GNU Linux-libre 4.19.286-gnu1
[releases.git] / drivers / char / hw_random / n2-drv.c
1 /* n2-drv.c: Niagara-2 RNG driver.
2  *
3  * Copyright (C) 2008, 2011 David S. Miller <davem@davemloft.net>
4  */
5
6 #include <linux/kernel.h>
7 #include <linux/module.h>
8 #include <linux/types.h>
9 #include <linux/delay.h>
10 #include <linux/slab.h>
11 #include <linux/workqueue.h>
12 #include <linux/preempt.h>
13 #include <linux/hw_random.h>
14
15 #include <linux/of.h>
16 #include <linux/of_device.h>
17
18 #include <asm/hypervisor.h>
19
20 #include "n2rng.h"
21
22 #define DRV_MODULE_NAME         "n2rng"
23 #define PFX DRV_MODULE_NAME     ": "
24 #define DRV_MODULE_VERSION      "0.3"
25 #define DRV_MODULE_RELDATE      "Jan 7, 2017"
26
27 static char version[] =
28         DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
29
30 MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
31 MODULE_DESCRIPTION("Niagara2 RNG driver");
32 MODULE_LICENSE("GPL");
33 MODULE_VERSION(DRV_MODULE_VERSION);
34
35 /* The Niagara2 RNG provides a 64-bit read-only random number
36  * register, plus a control register.  Access to the RNG is
37  * virtualized through the hypervisor so that both guests and control
38  * nodes can access the device.
39  *
40  * The entropy source consists of raw entropy sources, each
41  * constructed from a voltage controlled oscillator whose phase is
42  * jittered by thermal noise sources.
43  *
44  * The oscillator in each of the three raw entropy sources run at
45  * different frequencies.  Normally, all three generator outputs are
46  * gathered, xored together, and fed into a CRC circuit, the output of
47  * which is the 64-bit read-only register.
48  *
49  * Some time is necessary for all the necessary entropy to build up
50  * such that a full 64-bits of entropy are available in the register.
51  * In normal operating mode (RNG_CTL_LFSR is set), the chip implements
52  * an interlock which blocks register reads until sufficient entropy
53  * is available.
54  *
55  * A control register is provided for adjusting various aspects of RNG
56  * operation, and to enable diagnostic modes.  Each of the three raw
57  * entropy sources has an enable bit (RNG_CTL_ES{1,2,3}).  Also
58  * provided are fields for controlling the minimum time in cycles
59  * between read accesses to the register (RNG_CTL_WAIT, this controls
60  * the interlock described in the previous paragraph).
61  *
62  * The standard setting is to have the mode bit (RNG_CTL_LFSR) set,
63  * all three entropy sources enabled, and the interlock time set
64  * appropriately.
65  *
66  * The CRC polynomial used by the chip is:
67  *
68  * P(X) = x64 + x61 + x57 + x56 + x52 + x51 + x50 + x48 + x47 + x46 +
69  *        x43 + x42 + x41 + x39 + x38 + x37 + x35 + x32 + x28 + x25 +
70  *        x22 + x21 + x17 + x15 + x13 + x12 + x11 + x7 + x5 + x + 1
71  *
72  * The RNG_CTL_VCO value of each noise cell must be programmed
73  * separately.  This is why 4 control register values must be provided
74  * to the hypervisor.  During a write, the hypervisor writes them all,
75  * one at a time, to the actual RNG_CTL register.  The first three
76  * values are used to setup the desired RNG_CTL_VCO for each entropy
77  * source, for example:
78  *
79  *      control 0: (1 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES1
80  *      control 1: (2 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES2
81  *      control 2: (3 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES3
82  *
83  * And then the fourth value sets the final chip state and enables
84  * desired.
