GNU Linux-libre 4.19.286-gnu1
[releases.git] / drivers / char / hpet.c
1 /*
2  * Intel & MS High Precision Event Timer Implementation.
3  *
4  * Copyright (C) 2003 Intel Corporation
5  *      Venki Pallipadi
6  * (c) Copyright 2004 Hewlett-Packard Development Company, L.P.
7  *      Bob Picco <robert.picco@hp.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13
14 #include <linux/interrupt.h>
15 #include <linux/kernel.h>
16 #include <linux/types.h>
17 #include <linux/miscdevice.h>
18 #include <linux/major.h>
19 #include <linux/ioport.h>
20 #include <linux/fcntl.h>
21 #include <linux/init.h>
22 #include <linux/poll.h>
23 #include <linux/mm.h>
24 #include <linux/proc_fs.h>
25 #include <linux/spinlock.h>
26 #include <linux/sysctl.h>
27 #include <linux/wait.h>
28 #include <linux/sched/signal.h>
29 #include <linux/bcd.h>
30 #include <linux/seq_file.h>
31 #include <linux/bitops.h>
32 #include <linux/compat.h>
33 #include <linux/clocksource.h>
34 #include <linux/uaccess.h>
35 #include <linux/slab.h>
36 #include <linux/io.h>
37 #include <linux/acpi.h>
38 #include <linux/hpet.h>
39 #include <asm/current.h>
40 #include <asm/irq.h>
41 #include <asm/div64.h>
42
43 /*
44  * The High Precision Event Timer driver.
45  * This driver is closely modelled after the rtc.c driver.
46  * See HPET spec revision 1.
47  */
48 #define HPET_USER_FREQ  (64)
49 #define HPET_DRIFT      (500)
50
51 #define HPET_RANGE_SIZE         1024    /* from HPET spec */
52
53
54 /* WARNING -- don't get confused.  These macros are never used
55  * to write the (single) counter, and rarely to read it.
56  * They're badly named; to fix, someday.
57  */
58 #if BITS_PER_LONG == 64
59 #define write_counter(V, MC)    writeq(V, MC)
60 #define read_counter(MC)        readq(MC)
61 #else
62 #define write_counter(V, MC)    writel(V, MC)
63 #define read_counter(MC)        readl(MC)
64 #endif
65
66 static DEFINE_MUTEX(hpet_mutex); /* replaces BKL */
67 static u32 hpet_nhpet, hpet_max_freq = HPET_USER_FREQ;
68
69 /* This clocksource driver currently only works on ia64 */
70 #ifdef CONFIG_IA64
71 static void __iomem *hpet_mctr;
72
73 static u64 read_hpet(struct clocksource *cs)
74 {
75         return (u64)read_counter((void __iomem *)hpet_mctr);
76 }
77
78 static struct clocksource clocksource_hpet = {
79         .name           = "hpet",
80         .rating         = 250,
81         .read           = read_hpet,
82         .mask           = CLOCKSOURCE_MASK(64),
83         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
84 };
85 static struct clocksource *hpet_clocksource;
86 #endif
87
88 /* A lock for concurrent access by app and isr hpet activity. */
89 static DEFINE_SPINLOCK(hpet_lock);
90
91 #define HPET_DEV_NAME   (7)
92
93 struct hpet_dev {
94         struct hpets *hd_hpets;
95         struct hpet __iomem *hd_hpet;
96         struct hpet_timer __iomem *hd_timer;
97         unsigned long hd_ireqfreq;
98         unsigned long hd_irqdata;
99         wait_queue_head_t hd_waitqueue;
100         struct fasync_struct *hd_async_queue;
101         unsigned int hd_flags;
102         unsigned int hd_irq;
103         unsigned int hd_hdwirq;
104         char hd_name[HPET_DEV_NAME];
105 };
106
107 struct hpets {
108         struct hpets *hp_next;
109         struct hpet __iomem *hp_hpet;
110         unsigned long hp_hpet_phys;
111         struct clocksource *hp_clocksource;
112         unsigned long long hp_tick_freq;
113         unsigned long hp_delta;
114         unsigned int hp_ntimer;
115         unsigned int hp_which;
116         struct hpet_dev hp_dev[1];
117 };
118
119 static struct hpets *hpets;
120
121 #define HPET_OPEN               0x0001
122 #define HPET_IE                 0x0002  /* interrupt enabled */
123 #define HPET_PERIODIC           0x0004
124 #define HPET_SHARED_IRQ         0x0008
125
126
127 #ifndef readq
128 static inline unsigned long long readq(void __iomem *addr)
129 {
130         return readl(addr) | (((unsigned long long)readl(addr + 4)) << 32LL);
131 }
132 #endif
133
134 #ifndef writeq
135 static inline void writeq(unsigned long long v, void __iomem *addr)
136 {
137         writel(v & 0xffffffff, addr);
138         writel(v >> 32, addr + 4);
139 }
140 #endif
141
142 static irqreturn_t hpet_interrupt(int irq, void *data)
143 {
144         struct hpet_dev *devp;
145         unsigned long isr;
146
147         devp = data;
148         isr = 1 << (devp - devp->hd_hpets->hp_dev);
149
150         if ((devp->hd_flags & HPET_SHARED_IRQ) &&
151             !(isr & readl(&devp->hd_hpet->hpet_isr)))
152                 return IRQ_NONE;
153
154         spin_lock(&hpet_lock);
155         devp->hd_irqdata++;
156
157         /*
158          * For non-periodic timers, increment the accumulator.
