, allocate an OSD request, add
1924  * individual OSD ops and prepare them for submission.  The number of
1925  * OSD ops depends on op_type and the overlap point (if any).
1926  */
1927 static int __rbd_img_fill_request(struct rbd_img_request *img_req)
1928 {
1929         struct rbd_obj_request *obj_req;
1930         int ret;
1931
1932         for_each_obj_request(img_req, obj_req) {
1933                 switch (img_req->op_type) {
1934                 case OBJ_OP_READ:
1935                         ret = rbd_obj_setup_read(obj_req);
1936                         break;
1937                 case OBJ_OP_WRITE:
1938                         ret = rbd_obj_setup_write(obj_req);
1939                         break;
1940                 case OBJ_OP_DISCARD:
1941                         ret = rbd_obj_setup_discard(obj_req);
1942                         break;
1943                 default:
1944                         rbd_assert(0);
1945                 }
1946                 if (ret)
1947                         return ret;
1948         }
1949
1950         return 0;
1951 }
1952
1953 union rbd_img_fill_iter {
1954         struct ceph_bio_iter    bio_iter;
1955         struct ceph_bvec_iter   bvec_iter;
1956 };
1957
1958 struct rbd_img_fill_ctx {
1959         enum obj_request_type   pos_type;
1960         union rbd_img_fill_iter *pos;
1961         union rbd_img_fill_iter iter;
1962         ceph_object_extent_fn_t set_pos_fn;
1963         ceph_object_extent_fn_t count_fn;
1964         ceph_object_extent_fn_t copy_fn;
1965 };
1966
1967 static struct ceph_object_extent *alloc_object_extent(void *arg)
1968 {
1969         struct rbd_img_request *img_req = arg;
1970         struct rbd_obj_request *obj_req;
1971
1972         obj_req = rbd_obj_request_create();
1973         if (!obj_req)
1974                 return NULL;
1975
1976         rbd_img_obj_request_add(img_req, obj_req);
1977         return &obj_req->ex;
1978 }
1979
1980 /*
1981  * While su != os && sc == 1 is technically not fancy (it's the same
1982  * layout as su == os && sc == 1), we can't use the nocopy path for it
1983  * because ->set_pos_fn() should be called only once per object.
1984  * ceph_file_to_extents() invokes action_fn once per stripe unit, so
1985  * treat su != os && sc == 1 as fancy.
1986  */
1987 static bool rbd_layout_is_fancy(struct ceph_file_layout *l)
1988 {
1989         return l->stripe_unit != l->object_size;
1990 }
1991
1992 static int rbd_img_fill_request_nocopy(struct rbd_img_request *img_req,
1993                                        struct ceph_file_extent *img_extents,
1994                                        u32 num_img_extents,
1995                                        struct rbd_img_fill_ctx *fctx)
1996 {
1997         u32 i;
1998         int ret;
1999
2000         img_req->data_type = fctx->pos_type;
2001
2002         /*
2003          * Create object requests and set each object request's starting
2004          * position in the provided bio (list) or bio_vec array.
2005          */
2006         fctx->iter = *fctx->pos;
2007         for (i = 0; i < num_img_extents; i++) {
2008                 ret = ceph_file_to_extents(&img_req->rbd_dev->layout,
2009                                            img_extents[i].fe_off,
2010                                            img_extents[i].fe_len,
2011                                            &img_req->object_extents,
2012                                            alloc_object_extent, img_req,
2013                                            fctx->set_pos_fn, &fctx->iter);
2014                 if (ret)
2015                         return ret;
2016         }
2017
2018         return __rbd_img_fill_request(img_req);
2019 }
2020
2021 /*
2022  * Map a list of image extents to a list of object extents, create the
2023  * corresponding object requests (normally each to a different object,
2024  * but not always) and add them to @img_req.  For each object request,
2025  * set up its data descriptor to point to the corresponding chunk(s) of
2026  * @fctx->pos data buffer.
2027  *
2028  * Because ceph_file_to_extents() will merge adjacent object extents
2029  * together, each object request's data descriptor may point to multiple
2030  * different chunks of @fctx->pos data buffer.
2031  *
2032  * @fctx->pos data buffer is assumed to be large enough.
2033  */
2034 static int rbd_img_fill_request(struct rbd_img_request *img_req,
2035                                 struct ceph_file_extent *img_extents,
2036                                 u32 num_img_extents,
2037                                 struct rbd_img_fill_ctx *fctx)
2038 {
2039         struct rbd_device *rbd_dev = img_req->rbd_dev;
2040         struct rbd_obj_request *obj_req;
2041         u32 i;
2042         int ret;
2043
2044         if (fctx->pos_type == OBJ_REQUEST_NODATA ||
2045             !rbd_layout_is_fancy(&rbd_dev->layout))
2046                 return rbd_img_fill_request_nocopy(img_req, img_extents,
2047                                                    num_img_extents, fctx);
2048
2049         img_req->data_type = OBJ_REQUEST_OWN_BVECS;
2050
2051         /*
2052          * Create object requests and determine ->bvec_count for each object
2053          * request.  Note that ->bvec_count sum over all object requests may
2054          * be greater than the number of bio_vecs in the provided bio (list)
2055          * or bio_vec array because when mapped, those bio_vecs can straddle
2056          * stripe unit boundaries.
2057          */
2058         fctx->iter = *fctx->pos;
2059         for (i = 0; i < num_img_extents; i++) {
2060                 ret = ceph_file_to_extents(&rbd_dev->layout,
2061                                            img_extents[i].fe_off,
2062                                            img_extents[i].fe_len,
2063                                            &img_req->object_extents,
2064                                            alloc_object_extent, img_req,
2065                                            fctx->count_fn, &fctx->iter);
2066                 if (ret)
2067                         return ret;
2068         }
2069
2070         for_each_obj_request(img_req, obj_req) {
2071                 obj_req->bvec_pos.bvecs = kmalloc_array(obj_req->bvec_count,
2072                                               sizeof(*obj_req->bvec_pos.bvecs),
2073                                               GFP_NOIO);
2074                 if (!obj_req->bvec_pos.bvecs)
2075                         return -ENOMEM;
2076         }
2077
2078         /*
2079          * Fill in each object request's private bio_vec array, splitting and
2080          * rearranging the provided bio_vecs in stripe unit chunks as needed.
2081          */
2082         fctx->iter = *fctx->pos;
2083         for (i = 0; i < num_img_extents; i++) {
2084                 ret = ceph_iterate_extents(&rbd_dev->layout,
2085                                            img_extents[i].fe_off,
2086                                            img_extents[i].fe_len,
2087                                            &img_req->object_extents,
2088                                            fctx->copy_fn, &fctx->iter);
2089                 if (ret)
2090                         return ret;
2091         }
2092
2093         return __rbd_img_fill_request(img_req);
2094 }
2095
2096 static int rbd_img_fill_nodata(struct rbd_img_request *img_req,
2097                                u64 off, u64 len)
2098 {
2099         struct ceph_file_extent ex = { off, len };
2100         union rbd_img_fill_iter dummy = {};
2101         struct rbd_img_fill_ctx fctx = {
2102                 .pos_type = OBJ_REQUEST_NODATA,
2103                 .pos = &dummy,
2104         };
2105
2106         return rbd_img_fill_request(img_req, &ex, 1, &fctx);
2107 }
2108
2109 static void set_bio_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2110 {
2111         struct rbd_obj_request *obj_req =
2112             container_of(ex, struct rbd_obj_request, ex);
2113         struct ceph_bio_iter *it = arg;
2114
2115         dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2116         obj_req->bio_pos = *it;
2117         ceph_bio_iter_advance(it, bytes);
2118 }
2119
2120 static void count_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2121 {
2122         struct rbd_obj_request *obj_req =
2123             container_of(ex, struct rbd_obj_request, ex);
2124         struct ceph_bio_iter *it = arg;
2125
2126         dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2127         ceph_bio_iter_advance_step(it, bytes, ({
2128                 obj_req->bvec_count++;
2129         }));
2130
2131 }
2132
2133 static void copy_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2134 {
2135         struct rbd_obj_request *obj_req =
2136             container_of(ex, struct rbd_obj_request, ex);
2137         struct ceph_bio_iter *it = arg;
2138
2139         dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2140         ceph_bio_iter_advance_step(it, bytes, ({
2141                 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2142                 obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2143         }));
2144 }
2145
2146 static int __rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2147                                    struct ceph_file_extent *img_extents,
2148                                    u32 num_img_extents,
2149                                    struct ceph_bio_iter *bio_pos)
2150 {
2151         struct rbd_img_fill_ctx fctx = {
2152                 .pos_type = OBJ_REQUEST_BIO,
2153                 .pos = (union rbd_img_fill_iter *)bio_pos,
2154                 .set_pos_fn = set_bio_pos,
2155                 .count_fn = count_bio_bvecs,
2156                 .copy_fn = copy_bio_bvecs,
2157         };
2158
2159         return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2160                                     &fctx);
2161 }
2162
2163 static int rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2164                                  u64 off, u64 len, struct bio *bio)
2165 {
2166         struct ceph_file_extent ex = { off, len };
2167         struct ceph_bio_iter it = { .bio = bio, .iter = bio->bi_iter };
2168
2169         return __rbd_img_fill_from_bio(img_req, &ex, 1, &it);
2170 }
2171
2172 static void set_bvec_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2173 {
2174         struct rbd_obj_request *obj_req =
2175             container_of(ex, struct rbd_obj_request, ex);
2176         struct ceph_bvec_iter *it = arg;
2177
2178         obj_req->bvec_pos = *it;
2179         ceph_bvec_iter_shorten(&obj_req->bvec_pos, bytes);
2180         ceph_bvec_iter_advance(it, bytes);
2181 }
2182
2183 static void count_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2184 {
2185         struct rbd_obj_request *obj_req =
2186             container_of(ex, struct rbd_obj_request, ex);
2187         struct ceph_bvec_iter *it = arg;
2188
2189         ceph_bvec_iter_advance_step(it, bytes, ({
2190                 obj_req->bvec_count++;
2191         }));
2192 }
2193
2194 static void copy_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2195 {
2196         struct rbd_obj_request *obj_req =
2197             container_of(ex, struct rbd_obj_request, ex);
2198         struct ceph_bvec_iter *it = arg;
2199
2200         ceph_bvec_iter_advance_step(it, bytes, ({
2201                 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2202                 obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2203         }));
2204 }
2205
2206 static int __rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2207                                      struct ceph_file_extent *img_extents,
2208                                      u32 num_img_extents,
2209                                      struct ceph_bvec_iter *bvec_pos)
2210 {
2211         struct rbd_img_fill_ctx fctx = {
2212                 .pos_type = OBJ_REQUEST_BVECS,
2213                 .pos = (union rbd_img_fill_iter *)bvec_pos,
2214                 .set_pos_fn = set_bvec_pos,
2215                 .count_fn = count_bvecs,
2216                 .copy_fn = copy_bvecs,
2217         };
2218
2219         return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2220                                     &fctx);
2221 }
2222
2223 static int rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2224                                    struct ceph_file_extent *img_extents,
2225                                    u32 num_img_extents,
2226                                    struct bio_vec *bvecs)
2227 {
2228         struct ceph_bvec_iter it = {
2229                 .bvecs = bvecs,
2230                 .iter = { .bi_size = ceph_file_extents_bytes(img_extents,
2231                                                              num_img_extents) },
2232         };
2233
2234         return __rbd_img_fill_from_bvecs(img_req, img_extents, num_img_extents,
2235                                          &it);
2236 }
2237
2238 static void rbd_img_request_submit(struct rbd_img_request *img_request)
2239 {
2240         struct rbd_obj_request *obj_request;
2241
2242         dout("%s: img %p\n", __func__, img_request);
2243
2244         rbd_img_request_get(img_request);
2245         for_each_obj_request(img_request, obj_request)
2246                 rbd_obj_request_submit(obj_request);
2247
2248         rbd_img_request_put(img_request);
2249 }
2250
2251 static int rbd_obj_read_from_parent(struct rbd_obj_request *obj_req)
2252 {
2253         struct rbd_img_request *img_req = obj_req->img_request;
2254         struct rbd_img_request *child_img_req;
2255         int ret;
2256
2257         child_img_req = rbd_img_request_create(img_req->rbd_dev->parent,
2258                                                OBJ_OP_READ, NULL);
2259         if (!child_img_req)
2260                 return -ENOMEM;
2261
2262         __set_bit(IMG_REQ_CHILD, &child_img_req->flags);
2263         child_img_req->obj_request = obj_req;
2264
2265         if (!rbd_img_is_write(img_req)) {
2266                 switch (img_req->data_type) {
2267                 case OBJ_REQUEST_BIO:
2268                         ret = __rbd_img_fill_from_bio(child_img_req,
2269                                                       obj_req->img_extents,
2270                                                       obj_req->num_img_extents,
2271                                                       &obj_req->bio_pos);
2272                         break;
2273                 case OBJ_REQUEST_BVECS:
2274                 case OBJ_REQUEST_OWN_BVECS:
2275                         ret = __rbd_img_fill_from_bvecs(child_img_req,
2276                                                       obj_req->img_extents,
2277                                                       obj_req->num_img_extents,
2278                                                       &obj_req->bvec_pos);
2279                         break;
2280                 default:
2281                         rbd_assert(0);
2282                 }
2283         } else {
2284                 ret = rbd_img_fill_from_bvecs(child_img_req,
2285                                               obj_req->img_extents,
2286                                               obj_req->num_img_extents,
2287                                               obj_req->copyup_bvecs);
2288         }
2289         if (ret) {
2290                 rbd_img_request_put(child_img_req);
2291                 return ret;
2292         }
2293
2294         rbd_img_request_submit(child_img_req);
2295         return 0;
2296 }
2297
2298 static bool rbd_obj_handle_read(struct rbd_obj_request *obj_req)
2299 {
2300         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2301         int ret;
2302
2303         if (obj_req->result == -ENOENT &&
2304             rbd_dev->parent_overlap && !obj_req->tried_parent) {
2305                 /* reverse map this object extent onto the parent */
2306                 ret = rbd_obj_calc_img_extents(obj_req, false);
2307                 if (ret) {
2308                         obj_req->result = ret;
2309                         return true;
2310                 }
2311
2312                 if (obj_req->num_img_extents) {
2313                         obj_req->tried_parent = true;
2314                         ret = rbd_obj_read_from_parent(obj_req);
2315                         if (ret) {
2316                                 obj_req->result = ret;
2317                                 return true;
2318                         }
2319                         return false;
2320                 }
2321         }
2322
2323         /*
2324          * -ENOENT means a hole in the image -- zero-fill the entire
2325          * length of the request.  A short read also implies zero-fill
2326          * to the end of the request.  In both cases we update xferred
2327          * count to indicate the whole request was satisfied.
2328          */
2329         if (obj_req->result == -ENOENT ||
2330             (!obj_req->result && obj_req->xferred < obj_req->ex.oe_len)) {
2331                 rbd_assert(!obj_req->xferred || !obj_req->result);
2332                 rbd_obj_zero_range(obj_req, obj_req->xferred,
2333                                    obj_req->ex.oe_len - obj_req->xferred);
2334                 obj_req->result = 0;
2335                 obj_req->xferred = obj_req->ex.oe_len;
2336         }
2337
2338         return true;
2339 }
2340
2341 /*
2342  * copyup_bvecs pages are never highmem pages
2343  */
2344 static bool is_zero_bvecs(struct bio_vec *bvecs, u32 bytes)
2345 {
2346         struct ceph_bvec_iter it = {
2347                 .bvecs = bvecs,
2348                 .iter = { .bi_size = bytes },
2349         };
2350
2351         ceph_bvec_iter_advance_step(&it, bytes, ({
2352                 if (memchr_inv(page_address(bv.bv_page) + bv.bv_offset, 0,
2353                                bv.bv_len))
2354                         return false;
2355         }));
2356         return true;
2357 }
2358
2359 static int rbd_obj_issue_copyup(struct rbd_obj_request *obj_req, u32 bytes)
2360 {
2361         unsigned int num_osd_ops = obj_req->osd_req->r_num_ops;
2362         int ret;
2363
2364         dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
2365         rbd_assert(obj_req->osd_req->r_ops[0].op == CEPH_OSD_OP_STAT);
2366         rbd_osd_req_destroy(obj_req->osd_req);
2367
2368         /*
2369          * Create a copyup request with the same number of OSD ops as
2370          * the original request.  The original request was stat + op(s),
2371          * the new copyup request will be copyup + the same op(s).
2372          */
2373         obj_req->osd_req = rbd_osd_req_create(obj_req, num_osd_ops);
2374         if (!obj_req->osd_req)
2375                 return -ENOMEM;
2376
2377         ret = osd_req_op_cls_init(obj_req->osd_req, 0, CEPH_OSD_OP_CALL, "rbd",
2378                                   "copyup");
2379         if (ret)
2380                 return ret;
2381
2382         /*
2383          * Only send non-zero copyup data to save some I/O and network
2384          * bandwidth -- zero copyup data is equivalent to the object not
2385          * existing.