85  */
86
87 static int n2rng_hv_err_trans(unsigned long hv_err)
88 {
89         switch (hv_err) {
90         case HV_EOK:
91                 return 0;
92         case HV_EWOULDBLOCK:
93                 return -EAGAIN;
94         case HV_ENOACCESS:
95                 return -EPERM;
96         case HV_EIO:
97                 return -EIO;
98         case HV_EBUSY:
99                 return -EBUSY;
100         case HV_EBADALIGN:
101         case HV_ENORADDR:
102                 return -EFAULT;
103         default:
104                 return -EINVAL;
105         }
106 }
107
108 static unsigned long n2rng_generic_read_control_v2(unsigned long ra,
109                                                    unsigned long unit)
110 {
111         unsigned long hv_err, state, ticks, watchdog_delta, watchdog_status;
112         int block = 0, busy = 0;
113
114         while (1) {
115                 hv_err = sun4v_rng_ctl_read_v2(ra, unit, &state,
116                                                &ticks,
117                                                &watchdog_delta,
118                                                &watchdog_status);
119                 if (hv_err == HV_EOK)
120                         break;
121
122                 if (hv_err == HV_EBUSY) {
123                         if (++busy >= N2RNG_BUSY_LIMIT)
124                                 break;
125
126                         udelay(1);
127                 } else if (hv_err == HV_EWOULDBLOCK) {
128                         if (++block >= N2RNG_BLOCK_LIMIT)
129                                 break;
130
131                         __delay(ticks);
132                 } else
133                         break;
134         }
135
136         return hv_err;
137 }
138
139 /* In multi-socket situations, the hypervisor might need to
140  * queue up the RNG control register write if it's for a unit
141  * that is on a cpu socket other than the one we are executing on.
142  *
143  * We poll here waiting for a successful read of that control
144  * register to make sure the write has been actually performed.
145  */
146 static unsigned long n2rng_control_settle_v2(struct n2rng *np, int unit)
147 {
148         unsigned long ra = __pa(&np->scratch_control[0]);
149
150         return n2rng_generic_read_control_v2(ra, unit);
151 }
152
153 static unsigned long n2rng_write_ctl_one(struct n2rng *np, int unit,
154                                          unsigned long state,
155                                          unsigned long control_ra,
156                                          unsigned long watchdog_timeout,
157                                          unsigned long *ticks)
158 {
159         unsigned long hv_err;
160
161         if (np->hvapi_major == 1) {
162                 hv_err = sun4v_rng_ctl_write_v1(control_ra, state,
163                                                 watchdog_timeout, ticks);
164         } else {
165                 hv_err = sun4v_rng_ctl_write_v2(control_ra, state,
166                                                 watchdog_timeout, unit);
167                 if (hv_err == HV_EOK)
168                         hv_err = n2rng_control_settle_v2(np, unit);
169                 *ticks = N2RNG_ACCUM_CYCLES_DEFAULT;
170         }
171
172         return hv_err;
173 }
174
175 static int n2rng_generic_read_data(unsigned long data_ra)
176 {
177         unsigned long ticks, hv_err;
178         int block = 0, hcheck = 0;
179
180         while (1) {
181                 hv_err = sun4v_rng_data_read(data_ra, &ticks);
182                 if (hv_err == HV_EOK)
183                         return 0;
184
185                 if (hv_err == HV_EWOULDBLOCK) {
186                         if (++block >= N2RNG_BLOCK_LIMIT)
187                                 return -EWOULDBLOCK;
188                         __delay(ticks);
189                 } else if (hv_err == HV_ENOACCESS) {
190                         return -EPERM;
191                 } else if (hv_err == HV_EIO) {