159          * This has the effect of treating non-periodic like periodic.
160          */
161         if ((devp->hd_flags & (HPET_IE | HPET_PERIODIC)) == HPET_IE) {
162                 unsigned long m, t, mc, base, k;
163                 struct hpet __iomem *hpet = devp->hd_hpet;
164                 struct hpets *hpetp = devp->hd_hpets;
165
166                 t = devp->hd_ireqfreq;
167                 m = read_counter(&devp->hd_timer->hpet_compare);
168                 mc = read_counter(&hpet->hpet_mc);
169                 /* The time for the next interrupt would logically be t + m,
170                  * however, if we are very unlucky and the interrupt is delayed
171                  * for longer than t then we will completely miss the next
172                  * interrupt if we set t + m and an application will hang.
173                  * Therefore we need to make a more complex computation assuming
174                  * that there exists a k for which the following is true:
175                  * k * t + base < mc + delta
176                  * (k + 1) * t + base > mc + delta
177                  * where t is the interval in hpet ticks for the given freq,
178                  * base is the theoretical start value 0 < base < t,
179                  * mc is the main counter value at the time of the interrupt,
180                  * delta is the time it takes to write the a value to the
181                  * comparator.
182                  * k may then be computed as (mc - base + delta) / t .
183                  */
184                 base = mc % t;
185                 k = (mc - base + hpetp->hp_delta) / t;
186                 write_counter(t * (k + 1) + base,
187                               &devp->hd_timer->hpet_compare);
188         }
189
190         if (devp->hd_flags & HPET_SHARED_IRQ)
191                 writel(isr, &devp->hd_hpet->hpet_isr);
192         spin_unlock(&hpet_lock);
193
194         wake_up_interruptible(&devp->hd_waitqueue);
195
196         kill_fasync(&devp->hd_async_queue, SIGIO, POLL_IN);
197
198         return IRQ_HANDLED;
199 }
200
201 static void hpet_timer_set_irq(struct hpet_dev *devp)
202 {
203         unsigned long v;
204         int irq, gsi;
205         struct hpet_timer __iomem *timer;
206
207         spin_lock_irq(&hpet_lock);
208         if (devp->hd_hdwirq) {
209                 spin_unlock_irq(&hpet_lock);
210                 return;
211         }
212
213         timer = devp->hd_timer;
214
215         /* we prefer level triggered mode */
216         v = readl(&timer->hpet_config);
217         if (!(v & Tn_INT_TYPE_CNF_MASK)) {
218                 v |= Tn_INT_TYPE_CNF_MASK;
219                 writel(v, &timer->hpet_config);
220         }
221         spin_unlock_irq(&hpet_lock);
222
223         v = (readq(&timer->hpet_config) & Tn_INT_ROUTE_CAP_MASK) >>
224                                  Tn_INT_ROUTE_CAP_SHIFT;
225
226         /*
227          * In PIC mode, skip IRQ0-4, IRQ6-9, IRQ12-15 which is always used by
228          * legacy device. In IO APIC mode, we skip all the legacy IRQS.