2386          */
2387         if (is_zero_bvecs(obj_req->copyup_bvecs, bytes)) {
2388                 dout("%s obj_req %p detected zeroes\n", __func__, obj_req);
2389                 bytes = 0;
2390         }
2391         osd_req_op_cls_request_data_bvecs(obj_req->osd_req, 0,
2392                                           obj_req->copyup_bvecs,
2393                                           obj_req->copyup_bvec_count,
2394                                           bytes);
2395
2396         switch (obj_req->img_request->op_type) {
2397         case OBJ_OP_WRITE:
2398                 __rbd_obj_setup_write(obj_req, 1);
2399                 break;
2400         case OBJ_OP_DISCARD:
2401                 rbd_assert(!rbd_obj_is_entire(obj_req));
2402                 __rbd_obj_setup_discard(obj_req, 1);
2403                 break;
2404         default:
2405                 rbd_assert(0);
2406         }
2407
2408         rbd_obj_request_submit(obj_req);
2409         return 0;
2410 }
2411
2412 static int setup_copyup_bvecs(struct rbd_obj_request *obj_req, u64 obj_overlap)
2413 {
2414         u32 i;
2415
2416         rbd_assert(!obj_req->copyup_bvecs);
2417         obj_req->copyup_bvec_count = calc_pages_for(0, obj_overlap);
2418         obj_req->copyup_bvecs = kcalloc(obj_req->copyup_bvec_count,
2419                                         sizeof(*obj_req->copyup_bvecs),
2420                                         GFP_NOIO);
2421         if (!obj_req->copyup_bvecs)
2422                 return -ENOMEM;
2423
2424         for (i = 0; i < obj_req->copyup_bvec_count; i++) {
2425                 unsigned int len = min(obj_overlap, (u64)PAGE_SIZE);
2426
2427                 obj_req->copyup_bvecs[i].bv_page = alloc_page(GFP_NOIO);
2428                 if (!obj_req->copyup_bvecs[i].bv_page)
2429                         return -ENOMEM;
2430
2431                 obj_req->copyup_bvecs[i].bv_offset = 0;
2432                 obj_req->copyup_bvecs[i].bv_len = len;
2433                 obj_overlap -= len;
2434         }
2435
2436         rbd_assert(!obj_overlap);
2437         return 0;
2438 }
2439
2440 static int rbd_obj_handle_write_guard(struct rbd_obj_request *obj_req)
2441 {
2442         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2443         int ret;
2444
2445         rbd_assert(obj_req->num_img_extents);
2446         prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
2447                       rbd_dev->parent_overlap);
2448         if (!obj_req->num_img_extents) {
2449                 /*
2450                  * The overlap has become 0 (most likely because the
2451                  * image has been flattened).  Use rbd_obj_issue_copyup()
2452                  * to re-submit the original write request -- the copyup
2453                  * operation itself will be a no-op, since someone must
2454                  * have populated the child object while we weren't
2455                  * looking.  Move to WRITE_FLAT state as we'll be done
2456                  * with the operation once the null copyup completes.
2457                  */
2458                 obj_req->write_state = RBD_OBJ_WRITE_FLAT;
2459                 return rbd_obj_issue_copyup(obj_req, 0);
2460         }
2461
2462         ret = setup_copyup_bvecs(obj_req, rbd_obj_img_extents_bytes(obj_req));
2463         if (ret)
2464                 return ret;
2465
2466         obj_req->write_state = RBD_OBJ_WRITE_COPYUP;
2467         return rbd_obj_read_from_parent(obj_req);
2468 }
2469
2470 static bool rbd_obj_handle_write(struct rbd_obj_request *obj_req)
2471 {
2472         int ret;
2473
2474 again:
2475         switch (obj_req->write_state) {
2476         case RBD_OBJ_WRITE_GUARD:
2477                 rbd_assert(!obj_req->xferred);
2478                 if (obj_req->result == -ENOENT) {
2479                         /*
2480                          * The target object doesn't exist.  Read the data for
2481                          * the entire target object up to the overlap point (if
2482                          * any) from the parent, so we can use it for a copyup.
2483                          */
2484                         ret = rbd_obj_handle_write_guard(obj_req);
2485                         if (ret) {
2486                                 obj_req->result = ret;
2487                                 return true;
2488                         }
2489                         return false;
2490                 }
2491                 /* fall through */
2492         case RBD_OBJ_WRITE_FLAT:
2493                 if (!obj_req->result)
2494                         /*
2495                          * There is no such thing as a successful short
2496                          * write -- indicate the whole request was satisfied.
2497                          */
2498                         obj_req->xferred = obj_req->ex.oe_len;
2499                 return true;
2500         case RBD_OBJ_WRITE_COPYUP:
2501                 obj_req->write_state = RBD_OBJ_WRITE_GUARD;
2502                 if (obj_req->result)
2503                         goto again;
2504
2505                 rbd_assert(obj_req->xferred);
2506                 ret = rbd_obj_issue_copyup(obj_req, obj_req->xferred);
2507                 if (ret) {
2508                         obj_req->result = ret;
2509                         obj_req->xferred = 0;
2510                         return true;
2511                 }
2512                 return false;
2513         default:
2514                 BUG();
2515         }
2516 }
2517
2518 /*
2519  * Returns true if @obj_req is completed, or false otherwise.
2520  */
2521 static bool __rbd_obj_handle_request(struct rbd_obj_request *obj_req)
2522 {
2523         switch (obj_req->img_request->op_type) {
2524         case OBJ_OP_READ:
2525                 return rbd_obj_handle_read(obj_req);
2526         case OBJ_OP_WRITE:
2527                 return rbd_obj_handle_write(obj_req);
2528         case OBJ_OP_DISCARD:
2529                 if (rbd_obj_handle_write(obj_req)) {
2530                         /*
2531                          * Hide -ENOENT from delete/truncate/zero -- discarding
2532                          * a non-existent object is not a problem.
2533                          */
2534                         if (obj_req->result == -ENOENT) {
2535                                 obj_req->result = 0;
2536                                 obj_req->xferred = obj_req->ex.oe_len;
2537                         }
2538                         return true;
2539                 }
2540                 return false;
2541         default:
2542                 BUG();
2543         }
2544 }
2545
2546 static void rbd_obj_end_request(struct rbd_obj_request *obj_req)
2547 {
2548         struct rbd_img_request *img_req = obj_req->img_request;
2549
2550         rbd_assert((!obj_req->result &&
2551                     obj_req->xferred == obj_req->ex.oe_len) ||
2552                    (obj_req->result < 0 && !obj_req->xferred));
2553         if (!obj_req->result) {
2554                 img_req->xferred += obj_req->xferred;
2555                 return;
2556         }
2557
2558         rbd_warn(img_req->rbd_dev,
2559                  "%s at objno %llu %llu~%llu result %d xferred %llu",
2560                  obj_op_name(img_req->op_type), obj_req->ex.oe_objno,
2561                  obj_req->ex.oe_off, obj_req->ex.oe_len, obj_req->result,
2562                  obj_req->xferred);
2563         if (!img_req->result) {
2564                 img_req->result = obj_req->result;
2565                 img_req->xferred = 0;
2566         }
2567 }
2568
2569 static void rbd_img_end_child_request(struct rbd_img_request *img_req)
2570 {
2571         struct rbd_obj_request *obj_req = img_req->obj_request;
2572
2573         rbd_assert(test_bit(IMG_REQ_CHILD, &img_req->flags));
2574         rbd_assert((!img_req->result &&
2575                     img_req->xferred == rbd_obj_img_extents_bytes(obj_req)) ||
2576                    (img_req->result < 0 && !img_req->xferred));
2577
2578         obj_req->result = img_req->result;
2579         obj_req->xferred = img_req->xferred;
2580         rbd_img_request_put(img_req);
2581 }
2582
2583 static void rbd_img_end_request(struct rbd_img_request *img_req)
2584 {
2585         rbd_assert(!test_bit(IMG_REQ_CHILD, &img_req->flags));
2586         rbd_assert((!img_req->result &&
2587                     img_req->xferred == blk_rq_bytes(img_req->rq)) ||
2588                    (img_req->result < 0 && !img_req->xferred));
2589
2590         blk_mq_end_request(img_req->rq,
2591                            errno_to_blk_status(img_req->result));
2592         rbd_img_request_put(img_req);
2593 }
2594
2595 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req)
2596 {
2597         struct rbd_img_request *img_req;
2598
2599 again:
2600         if (!__rbd_obj_handle_request(obj_req))
2601                 return;
2602
2603         img_req = obj_req->img_request;
2604         spin_lock(&img_req->completion_lock);
2605         rbd_obj_end_request(obj_req);
2606         rbd_assert(img_req->pending_count);
2607         if (--img_req->pending_count) {
2608                 spin_unlock(&img_req->completion_lock);
2609                 return;
2610         }
2611
2612         spin_unlock(&img_req->completion_lock);
2613         if (test_bit(IMG_REQ_CHILD, &img_req->flags)) {
2614                 obj_req = img_req->obj_request;
2615                 rbd_img_end_child_request(img_req);
2616                 goto again;
2617         }
2618         rbd_img_end_request(img_req);
2619 }
2620
2621 static const struct rbd_client_id rbd_empty_cid;
2622
2623 static bool rbd_cid_equal(const struct rbd_client_id *lhs,
2624                           const struct rbd_client_id *rhs)
2625 {
2626         return lhs->gid == rhs->gid && lhs->handle == rhs->handle;
2627 }
2628
2629 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev)
2630 {
2631         struct rbd_client_id cid;
2632
2633         mutex_lock(&rbd_dev->watch_mutex);
2634         cid.gid = ceph_client_gid(rbd_dev->rbd_client->client);
2635         cid.handle = rbd_dev->watch_cookie;
2636         mutex_unlock(&rbd_dev->watch_mutex);
2637         return cid;
2638 }
2639
2640 /*
2641  * lock_rwsem must be held for write
2642  */
2643 static void rbd_set_owner_cid(struct rbd_device *rbd_dev,
2644                               const struct rbd_client_id *cid)
2645 {
2646         dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev,
2647              rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle,
2648              cid->gid, cid->handle);
2649         rbd_dev->owner_cid = *cid; /* struct */
2650 }
2651
2652 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf)
2653 {
2654         mutex_lock(&rbd_dev->watch_mutex);
2655         sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie);
2656         mutex_unlock(&rbd_dev->watch_mutex);
2657 }
2658
2659 static void __rbd_lock(struct rbd_device *rbd_dev, const char *cookie)
2660 {
2661         struct rbd_client_id cid = rbd_get_cid(rbd_dev);
2662
2663         strcpy(rbd_dev->lock_cookie, cookie);
2664         rbd_set_owner_cid(rbd_dev, &cid);
2665         queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work);
2666 }
2667
2668 /*
2669  * lock_rwsem must be held for write
2670  */
2671 static int rbd_lock(struct rbd_device *rbd_dev)
2672 {
2673         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2674         char cookie[32];
2675         int ret;
2676
2677         WARN_ON(__rbd_is_lock_owner(rbd_dev) ||
2678                 rbd_dev->lock_cookie[0] != '\0');
2679
2680         format_lock_cookie(rbd_dev, cookie);
2681         ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
2682                             RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie,
2683                             RBD_LOCK_TAG, "", 0);
2684         if (ret)
2685                 return ret;
2686
2687         rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED;
2688         __rbd_lock(rbd_dev, cookie);
2689         return 0;
2690 }
2691
2692 /*
2693  * lock_rwsem must be held for write
2694  */
2695 static void rbd_unlock(struct rbd_device *rbd_dev)
2696 {
2697         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2698         int ret;
2699
2700         WARN_ON(!__rbd_is_lock_owner(rbd_dev) ||
2701                 rbd_dev->lock_cookie[0] == '\0');
2702
2703         ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
2704                               RBD_LOCK_NAME, rbd_dev->lock_cookie);
2705         if (ret && ret != -ENOENT)
2706                 rbd_warn(rbd_dev, "failed to unlock: %d", ret);
2707
2708         /* treat errors as the image is unlocked */
2709         rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
2710         rbd_dev->lock_cookie[0] = '\0';
2711         rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
2712         queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work);
2713 }
2714
2715 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev,
2716                                 enum rbd_notify_op notify_op,
2717                                 struct page ***preply_pages,
2718                                 size_t *preply_len)
2719 {
2720         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2721         struct rbd_client_id cid = rbd_get_cid(rbd_dev);
2722         char buf[4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN];
2723         int buf_size = sizeof(buf);
2724         void *p = buf;
2725
2726         dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op);
2727
2728         /* encode *LockPayload NotifyMessage (op + ClientId) */
2729         ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN);
2730         ceph_encode_32(&p, notify_op);
2731         ceph_encode_64(&p, cid.gid);
2732         ceph_encode_64(&p, cid.handle);
2733
2734         return ceph_osdc_notify(osdc, &rbd_dev->header_oid,
2735                                 &rbd_dev->header_oloc, buf, buf_size,
2736                                 RBD_NOTIFY_TIMEOUT, preply_pages, preply_len);
2737 }
2738
2739 static void rbd_notify_op_lock(struct rbd_device *rbd_dev,
2740                                enum rbd_notify_op notify_op)
2741 {
2742         struct page **reply_pages;
2743         size_t reply_len;
2744
2745         __rbd_notify_op_lock(rbd_dev, notify_op, &reply_pages, &reply_len);
2746         ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
2747 }
2748
2749 static void rbd_notify_acquired_lock(struct work_struct *work)
2750 {
2751         struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
2752                                                   acquired_lock_work);
2753
2754         rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK);
2755 }
2756
2757 static void rbd_notify_released_lock(struct work_struct *work)
2758 {
2759         struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
2760                                                   released_lock_work);
2761
2762         rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK);
2763 }
2764
2765 static int rbd_request_lock(struct rbd_device *rbd_dev)
2766 {
2767         struct page **reply_pages;
2768         size_t reply_len;
2769         bool lock_owner_responded = false;
2770         int ret;
2771
2772         dout("%s rbd_dev %p\n", __func__, rbd_dev);
2773
2774         ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK,
2775                                    &reply_pages, &reply_len);
2776         if (ret && ret != -ETIMEDOUT) {
2777                 rbd_warn(rbd_dev, "failed to request lock: %d", ret);
2778                 goto out;
2779         }
2780
2781         if (reply_len > 0 && reply_len <= PAGE_SIZE) {
2782                 void *p = page_address(reply_pages[0]);
2783                 void *const end = p + reply_len;
2784                 u32 n;
2785
2786                 ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */
2787                 while (n--) {
2788                         u8 struct_v;
2789                         u32 len;
2790
2791                         ceph_decode_need(&p, end, 8 + 8, e_inval);
2792                         p += 8 + 8; /* skip gid and cookie */
2793
2794                         ceph_decode_32_safe(&p, end, len, e_inval);
2795                         if (!len)
2796                                 continue;
2797
2798                         if (lock_owner_responded) {
2799                                 rbd_warn(rbd_dev,
2800                                          "duplicate lock owners detected");
2801                                 ret = -EIO;
2802                                 goto out;
2803                         }
2804
2805                         lock_owner_responded = true;
2806                         ret = ceph_start_decoding(&p, end, 1, "ResponseMessage",
2807                                                   &struct_v, &len);
2808                         if (ret) {
2809                                 rbd_warn(rbd_dev,
2810                                          "failed to decode ResponseMessage: %d",
2811                                          ret);
2812                                 goto e_inval;
2813                         }
2814
2815                         ret = ceph_decode_32(&p);
2816                 }
2817         }
2818
2819         if (!lock_owner_responded) {
2820                 rbd_warn(rbd_dev, "no lock owners detected");
2821                 ret = -ETIMEDOUT;
2822         }
2823
2824 out:
2825         ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
2826         return ret;
2827
2828 e_inval:
2829         ret = -EINVAL;
2830         goto out;
2831 }
2832
2833 static void wake_requests(struct rbd_device *rbd_dev, bool wake_all)
2834 {
2835         dout("%s rbd_dev %p wake_all %d\n", __func__, rbd_dev, wake_all);
2836
2837         cancel_delayed_work(&rbd_dev->lock_dwork);
2838         if (wake_all)
2839                 wake_up_all(&rbd_dev->lock_waitq);
2840         else
2841                 wake_up(&rbd_dev->lock_waitq);
2842 }
2843
2844 static int get_lock_owner_info(struct rbd_device *rbd_dev,
2845                                struct ceph_locker **lockers, u32 *num_lockers)
2846 {
2847         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2848         u8 lock_type;
2849         char *lock_tag;
2850         int ret;
2851
2852         dout("%s rbd_dev %p\n", __func__, rbd_dev);
2853
2854         ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid,
2855                                  &rbd_dev->header_oloc, RBD_LOCK_NAME,
2856                                  &lock_type, &lock_tag, lockers, num_lockers);
2857         if (ret)
2858                 return ret;
2859
2860         if (*num_lockers == 0) {
2861                 dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev);
2862                 goto out;
2863         }
2864
2865         if (strcmp(lock_tag, RBD_LOCK_TAG)) {
2866                 rbd_warn(rbd_dev, "locked by external mechanism, tag %s",
2867                          lock_tag);
2868                 ret = -EBUSY;
2869                 goto out;
2870         }
2871
2872         if (lock_type == CEPH_CLS_LOCK_SHARED) {
2873                 rbd_warn(rbd_dev, "shared lock type detected");
2874                 ret = -EBUSY;
2875                 goto out;
2876         }
2877
2878         if (strncmp((*lockers)[0].id.cookie, RBD_LOCK_COOKIE_PREFIX,
2879                     strlen(RBD_LOCK_COOKIE_PREFIX))) {
2880                 rbd_warn(rbd_dev, "locked by external mechanism, cookie %s",
2881                          (*lockers)[0].id.cookie);
2882                 ret = -EBUSY;
2883                 goto out;
2884         }
2885
2886 out:
2887         kfree(lock_tag);
2888         return ret;
2889 }
2890
2891 static int find_watcher(struct rbd_device *rbd_dev,
2892                         const struct ceph_locker *locker)
2893 {
2894         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2895         struct ceph_watch_item *watchers;
2896         u32 num_watchers;
2897         u64 cookie;
2898         int i;
2899         int ret;
2900
2901         ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid,
2902                                       &rbd_dev->header_oloc, &watchers,
2903                                       &num_watchers);
2904         if (ret)
2905                 return ret;
2906
2907         sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie);
2908         for (i = 0; i < num_watchers; i++) {
2909                 if (!memcmp(&watchers[i].addr, &locker->info.addr,
2910                             sizeof(locker->info.addr)) &&
2911                     watchers[i].cookie == cookie) {
2912                         struct rbd_client_id cid = {
2913                                 .gid = le64_to_cpu(watchers[i].name.num),
2914                                 .handle = cookie,
2915                         };
2916
2917                         dout("%s rbd_dev %p found cid %llu-%llu\n", __func__,
2918                              rbd_dev, cid.gid, cid.handle);
2919                         rbd_set_owner_cid(rbd_dev, &cid);
2920                         ret = 1;
2921                         goto out;
2922                 }
2923         }
2924
2925         dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev);
2926         ret = 0;
2927 out:
2928         kfree(watchers);
2929         return ret;
2930 }
2931
2932 /*
2933  * lock_rwsem must be held for write
2934  */
2935 static int rbd_try_lock(struct rbd_device *rbd_dev)
2936 {
2937         struct ceph_client *client = rbd_dev->rbd_client->client;
2938         struct ceph_locker *lockers;
2939         u32 num_lockers;
2940         int ret;
2941
2942         for (;;) {
2943                 ret = rbd_lock(rbd_dev);
2944                 if (ret != -EBUSY)
2945                         return ret;
2946
2947                 /* determine if the current lock holder is still alive */
2948                 ret = get_lock_owner_info(rbd_dev, &lockers, &num_lockers);
2949                 if (ret)
2950                         return ret;
2951
2952                 if (num_lockers == 0)
2953                         goto again;
2954
2955                 ret = find_watcher(rbd_dev, lockers);
2956                 if (ret) {
2957                         if (ret > 0)
2958                                 ret = 0; /* have to request lock */
2959                         goto out;
2960                 }
2961
2962                 rbd_warn(rbd_dev, "%s%llu seems dead, breaking lock",
2963                          ENTITY_NAME(lockers[0].id.name));
2964
2965                 ret = ceph_monc_blacklist_add(&client->monc,
2966                                               &lockers[0].info.addr);
2967                 if (ret) {
2968                         rbd_warn(rbd_dev, "blacklist of %s%llu failed: %d",
2969                                  ENTITY_NAME(lockers[0].id.name), ret);
2970                         goto out;
2971                 }
2972
2973                 ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid,
2974                                           &rbd_dev->header_oloc, RBD_LOCK_NAME,
2975                                           lockers[0].id.cookie,
2976                                           &lockers[0].id.name);
2977                 if (ret && ret != -ENOENT)
2978                         goto out;
2979
2980 again:
2981                 ceph_free_lockers(lockers, num_lockers);
2982         }
2983
2984 out:
2985         ceph_free_lockers(lockers, num_lockers);
2986         return ret;
2987 }
2988
2989 /*
2990  * ret is set only if lock_state is RBD_LOCK_STATE_UNLOCKED
2991  */
2992 static enum rbd_lock_state rbd_try_acquire_lock(struct rbd_device *rbd_dev,
2993                                                 int *pret)
2994 {
2995         enum rbd_lock_state lock_state;
2996
2997         down_read(&rbd_dev->lock_rwsem);
2998         dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
2999              rbd_dev->lock_state);
3000         if (__rbd_is_lock_owner(rbd_dev)) {
3001                 lock_state = rbd_dev->lock_state;
3002                 up_read(&rbd_dev->lock_rwsem);
3003                 return lock_state;
3004         }
3005
3006         up_read(&rbd_dev->lock_rwsem);
3007         down_write(&rbd_dev->lock_rwsem);
3008         dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
3009              rbd_dev->lock_state);
3010         if (!__rbd_is_lock_owner(rbd_dev)) {
3011                 *pret = rbd_try_lock(rbd_dev);
3012                 if (*pret)
3013                         rbd_warn(rbd_dev, "failed to acquire lock: %d", *pret);
3014         }
3015
3016         lock_state = rbd_dev->lock_state;
3017         up_write(&rbd_dev->lock_rwsem);
3018         return lock_state;
3019 }
3020
3021 static void rbd_acquire_lock(struct work_struct *work)
3022 {
3023         struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
3024                                             struct rbd_device, lock_dwork);
3025         enum rbd_lock_state lock_state;
3026         int ret = 0;
3027
3028         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3029 again:
3030         lock_state = rbd_try_acquire_lock(rbd_dev, &ret);
3031         if (lock_state != RBD_LOCK_STATE_UNLOCKED || ret == -EBLACKLISTED) {
3032                 if (lock_state == RBD_LOCK_STATE_LOCKED)
3033                         wake_requests(rbd_dev, true);
3034                 dout("%s rbd_dev %p lock_state %d ret %d - done\n", __func__,
3035                      rbd_dev, lock_state, ret);
3036                 return;
3037         }
3038
3039         ret = rbd_request_lock(rbd_dev);
3040         if (ret == -ETIMEDOUT) {
3041                 goto again; /* treat this as a dead client */
3042         } else if (ret == -EROFS) {
3043                 rbd_warn(rbd_dev, "peer will not release lock");
3044                 /*
3045                  * If this is rbd_add_acquire_lock(), we want to fail
3046                  * immediately -- reuse BLACKLISTED flag.  Otherwise we
3047                  * want to block.
