GNU Linux-libre 4.19.286-gnu1
[releases.git] / drivers / char / ipmi / ipmi_si_intf.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * ipmi_si.c
4  *
5  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
6  * BT).
7  *
8  * Author: MontaVista Software, Inc.
9  *         Corey Minyard <minyard@mvista.com>
10  *         source@mvista.com
11  *
12  * Copyright 2002 MontaVista Software Inc.
13  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
14  */
15
16 /*
17  * This file holds the "policy" for the interface to the SMI state
18  * machine.  It does the configuration, handles timers and interrupts,
19  * and drives the real SMI state machine.
20  */
21
22 #include <linux/module.h>
23 #include <linux/moduleparam.h>
24 #include <linux/sched.h>
25 #include <linux/seq_file.h>
26 #include <linux/timer.h>
27 #include <linux/errno.h>
28 #include <linux/spinlock.h>
29 #include <linux/slab.h>
30 #include <linux/delay.h>
31 #include <linux/list.h>
32 #include <linux/notifier.h>
33 #include <linux/mutex.h>
34 #include <linux/kthread.h>
35 #include <asm/irq.h>
36 #include <linux/interrupt.h>
37 #include <linux/rcupdate.h>
38 #include <linux/ipmi.h>
39 #include <linux/ipmi_smi.h>
40 #include "ipmi_si.h"
41 #include <linux/string.h>
42 #include <linux/ctype.h>
43
44 #define PFX "ipmi_si: "
45
46 /* Measure times between events in the driver. */
47 #undef DEBUG_TIMING
48
49 /* Call every 10 ms. */
50 #define SI_TIMEOUT_TIME_USEC    10000
51 #define SI_USEC_PER_JIFFY       (1000000/HZ)
52 #define SI_TIMEOUT_JIFFIES      (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
53 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
54                                       short timeout */
55
56 enum si_intf_state {
57         SI_NORMAL,
58         SI_GETTING_FLAGS,
59         SI_GETTING_EVENTS,
60         SI_CLEARING_FLAGS,
61         SI_GETTING_MESSAGES,
62         SI_CHECKING_ENABLES,
63         SI_SETTING_ENABLES
64         /* FIXME - add watchdog stuff. */
65 };
66
67 /* Some BT-specific defines we need here. */
68 #define IPMI_BT_INTMASK_REG             2
69 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT   2
70 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT  1
71
72 static const char * const si_to_str[] = { "invalid", "kcs", "smic", "bt" };
73
74 static int initialized;
75
76 /*
77  * Indexes into stats[] in smi_info below.
78  */
79 enum si_stat_indexes {
80         /*
81          * Number of times the driver requested a timer while an operation
82          * was in progress.
83          */
84         SI_STAT_short_timeouts = 0,
85
86         /*
87          * Number of times the driver requested a timer while nothing was in
88          * progress.
89          */
90         SI_STAT_long_timeouts,
91
92         /* Number of times the interface was idle while being polled. */
93         SI_STAT_idles,
94
95         /* Number of interrupts the driver handled. */
96         SI_STAT_interrupts,
97
98         /* Number of time the driver got an ATTN from the hardware. */
99         SI_STAT_attentions,
100
101         /* Number of times the driver requested flags from the hardware. */
102         SI_STAT_flag_fetches,
103
104         /* Number of times the hardware didn't follow the state machine. */
105         SI_STAT_hosed_count,
106
107         /* Number of completed messages. */
108         SI_STAT_complete_transactions,
109
110         /* Number of IPMI events received from the hardware. */
111         SI_STAT_events,
112
113         /* Number of watchdog pretimeouts. */
114         SI_STAT_watchdog_pretimeouts,
115
116         /* Number of asynchronous messages received. */
117         SI_STAT_incoming_messages,
118
119
120         /* This *must* remain last, add new values above this. */
121         SI_NUM_STATS
122 };
123
124 struct smi_info {
125         int                    si_num;
126         struct ipmi_smi        *intf;
127         struct si_sm_data      *si_sm;
128         const struct si_sm_handlers *handlers;
129         spinlock_t             si_lock;
130         struct ipmi_smi_msg    *waiting_msg;
131         struct ipmi_smi_msg    *curr_msg;
132         enum si_intf_state     si_state;
133
134         /*
135          * Used to handle the various types of I/O that can occur with
136          * IPMI
137          */
138         struct si_sm_io io;
139
140         /*
141          * Per-OEM handler, called from handle_flags().  Returns 1
142          * when handle_flags() needs to be re-run or 0 indicating it
143          * set si_state itself.