229          */
230         if (acpi_irq_model == ACPI_IRQ_MODEL_PIC)
231                 v &= ~0xf3df;
232         else
233                 v &= ~0xffff;
234
235         for_each_set_bit(irq, &v, HPET_MAX_IRQ) {
236                 if (irq >= nr_irqs) {
237                         irq = HPET_MAX_IRQ;
238                         break;
239                 }
240
241                 gsi = acpi_register_gsi(NULL, irq, ACPI_LEVEL_SENSITIVE,
242                                         ACPI_ACTIVE_LOW);
243                 if (gsi > 0)
244                         break;
245
246                 /* FIXME: Setup interrupt source table */
247         }
248
249         if (irq < HPET_MAX_IRQ) {
250                 spin_lock_irq(&hpet_lock);
251                 v = readl(&timer->hpet_config);
252                 v |= irq << Tn_INT_ROUTE_CNF_SHIFT;
253                 writel(v, &timer->hpet_config);
254                 devp->hd_hdwirq = gsi;
255                 spin_unlock_irq(&hpet_lock);
256         }
257         return;
258 }
259
260 static int hpet_open(struct inode *inode, struct file *file)
261 {
262         struct hpet_dev *devp;
263         struct hpets *hpetp;
264         int i;
265
266         if (file->f_mode & FMODE_WRITE)
267                 return -EINVAL;
268
269         mutex_lock(&hpet_mutex);
270         spin_lock_irq(&hpet_lock);
271
272         for (devp = NULL, hpetp = hpets; hpetp && !devp; hpetp = hpetp->hp_next)
273                 for (i = 0; i < hpetp->hp_ntimer; i++)
274                         if (hpetp->hp_dev[i].hd_flags & HPET_OPEN)
275                                 continue;
276                         else {
277                                 devp = &hpetp->hp_dev[i];
278                                 break;
279                         }
280
281         if (!devp) {
282                 spin_unlock_irq(&hpet_lock);
283                 mutex_unlock(&hpet_mutex);
284                 return -EBUSY;
285         }
286
287         file->private_data = devp;
288         devp->hd_irqdata = 0;
289         devp->hd_flags |= HPET_OPEN;
290         spin_unlock_irq(&hpet_lock);
291         mutex_unlock(&hpet_mutex);
292
293         hpet_timer_set_irq(devp);
294
295         return 0;
296 }
297
298 static ssize_t
299 hpet_read(struct file *file, char __user *buf, size_t count, loff_t * ppos)
300 {
301         DECLARE_WAITQUEUE(wait, current);
302         unsigned long data;
303         ssize_t retval;
304         struct hpet_dev *devp;
305
306         devp = file->private_data;
307         if (!devp->hd_ireqfreq)
308                 return -EIO;
309
310         if (count < sizeof(unsigned long))
311                 return -EINVAL;
312
313         add_wait_queue(&devp->hd_waitqueue, &wait);
314
315         for ( ; ; ) {
316                 set_current_state(TASK_INTERRUPTIBLE);
317
318                 spin_lock_irq(&hpet_lock);
319                 data = devp->hd_irqdata;
320                 devp->hd_irqdata = 0;
321                 spin_unlock_irq(&hpet_lock);
322
323                 if (data)
324                         break;
325                 else if (file->f_flags & O_NONBLOCK) {
326                         retval = -EAGAIN;
327                         goto out;
328                 } else if (signal_pending(current)) {
329                         retval = -ERESTARTSYS;
330                         goto out;
331                 }
332                 schedule();
333         }
334
335         retval = put_user(data, (unsigned long __user *)buf);
336         if (!retval)
337                 retval = sizeof(unsigned long);
338 out:
339         __set_current_state(TASK_RUNNING);
340         remove_wait_queue(&devp->hd_waitqueue, &wait);
341
342         return retval;
343 }
344
345 static __poll_t hpet_poll(struct file *file, poll_table * wait)
346 {
347         unsigned long v;
348         struct hpet_dev *devp;
349
350         devp = file->private_data;
351
352         if (!devp->hd_ireqfreq)
353                 return 0;
354
355         poll_wait(file, &devp->hd_waitqueue, wait);
356
357         spin_lock_irq(&hpet_lock);
358         v = devp->hd_irqdata;
359         spin_unlock_irq(&hpet_lock);
360
361         if (v != 0)
362                 return EPOLLIN | EPOLLRDNORM;
363
364         return 0;
365 }
366
367 #ifdef CONFIG_HPET_MMAP
368 #ifdef CONFIG_HPET_MMAP_DEFAULT
369 static int hpet_mmap_enabled = 1;
370 #else
371 static int hpet_mmap_enabled = 0;
372 #endif
373
374 static __init int hpet_mmap_enable(char *str)
375 {
376         get_option(&str, &hpet_mmap_enabled);
377         pr_info("HPET mmap %s\n", hpet_mmap_enabled ? "enabled" : "disabled");
378         return 1;
379 }
380 __setup("hpet_mmap=", hpet_mmap_enable);
381
382 static int hpet_mmap(struct file *file, struct vm_area_struct *vma)
383 {
384         struct hpet_dev *devp;
385         unsigned long addr;
386
387         if (!hpet_mmap_enabled)
388                 return -EACCES;
389
390         devp = file->private_data;
391         addr = devp->hd_hpets->hp_hpet_phys;
392