3048                  */
3049                 if (!(rbd_dev->disk->flags & GENHD_FL_UP)) {
3050                         set_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags);
3051                         /* wake "rbd map --exclusive" process */
3052                         wake_requests(rbd_dev, false);
3053                 }
3054         } else if (ret < 0) {
3055                 rbd_warn(rbd_dev, "error requesting lock: %d", ret);
3056                 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
3057                                  RBD_RETRY_DELAY);
3058         } else {
3059                 /*
3060                  * lock owner acked, but resend if we don't see them
3061                  * release the lock
3062                  */
3063                 dout("%s rbd_dev %p requeueing lock_dwork\n", __func__,
3064                      rbd_dev);
3065                 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
3066                     msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC));
3067         }
3068 }
3069
3070 /*
3071  * lock_rwsem must be held for write
3072  */
3073 static bool rbd_release_lock(struct rbd_device *rbd_dev)
3074 {
3075         dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
3076              rbd_dev->lock_state);
3077         if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED)
3078                 return false;
3079
3080         rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING;
3081         downgrade_write(&rbd_dev->lock_rwsem);
3082         /*
3083          * Ensure that all in-flight IO is flushed.
3084          *
3085          * FIXME: ceph_osdc_sync() flushes the entire OSD client, which
3086          * may be shared with other devices.
3087          */
3088         ceph_osdc_sync(&rbd_dev->rbd_client->client->osdc);
3089         up_read(&rbd_dev->lock_rwsem);
3090
3091         down_write(&rbd_dev->lock_rwsem);
3092         dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
3093              rbd_dev->lock_state);
3094         if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING)
3095                 return false;
3096
3097         rbd_unlock(rbd_dev);
3098         /*
3099          * Give others a chance to grab the lock - we would re-acquire
3100          * almost immediately if we got new IO during ceph_osdc_sync()
3101          * otherwise.  We need to ack our own notifications, so this
3102          * lock_dwork will be requeued from rbd_wait_state_locked()
3103          * after wake_requests() in rbd_handle_released_lock().
3104          */
3105         cancel_delayed_work(&rbd_dev->lock_dwork);
3106         return true;
3107 }
3108
3109 static void rbd_release_lock_work(struct work_struct *work)
3110 {
3111         struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3112                                                   unlock_work);
3113
3114         down_write(&rbd_dev->lock_rwsem);
3115         rbd_release_lock(rbd_dev);
3116         up_write(&rbd_dev->lock_rwsem);
3117 }
3118
3119 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v,
3120                                      void **p)
3121 {
3122         struct rbd_client_id cid = { 0 };
3123
3124         if (struct_v >= 2) {
3125                 cid.gid = ceph_decode_64(p);
3126                 cid.handle = ceph_decode_64(p);
3127         }
3128
3129         dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3130              cid.handle);
3131         if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
3132                 down_write(&rbd_dev->lock_rwsem);
3133                 if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
3134                         /*
3135                          * we already know that the remote client is
3136                          * the owner
3137                          */
3138                         up_write(&rbd_dev->lock_rwsem);
3139                         return;
3140                 }
3141
3142                 rbd_set_owner_cid(rbd_dev, &cid);
3143                 downgrade_write(&rbd_dev->lock_rwsem);
3144         } else {
3145                 down_read(&rbd_dev->lock_rwsem);
3146         }
3147
3148         if (!__rbd_is_lock_owner(rbd_dev))
3149                 wake_requests(rbd_dev, false);
3150         up_read(&rbd_dev->lock_rwsem);
3151 }
3152
3153 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v,
3154                                      void **p)
3155 {
3156         struct rbd_client_id cid = { 0 };
3157
3158         if (struct_v >= 2) {
3159                 cid.gid = ceph_decode_64(p);
3160                 cid.handle = ceph_decode_64(p);
3161         }
3162
3163         dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3164              cid.handle);
3165         if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
3166                 down_write(&rbd_dev->lock_rwsem);
3167                 if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
3168                         dout("%s rbd_dev %p unexpected owner, cid %llu-%llu != owner_cid %llu-%llu\n",
3169                              __func__, rbd_dev, cid.gid, cid.handle,
3170                              rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle);
3171                         up_write(&rbd_dev->lock_rwsem);
3172                         return;
3173                 }
3174
3175                 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3176                 downgrade_write(&rbd_dev->lock_rwsem);
3177         } else {
3178                 down_read(&rbd_dev->lock_rwsem);
3179         }
3180
3181         if (!__rbd_is_lock_owner(rbd_dev))
3182                 wake_requests(rbd_dev, false);
3183         up_read(&rbd_dev->lock_rwsem);
3184 }
3185
3186 /*
3187  * Returns result for ResponseMessage to be encoded (<= 0), or 1 if no
3188  * ResponseMessage is needed.
3189  */
3190 static int rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v,
3191                                    void **p)
3192 {
3193         struct rbd_client_id my_cid = rbd_get_cid(rbd_dev);
3194         struct rbd_client_id cid = { 0 };
3195         int result = 1;
3196
3197         if (struct_v >= 2) {
3198                 cid.gid = ceph_decode_64(p);
3199                 cid.handle = ceph_decode_64(p);
3200         }
3201
3202         dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3203              cid.handle);
3204         if (rbd_cid_equal(&cid, &my_cid))
3205                 return result;
3206
3207         down_read(&rbd_dev->lock_rwsem);
3208         if (__rbd_is_lock_owner(rbd_dev)) {
3209                 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED &&
3210                     rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid))
3211                         goto out_unlock;
3212
3213                 /*
3214                  * encode ResponseMessage(0) so the peer can detect
3215                  * a missing owner
3216                  */
3217                 result = 0;
3218
3219                 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) {
3220                         if (!rbd_dev->opts->exclusive) {
3221                                 dout("%s rbd_dev %p queueing unlock_work\n",
3222                                      __func__, rbd_dev);
3223                                 queue_work(rbd_dev->task_wq,
3224                                            &rbd_dev->unlock_work);
3225                         } else {
3226                                 /* refuse to release the lock */
3227                                 result = -EROFS;
3228                         }
3229                 }
3230         }
3231
3232 out_unlock:
3233         up_read(&rbd_dev->lock_rwsem);
3234         return result;
3235 }
3236
3237 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev,
3238                                      u64 notify_id, u64 cookie, s32 *result)
3239 {
3240         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3241         char buf[4 + CEPH_ENCODING_START_BLK_LEN];
3242         int buf_size = sizeof(buf);
3243         int ret;
3244
3245         if (result) {
3246                 void *p = buf;
3247
3248                 /* encode ResponseMessage */
3249                 ceph_start_encoding(&p, 1, 1,
3250                                     buf_size - CEPH_ENCODING_START_BLK_LEN);
3251                 ceph_encode_32(&p, *result);
3252         } else {
3253                 buf_size = 0;
3254         }
3255
3256         ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid,
3257                                    &rbd_dev->header_oloc, notify_id, cookie,
3258                                    buf, buf_size);
3259         if (ret)
3260                 rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret);
3261 }
3262
3263 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id,
3264                                    u64 cookie)
3265 {
3266         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3267         __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL);
3268 }
3269
3270 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev,
3271                                           u64 notify_id, u64 cookie, s32 result)
3272 {
3273         dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
3274         __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result);
3275 }
3276
3277 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie,
3278                          u64 notifier_id, void *data, size_t data_len)
3279 {
3280         struct rbd_device *rbd_dev = arg;
3281         void *p = data;
3282         void *const end = p + data_len;
3283         u8 struct_v = 0;
3284         u32 len;
3285         u32 notify_op;
3286         int ret;
3287
3288         dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n",
3289              __func__, rbd_dev, cookie, notify_id, data_len);
3290         if (data_len) {
3291                 ret = ceph_start_decoding(&p, end, 1, "NotifyMessage",
3292                                           &struct_v, &len);
3293                 if (ret) {
3294                         rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d",
3295                                  ret);
3296                         return;
3297                 }
3298
3299                 notify_op = ceph_decode_32(&p);
3300         } else {
3301                 /* legacy notification for header updates */
3302                 notify_op = RBD_NOTIFY_OP_HEADER_UPDATE;
3303                 len = 0;
3304         }
3305
3306         dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op);
3307         switch (notify_op) {
3308         case RBD_NOTIFY_OP_ACQUIRED_LOCK:
3309                 rbd_handle_acquired_lock(rbd_dev, struct_v, &p);
3310                 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3311                 break;
3312         case RBD_NOTIFY_OP_RELEASED_LOCK:
3313                 rbd_handle_released_lock(rbd_dev, struct_v, &p);
3314                 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3315                 break;
3316         case RBD_NOTIFY_OP_REQUEST_LOCK:
3317                 ret = rbd_handle_request_lock(rbd_dev, struct_v, &p);
3318                 if (ret <= 0)
3319                         rbd_acknowledge_notify_result(rbd_dev, notify_id,
3320                                                       cookie, ret);
3321                 else
3322                         rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3323                 break;
3324         case RBD_NOTIFY_OP_HEADER_UPDATE:
3325                 ret = rbd_dev_refresh(rbd_dev);
3326                 if (ret)
3327                         rbd_warn(rbd_dev, "refresh failed: %d", ret);
3328
3329                 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3330                 break;
3331         default:
3332                 if (rbd_is_lock_owner(rbd_dev))
3333                         rbd_acknowledge_notify_result(rbd_dev, notify_id,
3334                                                       cookie, -EOPNOTSUPP);
3335                 else
3336                         rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3337                 break;
3338         }
3339 }
3340
3341 static void __rbd_unregister_watch(struct rbd_device *rbd_dev);
3342
3343 static void rbd_watch_errcb(void *arg, u64 cookie, int err)
3344 {
3345         struct rbd_device *rbd_dev = arg;
3346
3347         rbd_warn(rbd_dev, "encountered watch error: %d", err);
3348
3349         down_write(&rbd_dev->lock_rwsem);
3350         rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3351         up_write(&rbd_dev->lock_rwsem);
3352
3353         mutex_lock(&rbd_dev->watch_mutex);
3354         if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) {
3355                 __rbd_unregister_watch(rbd_dev);
3356                 rbd_dev->watch_state = RBD_WATCH_STATE_ERROR;
3357
3358                 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0);
3359         }
3360         mutex_unlock(&rbd_dev->watch_mutex);
3361 }
3362
3363 /*
3364  * watch_mutex must be locked
3365  */
3366 static int __rbd_register_watch(struct rbd_device *rbd_dev)
3367 {
3368         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3369         struct ceph_osd_linger_request *handle;
3370
3371         rbd_assert(!rbd_dev->watch_handle);
3372         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3373
3374         handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid,
3375                                  &rbd_dev->header_oloc, rbd_watch_cb,
3376                                  rbd_watch_errcb, rbd_dev);
3377         if (IS_ERR(handle))
3378                 return PTR_ERR(handle);
3379
3380         rbd_dev->watch_handle = handle;
3381         return 0;
3382 }
3383
3384 /*
3385  * watch_mutex must be locked
3386  */
3387 static void __rbd_unregister_watch(struct rbd_device *rbd_dev)
3388 {
3389         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3390         int ret;
3391
3392         rbd_assert(rbd_dev->watch_handle);
3393         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3394
3395         ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle);
3396         if (ret)
3397                 rbd_warn(rbd_dev, "failed to unwatch: %d", ret);
3398
3399         rbd_dev->watch_handle = NULL;
3400 }
3401
3402 static int rbd_register_watch(struct rbd_device *rbd_dev)
3403 {
3404         int ret;
3405
3406         mutex_lock(&rbd_dev->watch_mutex);
3407         rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED);
3408         ret = __rbd_register_watch(rbd_dev);
3409         if (ret)
3410                 goto out;
3411
3412         rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
3413         rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
3414
3415 out:
3416         mutex_unlock(&rbd_dev->watch_mutex);
3417         return ret;
3418 }
3419
3420 static void cancel_tasks_sync(struct rbd_device *rbd_dev)
3421 {
3422         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3423
3424         cancel_work_sync(&rbd_dev->acquired_lock_work);
3425         cancel_work_sync(&rbd_dev->released_lock_work);
3426         cancel_delayed_work_sync(&rbd_dev->lock_dwork);
3427         cancel_work_sync(&rbd_dev->unlock_work);
3428 }
3429
3430 /*
3431  * header_rwsem must not be held to avoid a deadlock with
3432  * rbd_dev_refresh() when flushing notifies.