192                         if (++hcheck >= N2RNG_HCHECK_LIMIT)
193                                 return -EIO;
194                         udelay(10000);
195                 } else
196                         return -ENODEV;
197         }
198 }
199
200 static unsigned long n2rng_read_diag_data_one(struct n2rng *np,
201                                               unsigned long unit,
202                                               unsigned long data_ra,
203                                               unsigned long data_len,
204                                               unsigned long *ticks)
205 {
206         unsigned long hv_err;
207
208         if (np->hvapi_major == 1) {
209                 hv_err = sun4v_rng_data_read_diag_v1(data_ra, data_len, ticks);
210         } else {
211                 hv_err = sun4v_rng_data_read_diag_v2(data_ra, data_len,
212                                                      unit, ticks);
213                 if (!*ticks)
214                         *ticks = N2RNG_ACCUM_CYCLES_DEFAULT;
215         }
216         return hv_err;
217 }
218
219 static int n2rng_generic_read_diag_data(struct n2rng *np,
220                                         unsigned long unit,
221                                         unsigned long data_ra,
222                                         unsigned long data_len)
223 {
224         unsigned long ticks, hv_err;
225         int block = 0;
226
227         while (1) {
228                 hv_err = n2rng_read_diag_data_one(np, unit,
229                                                   data_ra, data_len,
230                                                   &ticks);
231                 if (hv_err == HV_EOK)
232                         return 0;
233
234                 if (hv_err == HV_EWOULDBLOCK) {
235                         if (++block >= N2RNG_BLOCK_LIMIT)
236                                 return -EWOULDBLOCK;
237                         __delay(ticks);
238                 } else if (hv_err == HV_ENOACCESS) {
239                         return -EPERM;
240                 } else if (hv_err == HV_EIO) {
241                         return -EIO;
242                 } else
243                         return -ENODEV;
244         }
245 }
246
247
248 static int n2rng_generic_write_control(struct n2rng *np,
249                                        unsigned long control_ra,
250                                        unsigned long unit,
251                                        unsigned long state)
252 {
253         unsigned long hv_err, ticks;
254         int block = 0, busy = 0;
255
256         while (1) {
257                 hv_err = n2rng_write_ctl_one(np, unit, state, control_ra,
258                                              np->wd_timeo, &ticks);
259                 if (hv_err == HV_EOK)
260                         return 0;
261
262                 if (hv_err == HV_EWOULDBLOCK) {
263                         if (++block >= N2RNG_BLOCK_LIMIT)
264                                 return -EWOULDBLOCK;
265                         __delay(ticks);
266                 } else if (hv_err == HV_EBUSY) {
267                         if (++busy >= N2RNG_BUSY_LIMIT)
268                                 return -EBUSY;
269                         udelay(1);
270                 } else
271                         return -ENODEV;
272         }
273 }
274
275 /* Just try to see if we can successfully access the control register
276  * of the RNG on the domain on which we are currently executing.
277  */
278 static int n2rng_try_read_ctl(struct n2rng *np)
279 {
280         unsigned long hv_err;
281         unsigned long x;
282
283         if (np->hvapi_major == 1) {
284                 hv_err = sun4v_rng_get_diag_ctl();
285         } else {
286                 /* We purposefully give invalid arguments, HV_NOACCESS
287                  * is higher priority than the errors we'd get from
288                  * these other cases, and that's the error we are
289                  * truly interested in.