144          */
145         int (*oem_data_avail_handler)(struct smi_info *smi_info);
146
147         /*
148          * Flags from the last GET_MSG_FLAGS command, used when an ATTN
149          * is set to hold the flags until we are done handling everything
150          * from the flags.
151          */
152 #define RECEIVE_MSG_AVAIL       0x01
153 #define EVENT_MSG_BUFFER_FULL   0x02
154 #define WDT_PRE_TIMEOUT_INT     0x08
155 #define OEM0_DATA_AVAIL     0x20
156 #define OEM1_DATA_AVAIL     0x40
157 #define OEM2_DATA_AVAIL     0x80
158 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
159                              OEM1_DATA_AVAIL | \
160                              OEM2_DATA_AVAIL)
161         unsigned char       msg_flags;
162
163         /* Does the BMC have an event buffer? */
164         bool                has_event_buffer;
165
166         /*
167          * If set to true, this will request events the next time the
168          * state machine is idle.
169          */
170         atomic_t            req_events;
171
172         /*
173          * If true, run the state machine to completion on every send
174          * call.  Generally used after a panic to make sure stuff goes
175          * out.
176          */
177         bool                run_to_completion;
178
179         /* The timer for this si. */
180         struct timer_list   si_timer;
181
182         /* This flag is set, if the timer can be set */
183         bool                timer_can_start;
184
185         /* This flag is set, if the timer is running (timer_pending() isn't enough) */
186         bool                timer_running;
187
188         /* The time (in jiffies) the last timeout occurred at. */
189         unsigned long       last_timeout_jiffies;
190
191         /* Are we waiting for the events, pretimeouts, received msgs? */
192         atomic_t            need_watch;
193
194         /*
195          * The driver will disable interrupts when it gets into a
196          * situation where it cannot handle messages due to lack of
197          * memory.  Once that situation clears up, it will re-enable
198          * interrupts.
199          */
200         bool interrupt_disabled;
201
202         /*
203          * Does the BMC support events?
204          */
205         bool supports_event_msg_buff;
206
207         /*
208          * Can we disable interrupts the global enables receive irq
209          * bit?  There are currently two forms of brokenness, some
210          * systems cannot disable the bit (which is technically within
211          * the spec but a bad idea) and some systems have the bit
212          * forced to zero even though interrupts work (which is
213          * clearly outside the spec).  The next bool tells which form
214          * of brokenness is present.
215          */
216         bool cannot_disable_irq;
217
218         /*
219          * Some systems are broken and cannot set the irq enable
220          * bit, even if they support interrupts.
221          */
222         bool irq_enable_broken;
223
224         /* Is the driver in maintenance mode? */
225         bool in_maintenance_mode;
226
227         /*
228          * Did we get an attention that we did not handle?
229          */
230         bool got_attn;
231
232         /* From the get device id response... */
233         struct ipmi_device_id device_id;
234
235         /* Default driver model device. */
236         struct platform_device *pdev;
237
238         /* Have we added the device group to the device? */
239         bool dev_group_added;
240
241         /* Have we added the platform device? */
242         bool pdev_registered;
243
244         /* Counters and things for the proc filesystem. */
245         atomic_t stats[SI_NUM_STATS];
246
247         struct task_struct *thread;
248
249         struct list_head link;
250 };
251
252 #define smi_inc_stat(smi, stat) \
253         atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
254 #define smi_get_stat(smi, stat) \
255         ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
256
257 #define IPMI_MAX_INTFS 4
258 static int force_kipmid[IPMI_MAX_INTFS];
259 static int num_force_kipmid;
260
261 static unsigned int kipmid_max_busy_us[IPMI_MAX_INTFS];
262 static int num_max_busy_us;
263
264 static bool unload_when_empty = true;
265
266 static int try_smi_init(struct smi_info *smi);
267 static void cleanup_one_si(struct smi_info *smi_info);
268 static void cleanup_ipmi_si(void);
269
270 #ifdef DEBUG_TIMING
271 void debug_timestamp(char *msg)
272 {
273         struct timespec64 t;
274
275         getnstimeofday64(&t);
276         pr_debug("**%s: %lld.%9.9ld\n", msg, (long long) t.tv_sec, t.tv_nsec);
277 }
278 #else
279 #define debug_timestamp(x)
280 #endif
281
282 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
283 static int register_xaction_notifier(struct notifier_block *nb)
284 {