3433  */
3434 static void rbd_unregister_watch(struct rbd_device *rbd_dev)
3435 {
3436         WARN_ON(waitqueue_active(&rbd_dev->lock_waitq));
3437         cancel_tasks_sync(rbd_dev);
3438
3439         mutex_lock(&rbd_dev->watch_mutex);
3440         if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED)
3441                 __rbd_unregister_watch(rbd_dev);
3442         rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
3443         mutex_unlock(&rbd_dev->watch_mutex);
3444
3445         cancel_delayed_work_sync(&rbd_dev->watch_dwork);
3446         ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
3447 }
3448
3449 /*
3450  * lock_rwsem must be held for write
3451  */
3452 static void rbd_reacquire_lock(struct rbd_device *rbd_dev)
3453 {
3454         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3455         char cookie[32];
3456         int ret;
3457
3458         WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED);
3459
3460         format_lock_cookie(rbd_dev, cookie);
3461         ret = ceph_cls_set_cookie(osdc, &rbd_dev->header_oid,
3462                                   &rbd_dev->header_oloc, RBD_LOCK_NAME,
3463                                   CEPH_CLS_LOCK_EXCLUSIVE, rbd_dev->lock_cookie,
3464                                   RBD_LOCK_TAG, cookie);
3465         if (ret) {
3466                 if (ret != -EOPNOTSUPP)
3467                         rbd_warn(rbd_dev, "failed to update lock cookie: %d",
3468                                  ret);
3469
3470                 /*
3471                  * Lock cookie cannot be updated on older OSDs, so do
3472                  * a manual release and queue an acquire.
3473                  */
3474                 if (rbd_release_lock(rbd_dev))
3475                         queue_delayed_work(rbd_dev->task_wq,
3476                                            &rbd_dev->lock_dwork, 0);
3477         } else {
3478                 __rbd_lock(rbd_dev, cookie);
3479         }
3480 }
3481
3482 static void rbd_reregister_watch(struct work_struct *work)
3483 {
3484         struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
3485                                             struct rbd_device, watch_dwork);
3486         int ret;
3487
3488         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3489
3490         mutex_lock(&rbd_dev->watch_mutex);
3491         if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) {
3492                 mutex_unlock(&rbd_dev->watch_mutex);
3493                 return;
3494         }
3495
3496         ret = __rbd_register_watch(rbd_dev);
3497         if (ret) {
3498                 rbd_warn(rbd_dev, "failed to reregister watch: %d", ret);
3499                 if (ret == -EBLACKLISTED || ret == -ENOENT) {
3500                         set_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags);
3501                         wake_requests(rbd_dev, true);
3502                 } else {
3503                         queue_delayed_work(rbd_dev->task_wq,
3504                                            &rbd_dev->watch_dwork,
3505                                            RBD_RETRY_DELAY);
3506                 }
3507                 mutex_unlock(&rbd_dev->watch_mutex);
3508                 return;
3509         }
3510
3511         rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
3512         rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
3513         mutex_unlock(&rbd_dev->watch_mutex);
3514
3515         down_write(&rbd_dev->lock_rwsem);
3516         if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
3517                 rbd_reacquire_lock(rbd_dev);
3518         up_write(&rbd_dev->lock_rwsem);
3519
3520         ret = rbd_dev_refresh(rbd_dev);
3521         if (ret)
3522                 rbd_warn(rbd_dev, "reregistration refresh failed: %d", ret);
3523 }
3524
3525 /*
3526  * Synchronous osd object method call.  Returns the number of bytes
3527  * returned in the outbound buffer, or a negative error code.
3528  */
3529 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3530                              struct ceph_object_id *oid,
3531                              struct ceph_object_locator *oloc,
3532                              const char *method_name,
3533                              const void *outbound,
3534                              size_t outbound_size,
3535                              void *inbound,
3536                              size_t inbound_size)
3537 {
3538         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3539         struct page *req_page = NULL;
3540         struct page *reply_page;
3541         int ret;
3542
3543         /*
3544          * Method calls are ultimately read operations.  The result
3545          * should placed into the inbound buffer provided.  They
3546          * also supply outbound data--parameters for the object
3547          * method.  Currently if this is present it will be a
3548          * snapshot id.
3549          */
3550         if (outbound) {
3551                 if (outbound_size > PAGE_SIZE)
3552                         return -E2BIG;
3553
3554                 req_page = alloc_page(GFP_KERNEL);
3555                 if (!req_page)
3556                         return -ENOMEM;
3557
3558                 memcpy(page_address(req_page), outbound, outbound_size);
3559         }
3560
3561         reply_page = alloc_page(GFP_KERNEL);
3562         if (!reply_page) {
3563                 if (req_page)
3564                         __free_page(req_page);
3565                 return -ENOMEM;
3566         }
3567
3568         ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name,
3569                              CEPH_OSD_FLAG_READ, req_page, outbound_size,
3570                              reply_page, &inbound_size);
3571         if (!ret) {
3572                 memcpy(inbound, page_address(reply_page), inbound_size);
3573                 ret = inbound_size;
3574         }
3575
3576         if (req_page)
3577                 __free_page(req_page);
3578         __free_page(reply_page);
3579         return ret;
3580 }
3581
3582 /*
3583  * lock_rwsem must be held for read
3584  */
3585 static int rbd_wait_state_locked(struct rbd_device *rbd_dev, bool may_acquire)
3586 {
3587         DEFINE_WAIT(wait);
3588         unsigned long timeout;
3589         int ret = 0;
3590
3591         if (test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags))
3592                 return -EBLACKLISTED;
3593
3594         if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
3595                 return 0;
3596
3597         if (!may_acquire) {
3598                 rbd_warn(rbd_dev, "exclusive lock required");
3599                 return -EROFS;
3600         }
3601
3602         do {
3603                 /*
3604                  * Note the use of mod_delayed_work() in rbd_acquire_lock()
3605                  * and cancel_delayed_work() in wake_requests().
3606                  */
3607                 dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev);
3608                 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
3609                 prepare_to_wait_exclusive(&rbd_dev->lock_waitq, &wait,
3610                                           TASK_UNINTERRUPTIBLE);
3611                 up_read(&rbd_dev->lock_rwsem);
3612                 timeout = schedule_timeout(ceph_timeout_jiffies(
3613                                                 rbd_dev->opts->lock_timeout));
3614                 down_read(&rbd_dev->lock_rwsem);
3615                 if (test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags)) {
3616                         ret = -EBLACKLISTED;
3617                         break;
3618                 }
3619                 if (!timeout) {
3620                         rbd_warn(rbd_dev, "timed out waiting for lock");
3621                         ret = -ETIMEDOUT;
3622                         break;
3623                 }
3624         } while (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED);
3625
3626         finish_wait(&rbd_dev->lock_waitq, &wait);
3627         return ret;
3628 }
3629
3630 static void rbd_queue_workfn(struct work_struct *work)
3631 {
3632         struct request *rq = blk_mq_rq_from_pdu(work);
3633         struct rbd_device *rbd_dev = rq->q->queuedata;
3634         struct rbd_img_request *img_request;
3635         struct ceph_snap_context *snapc = NULL;
3636         u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
3637         u64 length = blk_rq_bytes(rq);
3638         enum obj_operation_type op_type;
3639         u64 mapping_size;
3640         bool must_be_locked;
3641         int result;
3642
3643         switch (req_op(rq)) {
3644         case REQ_OP_DISCARD:
3645         case REQ_OP_WRITE_ZEROES:
3646                 op_type = OBJ_OP_DISCARD;
3647                 break;
3648         case REQ_OP_WRITE:
3649                 op_type = OBJ_OP_WRITE;
3650                 break;
3651         case REQ_OP_READ:
3652                 op_type = OBJ_OP_READ;
3653                 break;
3654         default:
3655                 dout("%s: non-fs request type %d\n", __func__, req_op(rq));
3656                 result = -EIO;
3657                 goto err;
3658         }
3659
3660         /* Ignore/skip any zero-length requests */
3661
3662         if (!length) {
3663                 dout("%s: zero-length request\n", __func__);
3664                 result = 0;
3665                 goto err_rq;
3666         }
3667
3668         rbd_assert(op_type == OBJ_OP_READ ||
3669                    rbd_dev->spec->snap_id == CEPH_NOSNAP);
3670
3671         /*
3672          * Quit early if the mapped snapshot no longer exists.  It's
3673          * still possible the snapshot will have disappeared by the
3674          * time our request arrives at the osd, but there's no sense in
3675          * sending it if we already know.
3676          */
3677         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3678                 dout("request for non-existent snapshot");
3679                 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3680                 result = -ENXIO;
3681                 goto err_rq;
3682         }
3683
3684         if (offset && length > U64_MAX - offset + 1) {
3685                 rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset,
3686                          length);
3687                 result = -EINVAL;
3688                 goto err_rq;    /* Shouldn't happen */
3689         }
3690
3691         blk_mq_start_request(rq);
3692
3693         down_read(&rbd_dev->header_rwsem);
3694         mapping_size = rbd_dev->mapping.size;
3695         if (op_type != OBJ_OP_READ) {
3696                 snapc = rbd_dev->header.snapc;
3697                 ceph_get_snap_context(snapc);
3698         }
3699         up_read(&rbd_dev->header_rwsem);
3700
3701         if (offset + length > mapping_size) {
3702                 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
3703                          length, mapping_size);
3704                 result = -EIO;
3705                 goto err_rq;
3706         }
3707
3708         must_be_locked =
3709             (rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK) &&
3710             (op_type != OBJ_OP_READ || rbd_dev->opts->lock_on_read);
3711         if (must_be_locked) {
3712                 down_read(&rbd_dev->lock_rwsem);
3713                 result = rbd_wait_state_locked(rbd_dev,
3714                                                !rbd_dev->opts->exclusive);
3715                 if (result)
3716                         goto err_unlock;
3717         }
3718
3719         img_request = rbd_img_request_create(rbd_dev, op_type, snapc);
3720         if (!img_request) {
3721                 result = -ENOMEM;
3722                 goto err_unlock;
3723         }
3724         img_request->rq = rq;
3725         snapc = NULL; /* img_request consumes a ref */
3726
3727         if (op_type == OBJ_OP_DISCARD)
3728                 result = rbd_img_fill_nodata(img_request, offset, length);
3729         else
3730                 result = rbd_img_fill_from_bio(img_request, offset, length,
3731                                                rq->bio);
3732         if (result)
3733                 goto err_img_request;
3734
3735         rbd_img_request_submit(img_request);
3736         if (must_be_locked)
3737                 up_read(&rbd_dev->lock_rwsem);
3738         return;
3739
3740 err_img_request:
3741         rbd_img_request_put(img_request);
3742 err_unlock:
3743         if (must_be_locked)
3744                 up_read(&rbd_dev->lock_rwsem);
3745 err_rq:
3746         if (result)
3747                 rbd_warn(rbd_dev, "%s %llx at %llx result %d",
3748                          obj_op_name(op_type), length, offset, result);
3749         ceph_put_snap_context(snapc);
3750 err:
3751         blk_mq_end_request(rq, errno_to_blk_status(result));
3752 }
3753
3754 static blk_status_t rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
3755                 const struct blk_mq_queue_data *bd)
3756 {
3757         struct request *rq = bd->rq;
3758         struct work_struct *work = blk_mq_rq_to_pdu(rq);
3759
3760         queue_work(rbd_wq, work);
3761         return BLK_STS_OK;
3762 }
3763
3764 static void rbd_free_disk(struct rbd_device *rbd_dev)
3765 {
3766         blk_cleanup_queue(rbd_dev->disk->queue);
3767         blk_mq_free_tag_set(&rbd_dev->tag_set);
3768         put_disk(rbd_dev->disk);
3769         rbd_dev->disk = NULL;
3770 }
3771
3772 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3773                              struct ceph_object_id *oid,
3774                              struct ceph_object_locator *oloc,
3775                              void *buf, int buf_len)
3776
3777 {
3778         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3779         struct ceph_osd_request *req;
3780         struct page **pages;
3781         int num_pages = calc_pages_for(0, buf_len);
3782         int ret;
3783
3784         req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL);
3785         if (!req)
3786                 return -ENOMEM;
3787
3788         ceph_oid_copy(&req->r_base_oid, oid);
3789         ceph_oloc_copy(&req->r_base_oloc, oloc);
3790         req->r_flags = CEPH_OSD_FLAG_READ;
3791
3792         ret = ceph_osdc_alloc_messages(req, GFP_KERNEL);
3793         if (ret)
3794                 goto out_req;
3795
3796         pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
3797         if (IS_ERR(pages)) {
3798                 ret = PTR_ERR(pages);
3799                 goto out_req;
3800         }
3801
3802         osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0);
3803         osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false,
3804                                          true);
3805
3806         ceph_osdc_start_request(osdc, req, false);
3807         ret = ceph_osdc_wait_request(osdc, req);
3808         if (ret >= 0)
3809                 ceph_copy_from_page_vector(pages, buf, 0, ret);
3810
3811 out_req:
3812         ceph_osdc_put_request(req);
3813         return ret;
3814 }
3815
3816 /*
3817  * Read the complete header for the given rbd device.  On successful
3818  * return, the rbd_dev->header field will contain up-to-date
3819  * information about the image.
3820  */
3821 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3822 {
3823         struct rbd_image_header_ondisk *ondisk = NULL;
3824         u32 snap_count = 0;
3825         u64 names_size = 0;
3826         u32 want_count;
3827         int ret;
3828
3829         /*
3830          * The complete header will include an array of its 64-bit
3831          * snapshot ids, followed by the names of those snapshots as
3832          * a contiguous block of NUL-terminated strings.  Note that
3833          * the number of snapshots could change by the time we read
3834          * it in, in which case we re-read it.
3835          */
3836         do {
3837                 size_t size;
3838
3839                 kfree(ondisk);
3840
3841                 size = sizeof (*ondisk);
3842                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3843                 size += names_size;
3844                 ondisk = kmalloc(size, GFP_KERNEL);
3845                 if (!ondisk)
3846                         return -ENOMEM;
3847
3848                 ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid,
3849                                         &rbd_dev->header_oloc, ondisk, size);
3850                 if (ret < 0)
3851                         goto out;
3852                 if ((size_t)ret < size) {
3853                         ret = -ENXIO;
3854                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3855                                 size, ret);
3856                         goto out;
3857                 }
3858                 if (!rbd_dev_ondisk_valid(ondisk)) {
3859                         ret = -ENXIO;
3860                         rbd_warn(rbd_dev, "invalid header");
3861                         goto out;
3862                 }
3863
3864                 names_size = le64_to_cpu(ondisk->snap_names_len);
3865                 want_count = snap_count;
3866                 snap_count = le32_to_cpu(ondisk->snap_count);
3867         } while (snap_count != want_count);
3868
3869         ret = rbd_header_from_disk(rbd_dev, ondisk);
3870 out:
3871         kfree(ondisk);
3872
3873         return ret;
3874 }
3875
3876 /*
3877  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3878  * has disappeared from the (just updated) snapshot context.
3879  */
3880 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3881 {
3882         u64 snap_id;
3883
3884         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3885                 return;
3886
3887         snap_id = rbd_dev->spec->snap_id;
3888         if (snap_id == CEPH_NOSNAP)
3889                 return;
3890
3891         if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3892                 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3893 }
3894
3895 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3896 {
3897         sector_t size;
3898
3899         /*
3900          * If EXISTS is not set, rbd_dev->disk may be NULL, so don't
3901          * try to update its size.  If REMOVING is set, updating size
3902          * is just useless work since the device can't be opened.
3903          */
3904         if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
3905             !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
3906                 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3907                 dout("setting size to %llu sectors", (unsigned long long)size);
3908                 set_capacity(rbd_dev->disk, size);
3909                 revalidate_disk(rbd_dev->disk);
3910         }
3911 }
3912
3913 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3914 {
3915         u64 mapping_size;
3916         int ret;
3917
3918         down_write(&rbd_dev->header_rwsem);
3919         mapping_size = rbd_dev->mapping.size;
3920
3921         ret = rbd_dev_header_info(rbd_dev);
3922         if (ret)
3923                 goto out;
3924
3925         /*
3926          * If there is a parent, see if it has disappeared due to the
3927          * mapped image getting flattened.
3928          */
3929         if (rbd_dev->parent) {
3930                 ret = rbd_dev_v2_parent_info(rbd_dev);
3931                 if (ret)
3932                         goto out;
3933         }
3934
3935         if (rbd_dev->spec->snap_id == CEPH_NOSNAP) {
3936                 rbd_dev->mapping.size = rbd_dev->header.image_size;
3937         } else {
3938                 /* validate mapped snapshot's EXISTS flag */
3939                 rbd_exists_validate(rbd_dev);
3940         }
3941
3942 out:
3943         up_write(&rbd_dev->header_rwsem);
3944         if (!ret && mapping_size != rbd_dev->mapping.size)
3945                 rbd_dev_update_size(rbd_dev);
3946
3947         return ret;
3948 }
3949
3950 static int rbd_init_request(struct blk_mq_tag_set *set, struct request *rq,
3951                 unsigned int hctx_idx, unsigned int numa_node)
3952 {
3953         struct work_struct *work = blk_mq_rq_to_pdu(rq);
3954
3955         INIT_WORK(work, rbd_queue_workfn);
3956         return 0;
3957 }
3958
3959 static const struct blk_mq_ops rbd_mq_ops = {
3960         .queue_rq       = rbd_queue_rq,
3961         .init_request   = rbd_init_request,
3962 };
3963
3964 static int rbd_init_disk(struct rbd_device *rbd_dev)
3965 {
3966         struct gendisk *disk;
3967         struct request_queue *q;
3968         unsigned int objset_bytes =
3969             rbd_dev->layout.object_size * rbd_dev->layout.stripe_count;
3970         int err;
3971
3972         /* create gendisk info */
3973         disk = alloc_disk(single_major ?