290                  */
291                 hv_err = sun4v_rng_ctl_read_v2(0UL, ~0UL, &x, &x, &x, &x);
292                 switch (hv_err) {
293                 case HV_EWOULDBLOCK:
294                 case HV_ENOACCESS:
295                         break;
296                 default:
297                         hv_err = HV_EOK;
298                         break;
299                 }
300         }
301
302         return n2rng_hv_err_trans(hv_err);
303 }
304
305 static u64 n2rng_control_default(struct n2rng *np, int ctl)
306 {
307         u64 val = 0;
308
309         if (np->data->chip_version == 1) {
310                 val = ((2 << RNG_v1_CTL_ASEL_SHIFT) |
311                         (N2RNG_ACCUM_CYCLES_DEFAULT << RNG_v1_CTL_WAIT_SHIFT) |
312                          RNG_CTL_LFSR);
313
314                 switch (ctl) {
315                 case 0:
316                         val |= (1 << RNG_v1_CTL_VCO_SHIFT) | RNG_CTL_ES1;
317                         break;
318                 case 1:
319                         val |= (2 << RNG_v1_CTL_VCO_SHIFT) | RNG_CTL_ES2;
320                         break;
321                 case 2:
322                         val |= (3 << RNG_v1_CTL_VCO_SHIFT) | RNG_CTL_ES3;
323                         break;
324                 case 3:
325                         val |= RNG_CTL_ES1 | RNG_CTL_ES2 | RNG_CTL_ES3;
326                         break;
327                 default:
328                         break;
329                 }
330
331         } else {
332                 val = ((2 << RNG_v2_CTL_ASEL_SHIFT) |
333                         (N2RNG_ACCUM_CYCLES_DEFAULT << RNG_v2_CTL_WAIT_SHIFT) |
334                          RNG_CTL_LFSR);
335
336                 switch (ctl) {
337                 case 0:
338                         val |= (1 << RNG_v2_CTL_VCO_SHIFT) | RNG_CTL_ES1;
339                         break;
340                 case 1:
341                         val |= (2 << RNG_v2_CTL_VCO_SHIFT) | RNG_CTL_ES2;
342                         break;
343                 case 2:
344                         val |= (3 << RNG_v2_CTL_VCO_SHIFT) | RNG_CTL_ES3;
345                         break;
346                 case 3:
347                         val |= RNG_CTL_ES1 | RNG_CTL_ES2 | RNG_CTL_ES3;
348                         break;
349                 default:
350                         break;
351                 }
352         }
353
354         return val;
355 }
356
357 static void n2rng_control_swstate_init(struct n2rng *np)
358 {
359         int i;
360
361         np->flags |= N2RNG_FLAG_CONTROL;
362
363         np->health_check_sec = N2RNG_HEALTH_CHECK_SEC_DEFAULT;
364         np->accum_cycles = N2RNG_ACCUM_CYCLES_DEFAULT;
365         np->wd_timeo = N2RNG_WD_TIMEO_DEFAULT;
366
367         for (i = 0; i < np->num_units; i++) {
368                 struct n2rng_unit *up = &np->units[i];
369
370                 up->control[0] = n2rng_control_default(np, 0);
371                 up->control[1] = n2rng_control_default(np, 1);
372                 up->control[2] = n2rng_control_default(np, 2);
373                 up->control[3] = n2rng_control_default(np, 3);
374         }
375
376         np->hv_state = HV_RNG_STATE_UNCONFIGURED;
377 }
378
379 static int n2rng_grab_diag_control(struct n2rng *np)
380 {
381         int i, busy_count, err = -ENODEV;
382
383         busy_count = 0;
384         for (i = 0; i < 100; i++) {
385                 err = n2rng_try_read_ctl(np);
386                 if (err != -EAGAIN)
387                         break;
388
389                 if (++busy_count > 100) {
390                         dev_err(&np->op->dev,
391                                 "Grab diag control timeout.\n");
392                         return -ENODEV;
393                 }
394
395                 udelay(1);
396         }
397
398         return err;
399 }
400
401 static int n2rng_init_control(struct n2rng *np)
402 {
403         int err = n2rng_grab_diag_control(np);
404
405         /* Not in the control domain, that's OK we are only a consumer
406          * of the RNG data, we don't setup and program it.