285         return atomic_notifier_chain_register(&xaction_notifier_list, nb);
286 }
287
288 static void deliver_recv_msg(struct smi_info *smi_info,
289                              struct ipmi_smi_msg *msg)
290 {
291         /* Deliver the message to the upper layer. */
292         ipmi_smi_msg_received(smi_info->intf, msg);
293 }
294
295 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
296 {
297         struct ipmi_smi_msg *msg = smi_info->curr_msg;
298
299         if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
300                 cCode = IPMI_ERR_UNSPECIFIED;
301         /* else use it as is */
302
303         /* Make it a response */
304         msg->rsp[0] = msg->data[0] | 4;
305         msg->rsp[1] = msg->data[1];
306         msg->rsp[2] = cCode;
307         msg->rsp_size = 3;
308
309         smi_info->curr_msg = NULL;
310         deliver_recv_msg(smi_info, msg);
311 }
312
313 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
314 {
315         int              rv;
316
317         if (!smi_info->waiting_msg) {
318                 smi_info->curr_msg = NULL;
319                 rv = SI_SM_IDLE;
320         } else {
321                 int err;
322
323                 smi_info->curr_msg = smi_info->waiting_msg;
324                 smi_info->waiting_msg = NULL;
325                 debug_timestamp("Start2");
326                 err = atomic_notifier_call_chain(&xaction_notifier_list,
327                                 0, smi_info);
328                 if (err & NOTIFY_STOP_MASK) {
329                         rv = SI_SM_CALL_WITHOUT_DELAY;
330                         goto out;
331                 }
332                 err = smi_info->handlers->start_transaction(
333                         smi_info->si_sm,
334                         smi_info->curr_msg->data,
335                         smi_info->curr_msg->data_size);
336                 if (err)
337                         return_hosed_msg(smi_info, err);
338
339                 rv = SI_SM_CALL_WITHOUT_DELAY;
340         }
341 out:
342         return rv;
343 }
344
345 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
346 {
347         if (!smi_info->timer_can_start)
348                 return;
349         smi_info->last_timeout_jiffies = jiffies;
350         mod_timer(&smi_info->si_timer, new_val);
351         smi_info->timer_running = true;
352 }
353
354 /*
355  * Start a new message and (re)start the timer and thread.
356  */
357 static void start_new_msg(struct smi_info *smi_info, unsigned char *msg,
358                           unsigned int size)
359 {
360         smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
361
362         if (smi_info->thread)
363                 wake_up_process(smi_info->thread);
364
365         smi_info->handlers->start_transaction(smi_info->si_sm, msg, size);
366 }
367
368 static void start_check_enables(struct smi_info *smi_info)
369 {
370         unsigned char msg[2];
371
372         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
373         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
374
375         start_new_msg(smi_info, msg, 2);
376         smi_info->si_state = SI_CHECKING_ENABLES;
377 }
378
379 static void start_clear_flags(struct smi_info *smi_info)
380 {
381         unsigned char msg[3];
382
383         /* Make sure the watchdog pre-timeout flag is not set at startup. */
384         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
385         msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
386         msg[2] = WDT_PRE_TIMEOUT_INT;
387
388         start_new_msg(smi_info, msg, 3);
389         smi_info->si_state = SI_CLEARING_FLAGS;
390 }
391
392 static void start_getting_msg_queue(struct smi_info *smi_info)
393 {
394         smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
395         smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
396         smi_info->curr_msg->data_size = 2;
397
398         start_new_msg(smi_info, smi_info->curr_msg->data,
399                       smi_info->curr_msg->data_size);
400         smi_info->si_state = SI_GETTING_MESSAGES;
401 }
402
403 static void start_getting_events(struct smi_info *smi_info)
404 {
405         smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
406         smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
407         smi_info->curr_msg->data_size = 2;
408
409         start_new_msg(smi_info, smi_info->curr_msg->data,
410                       smi_info->curr_msg->data_size);
411         smi_info->si_state = SI_GETTING_EVENTS;
412 }
413
414 /*
415  * When we have a situtaion where we run out of memory and cannot
416  * allocate messages, we just leave them in the BMC and run the system
417  * polled until we can allocate some memory.  Once we have some
418  * memory, we will re-enable the interrupt.
419  *
420  * Note that we cannot just use disable_irq(), since the interrupt may
421  * be shared.