3974                           (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3975                           RBD_MINORS_PER_MAJOR);
3976         if (!disk)
3977                 return -ENOMEM;
3978
3979         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3980                  rbd_dev->dev_id);
3981         disk->major = rbd_dev->major;
3982         disk->first_minor = rbd_dev->minor;
3983         if (single_major)
3984                 disk->flags |= GENHD_FL_EXT_DEVT;
3985         disk->fops = &rbd_bd_ops;
3986         disk->private_data = rbd_dev;
3987
3988         memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
3989         rbd_dev->tag_set.ops = &rbd_mq_ops;
3990         rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
3991         rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
3992         rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
3993         rbd_dev->tag_set.nr_hw_queues = 1;
3994         rbd_dev->tag_set.cmd_size = sizeof(struct work_struct);
3995
3996         err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
3997         if (err)
3998                 goto out_disk;
3999
4000         q = blk_mq_init_queue(&rbd_dev->tag_set);
4001         if (IS_ERR(q)) {
4002                 err = PTR_ERR(q);
4003                 goto out_tag_set;
4004         }
4005
4006         blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
4007         /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
4008
4009         blk_queue_max_hw_sectors(q, objset_bytes >> SECTOR_SHIFT);
4010         q->limits.max_sectors = queue_max_hw_sectors(q);
4011         blk_queue_max_segments(q, USHRT_MAX);
4012         blk_queue_max_segment_size(q, UINT_MAX);
4013         blk_queue_io_min(q, objset_bytes);
4014         blk_queue_io_opt(q, objset_bytes);
4015
4016         if (rbd_dev->opts->trim) {
4017                 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
4018                 q->limits.discard_granularity = objset_bytes;
4019                 blk_queue_max_discard_sectors(q, objset_bytes >> SECTOR_SHIFT);
4020                 blk_queue_max_write_zeroes_sectors(q, objset_bytes >> SECTOR_SHIFT);
4021         }
4022
4023         if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
4024                 q->backing_dev_info->capabilities |= BDI_CAP_STABLE_WRITES;
4025
4026         /*
4027          * disk_release() expects a queue ref from add_disk() and will
4028          * put it.  Hold an extra ref until add_disk() is called.
4029          */
4030         WARN_ON(!blk_get_queue(q));
4031         disk->queue = q;
4032         q->queuedata = rbd_dev;
4033
4034         rbd_dev->disk = disk;
4035
4036         return 0;
4037 out_tag_set:
4038         blk_mq_free_tag_set(&rbd_dev->tag_set);
4039 out_disk:
4040         put_disk(disk);
4041         return err;
4042 }
4043
4044 /*
4045   sysfs
4046 */
4047
4048 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
4049 {
4050         return container_of(dev, struct rbd_device, dev);
4051 }
4052
4053 static ssize_t rbd_size_show(struct device *dev,
4054                              struct device_attribute *attr, char *buf)
4055 {
4056         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4057
4058         return sprintf(buf, "%llu\n",
4059                 (unsigned long long)rbd_dev->mapping.size);
4060 }
4061
4062 /*
4063  * Note this shows the features for whatever's mapped, which is not
4064  * necessarily the base image.
4065  */
4066 static ssize_t rbd_features_show(struct device *dev,
4067                              struct device_attribute *attr, char *buf)
4068 {
4069         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4070
4071         return sprintf(buf, "0x%016llx\n",
4072                         (unsigned long long)rbd_dev->mapping.features);
4073 }
4074
4075 static ssize_t rbd_major_show(struct device *dev,
4076                               struct device_attribute *attr, char *buf)
4077 {
4078         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4079
4080         if (rbd_dev->major)
4081                 return sprintf(buf, "%d\n", rbd_dev->major);
4082
4083         return sprintf(buf, "(none)\n");
4084 }
4085
4086 static ssize_t rbd_minor_show(struct device *dev,
4087                               struct device_attribute *attr, char *buf)
4088 {
4089         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4090
4091         return sprintf(buf, "%d\n", rbd_dev->minor);
4092 }
4093
4094 static ssize_t rbd_client_addr_show(struct device *dev,
4095                                     struct device_attribute *attr, char *buf)
4096 {
4097         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4098         struct ceph_entity_addr *client_addr =
4099             ceph_client_addr(rbd_dev->rbd_client->client);
4100
4101         return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr,
4102                        le32_to_cpu(client_addr->nonce));
4103 }
4104
4105 static ssize_t rbd_client_id_show(struct device *dev,
4106                                   struct device_attribute *attr, char *buf)
4107 {
4108         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4109
4110         return sprintf(buf, "client%lld\n",
4111                        ceph_client_gid(rbd_dev->rbd_client->client));
4112 }
4113
4114 static ssize_t rbd_cluster_fsid_show(struct device *dev,
4115                                      struct device_attribute *attr, char *buf)
4116 {
4117         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4118
4119         return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid);
4120 }
4121
4122 static ssize_t rbd_config_info_show(struct device *dev,
4123                                     struct device_attribute *attr, char *buf)
4124 {
4125         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4126
4127         if (!capable(CAP_SYS_ADMIN))
4128                 return -EPERM;
4129
4130         return sprintf(buf, "%s\n", rbd_dev->config_info);
4131 }
4132
4133 static ssize_t rbd_pool_show(struct device *dev,
4134                              struct device_attribute *attr, char *buf)
4135 {
4136         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4137
4138         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
4139 }
4140
4141 static ssize_t rbd_pool_id_show(struct device *dev,
4142                              struct device_attribute *attr, char *buf)
4143 {
4144         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4145
4146         return sprintf(buf, "%llu\n",
4147                         (unsigned long long) rbd_dev->spec->pool_id);
4148 }
4149
4150 static ssize_t rbd_pool_ns_show(struct device *dev,
4151                                 struct device_attribute *attr, char *buf)
4152 {
4153         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4154
4155         return sprintf(buf, "%s\n", rbd_dev->spec->pool_ns ?: "");
4156 }
4157
4158 static ssize_t rbd_name_show(struct device *dev,
4159                              struct device_attribute *attr, char *buf)
4160 {
4161         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4162
4163         if (rbd_dev->spec->image_name)
4164                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
4165
4166         return sprintf(buf, "(unknown)\n");
4167 }
4168
4169 static ssize_t rbd_image_id_show(struct device *dev,
4170                              struct device_attribute *attr, char *buf)
4171 {
4172         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4173
4174         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
4175 }
4176
4177 /*
4178  * Shows the name of the currently-mapped snapshot (or
4179  * RBD_SNAP_HEAD_NAME for the base image).
4180  */
4181 static ssize_t rbd_snap_show(struct device *dev,
4182                              struct device_attribute *attr,
4183                              char *buf)
4184 {
4185         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4186
4187         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
4188 }
4189
4190 static ssize_t rbd_snap_id_show(struct device *dev,
4191                                 struct device_attribute *attr, char *buf)
4192 {
4193         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4194
4195         return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id);
4196 }
4197
4198 /*
4199  * For a v2 image, shows the chain of parent images, separated by empty
4200  * lines.  For v1 images or if there is no parent, shows "(no parent
4201  * image)".
4202  */
4203 static ssize_t rbd_parent_show(struct device *dev,
4204                                struct device_attribute *attr,
4205                                char *buf)
4206 {
4207         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4208         ssize_t count = 0;
4209
4210         if (!rbd_dev->parent)
4211                 return sprintf(buf, "(no parent image)\n");
4212
4213         for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
4214                 struct rbd_spec *spec = rbd_dev->parent_spec;
4215
4216                 count += sprintf(&buf[count], "%s"
4217                             "pool_id %llu\npool_name %s\n"
4218                             "pool_ns %s\n"
4219                             "image_id %s\nimage_name %s\n"
4220                             "snap_id %llu\nsnap_name %s\n"
4221                             "overlap %llu\n",
4222                             !count ? "" : "\n", /* first? */
4223                             spec->pool_id, spec->pool_name,
4224                             spec->pool_ns ?: "",
4225                             spec->image_id, spec->image_name ?: "(unknown)",
4226                             spec->snap_id, spec->snap_name,
4227                             rbd_dev->parent_overlap);
4228         }
4229
4230         return count;
4231 }
4232
4233 static ssize_t rbd_image_refresh(struct device *dev,
4234                                  struct device_attribute *attr,
4235                                  const char *buf,
4236                                  size_t size)
4237 {
4238         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4239         int ret;
4240
4241         if (!capable(CAP_SYS_ADMIN))
4242                 return -EPERM;
4243
4244         ret = rbd_dev_refresh(rbd_dev);
4245         if (ret)
4246                 return ret;
4247
4248         return size;
4249 }
4250
4251 static DEVICE_ATTR(size, 0444, rbd_size_show, NULL);
4252 static DEVICE_ATTR(features, 0444, rbd_features_show, NULL);
4253 static DEVICE_ATTR(major, 0444, rbd_major_show, NULL);
4254 static DEVICE_ATTR(minor, 0444, rbd_minor_show, NULL);
4255 static DEVICE_ATTR(client_addr, 0444, rbd_client_addr_show, NULL);
4256 static DEVICE_ATTR(client_id, 0444, rbd_client_id_show, NULL);
4257 static DEVICE_ATTR(cluster_fsid, 0444, rbd_cluster_fsid_show, NULL);
4258 static DEVICE_ATTR(config_info, 0400, rbd_config_info_show, NULL);
4259 static DEVICE_ATTR(pool, 0444, rbd_pool_show, NULL);
4260 static DEVICE_ATTR(pool_id, 0444, rbd_pool_id_show, NULL);
4261 static DEVICE_ATTR(pool_ns, 0444, rbd_pool_ns_show, NULL);
4262 static DEVICE_ATTR(name, 0444, rbd_name_show, NULL);
4263 static DEVICE_ATTR(image_id, 0444, rbd_image_id_show, NULL);
4264 static DEVICE_ATTR(refresh, 0200, NULL, rbd_image_refresh);
4265 static DEVICE_ATTR(current_snap, 0444, rbd_snap_show, NULL);
4266 static DEVICE_ATTR(snap_id, 0444, rbd_snap_id_show, NULL);
4267 static DEVICE_ATTR(parent, 0444, rbd_parent_show, NULL);
4268
4269 static struct attribute *rbd_attrs[] = {
4270         &dev_attr_size.attr,
4271         &dev_attr_features.attr,
4272         &dev_attr_major.attr,
4273         &dev_attr_minor.attr,
4274         &dev_attr_client_addr.attr,
4275         &dev_attr_client_id.attr,
4276         &dev_attr_cluster_fsid.attr,
4277         &dev_attr_config_info.attr,
4278         &dev_attr_pool.attr,
4279         &dev_attr_pool_id.attr,
4280         &dev_attr_pool_ns.attr,
4281         &dev_attr_name.attr,
4282         &dev_attr_image_id.attr,
4283         &dev_attr_current_snap.attr,
4284         &dev_attr_snap_id.attr,
4285         &dev_attr_parent.attr,
4286         &dev_attr_refresh.attr,
4287         NULL
4288 };
4289
4290 static struct attribute_group rbd_attr_group = {
4291         .attrs = rbd_attrs,
4292 };
4293
4294 static const struct attribute_group *rbd_attr_groups[] = {
4295         &rbd_attr_group,
4296         NULL
4297 };
4298
4299 static void rbd_dev_release(struct device *dev);
4300
4301 static const struct device_type rbd_device_type = {
4302         .name           = "rbd",
4303         .groups         = rbd_attr_groups,
4304         .release        = rbd_dev_release,
4305 };
4306
4307 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
4308 {
4309         kref_get(&spec->kref);
4310
4311         return spec;
4312 }
4313
4314 static void rbd_spec_free(struct kref *kref);
4315 static void rbd_spec_put(struct rbd_spec *spec)
4316 {
4317         if (spec)
4318                 kref_put(&spec->kref, rbd_spec_free);
4319 }
4320
4321 static struct rbd_spec *rbd_spec_alloc(void)
4322 {
4323         struct rbd_spec *spec;
4324
4325         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
4326         if (!spec)
4327                 return NULL;
4328
4329         spec->pool_id = CEPH_NOPOOL;
4330         spec->snap_id = CEPH_NOSNAP;
4331         kref_init(&spec->kref);
4332
4333         return spec;
4334 }
4335
4336 static void rbd_spec_free(struct kref *kref)
4337 {
4338         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
4339
4340         kfree(spec->pool_name);
4341         kfree(spec->pool_ns);
4342         kfree(spec->image_id);
4343         kfree(spec->image_name);
4344         kfree(spec->snap_name);
4345         kfree(spec);
4346 }
4347
4348 static void rbd_dev_free(struct rbd_device *rbd_dev)
4349 {
4350         WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED);
4351         WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED);
4352
4353         ceph_oid_destroy(&rbd_dev->header_oid);
4354         ceph_oloc_destroy(&rbd_dev->header_oloc);
4355         kfree(rbd_dev->config_info);
4356
4357         rbd_put_client(rbd_dev->rbd_client);
4358         rbd_spec_put(rbd_dev->spec);
4359         kfree(rbd_dev->opts);
4360         kfree(rbd_dev);
4361 }
4362
4363 static void rbd_dev_release(struct device *dev)
4364 {
4365         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4366         bool need_put = !!rbd_dev->opts;
4367
4368         if (need_put) {
4369                 destroy_workqueue(rbd_dev->task_wq);
4370                 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4371         }
4372
4373         rbd_dev_free(rbd_dev);
4374
4375         /*
4376          * This is racy, but way better than putting module outside of
4377          * the release callback.  The race window is pretty small, so
4378          * doing something similar to dm (dm-builtin.c) is overkill.
4379          */
4380         if (need_put)
4381                 module_put(THIS_MODULE);
4382 }
4383
4384 static struct rbd_device *__rbd_dev_create(struct rbd_client *rbdc,
4385                                            struct rbd_spec *spec)
4386 {
4387         struct rbd_device *rbd_dev;
4388
4389         rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
4390         if (!rbd_dev)
4391                 return NULL;
4392
4393         spin_lock_init(&rbd_dev->lock);
4394         INIT_LIST_HEAD(&rbd_dev->node);
4395         init_rwsem(&rbd_dev->header_rwsem);
4396
4397         rbd_dev->header.data_pool_id = CEPH_NOPOOL;
4398         ceph_oid_init(&rbd_dev->header_oid);
4399         rbd_dev->header_oloc.pool = spec->pool_id;
4400         if (spec->pool_ns) {
4401                 WARN_ON(!*spec->pool_ns);
4402                 rbd_dev->header_oloc.pool_ns =
4403                     ceph_find_or_create_string(spec->pool_ns,
4404                                                strlen(spec->pool_ns));
4405         }
4406
4407         mutex_init(&rbd_dev->watch_mutex);
4408         rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
4409         INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch);
4410
4411         init_rwsem(&rbd_dev->lock_rwsem);
4412         rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
4413         INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock);
4414         INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock);
4415         INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock);
4416         INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work);
4417         init_waitqueue_head(&rbd_dev->lock_waitq);
4418
4419         rbd_dev->dev.bus = &rbd_bus_type;
4420         rbd_dev->dev.type = &rbd_device_type;
4421         rbd_dev->dev.parent = &rbd_root_dev;
4422         device_initialize(&rbd_dev->dev);
4423
4424         rbd_dev->rbd_client = rbdc;
4425         rbd_dev->spec = spec;
4426
4427         return rbd_dev;
4428 }
4429
4430 /*
4431  * Create a mapping rbd_dev.
4432  */
4433 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
4434                                          struct rbd_spec *spec,
4435                                          struct rbd_options *opts)
4436 {
4437         struct rbd_device *rbd_dev;
4438
4439         rbd_dev = __rbd_dev_create(rbdc, spec);
4440         if (!rbd_dev)
4441                 return NULL;
4442
4443         rbd_dev->opts = opts;
4444
4445         /* get an id and fill in device name */
4446         rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0,
4447                                          minor_to_rbd_dev_id(1 << MINORBITS),
4448                                          GFP_KERNEL);
4449         if (rbd_dev->dev_id < 0)
4450                 goto fail_rbd_dev;
4451
4452         sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id);
4453         rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM,
4454                                                    rbd_dev->name);
4455         if (!rbd_dev->task_wq)
4456                 goto fail_dev_id;
4457
4458         /* we have a ref from do_rbd_add() */
4459         __module_get(THIS_MODULE);
4460
4461         dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id);
4462         return rbd_dev;
4463
4464 fail_dev_id:
4465         ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4466 fail_rbd_dev:
4467         rbd_dev_free(rbd_dev);
4468         return NULL;
4469 }
4470
4471 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
4472 {
4473         if (rbd_dev)
4474                 put_device(&rbd_dev->dev);
4475 }
4476
4477 /*
4478  * Get the size and object order for an image snapshot, or if
4479  * snap_id is CEPH_NOSNAP, gets this information for the base
4480  * image.