407          */
408         if (err == -EPERM)
409                 return 0;
410         if (err)
411                 return err;
412
413         n2rng_control_swstate_init(np);
414
415         return 0;
416 }
417
418 static int n2rng_data_read(struct hwrng *rng, u32 *data)
419 {
420         struct n2rng *np = (struct n2rng *) rng->priv;
421         unsigned long ra = __pa(&np->test_data);
422         int len;
423
424         if (!(np->flags & N2RNG_FLAG_READY)) {
425                 len = 0;
426         } else if (np->flags & N2RNG_FLAG_BUFFER_VALID) {
427                 np->flags &= ~N2RNG_FLAG_BUFFER_VALID;
428                 *data = np->buffer;
429                 len = 4;
430         } else {
431                 int err = n2rng_generic_read_data(ra);
432                 if (!err) {
433                         np->flags |= N2RNG_FLAG_BUFFER_VALID;
434                         np->buffer = np->test_data >> 32;
435                         *data = np->test_data & 0xffffffff;
436                         len = 4;
437                 } else {
438                         dev_err(&np->op->dev, "RNG error, retesting\n");
439                         np->flags &= ~N2RNG_FLAG_READY;
440                         if (!(np->flags & N2RNG_FLAG_SHUTDOWN))
441                                 schedule_delayed_work(&np->work, 0);
442                         len = 0;
443                 }
444         }
445
446         return len;
447 }
448
449 /* On a guest node, just make sure we can read random data properly.
450  * If a control node reboots or reloads it's n2rng driver, this won't
451  * work during that time.  So we have to keep probing until the device
452  * becomes usable.
453  */
454 static int n2rng_guest_check(struct n2rng *np)
455 {
456         unsigned long ra = __pa(&np->test_data);
457
458         return n2rng_generic_read_data(ra);
459 }
460
461 static int n2rng_entropy_diag_read(struct n2rng *np, unsigned long unit,
462                                    u64 *pre_control, u64 pre_state,
463                                    u64 *buffer, unsigned long buf_len,
464                                    u64 *post_control, u64 post_state)
465 {
466         unsigned long post_ctl_ra = __pa(post_control);
467         unsigned long pre_ctl_ra = __pa(pre_control);
468         unsigned long buffer_ra = __pa(buffer);
469         int err;
470
471         err = n2rng_generic_write_control(np, pre_ctl_ra, unit, pre_state);
472         if (err)
473                 return err;
474
475         err = n2rng_generic_read_diag_data(np, unit,
476                                            buffer_ra, buf_len);
477
478         (void) n2rng_generic_write_control(np, post_ctl_ra, unit,
479                                            post_state);
480
481         return err;
482 }
483
484 static u64 advance_polynomial(u64 poly, u64 val, int count)
485 {
486         int i;
487
488         for (i = 0; i < count; i++) {
489                 int highbit_set = ((s64)val < 0);
490
491                 val <<= 1;
492                 if (highbit_set)
493                         val ^= poly;
494         }
495
496         return val;
497 }
498
499 static int n2rng_test_buffer_find(struct n2rng *np, u64 val)
500 {
501         int i, count = 0;
502
503         /* Purposefully skip over the first word.  */
504         for (i = 1; i < SELFTEST_BUFFER_WORDS; i++) {
505                 if (np->test_buffer[i] == val)
506                         count++;
507         }
508         return count;
509 }
510
511 static void n2rng_dump_test_buffer(struct n2rng *np)
512 {
513         int i;
514
515         for (i = 0; i < SELFTEST_BUFFER_WORDS; i++)
516                 dev_err(&np->op->dev, "Test buffer slot %d [0x%016llx]\n",
517                         i, np->test_buffer[i]);
518 }
519
520 static int n2rng_check_selftest_buffer(struct n2rng *np, unsigned long unit)
521 {
522         u64 val;
523         int err, matches, limit;
524
525         switch (np->data->id) {
526         case N2_n2_rng:
527         case N2_vf_rng:
528         case N2_kt_rng:
529         case N2_m4_rng:  /* yes, m4 uses the old value */
530                 val = RNG_v1_SELFTEST_VAL;
531                 break;
532         default:
533                 val = RNG_v2_SELFTEST_VAL;
534                 break;
535         }
536
537         matches = 0;
538         for (limit = 0; limit < SELFTEST_LOOPS_MAX; limit++) {
539                 matches += n2rng_test_buffer_find(np, val);
540                 if (matches >= SELFTEST_MATCH_GOAL)
541                         break;
542                 val = advance_polynomial(SELFTEST_POLY, val, 1);
543         }
544
545         err = 0;
546         if (limit >= SELFTEST_LOOPS_MAX) {
547                 err = -ENODEV;
548                 dev_err(&np->op->dev, "Selftest failed on unit %lu\n", unit);
549                 n2rng_dump_test_buffer(np);
550         } else
551                 dev_info(&np->op->dev, "Selftest passed on unit %lu\n", unit);
552
553         return err;
554 }
555
556 static int n2rng_control_selftest(struct n2rng *np, unsigned long unit)
557 {
558         int err;
559         u64 base, base3;
560
561         switch (np->data->id) {
562         case N2_n2_rng:
563         case N2_vf_rng:
564         case N2_kt_rng:
565                 base = RNG_v1_CTL_ASEL_NOOUT << RNG_v1_CTL_ASEL_SHIFT;
566                 base3 = base | RNG_CTL_LFSR |
567                         ((RNG_v1_SELFTEST_TICKS - 2) << RNG_v1_CTL_WAIT_SHIFT);
568                 break;
569         case N2_m4_rng:
570                 base = RNG_v2_CTL_ASEL_NOOUT << RNG_v2_CTL_ASEL_SHIFT;
571                 base3 = base | RNG_CTL_LFSR |
572                         ((RNG_v1_SELFTEST_TICKS - 2) << RNG_v2_CTL_WAIT_SHIFT);
573                 break;
574         default:
575                 base = RNG_v2_CTL_ASEL_NOOUT << RNG_v2_CTL_ASEL_SHIFT;
576                 base3 = base | RNG_CTL_LFSR |
577                         (RNG_v2_SELFTEST_TICKS << RNG_v2_CTL_WAIT_SHIFT);
578                 break;
579         }
580
581         np->test_control[0] = base;
582         np->test_control[1] = base;
583         np->test_control[2] = base;
584         np->test_control[3] = base3;
585
586         err = n2rng_entropy_diag_read(np, unit, np->test_control,
587                                       HV_RNG_STATE_HEALTHCHECK,
588                                       np->test_buffer,
589                                       sizeof(np->test_buffer),
590                                       &np->units[unit].control[0],
591                                       np->hv_state);
592         if (err)
593                 return err;
594
595         return n2rng_check_selftest_buffer(np, unit);
596 }
597
598 static int n2rng_control_check(struct n2rng *np)
599 {
600         int i;
601
602         for (i = 0; i < np->num_units; i++) {
603                 int err = n2rng_control_selftest(np, i);
604                 if (err)
605                         return err;
606         }
607         return 0;
608 }
609
610 /* The sanity checks passed, install the final configuration into the
611  * chip, it's ready to use.
612  */
613 static int n2rng_control_configure_units(struct n2rng *np)
614 {
615         int unit, err;
616
617         err = 0;
618         for (unit = 0; unit < np->num_units; unit++) {
619                 struct n2rng_unit *up = &np->units[unit];
620                 unsigned long ctl_ra = __pa(&up->control[0]);
621                 int esrc;
622                 u64 base, shift;
623
624                 if (np->data->chip_version == 1) {
625                         base = ((np->accum_cycles << RNG_v1_CTL_WAIT_SHIFT) |
626                               (RNG_v1_CTL_ASEL_NOOUT << RNG_v1_CTL_ASEL_SHIFT) |
627                               RNG_CTL_LFSR);
628                         shift = RNG_v1_CTL_VCO_SHIFT;
629                 } else {
630                         base = ((np->accum_cycles << RNG_v2_CTL_WAIT_SHIFT) |
631                               (RNG_v2_CTL_ASEL_NOOUT << RNG_v2_CTL_ASEL_SHIFT) |
632                               RNG_CTL_LFSR);
633                         shift = RNG_v2_CTL_VCO_SHIFT;
634                 }
635
636                 /* XXX This isn't the best.  We should fetch a bunch
637                  * XXX of words using each entropy source combined XXX
638                  * with each VCO setting, and see which combinations
639                  * XXX give the best random data.