393         if (addr & (PAGE_SIZE - 1))
394                 return -ENOSYS;
395
396         vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
397         return vm_iomap_memory(vma, addr, PAGE_SIZE);
398 }
399 #else
400 static int hpet_mmap(struct file *file, struct vm_area_struct *vma)
401 {
402         return -ENOSYS;
403 }
404 #endif
405
406 static int hpet_fasync(int fd, struct file *file, int on)
407 {
408         struct hpet_dev *devp;
409
410         devp = file->private_data;
411
412         if (fasync_helper(fd, file, on, &devp->hd_async_queue) >= 0)
413                 return 0;
414         else
415                 return -EIO;
416 }
417
418 static int hpet_release(struct inode *inode, struct file *file)
419 {
420         struct hpet_dev *devp;
421         struct hpet_timer __iomem *timer;
422         int irq = 0;
423
424         devp = file->private_data;
425         timer = devp->hd_timer;
426
427         spin_lock_irq(&hpet_lock);
428
429         writeq((readq(&timer->hpet_config) & ~Tn_INT_ENB_CNF_MASK),
430                &timer->hpet_config);
431
432         irq = devp->hd_irq;
433         devp->hd_irq = 0;
434
435         devp->hd_ireqfreq = 0;
436
437         if (devp->hd_flags & HPET_PERIODIC
438             && readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
439                 unsigned long v;
440
441                 v = readq(&timer->hpet_config);
442                 v ^= Tn_TYPE_CNF_MASK;
443                 writeq(v, &timer->hpet_config);
444         }
445
446         devp->hd_flags &= ~(HPET_OPEN | HPET_IE | HPET_PERIODIC);
447         spin_unlock_irq(&hpet_lock);
448
449         if (irq)
450                 free_irq(irq, devp);
451
452         file->private_data = NULL;
453         return 0;
454 }
455
456 static int hpet_ioctl_ieon(struct hpet_dev *devp)
457 {
458         struct hpet_timer __iomem *timer;
459         struct hpet __iomem *hpet;
460         struct hpets *hpetp;
461         int irq;
462         unsigned long g, v, t, m;
463         unsigned long flags, isr;
464
465         timer = devp->hd_timer;
466         hpet = devp->hd_hpet;
467         hpetp = devp->hd_hpets;
468
469         if (!devp->hd_ireqfreq)
470                 return -EIO;
471
472         spin_lock_irq(&hpet_lock);
473
474         if (devp->hd_flags & HPET_IE) {
475                 spin_unlock_irq(&hpet_lock);
476                 return -EBUSY;
477         }
478
479         devp->hd_flags |= HPET_IE;
480
481         if (readl(&timer->hpet_config) & Tn_INT_TYPE_CNF_MASK)
482                 devp->hd_flags |= HPET_SHARED_IRQ;
483         spin_unlock_irq(&hpet_lock);
484
485         irq = devp->hd_hdwirq;
486
487         if (irq) {
488                 unsigned long irq_flags;
489
490                 if (devp->hd_flags & HPET_SHARED_IRQ) {
491                         /*
492                          * To prevent the interrupt handler from seeing an
493                          * unwanted interrupt status bit, program the timer
494                          * so that it will not fire in the near future ...
495                          */
496                         writel(readl(&timer->hpet_config) & ~Tn_TYPE_CNF_MASK,
497                                &timer->hpet_config);
498                         write_counter(read_counter(&hpet->hpet_mc),
499                                       &timer->hpet_compare);
500                         /* ... and clear any left-over status. */
501                         isr = 1 << (devp - devp->hd_hpets->hp_dev);
502                         writel(isr, &hpet->hpet_isr);
503                 }
504
505                 sprintf(devp->hd_name, "hpet%d", (int)(devp - hpetp->hp_dev));
506                 irq_flags = devp->hd_flags & HPET_SHARED_IRQ ? IRQF_SHARED : 0;
507                 if (request_irq(irq, hpet_interrupt, irq_flags,
508                                 devp->hd_name, (void *)devp)) {
509                         printk(KERN_ERR "hpet: IRQ %d is not free\n", irq);
510                         irq = 0;
511                 }
512         }
513
514         if (irq == 0) {
515                 spin_lock_irq(&hpet_lock);
516                 devp->hd_flags ^= HPET_IE;
517                 spin_unlock_irq(&hpet_lock);
518                 return -EIO;
519         }
520
521         devp->hd_irq = irq;
522         t = devp->hd_ireqfreq;
523         v = readq(&timer->hpet_config);
524
525         /* 64-bit comparators are not yet supported through the ioctls,
526          * so force this into 32-bit mode if it supports both modes
527          */
528         g = v | Tn_32MODE_CNF_MASK | Tn_INT_ENB_CNF_MASK;
529
530         if (devp->hd_flags & HPET_PERIODIC) {
531                 g |= Tn_TYPE_CNF_MASK;
532                 v |= Tn_TYPE_CNF_MASK | Tn_VAL_SET_CNF_MASK;
533                 writeq(v, &timer->hpet_config);
534                 local_irq_save(flags);
535
536                 /*
537                  * NOTE: First we modify the hidden accumulator
538                  * register supported by periodic-capable comparators.