4481  */
4482 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
4483                                 u8 *order, u64 *snap_size)
4484 {
4485         __le64 snapid = cpu_to_le64(snap_id);
4486         int ret;
4487         struct {
4488                 u8 order;
4489                 __le64 size;
4490         } __attribute__ ((packed)) size_buf = { 0 };
4491
4492         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4493                                   &rbd_dev->header_oloc, "get_size",
4494                                   &snapid, sizeof(snapid),
4495                                   &size_buf, sizeof(size_buf));
4496         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4497         if (ret < 0)
4498                 return ret;
4499         if (ret < sizeof (size_buf))
4500                 return -ERANGE;
4501
4502         if (order) {
4503                 *order = size_buf.order;
4504                 dout("  order %u", (unsigned int)*order);
4505         }
4506         *snap_size = le64_to_cpu(size_buf.size);
4507
4508         dout("  snap_id 0x%016llx snap_size = %llu\n",
4509                 (unsigned long long)snap_id,
4510                 (unsigned long long)*snap_size);
4511
4512         return 0;
4513 }
4514
4515 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
4516 {
4517         return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
4518                                         &rbd_dev->header.obj_order,
4519                                         &rbd_dev->header.image_size);
4520 }
4521
4522 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
4523 {
4524         void *reply_buf;
4525         int ret;
4526         void *p;
4527
4528         reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
4529         if (!reply_buf)
4530                 return -ENOMEM;
4531
4532         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4533                                   &rbd_dev->header_oloc, "get_object_prefix",
4534                                   NULL, 0, reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
4535         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4536         if (ret < 0)
4537                 goto out;
4538
4539         p = reply_buf;
4540         rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
4541                                                 p + ret, NULL, GFP_NOIO);
4542         ret = 0;
4543
4544         if (IS_ERR(rbd_dev->header.object_prefix)) {
4545                 ret = PTR_ERR(rbd_dev->header.object_prefix);
4546                 rbd_dev->header.object_prefix = NULL;
4547         } else {
4548                 dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
4549         }
4550 out:
4551         kfree(reply_buf);
4552
4553         return ret;
4554 }
4555
4556 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
4557                 u64 *snap_features)
4558 {
4559         __le64 snapid = cpu_to_le64(snap_id);
4560         struct {
4561                 __le64 features;
4562                 __le64 incompat;
4563         } __attribute__ ((packed)) features_buf = { 0 };
4564         u64 unsup;
4565         int ret;
4566
4567         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4568                                   &rbd_dev->header_oloc, "get_features",
4569                                   &snapid, sizeof(snapid),
4570                                   &features_buf, sizeof(features_buf));
4571         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4572         if (ret < 0)
4573                 return ret;
4574         if (ret < sizeof (features_buf))
4575                 return -ERANGE;
4576
4577         unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
4578         if (unsup) {
4579                 rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx",
4580                          unsup);
4581                 return -ENXIO;
4582         }
4583
4584         *snap_features = le64_to_cpu(features_buf.features);
4585
4586         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
4587                 (unsigned long long)snap_id,
4588                 (unsigned long long)*snap_features,
4589                 (unsigned long long)le64_to_cpu(features_buf.incompat));
4590
4591         return 0;
4592 }
4593
4594 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
4595 {
4596         return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
4597                                                 &rbd_dev->header.features);
4598 }
4599
4600 struct parent_image_info {
4601         u64             pool_id;
4602         const char      *pool_ns;
4603         const char      *image_id;
4604         u64             snap_id;
4605
4606         bool            has_overlap;
4607         u64             overlap;
4608 };
4609
4610 /*
4611  * The caller is responsible for @pii.
4612  */
4613 static int decode_parent_image_spec(void **p, void *end,
4614                                     struct parent_image_info *pii)
4615 {
4616         u8 struct_v;
4617         u32 struct_len;
4618         int ret;
4619
4620         ret = ceph_start_decoding(p, end, 1, "ParentImageSpec",
4621                                   &struct_v, &struct_len);
4622         if (ret)
4623                 return ret;
4624
4625         ceph_decode_64_safe(p, end, pii->pool_id, e_inval);
4626         pii->pool_ns = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
4627         if (IS_ERR(pii->pool_ns)) {
4628                 ret = PTR_ERR(pii->pool_ns);
4629                 pii->pool_ns = NULL;
4630                 return ret;
4631         }
4632         pii->image_id = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
4633         if (IS_ERR(pii->image_id)) {
4634                 ret = PTR_ERR(pii->image_id);
4635                 pii->image_id = NULL;
4636                 return ret;
4637         }
4638         ceph_decode_64_safe(p, end, pii->snap_id, e_inval);
4639         return 0;
4640
4641 e_inval:
4642         return -EINVAL;
4643 }
4644
4645 static int __get_parent_info(struct rbd_device *rbd_dev,
4646                              struct page *req_page,
4647                              struct page *reply_page,
4648                              struct parent_image_info *pii)
4649 {
4650         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4651         size_t reply_len = PAGE_SIZE;
4652         void *p, *end;
4653         int ret;
4654
4655         ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
4656                              "rbd", "parent_get", CEPH_OSD_FLAG_READ,
4657                              req_page, sizeof(u64), reply_page, &reply_len);
4658         if (ret)
4659                 return ret == -EOPNOTSUPP ? 1 : ret;
4660
4661         p = page_address(reply_page);
4662         end = p + reply_len;
4663         ret = decode_parent_image_spec(&p, end, pii);
4664         if (ret)
4665                 return ret;
4666
4667         ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
4668                              "rbd", "parent_overlap_get", CEPH_OSD_FLAG_READ,
4669                              req_page, sizeof(u64), reply_page, &reply_len);
4670         if (ret)
4671                 return ret;
4672
4673         p = page_address(reply_page);
4674         end = p + reply_len;
4675         ceph_decode_8_safe(&p, end, pii->has_overlap, e_inval);
4676         if (pii->has_overlap)
4677                 ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
4678
4679         return 0;
4680
4681 e_inval:
4682         return -EINVAL;
4683 }
4684
4685 /*
4686  * The caller is responsible for @pii.
4687  */
4688 static int __get_parent_info_legacy(struct rbd_device *rbd_dev,
4689                                     struct page *req_page,
4690                                     struct page *reply_page,
4691                                     struct parent_image_info *pii)
4692 {
4693         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4694         size_t reply_len = PAGE_SIZE;
4695         void *p, *end;
4696         int ret;
4697
4698         ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
4699                              "rbd", "get_parent", CEPH_OSD_FLAG_READ,
4700                              req_page, sizeof(u64), reply_page, &reply_len);
4701         if (ret)
4702                 return ret;
4703
4704         p = page_address(reply_page);
4705         end = p + reply_len;
4706         ceph_decode_64_safe(&p, end, pii->pool_id, e_inval);
4707         pii->image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4708         if (IS_ERR(pii->image_id)) {
4709                 ret = PTR_ERR(pii->image_id);
4710                 pii->image_id = NULL;
4711                 return ret;
4712         }
4713         ceph_decode_64_safe(&p, end, pii->snap_id, e_inval);
4714         pii->has_overlap = true;
4715         ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
4716
4717         return 0;
4718
4719 e_inval:
4720         return -EINVAL;
4721 }
4722
4723 static int get_parent_info(struct rbd_device *rbd_dev,
4724                            struct parent_image_info *pii)
4725 {
4726         struct page *req_page, *reply_page;
4727         void *p;
4728         int ret;
4729
4730         req_page = alloc_page(GFP_KERNEL);
4731         if (!req_page)
4732                 return -ENOMEM;
4733
4734         reply_page = alloc_page(GFP_KERNEL);
4735         if (!reply_page) {
4736                 __free_page(req_page);
4737                 return -ENOMEM;
4738         }
4739
4740         p = page_address(req_page);
4741         ceph_encode_64(&p, rbd_dev->spec->snap_id);
4742         ret = __get_parent_info(rbd_dev, req_page, reply_page, pii);
4743         if (ret > 0)
4744                 ret = __get_parent_info_legacy(rbd_dev, req_page, reply_page,
4745                                                pii);
4746
4747         __free_page(req_page);
4748         __free_page(reply_page);
4749         return ret;
4750 }
4751
4752 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
4753 {
4754         struct rbd_spec *parent_spec;
4755         struct parent_image_info pii = { 0 };
4756         int ret;
4757
4758         parent_spec = rbd_spec_alloc();
4759         if (!parent_spec)
4760                 return -ENOMEM;
4761
4762         ret = get_parent_info(rbd_dev, &pii);
4763         if (ret)
4764                 goto out_err;
4765
4766         dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n",
4767              __func__, pii.pool_id, pii.pool_ns, pii.image_id, pii.snap_id,
4768              pii.has_overlap, pii.overlap);
4769
4770         if (pii.pool_id == CEPH_NOPOOL || !pii.has_overlap) {
4771                 /*
4772                  * Either the parent never existed, or we have
4773                  * record of it but the image got flattened so it no
4774                  * longer has a parent.  When the parent of a
4775                  * layered image disappears we immediately set the
4776                  * overlap to 0.  The effect of this is that all new
4777                  * requests will be treated as if the image had no
4778                  * parent.
4779                  *
4780                  * If !pii.has_overlap, the parent image spec is not
4781                  * applicable.  It's there to avoid duplication in each
4782                  * snapshot record.
4783                  */
4784                 if (rbd_dev->parent_overlap) {
4785                         rbd_dev->parent_overlap = 0;
4786                         rbd_dev_parent_put(rbd_dev);
4787                         pr_info("%s: clone image has been flattened\n",
4788                                 rbd_dev->disk->disk_name);
4789                 }
4790
4791                 goto out;       /* No parent?  No problem. */
4792         }
4793
4794         /* The ceph file layout needs to fit pool id in 32 bits */
4795
4796         ret = -EIO;
4797         if (pii.pool_id > (u64)U32_MAX) {
4798                 rbd_warn(NULL, "parent pool id too large (%llu > %u)",
4799                         (unsigned long long)pii.pool_id, U32_MAX);
4800                 goto out_err;
4801         }
4802
4803         /*
4804          * The parent won't change (except when the clone is
4805          * flattened, already handled that).  So we only need to
4806          * record the parent spec we have not already done so.
4807          */
4808         if (!rbd_dev->parent_spec) {
4809                 parent_spec->pool_id = pii.pool_id;
4810                 if (pii.pool_ns && *pii.pool_ns) {
4811                         parent_spec->pool_ns = pii.pool_ns;
4812                         pii.pool_ns = NULL;
4813                 }
4814                 parent_spec->image_id = pii.image_id;
4815                 pii.image_id = NULL;
4816                 parent_spec->snap_id = pii.snap_id;
4817
4818                 rbd_dev->parent_spec = parent_spec;
4819                 parent_spec = NULL;     /* rbd_dev now owns this */
4820         }
4821
4822         /*
4823          * We always update the parent overlap.  If it's zero we issue
4824          * a warning, as we will proceed as if there was no parent.
4825          */
4826         if (!pii.overlap) {
4827                 if (parent_spec) {
4828                         /* refresh, careful to warn just once */
4829                         if (rbd_dev->parent_overlap)
4830                                 rbd_warn(rbd_dev,
4831                                     "clone now standalone (overlap became 0)");
4832                 } else {
4833                         /* initial probe */
4834                         rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
4835                 }
4836         }
4837         rbd_dev->parent_overlap = pii.overlap;
4838
4839 out:
4840         ret = 0;
4841 out_err:
4842         kfree(pii.pool_ns);
4843         kfree(pii.image_id);
4844         rbd_spec_put(parent_spec);
4845         return ret;
4846 }
4847
4848 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
4849 {
4850         struct {
4851                 __le64 stripe_unit;
4852                 __le64 stripe_count;
4853         } __attribute__ ((packed)) striping_info_buf = { 0 };
4854         size_t size = sizeof (striping_info_buf);
4855         void *p;
4856         int ret;
4857
4858         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4859                                 &rbd_dev->header_oloc, "get_stripe_unit_count",
4860                                 NULL, 0, &striping_info_buf, size);
4861         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4862         if (ret < 0)
4863                 return ret;
4864         if (ret < size)
4865                 return -ERANGE;
4866
4867         p = &striping_info_buf;
4868         rbd_dev->header.stripe_unit = ceph_decode_64(&p);
4869         rbd_dev->header.stripe_count = ceph_decode_64(&p);
4870         return 0;
4871 }
4872
4873 static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev)
4874 {
4875         __le64 data_pool_id;
4876         int ret;
4877
4878         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4879                                   &rbd_dev->header_oloc, "get_data_pool",
4880                                   NULL, 0, &data_pool_id, sizeof(data_pool_id));
4881         if (ret < 0)
4882                 return ret;
4883         if (ret < sizeof(data_pool_id))
4884                 return -EBADMSG;
4885
4886         rbd_dev->header.data_pool_id = le64_to_cpu(data_pool_id);
4887         WARN_ON(rbd_dev->header.data_pool_id == CEPH_NOPOOL);
4888         return 0;
4889 }
4890
4891 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4892 {
4893         CEPH_DEFINE_OID_ONSTACK(oid);
4894         size_t image_id_size;
4895         char *image_id;
4896         void *p;
4897         void *end;
4898         size_t size;
4899         void *reply_buf = NULL;
4900         size_t len = 0;
4901         char *image_name = NULL;
4902         int ret;
4903
4904         rbd_assert(!rbd_dev->spec->image_name);
4905
4906         len = strlen(rbd_dev->spec->image_id);
4907         image_id_size = sizeof (__le32) + len;
4908         image_id = kmalloc(image_id_size, GFP_KERNEL);
4909         if (!image_id)
4910                 return NULL;
4911
4912         p = image_id;
4913         end = image_id + image_id_size;
4914         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4915
4916         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4917         reply_buf = kmalloc(size, GFP_KERNEL);
4918         if (!reply_buf)
4919                 goto out;
4920
4921         ceph_oid_printf(&oid, "%s", RBD_DIRECTORY);
4922         ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
4923                                   "dir_get_name", image_id, image_id_size,
4924                                   reply_buf, size);
4925         if (ret < 0)
4926                 goto out;
4927         p = reply_buf;
4928         end = reply_buf + ret;
4929
4930         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4931         if (IS_ERR(image_name))
4932                 image_name = NULL;
4933         else
4934                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4935 out:
4936         kfree(reply_buf);
4937         kfree(image_id);
4938
4939         return image_name;
4940 }
4941
4942 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4943 {
4944         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4945         const char *snap_name;
4946         u32 which = 0;
4947
4948         /* Skip over names until we find the one we are looking for */
4949
4950         snap_name = rbd_dev->header.snap_names;
4951         while (which < snapc->num_snaps) {
4952                 if (!strcmp(name, snap_name))
4953                         return snapc->snaps[which];
4954                 snap_name += strlen(snap_name) + 1;
4955                 which++;
4956         }
4957         return CEPH_NOSNAP;
4958 }
4959
4960 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4961 {
4962         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4963         u32 which;
4964         bool found = false;
4965         u64 snap_id;
4966
4967         for (which = 0; !found && which < snapc->num_snaps; which++) {
4968                 const char *snap_name;
4969
4970                 snap_id = snapc->snaps[which];
4971                 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4972                 if (IS_ERR(snap_name)) {
4973                         /* ignore no-longer existing snapshots */
4974                         if (PTR_ERR(snap_name) == -ENOENT)
4975                                 continue;
4976                         else
4977                                 break;
4978                 }
4979                 found = !strcmp(name, snap_name);
4980                 kfree(snap_name);
4981         }
4982         return found ? snap_id : CEPH_NOSNAP;
4983 }
4984
4985 /*
4986  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4987  * no snapshot by that name is found, or if an error occurs.
4988  */
4989 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4990 {
4991         if (rbd_dev->image_format == 1)
4992                 return rbd_v1_snap_id_by_name(rbd_dev, name);
4993
4994         return rbd_v2_snap_id_by_name(rbd_dev, name);
4995 }
4996
4997 /*
4998  * An image being mapped will have everything but the snap id.
4999  */
5000 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
5001 {
5002         struct rbd_spec *spec = rbd_dev->spec;
5003
5004         rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
5005         rbd_assert(spec->image_id && spec->image_name);
5006         rbd_assert(spec->snap_name);
5007
5008         if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
5009                 u64 snap_id;
5010
5011                 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
5012                 if (snap_id == CEPH_NOSNAP)
5013                         return -ENOENT;
5014
5015                 spec->snap_id = snap_id;
5016         } else {
5017                 spec->snap_id = CEPH_NOSNAP;
5018         }
5019
5020         return 0;
5021 }
5022
5023 /*
5024  * A parent image will have all ids but none of the names.
5025  *
5026  * All names in an rbd spec are dynamically allocated.  It's OK if we
5027  * can't figure out the name for an image id.
5028  */
5029 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
5030 {
5031         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5032         struct rbd_spec *spec = rbd_dev->spec;
5033         const char *pool_name;
5034         const char *image_name;
5035         const char *snap_name;
5036         int ret;
5037
5038         rbd_assert(spec->pool_id != CEPH_NOPOOL);
5039         rbd_assert(spec->image_id);
5040         rbd_assert(spec->snap_id != CEPH_NOSNAP);
5041
5042         /* Get the pool name; we have to make our own copy of this */
5043
5044         pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
5045         if (!pool_name) {
5046                 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
5047                 return -EIO;
5048         }
5049         pool_name = kstrdup(pool_name, GFP_KERNEL);
5050         if (!pool_name)
5051                 return -ENOMEM;
5052
5053         /* Fetch the image name; tolerate failure here */
5054
5055         image_name = rbd_dev_image_name(rbd_dev);
5056         if (!image_name)
5057                 rbd_warn(rbd_dev, "unable to get image name");
5058
5059         /* Fetch the snapshot name */
5060
5061         snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
5062         if (IS_ERR(snap_name)) {
5063                 ret = PTR_ERR(snap_name);
5064                 goto out_err;
5065         }
5066
5067         spec->pool_name = pool_name;
5068         spec->image_name = image_name;
5069         spec->snap_name = snap_name;
5070
5071         return 0;
5072
5073 out_err:
5074         kfree(image_name);
5075         kfree(pool_name);
5076         return ret;
5077 }
5078
5079 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
5080 {
5081         size_t size;
5082         int ret;
5083         void *reply_buf;
5084         void *p;
5085         void *end;
5086         u64 seq;
5087         u32 snap_count;
5088         struct ceph_snap_context *snapc;
5089         u32 i;
5090
5091         /*
5092          * We'll need room for the seq value (maximum snapshot id),
5093          * snapshot count, and array of that many snapshot ids.
5094          * For now we have a fixed upper limit on the number we're
5095          * prepared to receive.