422  */
423 static inline bool disable_si_irq(struct smi_info *smi_info)
424 {
425         if ((smi_info->io.irq) && (!smi_info->interrupt_disabled)) {
426                 smi_info->interrupt_disabled = true;
427                 start_check_enables(smi_info);
428                 return true;
429         }
430         return false;
431 }
432
433 static inline bool enable_si_irq(struct smi_info *smi_info)
434 {
435         if ((smi_info->io.irq) && (smi_info->interrupt_disabled)) {
436                 smi_info->interrupt_disabled = false;
437                 start_check_enables(smi_info);
438                 return true;
439         }
440         return false;
441 }
442
443 /*
444  * Allocate a message.  If unable to allocate, start the interrupt
445  * disable process and return NULL.  If able to allocate but
446  * interrupts are disabled, free the message and return NULL after
447  * starting the interrupt enable process.
448  */
449 static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info)
450 {
451         struct ipmi_smi_msg *msg;
452
453         msg = ipmi_alloc_smi_msg();
454         if (!msg) {
455                 if (!disable_si_irq(smi_info))
456                         smi_info->si_state = SI_NORMAL;
457         } else if (enable_si_irq(smi_info)) {
458                 ipmi_free_smi_msg(msg);
459                 msg = NULL;
460         }
461         return msg;
462 }
463
464 static void handle_flags(struct smi_info *smi_info)
465 {
466 retry:
467         if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
468                 /* Watchdog pre-timeout */
469                 smi_inc_stat(smi_info, watchdog_pretimeouts);
470
471                 start_clear_flags(smi_info);
472                 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
473                 ipmi_smi_watchdog_pretimeout(smi_info->intf);
474         } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
475                 /* Messages available. */
476                 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
477                 if (!smi_info->curr_msg)
478                         return;
479
480                 start_getting_msg_queue(smi_info);
481         } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
482                 /* Events available. */
483                 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
484                 if (!smi_info->curr_msg)
485                         return;
486
487                 start_getting_events(smi_info);
488         } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
489                    smi_info->oem_data_avail_handler) {
490                 if (smi_info->oem_data_avail_handler(smi_info))
491                         goto retry;
492         } else
493                 smi_info->si_state = SI_NORMAL;
494 }
495
496 /*
497  * Global enables we care about.
498  */
499 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
500                              IPMI_BMC_EVT_MSG_INTR)
501
502 static u8 current_global_enables(struct smi_info *smi_info, u8 base,
503                                  bool *irq_on)
504 {
505         u8 enables = 0;
506
507         if (smi_info->supports_event_msg_buff)
508                 enables |= IPMI_BMC_EVT_MSG_BUFF;
509
510         if (((smi_info->io.irq && !smi_info->interrupt_disabled) ||
511              smi_info->cannot_disable_irq) &&
512             !smi_info->irq_enable_broken)
513                 enables |= IPMI_BMC_RCV_MSG_INTR;
514
515         if (smi_info->supports_event_msg_buff &&
516             smi_info->io.irq && !smi_info->interrupt_disabled &&
517             !smi_info->irq_enable_broken)
518                 enables |= IPMI_BMC_EVT_MSG_INTR;
519
520         *irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR);
521
522         return enables;
523 }
524
525 static void check_bt_irq(struct smi_info *smi_info, bool irq_on)
526 {
527         u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG);
528
529         irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT;
530
531         if ((bool)irqstate == irq_on)
532                 return;
533
534         if (irq_on)
535                 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
536                                      IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
537         else
538                 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0);
539 }
540
541 static void handle_transaction_done(struct smi_info *smi_info)
542 {
543         struct ipmi_smi_msg *msg;
544
545         debug_timestamp("Done");
546         switch (smi_info->si_state) {
547         case SI_NORMAL:
548                 if (!smi_info->curr_msg)
549                         break;
550
551                 smi_info->curr_msg->rsp_size
552                         = smi_info->handlers->get_result(
553                                 smi_info->si_sm,
554                                 smi_info->curr_msg->rsp,
555                                 IPMI_MAX_MSG_LENGTH);
556
557                 /*
558                  * Do this here becase deliver_recv_msg() releases the
559                  * lock, and a new message can be put in during the
560                  * time the lock is released.
561                  */
562                 msg = smi_info->curr_msg;
563                 smi_info->curr_msg = NULL;
564                 deliver_recv_msg(smi_info, msg);
565                 break;
566
567         case SI_GETTING_FLAGS:
568         {
569                 unsigned char msg[4];
570                 unsigned int  len;
571
572                 /* We got the flags from the SMI, now handle them. */
573                 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
574                 if (msg[2] != 0) {
575                         /* Error fetching flags, just give up for now. */
576                         smi_info->si_state = SI_NORMAL;
577                 } else if (len < 4) {
578                         /*
579                          * Hmm, no flags.  That's technically illegal, but
580                          * don't use uninitialized data.