539                  * We never want to modify the (single) counter; that
540                  * would affect all the comparators. The value written
541                  * is the counter value when the first interrupt is due.
542                  */
543                 m = read_counter(&hpet->hpet_mc);
544                 write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
545                 /*
546                  * Then we modify the comparator, indicating the period
547                  * for subsequent interrupt.
548                  */
549                 write_counter(t, &timer->hpet_compare);
550         } else {
551                 local_irq_save(flags);
552                 m = read_counter(&hpet->hpet_mc);
553                 write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
554         }
555
556         if (devp->hd_flags & HPET_SHARED_IRQ) {
557                 isr = 1 << (devp - devp->hd_hpets->hp_dev);
558                 writel(isr, &hpet->hpet_isr);
559         }
560         writeq(g, &timer->hpet_config);
561         local_irq_restore(flags);
562
563         return 0;
564 }
565
566 /* converts Hz to number of timer ticks */
567 static inline unsigned long hpet_time_div(struct hpets *hpets,
568                                           unsigned long dis)
569 {
570         unsigned long long m;
571
572         m = hpets->hp_tick_freq + (dis >> 1);
573         return div64_ul(m, dis);
574 }
575
576 static int
577 hpet_ioctl_common(struct hpet_dev *devp, unsigned int cmd, unsigned long arg,
578                   struct hpet_info *info)
579 {
580         struct hpet_timer __iomem *timer;
581         struct hpets *hpetp;
582         int err;
583         unsigned long v;
584
585         switch (cmd) {
586         case HPET_IE_OFF:
587         case HPET_INFO:
588         case HPET_EPI:
589         case HPET_DPI:
590         case HPET_IRQFREQ:
591                 timer = devp->hd_timer;
592                 hpetp = devp->hd_hpets;
593                 break;
594         case HPET_IE_ON:
595                 return hpet_ioctl_ieon(devp);
596         default:
597                 return -EINVAL;
598         }
599
600         err = 0;
601
602         switch (cmd) {
603         case HPET_IE_OFF:
604                 if ((devp->hd_flags & HPET_IE) == 0)
605                         break;
606                 v = readq(&timer->hpet_config);
607                 v &= ~Tn_INT_ENB_CNF_MASK;
608                 writeq(v, &timer->hpet_config);
609                 if (devp->hd_irq) {
610                         free_irq(devp->hd_irq, devp);
611                         devp->hd_irq = 0;
612                 }
613                 devp->hd_flags ^= HPET_IE;
614                 break;
615         case HPET_INFO:
616                 {
617                         memset(info, 0, sizeof(*info));
618                         if (devp->hd_ireqfreq)
619                                 info->hi_ireqfreq =
620                                         hpet_time_div(hpetp, devp->hd_ireqfreq);
621                         info->hi_flags =
622                             readq(&timer->hpet_config) & Tn_PER_INT_CAP_MASK;
623                         info->hi_hpet = hpetp->hp_which;
624                         info->hi_timer = devp - hpetp->hp_dev;
625                         break;
626                 }
627         case HPET_EPI:
628                 v = readq(&timer->hpet_config);
629                 if ((v & Tn_PER_INT_CAP_MASK) == 0) {
630                         err = -ENXIO;
631                         break;
632                 }
633                 devp->hd_flags |= HPET_PERIODIC;
634                 break;
635         case HPET_DPI:
636                 v = readq(&timer->hpet_config);
637                 if ((v & Tn_PER_INT_CAP_MASK) == 0) {
638                         err = -ENXIO;
639                         break;
640                 }
641                 if (devp->hd_flags & HPET_PERIODIC &&
642                     readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
643                         v = readq(&timer->hpet_config);
644                         v ^= Tn_TYPE_CNF_MASK;
645                         writeq(v, &timer->hpet_config);
646                 }
647                 devp->hd_flags &= ~HPET_PERIODIC;
648                 break;
649         case HPET_IRQFREQ:
650                 if ((arg > hpet_max_freq) &&
651                     !capable(CAP_SYS_RESOURCE)) {
652                         err = -EACCES;
653                         break;
654                 }
655
656                 if (!arg) {
657                         err = -EINVAL;
658                         break;
659                 }
660
661                 devp->hd_ireqfreq = hpet_time_div(hpetp, arg);
662         }
663
664         return err;