640                  */
641                 for (esrc = 0; esrc < 3; esrc++)
642                         up->control[esrc] = base |
643                                 (esrc << shift) |
644                                 (RNG_CTL_ES1 << esrc);
645
646                 up->control[3] = base |
647                         (RNG_CTL_ES1 | RNG_CTL_ES2 | RNG_CTL_ES3);
648
649                 err = n2rng_generic_write_control(np, ctl_ra, unit,
650                                                   HV_RNG_STATE_CONFIGURED);
651                 if (err)
652                         break;
653         }
654
655         return err;
656 }
657
658 static void n2rng_work(struct work_struct *work)
659 {
660         struct n2rng *np = container_of(work, struct n2rng, work.work);
661         int err = 0;
662         static int retries = 4;
663
664         if (!(np->flags & N2RNG_FLAG_CONTROL)) {
665                 err = n2rng_guest_check(np);
666         } else {
667                 preempt_disable();
668                 err = n2rng_control_check(np);
669                 preempt_enable();
670
671                 if (!err)
672                         err = n2rng_control_configure_units(np);
673         }
674
675         if (!err) {
676                 np->flags |= N2RNG_FLAG_READY;
677                 dev_info(&np->op->dev, "RNG ready\n");
678         }
679
680         if (--retries == 0)
681                 dev_err(&np->op->dev, "Self-test retries failed, RNG not ready\n");
682         else if (err && !(np->flags & N2RNG_FLAG_SHUTDOWN))
683                 schedule_delayed_work(&np->work, HZ * 2);
684 }
685
686 static void n2rng_driver_version(void)
687 {
688         static int n2rng_version_printed;
689
690         if (n2rng_version_printed++ == 0)
691                 pr_info("%s", version);
692 }
693
694 static const struct of_device_id n2rng_match[];
695 static int n2rng_probe(struct platform_device *op)
696 {
697         const struct of_device_id *match;
698         int err = -ENOMEM;
699         struct n2rng *np;
700
701         match = of_match_device(n2rng_match, &op->dev);
702         if (!match)
703                 return -EINVAL;
704
705         n2rng_driver_version();
706         np = devm_kzalloc(&op->dev, sizeof(*np), GFP_KERNEL);
707         if (!np)
708                 goto out;
709         np->op = op;
710         np->data = (struct n2rng_template *)match->data;
711
712         INIT_DELAYED_WORK(&np->work, n2rng_work);
713
714         if (np->data->multi_capable)
715                 np->flags |= N2RNG_FLAG_MULTI;
716
717         err = -ENODEV;
718         np->hvapi_major = 2;
719         if (sun4v_hvapi_register(HV_GRP_RNG,
720                                  np->hvapi_major,
721                                  &np->hvapi_minor)) {
722                 np->hvapi_major = 1;
723                 if (sun4v_hvapi_register(HV_GRP_RNG,
724                                          np->hvapi_major,
725                                          &np->hvapi_minor)) {
726                         dev_err(&op->dev, "Cannot register suitable "
727                                 "HVAPI version.\n");
728                         goto out;
729                 }
730         }
731
732         if (np->flags & N2RNG_FLAG_MULTI) {
733                 if (np->hvapi_major < 2) {
734                         dev_err(&op->dev, "multi-unit-capable RNG requires "
735                                 "HVAPI major version 2 or later, got %lu\n",
736                                 np->hvapi_major);
737                         goto out_hvapi_unregister;
738                 }
739                 np->num_units = of_getintprop_default(op->dev.of_node,
740                                                       "rng-#units", 0);
741                 if (!np->num_units) {
742                         dev_err(&op->dev, "VF RNG lacks rng-#units property\n");
743                         goto out_hvapi_unregister;
744                 }
745         } else {
746                 np->num_units = 1;
747         }
748
749         dev_info(&op->dev, "Registered RNG HVAPI major %lu minor %lu\n",
750                  np->hvapi_major, np->hvapi_minor);
751         np->units = devm_kcalloc(&op->dev, np->num_units, sizeof(*np->units),
752                                  GFP_KERNEL);
753         err = -ENOMEM;
754         if (!np->units)
755                 goto out_hvapi_unregister;
756
757         err = n2rng_init_control(np);
758         if (err)
759                 goto out_hvapi_unregister;
760
761         dev_info(&op->dev, "Found %s RNG, units: %d\n",
762                  ((np->flags & N2RNG_FLAG_MULTI) ?