5096          */
5097         size = sizeof (__le64) + sizeof (__le32) +
5098                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
5099         reply_buf = kzalloc(size, GFP_KERNEL);
5100         if (!reply_buf)
5101                 return -ENOMEM;
5102
5103         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5104                                   &rbd_dev->header_oloc, "get_snapcontext",
5105                                   NULL, 0, reply_buf, size);
5106         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5107         if (ret < 0)
5108                 goto out;
5109
5110         p = reply_buf;
5111         end = reply_buf + ret;
5112         ret = -ERANGE;
5113         ceph_decode_64_safe(&p, end, seq, out);
5114         ceph_decode_32_safe(&p, end, snap_count, out);
5115
5116         /*
5117          * Make sure the reported number of snapshot ids wouldn't go
5118          * beyond the end of our buffer.  But before checking that,
5119          * make sure the computed size of the snapshot context we
5120          * allocate is representable in a size_t.
5121          */
5122         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
5123                                  / sizeof (u64)) {
5124                 ret = -EINVAL;
5125                 goto out;
5126         }
5127         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
5128                 goto out;
5129         ret = 0;
5130
5131         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
5132         if (!snapc) {
5133                 ret = -ENOMEM;
5134                 goto out;
5135         }
5136         snapc->seq = seq;
5137         for (i = 0; i < snap_count; i++)
5138                 snapc->snaps[i] = ceph_decode_64(&p);
5139
5140         ceph_put_snap_context(rbd_dev->header.snapc);
5141         rbd_dev->header.snapc = snapc;
5142
5143         dout("  snap context seq = %llu, snap_count = %u\n",
5144                 (unsigned long long)seq, (unsigned int)snap_count);
5145 out:
5146         kfree(reply_buf);
5147
5148         return ret;
5149 }
5150
5151 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
5152                                         u64 snap_id)
5153 {
5154         size_t size;
5155         void *reply_buf;
5156         __le64 snapid;
5157         int ret;
5158         void *p;
5159         void *end;
5160         char *snap_name;
5161
5162         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
5163         reply_buf = kmalloc(size, GFP_KERNEL);
5164         if (!reply_buf)
5165                 return ERR_PTR(-ENOMEM);
5166
5167         snapid = cpu_to_le64(snap_id);
5168         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5169                                   &rbd_dev->header_oloc, "get_snapshot_name",
5170                                   &snapid, sizeof(snapid), reply_buf, size);
5171         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5172         if (ret < 0) {
5173                 snap_name = ERR_PTR(ret);
5174                 goto out;
5175         }
5176
5177         p = reply_buf;
5178         end = reply_buf + ret;
5179         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5180         if (IS_ERR(snap_name))
5181                 goto out;
5182
5183         dout("  snap_id 0x%016llx snap_name = %s\n",
5184                 (unsigned long long)snap_id, snap_name);
5185 out:
5186         kfree(reply_buf);
5187
5188         return snap_name;
5189 }
5190
5191 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
5192 {
5193         bool first_time = rbd_dev->header.object_prefix == NULL;
5194         int ret;
5195
5196         ret = rbd_dev_v2_image_size(rbd_dev);
5197         if (ret)
5198                 return ret;
5199
5200         if (first_time) {
5201                 ret = rbd_dev_v2_header_onetime(rbd_dev);
5202                 if (ret)
5203                         return ret;
5204         }
5205
5206         ret = rbd_dev_v2_snap_context(rbd_dev);
5207         if (ret && first_time) {
5208                 kfree(rbd_dev->header.object_prefix);
5209                 rbd_dev->header.object_prefix = NULL;
5210         }
5211
5212         return ret;
5213 }
5214
5215 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
5216 {
5217         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5218
5219         if (rbd_dev->image_format == 1)
5220                 return rbd_dev_v1_header_info(rbd_dev);
5221
5222         return rbd_dev_v2_header_info(rbd_dev);
5223 }
5224
5225 /*
5226  * Skips over white space at *buf, and updates *buf to point to the
5227  * first found non-space character (if any). Returns the length of
5228  * the token (string of non-white space characters) found.  Note
5229  * that *buf must be terminated with '\0'.
5230  */
5231 static inline size_t next_token(const char **buf)
5232 {
5233         /*
5234         * These are the characters that produce nonzero for
5235         * isspace() in the "C" and "POSIX" locales.
5236         */
5237         const char *spaces = " \f\n\r\t\v";
5238
5239         *buf += strspn(*buf, spaces);   /* Find start of token */
5240
5241         return strcspn(*buf, spaces);   /* Return token length */
5242 }
5243
5244 /*
5245  * Finds the next token in *buf, dynamically allocates a buffer big
5246  * enough to hold a copy of it, and copies the token into the new
5247  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
5248  * that a duplicate buffer is created even for a zero-length token.
5249  *
5250  * Returns a pointer to the newly-allocated duplicate, or a null
5251  * pointer if memory for the duplicate was not available.  If
5252  * the lenp argument is a non-null pointer, the length of the token
5253  * (not including the '\0') is returned in *lenp.
5254  *
5255  * If successful, the *buf pointer will be updated to point beyond
5256  * the end of the found token.
5257  *
5258  * Note: uses GFP_KERNEL for allocation.
5259  */
5260 static inline char *dup_token(const char **buf, size_t *lenp)
5261 {
5262         char *dup;
5263         size_t len;
5264
5265         len = next_token(buf);
5266         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
5267         if (!dup)
5268                 return NULL;
5269         *(dup + len) = '\0';
5270         *buf += len;
5271
5272         if (lenp)
5273                 *lenp = len;
5274
5275         return dup;
5276 }
5277
5278 /*
5279  * Parse the options provided for an "rbd add" (i.e., rbd image
5280  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
5281  * and the data written is passed here via a NUL-terminated buffer.
5282  * Returns 0 if successful or an error code otherwise.
5283  *
5284  * The information extracted from these options is recorded in
5285  * the other parameters which return dynamically-allocated
5286  * structures:
5287  *  ceph_opts
5288  *      The address of a pointer that will refer to a ceph options
5289  *      structure.  Caller must release the returned pointer using
5290  *      ceph_destroy_options() when it is no longer needed.
5291  *  rbd_opts
5292  *      Address of an rbd options pointer.  Fully initialized by
5293  *      this function; caller must release with kfree().
5294  *  spec
5295  *      Address of an rbd image specification pointer.  Fully
5296  *      initialized by this function based on parsed options.
5297  *      Caller must release with rbd_spec_put().
5298  *
5299  * The options passed take this form:
5300  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
5301  * where:
5302  *  <mon_addrs>
5303  *      A comma-separated list of one or more monitor addresses.
5304  *      A monitor address is an ip address, optionally followed
5305  *      by a port number (separated by a colon).
5306  *        I.e.:  ip1[:port1][,ip2[:port2]...]
5307  *  <options>
5308  *      A comma-separated list of ceph and/or rbd options.
5309  *  <pool_name>
5310  *      The name of the rados pool containing the rbd image.
5311  *  <image_name>
5312  *      The name of the image in that pool to map.
5313  *  <snap_id>
5314  *      An optional snapshot id.  If provided, the mapping will
5315  *      present data from the image at the time that snapshot was
5316  *      created.  The image head is used if no snapshot id is
5317  *      provided.  Snapshot mappings are always read-only.
5318  */
5319 static int rbd_add_parse_args(const char *buf,
5320                                 struct ceph_options **ceph_opts,
5321                                 struct rbd_options **opts,
5322                                 struct rbd_spec **rbd_spec)
5323 {
5324         size_t len;
5325         char *options;
5326         const char *mon_addrs;
5327         char *snap_name;
5328         size_t mon_addrs_size;
5329         struct parse_rbd_opts_ctx pctx = { 0 };
5330         struct ceph_options *copts;
5331         int ret;
5332
5333         /* The first four tokens are required */
5334
5335         len = next_token(&buf);
5336         if (!len) {
5337                 rbd_warn(NULL, "no monitor address(es) provided");
5338                 return -EINVAL;
5339         }
5340         mon_addrs = buf;
5341         mon_addrs_size = len + 1;
5342         buf += len;
5343
5344         ret = -EINVAL;
5345         options = dup_token(&buf, NULL);
5346         if (!options)
5347                 return -ENOMEM;
5348         if (!*options) {
5349                 rbd_warn(NULL, "no options provided");
5350                 goto out_err;
5351         }
5352
5353         pctx.spec = rbd_spec_alloc();
5354         if (!pctx.spec)
5355                 goto out_mem;
5356
5357         pctx.spec->pool_name = dup_token(&buf, NULL);
5358         if (!pctx.spec->pool_name)
5359                 goto out_mem;
5360         if (!*pctx.spec->pool_name) {
5361                 rbd_warn(NULL, "no pool name provided");
5362                 goto out_err;
5363         }
5364
5365         pctx.spec->image_name = dup_token(&buf, NULL);
5366         if (!pctx.spec->image_name)
5367                 goto out_mem;
5368         if (!*pctx.spec->image_name) {
5369                 rbd_warn(NULL, "no image name provided");
5370                 goto out_err;
5371         }
5372
5373         /*
5374          * Snapshot name is optional; default is to use "-"
5375          * (indicating the head/no snapshot).
5376          */
5377         len = next_token(&buf);
5378         if (!len) {
5379                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
5380                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
5381         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
5382                 ret = -ENAMETOOLONG;
5383                 goto out_err;
5384         }
5385         snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
5386         if (!snap_name)
5387                 goto out_mem;
5388         *(snap_name + len) = '\0';
5389         pctx.spec->snap_name = snap_name;
5390
5391         /* Initialize all rbd options to the defaults */
5392
5393         pctx.opts = kzalloc(sizeof(*pctx.opts), GFP_KERNEL);
5394         if (!pctx.opts)
5395                 goto out_mem;
5396
5397         pctx.opts->read_only = RBD_READ_ONLY_DEFAULT;
5398         pctx.opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
5399         pctx.opts->lock_timeout = RBD_LOCK_TIMEOUT_DEFAULT;
5400         pctx.opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT;
5401         pctx.opts->exclusive = RBD_EXCLUSIVE_DEFAULT;
5402         pctx.opts->trim = RBD_TRIM_DEFAULT;
5403
5404         copts = ceph_parse_options(options, mon_addrs,
5405                                    mon_addrs + mon_addrs_size - 1,
5406                                    parse_rbd_opts_token, &pctx);
5407         if (IS_ERR(copts)) {
5408                 ret = PTR_ERR(copts);
5409                 goto out_err;
5410         }
5411         kfree(options);
5412
5413         *ceph_opts = copts;
5414         *opts = pctx.opts;
5415         *rbd_spec = pctx.spec;
5416
5417         return 0;
5418 out_mem:
5419         ret = -ENOMEM;
5420 out_err:
5421         kfree(pctx.opts);
5422         rbd_spec_put(pctx.spec);
5423         kfree(options);
5424
5425         return ret;
5426 }
5427
5428 static void rbd_dev_image_unlock(struct rbd_device *rbd_dev)
5429 {
5430         down_write(&rbd_dev->lock_rwsem);
5431         if (__rbd_is_lock_owner(rbd_dev))
5432                 rbd_unlock(rbd_dev);
5433         up_write(&rbd_dev->lock_rwsem);
5434 }
5435
5436 static int rbd_add_acquire_lock(struct rbd_device *rbd_dev)
5437 {
5438         int ret;
5439
5440         if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) {
5441                 rbd_warn(rbd_dev, "exclusive-lock feature is not enabled");
5442                 return -EINVAL;
5443         }
5444
5445         /* FIXME: "rbd map --exclusive" should be in interruptible */
5446         down_read(&rbd_dev->lock_rwsem);
5447         ret = rbd_wait_state_locked(rbd_dev, true);
5448         up_read(&rbd_dev->lock_rwsem);
5449         if (ret) {
5450                 rbd_warn(rbd_dev, "failed to acquire exclusive lock");
5451                 return -EROFS;
5452         }
5453
5454         return 0;
5455 }
5456
5457 /*
5458  * An rbd format 2 image has a unique identifier, distinct from the
5459  * name given to it by the user.  Internally, that identifier is
5460  * what's used to specify the names of objects related to the image.
5461  *
5462  * A special "rbd id" object is used to map an rbd image name to its
5463  * id.  If that object doesn't exist, then there is no v2 rbd image
5464  * with the supplied name.
5465  *
5466  * This function will record the given rbd_dev's image_id field if
5467  * it can be determined, and in that case will return 0.  If any
5468  * errors occur a negative errno will be returned and the rbd_dev's
5469  * image_id field will be unchanged (and should be NULL).
5470  */
5471 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
5472 {
5473         int ret;
5474         size_t size;
5475         CEPH_DEFINE_OID_ONSTACK(oid);
5476         void *response;
5477         char *image_id;
5478
5479         /*
5480          * When probing a parent image, the image id is already
5481          * known (and the image name likely is not).  There's no
5482          * need to fetch the image id again in this case.  We
5483          * do still need to set the image format though.
5484          */
5485         if (rbd_dev->spec->image_id) {
5486                 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
5487
5488                 return 0;
5489         }
5490
5491         /*
5492          * First, see if the format 2 image id file exists, and if
5493          * so, get the image's persistent id from it.
5494          */
5495         ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX,
5496                                rbd_dev->spec->image_name);
5497         if (ret)
5498                 return ret;
5499
5500         dout("rbd id object name is %s\n", oid.name);
5501
5502         /* Response will be an encoded string, which includes a length */
5503
5504         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
5505         response = kzalloc(size, GFP_NOIO);
5506         if (!response) {
5507                 ret = -ENOMEM;
5508                 goto out;
5509         }
5510
5511         /* If it doesn't exist we'll assume it's a format 1 image */
5512
5513         ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
5514                                   "get_id", NULL, 0,
5515                                   response, RBD_IMAGE_ID_LEN_MAX);
5516         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5517         if (ret == -ENOENT) {
5518                 image_id = kstrdup("", GFP_KERNEL);
5519                 ret = image_id ? 0 : -ENOMEM;
5520                 if (!ret)
5521                         rbd_dev->image_format = 1;
5522         } else if (ret >= 0) {
5523                 void *p = response;
5524
5525                 image_id = ceph_extract_encoded_string(&p, p + ret,
5526                                                 NULL, GFP_NOIO);
5527                 ret = PTR_ERR_OR_ZERO(image_id);
5528                 if (!ret)
5529                         rbd_dev->image_format = 2;
5530         }
5531
5532         if (!ret) {
5533                 rbd_dev->spec->image_id = image_id;
5534                 dout("image_id is %s\n", image_id);
5535         }
5536 out:
5537         kfree(response);
5538         ceph_oid_destroy(&oid);
5539         return ret;
5540 }
5541
5542 /*
5543  * Undo whatever state changes are made by v1 or v2 header info
5544  * call.
5545  */
5546 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
5547 {
5548         struct rbd_image_header *header;
5549
5550         rbd_dev_parent_put(rbd_dev);
5551
5552         /* Free dynamic fields from the header, then zero it out */
5553
5554         header = &rbd_dev->header;
5555         ceph_put_snap_context(header->snapc);
5556         kfree(header->snap_sizes);
5557         kfree(header->snap_names);
5558         kfree(header->object_prefix);
5559         memset(header, 0, sizeof (*header));
5560 }
5561
5562 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
5563 {
5564         int ret;
5565
5566         ret = rbd_dev_v2_object_prefix(rbd_dev);
5567         if (ret)
5568                 goto out_err;
5569
5570         /*
5571          * Get the and check features for the image.  Currently the
5572          * features are assumed to never change.
5573          */
5574         ret = rbd_dev_v2_features(rbd_dev);
5575         if (ret)
5576                 goto out_err;
5577
5578         /* If the image supports fancy striping, get its parameters */
5579
5580         if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
5581                 ret = rbd_dev_v2_striping_info(rbd_dev);
5582                 if (ret < 0)
5583                         goto out_err;
5584         }
5585
5586         if (rbd_dev->header.features & RBD_FEATURE_DATA_POOL) {
5587                 ret = rbd_dev_v2_data_pool(rbd_dev);
5588                 if (ret)
5589                         goto out_err;
5590         }
5591
5592         rbd_init_layout(rbd_dev);
5593         return 0;
5594
5595 out_err:
5596         rbd_dev->header.features = 0;
5597         kfree(rbd_dev->header.object_prefix);
5598         rbd_dev->header.object_prefix = NULL;
5599         return ret;
5600 }
5601
5602 /*
5603  * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
5604  * rbd_dev_image_probe() recursion depth, which means it's also the
5605  * length of the already discovered part of the parent chain.
5606  */
5607 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
5608 {
5609         struct rbd_device *parent = NULL;
5610         int ret;
5611
5612         if (!rbd_dev->parent_spec)
5613                 return 0;
5614
5615         if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
5616                 pr_info("parent chain is too long (%d)\n", depth);
5617                 ret = -EINVAL;
5618                 goto out_err;
5619         }
5620
5621         parent = __rbd_dev_create(rbd_dev->rbd_client, rbd_dev->parent_spec);
5622         if (!parent) {
5623                 ret = -ENOMEM;
5624                 goto out_err;
5625         }
5626
5627         /*
5628          * Images related by parent/child relationships always share
5629          * rbd_client and spec/parent_spec, so bump their refcounts.
5630          */
5631         __rbd_get_client(rbd_dev->rbd_client);
5632         rbd_spec_get(rbd_dev->parent_spec);
5633
5634         ret = rbd_dev_image_probe(parent, depth);
5635         if (ret < 0)
5636                 goto out_err;
5637
5638         rbd_dev->parent = parent;
5639         atomic_set(&rbd_dev->parent_ref, 1);
5640         return 0;
5641
5642 out_err:
5643         rbd_dev_unparent(rbd_dev);
5644         rbd_dev_destroy(parent);
5645         return ret;
5646 }
5647
5648 static void rbd_dev_device_release(struct rbd_device *rbd_dev)
5649 {
5650         clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5651         rbd_dev_mapping_clear(rbd_dev);
5652         rbd_free_disk(rbd_dev);
5653         if (!single_major)
5654                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5655 }
5656
5657 /*
5658  * rbd_dev->header_rwsem must be locked for write and will be unlocked
5659  * upon return.