665 }
666
667 static long
668 hpet_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
669 {
670         struct hpet_info info;
671         int err;
672
673         mutex_lock(&hpet_mutex);
674         err = hpet_ioctl_common(file->private_data, cmd, arg, &info);
675         mutex_unlock(&hpet_mutex);
676
677         if ((cmd == HPET_INFO) && !err &&
678             (copy_to_user((void __user *)arg, &info, sizeof(info))))
679                 err = -EFAULT;
680
681         return err;
682 }
683
684 #ifdef CONFIG_COMPAT
685 struct compat_hpet_info {
686         compat_ulong_t hi_ireqfreq;     /* Hz */
687         compat_ulong_t hi_flags;        /* information */
688         unsigned short hi_hpet;
689         unsigned short hi_timer;
690 };
691
692 static long
693 hpet_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
694 {
695         struct hpet_info info;
696         int err;
697
698         mutex_lock(&hpet_mutex);
699         err = hpet_ioctl_common(file->private_data, cmd, arg, &info);
700         mutex_unlock(&hpet_mutex);
701
702         if ((cmd == HPET_INFO) && !err) {
703                 struct compat_hpet_info __user *u = compat_ptr(arg);
704                 if (put_user(info.hi_ireqfreq, &u->hi_ireqfreq) ||
705                     put_user(info.hi_flags, &u->hi_flags) ||
706                     put_user(info.hi_hpet, &u->hi_hpet) ||
707                     put_user(info.hi_timer, &u->hi_timer))
708                         err = -EFAULT;
709         }
710
711         return err;
712 }
713 #endif
714
715 static const struct file_operations hpet_fops = {
716         .owner = THIS_MODULE,
717         .llseek = no_llseek,
718         .read = hpet_read,
719         .poll = hpet_poll,
720         .unlocked_ioctl = hpet_ioctl,
721 #ifdef CONFIG_COMPAT
722         .compat_ioctl = hpet_compat_ioctl,
723 #endif
724         .open = hpet_open,
725         .release = hpet_release,
726         .fasync = hpet_fasync,
727         .mmap = hpet_mmap,
728 };
729
730 static int hpet_is_known(struct hpet_data *hdp)
731 {
732         struct hpets *hpetp;
733
734         for (hpetp = hpets; hpetp; hpetp = hpetp->hp_next)
735                 if (hpetp->hp_hpet_phys == hdp->hd_phys_address)
736                         return 1;
737
738         return 0;
739 }
740
741 static struct ctl_table hpet_table[] = {
742         {
743          .procname = "max-user-freq",
744          .data = &hpet_max_freq,
745          .maxlen = sizeof(int),
746          .mode = 0644,
747          .proc_handler = proc_dointvec,
748          },
749         {}
750 };
751
752 static struct ctl_table hpet_root[] = {
753         {
754          .procname = "hpet",
755          .maxlen = 0,
756          .mode = 0555,
757          .child = hpet_table,
758          },
759         {}
760 };
761
762 static struct ctl_table dev_root[] = {
763         {
764          .procname = "dev",
765          .maxlen = 0,
766          .mode = 0555,
767          .child = hpet_root,
768          },
769         {}
770 };
771
772 static struct ctl_table_header *sysctl_header;
773
774 /*
775  * Adjustment for when arming the timer with
776  * initial conditions.  That is, main counter
777  * ticks expired before interrupts are enabled.
778  */
779 #define TICK_CALIBRATE  (1000UL)
780
781 static unsigned long __hpet_calibrate(struct hpets *hpetp)
782 {
783         struct hpet_timer __iomem *timer = NULL;
784         unsigned long t, m, count, i, flags, start;
785         struct hpet_dev *devp;
786         int j;
787         struct hpet __iomem *hpet;
788
789         for (j = 0, devp = hpetp->hp_dev; j < hpetp->hp_ntimer; j++, devp++)
790                 if ((devp->hd_flags & HPET_OPEN) == 0) {
791                         timer = devp->hd_timer;
792                         break;
793                 }
794
795         if (!timer)
796                 return 0;
797
798         hpet = hpetp->hp_hpet;
799         t = read_counter(&timer->hpet_compare);
800
801         i = 0;
802         count = hpet_time_div(hpetp, TICK_CALIBRATE);
803
804         local_irq_save(flags);
805
806         start = read_counter(&hpet->hpet_mc);
807
808         do {
809                 m = read_counter(&hpet->hpet_mc);
810                 write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
811         } while (i++, (m - start) < count);
812
813         local_irq_restore(flags);
814
815         return (m - start) / i;
816 }
817
818 static unsigned long hpet_calibrate(struct hpets *hpetp)
819 {
820         unsigned long ret = ~0UL;
821         unsigned long tmp;
822
823         /*
824          * Try to calibrate until return value becomes stable small value.
825          * If SMI interruption occurs in calibration loop, the return value
826          * will be big. This avoids its impact.