763                   "multi-unit-capable" : "single-unit"),
764                  np->num_units);
765
766         np->hwrng.name = DRV_MODULE_NAME;
767         np->hwrng.data_read = n2rng_data_read;
768         np->hwrng.priv = (unsigned long) np;
769
770         err = hwrng_register(&np->hwrng);
771         if (err)
772                 goto out_hvapi_unregister;
773
774         platform_set_drvdata(op, np);
775
776         schedule_delayed_work(&np->work, 0);
777
778         return 0;
779
780 out_hvapi_unregister:
781         sun4v_hvapi_unregister(HV_GRP_RNG);
782
783 out:
784         return err;
785 }
786
787 static int n2rng_remove(struct platform_device *op)
788 {
789         struct n2rng *np = platform_get_drvdata(op);
790
791         np->flags |= N2RNG_FLAG_SHUTDOWN;
792
793         cancel_delayed_work_sync(&np->work);
794
795         hwrng_unregister(&np->hwrng);
796
797         sun4v_hvapi_unregister(HV_GRP_RNG);
798
799         return 0;
800 }
801
802 static struct n2rng_template n2_template = {
803         .id = N2_n2_rng,
804         .multi_capable = 0,
805         .chip_version = 1,
806 };
807
808 static struct n2rng_template vf_template = {
809         .id = N2_vf_rng,
810         .multi_capable = 1,
811         .chip_version = 1,
812 };
813
814 static struct n2rng_template kt_template = {
815         .id = N2_kt_rng,
816         .multi_capable = 1,
817         .chip_version = 1,
818 };
819
820 static struct n2rng_template m4_template = {
821         .id = N2_m4_rng,
822         .multi_capable = 1,
823         .chip_version = 2,
824 };
825
826 static struct n2rng_template m7_template = {
827         .id = N2_m7_rng,
828         .multi_capable = 1,
829         .chip_version = 2,
830 };
831
832 static const struct of_device_id n2rng_match[] = {
833         {
834                 .name           = "random-number-generator",
835                 .compatible     = "SUNW,n2-rng",
836                 .data           = &n2_template,
837         },
838         {
839                 .name           = "random-number-generator",
840                 .compatible     = "SUNW,vf-rng",
841                 .data           = &vf_template,
842         },
843         {
844                 .name           = "random-number-generator",
845                 .compatible     = "SUNW,kt-rng",
846                 .data           = &kt_template,
847         },
848         {
849                 .name           = "random-number-generator",
850                 .compatible     = "ORCL,m4-rng",
851                 .data           = &m4_template,
852         },
853         {
854                 .name           = "random-number-generator",
855                 .compatible     = "ORCL,m7-rng",
856                 .data           = &m7_template,
857         },
858         {},
859 };
860 MODULE_DEVICE_TABLE(of, n2rng_match);
861
862 static struct platform_driver n2rng_driver = {
863         .driver = {
864                 .name = "n2rng",
865                 .of_match_table = n2rng_match,
866         },
867         .probe          = n2rng_probe,
868         .remove         = n2rng_remove,
869 };
870
871 module_platform_driver(n2rng_driver);