5660  */
5661 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
5662 {
5663         int ret;
5664
5665         /* Record our major and minor device numbers. */
5666
5667         if (!single_major) {
5668                 ret = register_blkdev(0, rbd_dev->name);
5669                 if (ret < 0)
5670                         goto err_out_unlock;
5671
5672                 rbd_dev->major = ret;
5673                 rbd_dev->minor = 0;
5674         } else {
5675                 rbd_dev->major = rbd_major;
5676                 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
5677         }
5678
5679         /* Set up the blkdev mapping. */
5680
5681         ret = rbd_init_disk(rbd_dev);
5682         if (ret)
5683                 goto err_out_blkdev;
5684
5685         ret = rbd_dev_mapping_set(rbd_dev);
5686         if (ret)
5687                 goto err_out_disk;
5688
5689         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
5690         set_disk_ro(rbd_dev->disk, rbd_dev->opts->read_only);
5691
5692         ret = dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
5693         if (ret)
5694                 goto err_out_mapping;
5695
5696         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5697         up_write(&rbd_dev->header_rwsem);
5698         return 0;
5699
5700 err_out_mapping:
5701         rbd_dev_mapping_clear(rbd_dev);
5702 err_out_disk:
5703         rbd_free_disk(rbd_dev);
5704 err_out_blkdev:
5705         if (!single_major)
5706                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5707 err_out_unlock:
5708         up_write(&rbd_dev->header_rwsem);
5709         return ret;
5710 }
5711
5712 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
5713 {
5714         struct rbd_spec *spec = rbd_dev->spec;
5715         int ret;
5716
5717         /* Record the header object name for this rbd image. */
5718
5719         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5720         if (rbd_dev->image_format == 1)
5721                 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
5722                                        spec->image_name, RBD_SUFFIX);
5723         else
5724                 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
5725                                        RBD_HEADER_PREFIX, spec->image_id);
5726
5727         return ret;
5728 }
5729
5730 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
5731 {
5732         if (rbd_dev->opts)
5733                 rbd_unregister_watch(rbd_dev);
5734
5735         rbd_dev_unprobe(rbd_dev);
5736         rbd_dev->image_format = 0;
5737         kfree(rbd_dev->spec->image_id);
5738         rbd_dev->spec->image_id = NULL;
5739 }
5740
5741 /*
5742  * Probe for the existence of the header object for the given rbd
5743  * device.  If this image is the one being mapped (i.e., not a
5744  * parent), initiate a watch on its header object before using that
5745  * object to get detailed information about the rbd image.
5746  *
5747  * On success, returns with header_rwsem held for write if called
5748  * with @depth == 0.
5749  */
5750 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
5751 {
5752         int ret;
5753
5754         /*
5755          * Get the id from the image id object.  Unless there's an
5756          * error, rbd_dev->spec->image_id will be filled in with
5757          * a dynamically-allocated string, and rbd_dev->image_format
5758          * will be set to either 1 or 2.
5759          */
5760         ret = rbd_dev_image_id(rbd_dev);
5761         if (ret)
5762                 return ret;
5763
5764         ret = rbd_dev_header_name(rbd_dev);
5765         if (ret)
5766                 goto err_out_format;
5767
5768         if (!depth) {
5769                 ret = rbd_register_watch(rbd_dev);
5770                 if (ret) {
5771                         if (ret == -ENOENT)
5772                                 pr_info("image %s/%s%s%s does not exist\n",
5773                                         rbd_dev->spec->pool_name,
5774                                         rbd_dev->spec->pool_ns ?: "",
5775                                         rbd_dev->spec->pool_ns ? "/" : "",
5776                                         rbd_dev->spec->image_name);
5777                         goto err_out_format;
5778                 }
5779         }
5780
5781         if (!depth)
5782                 down_write(&rbd_dev->header_rwsem);
5783
5784         ret = rbd_dev_header_info(rbd_dev);
5785         if (ret)
5786                 goto err_out_probe;
5787
5788         /*
5789          * If this image is the one being mapped, we have pool name and
5790          * id, image name and id, and snap name - need to fill snap id.
5791          * Otherwise this is a parent image, identified by pool, image
5792          * and snap ids - need to fill in names for those ids.
5793          */
5794         if (!depth)
5795                 ret = rbd_spec_fill_snap_id(rbd_dev);
5796         else
5797                 ret = rbd_spec_fill_names(rbd_dev);
5798         if (ret) {
5799                 if (ret == -ENOENT)
5800                         pr_info("snap %s/%s%s%s@%s does not exist\n",
5801                                 rbd_dev->spec->pool_name,
5802                                 rbd_dev->spec->pool_ns ?: "",
5803                                 rbd_dev->spec->pool_ns ? "/" : "",
5804                                 rbd_dev->spec->image_name,
5805                                 rbd_dev->spec->snap_name);
5806                 goto err_out_probe;
5807         }
5808
5809         if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
5810                 ret = rbd_dev_v2_parent_info(rbd_dev);
5811                 if (ret)
5812                         goto err_out_probe;
5813
5814                 /*
5815                  * Need to warn users if this image is the one being
5816                  * mapped and has a parent.
5817                  */
5818                 if (!depth && rbd_dev->parent_spec)
5819                         rbd_warn(rbd_dev,
5820                                  "WARNING: kernel layering is EXPERIMENTAL!");
5821         }
5822
5823         ret = rbd_dev_probe_parent(rbd_dev, depth);
5824         if (ret)
5825                 goto err_out_probe;
5826
5827         dout("discovered format %u image, header name is %s\n",
5828                 rbd_dev->image_format, rbd_dev->header_oid.name);
5829         return 0;
5830
5831 err_out_probe:
5832         if (!depth)
5833                 up_write(&rbd_dev->header_rwsem);
5834         if (!depth)
5835                 rbd_unregister_watch(rbd_dev);
5836         rbd_dev_unprobe(rbd_dev);
5837 err_out_format:
5838         rbd_dev->image_format = 0;
5839         kfree(rbd_dev->spec->image_id);
5840         rbd_dev->spec->image_id = NULL;
5841         return ret;
5842 }
5843
5844 static ssize_t do_rbd_add(struct bus_type *bus,
5845                           const char *buf,
5846                           size_t count)
5847 {
5848         struct rbd_device *rbd_dev = NULL;
5849         struct ceph_options *ceph_opts = NULL;
5850         struct rbd_options *rbd_opts = NULL;
5851         struct rbd_spec *spec = NULL;
5852         struct rbd_client *rbdc;
5853         int rc;
5854
5855         if (!capable(CAP_SYS_ADMIN))
5856                 return -EPERM;
5857
5858         if (!try_module_get(THIS_MODULE))
5859                 return -ENODEV;
5860
5861         /* parse add command */
5862         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5863         if (rc < 0)
5864                 goto out;
5865
5866         rbdc = rbd_get_client(ceph_opts);
5867         if (IS_ERR(rbdc)) {
5868                 rc = PTR_ERR(rbdc);
5869                 goto err_out_args;
5870         }
5871
5872         /* pick the pool */
5873         rc = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, spec->pool_name);
5874         if (rc < 0) {
5875                 if (rc == -ENOENT)
5876                         pr_info("pool %s does not exist\n", spec->pool_name);
5877                 goto err_out_client;
5878         }
5879         spec->pool_id = (u64)rc;
5880
5881         rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
5882         if (!rbd_dev) {
5883                 rc = -ENOMEM;
5884                 goto err_out_client;
5885         }
5886         rbdc = NULL;            /* rbd_dev now owns this */
5887         spec = NULL;            /* rbd_dev now owns this */
5888         rbd_opts = NULL;        /* rbd_dev now owns this */
5889
5890         rbd_dev->config_info = kstrdup(buf, GFP_KERNEL);
5891         if (!rbd_dev->config_info) {
5892                 rc = -ENOMEM;
5893                 goto err_out_rbd_dev;
5894         }
5895
5896         rc = rbd_dev_image_probe(rbd_dev, 0);
5897         if (rc < 0)
5898                 goto err_out_rbd_dev;
5899
5900         /* If we are mapping a snapshot it must be marked read-only */
5901         if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5902                 rbd_dev->opts->read_only = true;
5903
5904         rc = rbd_dev_device_setup(rbd_dev);
5905         if (rc)
5906                 goto err_out_image_probe;
5907
5908         if (rbd_dev->opts->exclusive) {
5909                 rc = rbd_add_acquire_lock(rbd_dev);
5910                 if (rc)
5911                         goto err_out_device_setup;
5912         }
5913
5914         /* Everything's ready.  Announce the disk to the world. */
5915
5916         rc = device_add(&rbd_dev->dev);
5917         if (rc)
5918                 goto err_out_image_lock;
5919
5920         add_disk(rbd_dev->disk);
5921         /* see rbd_init_disk() */
5922         blk_put_queue(rbd_dev->disk->queue);
5923
5924         spin_lock(&rbd_dev_list_lock);
5925         list_add_tail(&rbd_dev->node, &rbd_dev_list);
5926         spin_unlock(&rbd_dev_list_lock);
5927
5928         pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name,
5929                 (unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT,
5930                 rbd_dev->header.features);
5931         rc = count;
5932 out:
5933         module_put(THIS_MODULE);
5934         return rc;
5935
5936 err_out_image_lock:
5937         rbd_dev_image_unlock(rbd_dev);
5938 err_out_device_setup:
5939         rbd_dev_device_release(rbd_dev);
5940 err_out_image_probe:
5941         rbd_dev_image_release(rbd_dev);
5942 err_out_rbd_dev:
5943         rbd_dev_destroy(rbd_dev);
5944 err_out_client:
5945         rbd_put_client(rbdc);
5946 err_out_args:
5947         rbd_spec_put(spec);
5948         kfree(rbd_opts);
5949         goto out;
5950 }
5951
5952 static ssize_t rbd_add(struct bus_type *bus,
5953                        const char *buf,
5954                        size_t count)
5955 {
5956         if (single_major)
5957                 return -EINVAL;
5958
5959         return do_rbd_add(bus, buf, count);
5960 }
5961
5962 static ssize_t rbd_add_single_major(struct bus_type *bus,
5963                                     const char *buf,
5964                                     size_t count)
5965 {
5966         return do_rbd_add(bus, buf, count);
5967 }
5968
5969 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5970 {
5971         while (rbd_dev->parent) {
5972                 struct rbd_device *first = rbd_dev;
5973                 struct rbd_device *second = first->parent;
5974                 struct rbd_device *third;
5975
5976                 /*
5977                  * Follow to the parent with no grandparent and
5978                  * remove it.
5979                  */
5980                 while (second && (third = second->parent)) {
5981                         first = second;
5982                         second = third;
5983                 }
5984                 rbd_assert(second);
5985                 rbd_dev_image_release(second);
5986                 rbd_dev_destroy(second);
5987                 first->parent = NULL;
5988                 first->parent_overlap = 0;
5989
5990                 rbd_assert(first->parent_spec);
5991                 rbd_spec_put(first->parent_spec);
5992                 first->parent_spec = NULL;
5993         }
5994 }
5995
5996 static ssize_t do_rbd_remove(struct bus_type *bus,
5997                              const char *buf,
5998                              size_t count)
5999 {
6000         struct rbd_device *rbd_dev = NULL;
6001         struct list_head *tmp;
6002         int dev_id;
6003         char opt_buf[6];
6004         bool force = false;
6005         int ret;
6006
6007         if (!capable(CAP_SYS_ADMIN))
6008                 return -EPERM;
6009
6010         dev_id = -1;
6011         opt_buf[0] = '\0';
6012         sscanf(buf, "%d %5s", &dev_id, opt_buf);
6013         if (dev_id < 0) {
6014                 pr_err("dev_id out of range\n");
6015                 return -EINVAL;
6016         }
6017         if (opt_buf[0] != '\0') {
6018                 if (!strcmp(opt_buf, "force")) {
6019                         force = true;
6020                 } else {
6021                         pr_err("bad remove option at '%s'\n", opt_buf);
6022                         return -EINVAL;
6023                 }
6024         }
6025
6026         ret = -ENOENT;
6027         spin_lock(&rbd_dev_list_lock);
6028         list_for_each(tmp, &rbd_dev_list) {
6029                 rbd_dev = list_entry(tmp, struct rbd_device, node);
6030                 if (rbd_dev->dev_id == dev_id) {
6031                         ret = 0;
6032                         break;
6033                 }
6034         }
6035         if (!ret) {
6036                 spin_lock_irq(&rbd_dev->lock);
6037                 if (rbd_dev->open_count && !force)
6038                         ret = -EBUSY;
6039                 else if (test_and_set_bit(RBD_DEV_FLAG_REMOVING,
6040                                           &rbd_dev->flags))
6041                         ret = -EINPROGRESS;
6042                 spin_unlock_irq(&rbd_dev->lock);
6043         }
6044         spin_unlock(&rbd_dev_list_lock);
6045         if (ret)
6046                 return ret;
6047
6048         if (force) {
6049                 /*
6050                  * Prevent new IO from being queued and wait for existing
6051                  * IO to complete/fail.
6052                  */
6053                 blk_mq_freeze_queue(rbd_dev->disk->queue);
6054                 blk_set_queue_dying(rbd_dev->disk->queue);
6055         }
6056
6057         del_gendisk(rbd_dev->disk);
6058         spin_lock(&rbd_dev_list_lock);
6059         list_del_init(&rbd_dev->node);
6060         spin_unlock(&rbd_dev_list_lock);
6061         device_del(&rbd_dev->dev);
6062
6063         rbd_dev_image_unlock(rbd_dev);
6064         rbd_dev_device_release(rbd_dev);
6065         rbd_dev_image_release(rbd_dev);
6066         rbd_dev_destroy(rbd_dev);
6067         return count;
6068 }
6069
6070 static ssize_t rbd_remove(struct bus_type *bus,
6071                           const char *buf,
6072                           size_t count)
6073 {
6074         if (single_major)
6075                 return -EINVAL;
6076
6077         return do_rbd_remove(bus, buf, count);
6078 }
6079
6080 static ssize_t rbd_remove_single_major(struct bus_type *bus,
6081                                        const char *buf,
6082                                        size_t count)
6083 {
6084         return do_rbd_remove(bus, buf, count);
6085 }
6086
6087 /*
6088  * create control files in sysfs
6089  * /sys/bus/rbd/...
6090  */
6091 static int rbd_sysfs_init(void)
6092 {
6093         int ret;
6094
6095         ret = device_register(&rbd_root_dev);
6096         if (ret < 0)
6097                 return ret;
6098
6099         ret = bus_register(&rbd_bus_type);
6100         if (ret < 0)
6101                 device_unregister(&rbd_root_dev);
6102
6103         return ret;
6104 }
6105
6106 static void rbd_sysfs_cleanup(void)
6107 {
6108         bus_unregister(&rbd_bus_type);
6109         device_unregister(&rbd_root_dev);
6110 }
6111
6112 static int rbd_slab_init(void)
6113 {
6114         rbd_assert(!rbd_img_request_cache);
6115         rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
6116         if (!rbd_img_request_cache)
6117                 return -ENOMEM;
6118
6119         rbd_assert(!rbd_obj_request_cache);
6120         rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
6121         if (!rbd_obj_request_cache)
6122                 goto out_err;
6123
6124         return 0;
6125
6126 out_err:
6127         kmem_cache_destroy(rbd_img_request_cache);
6128         rbd_img_request_cache = NULL;
6129         return -ENOMEM;
6130 }
6131
6132 static void rbd_slab_exit(void)
6133 {
6134         rbd_assert(rbd_obj_request_cache);
6135         kmem_cache_destroy(rbd_obj_request_cache);
6136         rbd_obj_request_cache = NULL;
6137
6138         rbd_assert(rbd_img_request_cache);
6139         kmem_cache_destroy(rbd_img_request_cache);
6140         rbd_img_request_cache = NULL;
6141 }
6142
6143 static int __init rbd_init(void)
6144 {
6145         int rc;
6146
6147         if (!libceph_compatible(NULL)) {
6148                 rbd_warn(NULL, "libceph incompatibility (quitting)");
6149                 return -EINVAL;
6150         }
6151
6152         rc = rbd_slab_init();
6153         if (rc)
6154                 return rc;
6155
6156         /*
6157          * The number of active work items is limited by the number of
6158          * rbd devices * queue depth, so leave @max_active at default.
6159          */
6160         rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
6161         if (!rbd_wq) {
6162                 rc = -ENOMEM;
6163                 goto err_out_slab;
6164         }
6165
6166         if (single_major) {
6167                 rbd_major = register_blkdev(0, RBD_DRV_NAME);
6168                 if (rbd_major < 0) {
6169                         rc = rbd_major;
6170                         goto err_out_wq;
6171                 }
6172         }
6173
6174         rc = rbd_sysfs_init();
6175         if (rc)
6176                 goto err_out_blkdev;
6177
6178         if (single_major)
6179                 pr_info("loaded (major %d)\n", rbd_major);
6180         else
6181                 pr_info("loaded\n");
6182
6183         return 0;
6184
6185 err_out_blkdev:
6186         if (single_major)
6187                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
6188 err_out_wq:
6189         destroy_workqueue(rbd_wq);
6190 err_out_slab:
6191         rbd_slab_exit();
6192         return rc;
6193 }
6194
6195 static void __exit rbd_exit(void)
6196 {
6197         ida_destroy(&rbd_dev_id_ida);
6198         rbd_sysfs_cleanup();
6199         if (single_major)
6200                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
6201         destroy_workqueue(rbd_wq);
6202         rbd_slab_exit();
6203 }
6204
6205 module_init(rbd_init);
6206 module_exit(rbd_exit);
6207
6208 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
6209 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
6210 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
6211 /* following authorship retained from original osdblk.c */
6212 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
6213
6214 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
6215 MODULE_LICENSE("GPL");