827          */
828         for ( ; ; ) {
829                 tmp = __hpet_calibrate(hpetp);
830                 if (ret <= tmp)
831                         break;
832                 ret = tmp;
833         }
834
835         return ret;
836 }
837
838 int hpet_alloc(struct hpet_data *hdp)
839 {
840         u64 cap, mcfg;
841         struct hpet_dev *devp;
842         u32 i, ntimer;
843         struct hpets *hpetp;
844         size_t siz;
845         struct hpet __iomem *hpet;
846         static struct hpets *last;
847         unsigned long period;
848         unsigned long long temp;
849         u32 remainder;
850
851         /*
852          * hpet_alloc can be called by platform dependent code.
853          * If platform dependent code has allocated the hpet that
854          * ACPI has also reported, then we catch it here.
855          */
856         if (hpet_is_known(hdp)) {
857                 printk(KERN_DEBUG "%s: duplicate HPET ignored\n",
858                         __func__);
859                 return 0;
860         }
861
862         siz = sizeof(struct hpets) + ((hdp->hd_nirqs - 1) *
863                                       sizeof(struct hpet_dev));
864
865         hpetp = kzalloc(siz, GFP_KERNEL);
866
867         if (!hpetp)
868                 return -ENOMEM;
869
870         hpetp->hp_which = hpet_nhpet++;
871         hpetp->hp_hpet = hdp->hd_address;
872         hpetp->hp_hpet_phys = hdp->hd_phys_address;
873
874         hpetp->hp_ntimer = hdp->hd_nirqs;
875
876         for (i = 0; i < hdp->hd_nirqs; i++)
877                 hpetp->hp_dev[i].hd_hdwirq = hdp->hd_irq[i];
878
879         hpet = hpetp->hp_hpet;
880
881         cap = readq(&hpet->hpet_cap);
882
883         ntimer = ((cap & HPET_NUM_TIM_CAP_MASK) >> HPET_NUM_TIM_CAP_SHIFT) + 1;
884
885         if (hpetp->hp_ntimer != ntimer) {
886                 printk(KERN_WARNING "hpet: number irqs doesn't agree"
887                        " with number of timers\n");
888                 kfree(hpetp);
889                 return -ENODEV;
890         }
891
892         if (last)
893                 last->hp_next = hpetp;
894         else
895                 hpets = hpetp;
896
897         last = hpetp;
898
899         period = (cap & HPET_COUNTER_CLK_PERIOD_MASK) >>
900                 HPET_COUNTER_CLK_PERIOD_SHIFT; /* fs, 10^-15 */
901         temp = 1000000000000000uLL; /* 10^15 femtoseconds per second */
902         temp += period >> 1; /* round */
903         do_div(temp, period);
904         hpetp->hp_tick_freq = temp; /* ticks per second */
905
906         printk(KERN_INFO "hpet%d: at MMIO 0x%lx, IRQ%s",
907                 hpetp->hp_which, hdp->hd_phys_address,
908                 hpetp->hp_ntimer > 1 ? "s" : "");
909         for (i = 0; i < hpetp->hp_ntimer; i++)
910                 printk(KERN_CONT "%s %d", i > 0 ? "," : "", hdp->hd_irq[i]);
911         printk(KERN_CONT "\n");
912
913         temp = hpetp->hp_tick_freq;
914         remainder = do_div(temp, 1000000);
915         printk(KERN_INFO
916                 "hpet%u: %u comparators, %d-bit %u.%06u MHz counter\n",
917                 hpetp->hp_which, hpetp->hp_ntimer,
918                 cap & HPET_COUNTER_SIZE_MASK ? 64 : 32,
919                 (unsigned) temp, remainder);
920
921         mcfg = readq(&hpet->hpet_config);
922         if ((mcfg & HPET_ENABLE_CNF_MASK) == 0) {
923                 write_counter(0L, &hpet->hpet_mc);
924                 mcfg |= HPET_ENABLE_CNF_MASK;
925                 writeq(mcfg, &hpet->hpet_config);
926         }
927
928         for (i = 0, devp = hpetp->hp_dev; i < hpetp->hp_ntimer; i++, devp++) {
929                 struct hpet_timer __iomem *timer;
930
931                 timer = &hpet->hpet_timers[devp - hpetp->hp_dev];
932
933                 devp->hd_hpets = hpetp;
934                 devp->hd_hpet = hpet;
935                 devp->hd_timer = timer;
936
937                 /*
938                  * If the timer was reserved by platform code,
939                  * then make timer unavailable for opens.
940                  */
941                 if (hdp->hd_state & (1 << i)) {
942                         devp->hd_flags = HPET_OPEN;
943                         continue;
944                 }
945
946                 init_waitqueue_head(&devp->hd_waitqueue);
947         }
948
949         hpetp->hp_delta = hpet_calibrate(hpetp);
950
951 /* This clocksource driver currently only works on ia64 */
952 #ifdef CONFIG_IA64
953         if (!hpet_clocksource) {
954                 hpet_mctr = (void __iomem *)&hpetp->hp_hpet->hpet_mc;
955                 clocksource_hpet.archdata.fsys_mmio = hpet_mctr;
956                 clocksource_register_hz(&clocksource_hpet, hpetp->hp_tick_freq);
957                 hpetp->hp_clocksource = &clocksource_hpet;
958                 hpet_clocksource = &clocksource_hpet;
959         }
960 #endif
961
962         return 0;
963 }
964
965 static acpi_status hpet_resources(struct acpi_resource *res, void *data)
966 {
967         struct hpet_data *hdp;
968         acpi_status status;
969         struct acpi_resource_address64 addr;
970
971         hdp = data;
972
973         status = acpi_resource_to_address64(res, &addr);
974
975         if (ACPI_SUCCESS(status)) {
976                 hdp->hd_phys_address = addr.address.minimum;
977                 hdp->hd_address = ioremap(addr.address.minimum, addr.address.address_length);
978                 if (!hdp->hd_address)
979                         return AE_ERROR;
980
981                 if (hpet_is_known(hdp)) {
982                         iounmap(hdp->hd_address);
983                         return AE_ALREADY_EXISTS;
984                 }
985         } else if (res->type == ACPI_RESOURCE_TYPE_FIXED_MEMORY32) {
986                 struct acpi_resource_fixed_memory32 *fixmem32;
987
988                 fixmem32 = &res->data.fixed_memory32;
989
990                 hdp->hd_phys_address = fixmem32->address;
991                 hdp->hd_address = ioremap(fixmem32->address,
992                                                 HPET_RANGE_SIZE);
993                 if (!hdp->hd_address)
994                         return AE_ERROR;
995
996                 if (hpet_is_known(hdp)) {
997                         iounmap(hdp->hd_address);
998                         return AE_ALREADY_EXISTS;
999                 }
1000         } else if (res->type == ACPI_RESOURCE_TYPE_EXTENDED_IRQ) {
1001                 struct acpi_resource_extended_irq *irqp;
1002                 int i, irq;
1003
1004                 irqp = &res->data.extended_irq;
1005
1006                 for (i = 0; i < irqp->interrupt_count; i++) {
1007                         if (hdp->hd_nirqs >= HPET_MAX_TIMERS)
1008                                 break;
1009
1010                         irq = acpi_register_gsi(NULL, irqp->interrupts[i],
1011                                       irqp->triggering, irqp->polarity);
1012                         if (irq < 0)
1013                                 return AE_ERROR;
1014
1015                         hdp->hd_irq[hdp->hd_nirqs] = irq;
1016                         hdp->hd_nirqs++;
1017                 }
1018         }
1019
1020         return AE_OK;
1021 }
1022
1023 static int hpet_acpi_add(struct acpi_device *device)
1024 {
1025         acpi_status result;
1026         struct hpet_data data;
1027
1028         memset(&data, 0, sizeof(data));
1029
1030         result =
1031             acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1032                                 hpet_resources, &data);
1033
1034         if (ACPI_FAILURE(result))
1035                 return -ENODEV;
1036
1037         if (!data.hd_address || !data.hd_nirqs) {
1038                 if (data.hd_address)
1039                         iounmap(data.hd_address);
1040                 printk("%s: no address or irqs in _CRS\n", __func__);
1041                 return -ENODEV;
1042         }
1043
1044         return hpet_alloc(&data);
1045 }
1046
1047 static const struct acpi_device_id hpet_device_ids[] = {
1048         {"PNP0103", 0},
1049         {"", 0},
1050 };
1051
1052 static struct acpi_driver hpet_acpi_driver = {
1053         .name = "hpet",
1054         .ids = hpet_device_ids,
1055         .ops = {
1056                 .add = hpet_acpi_add,
1057                 },
1058 };
1059
1060 static struct miscdevice hpet_misc = { HPET_MINOR, "hpet", &hpet_fops };
1061
1062 static int __init hpet_init(void)
1063 {
1064         int result;
1065
1066         result = misc_register(&hpet_misc);
1067         if (result < 0)
1068                 return -ENODEV;
1069
1070         sysctl_header = register_sysctl_table(dev_root);
1071
1072         result = acpi_bus_register_driver(&hpet_acpi_driver);
1073         if (result < 0) {
1074                 if (sysctl_header)
1075                         unregister_sysctl_table(sysctl_header);
1076                 misc_deregister(&hpet_misc);
1077                 return result;
1078         }
1079
1080         return 0;
1081 }
1082 device_initcall(hpet_init);
1083
1084 /*
1085 MODULE_AUTHOR("Bob Picco <Robert.Picco@hp.com>");
1086 MODULE_LICENSE("GPL");
1087 */