581                          */
582                         smi_info->si_state = SI_NORMAL;
583                 } else {
584                         smi_info->msg_flags = msg[3];
585                         handle_flags(smi_info);
586                 }
587                 break;
588         }
589
590         case SI_CLEARING_FLAGS:
591         {
592                 unsigned char msg[3];
593
594                 /* We cleared the flags. */
595                 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
596                 if (msg[2] != 0) {
597                         /* Error clearing flags */
598                         dev_warn(smi_info->io.dev,
599                                  "Error clearing flags: %2.2x\n", msg[2]);
600                 }
601                 smi_info->si_state = SI_NORMAL;
602                 break;
603         }
604
605         case SI_GETTING_EVENTS:
606         {
607                 smi_info->curr_msg->rsp_size
608                         = smi_info->handlers->get_result(
609                                 smi_info->si_sm,
610                                 smi_info->curr_msg->rsp,
611                                 IPMI_MAX_MSG_LENGTH);
612
613                 /*
614                  * Do this here becase deliver_recv_msg() releases the
615                  * lock, and a new message can be put in during the
616                  * time the lock is released.
617                  */
618                 msg = smi_info->curr_msg;
619                 smi_info->curr_msg = NULL;
620                 if (msg->rsp[2] != 0) {
621                         /* Error getting event, probably done. */
622                         msg->done(msg);
623
624                         /* Take off the event flag. */
625                         smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
626                         handle_flags(smi_info);
627                 } else {
628                         smi_inc_stat(smi_info, events);
629
630                         /*
631                          * Do this before we deliver the message
632                          * because delivering the message releases the
633                          * lock and something else can mess with the
634                          * state.
635                          */
636                         handle_flags(smi_info);
637
638                         deliver_recv_msg(smi_info, msg);
639                 }
640                 break;
641         }
642
643         case SI_GETTING_MESSAGES:
644         {
645                 smi_info->curr_msg->rsp_size
646                         = smi_info->handlers->get_result(
647                                 smi_info->si_sm,
648                                 smi_info->curr_msg->rsp,
649                                 IPMI_MAX_MSG_LENGTH);
650
651                 /*
652                  * Do this here becase deliver_recv_msg() releases the
653                  * lock, and a new message can be put in during the
654                  * time the lock is released.
655                  */
656                 msg = smi_info->curr_msg;
657                 smi_info->curr_msg = NULL;
658                 if (msg->rsp[2] != 0) {
659                         /* Error getting event, probably done. */
660                         msg->done(msg);
661
662                         /* Take off the msg flag. */
663                         smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
664                         handle_flags(smi_info);
665                 } else {
666                         smi_inc_stat(smi_info, incoming_messages);
667
668                         /*
669                          * Do this before we deliver the message
670                          * because delivering the message releases the
671                          * lock and something else can mess with the
672                          * state.
673                          */
674                         handle_flags(smi_info);
675
676                         deliver_recv_msg(smi_info, msg);
677                 }
678                 break;
679         }
680
681         case SI_CHECKING_ENABLES:
682         {
683                 unsigned char msg[4];
684                 u8 enables;
685                 bool irq_on;
686
687                 /* We got the flags from the SMI, now handle them. */
688                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
689                 if (msg[2] != 0) {
690                         dev_warn(smi_info->io.dev,
691                                  "Couldn't get irq info: %x.\n", msg[2]);
692                         dev_warn(smi_info->io.dev,
693                                  "Maybe ok, but ipmi might run very slowly.\n");
694                         smi_info->si_state = SI_NORMAL;
695                         break;
696                 }
697                 enables = current_global_enables(smi_info, 0, &irq_on);
698                 if (smi_info->io.si_type == SI_BT)
699                         /* BT has its own interrupt enable bit. */
700                         check_bt_irq(smi_info, irq_on);
701                 if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) {
702                         /* Enables are not correct, fix them. */
703                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
704                         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
705                         msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK);
706                         smi_info->handlers->start_transaction(
707                                 smi_info->si_sm, msg, 3);
708                         smi_info->si_state = SI_SETTING_ENABLES;
709                 } else if (smi_info->supports_event_msg_buff) {
710                         smi_info->curr_msg = ipmi_alloc_smi_msg();
711                         if (!smi_info->curr_msg) {
712                                 smi_info->si_state = SI_NORMAL;
713                                 break;
714                         }
715                         start_getting_events(smi_info);
716                 } else {
717                         smi_info->si_state = SI_NORMAL;
718                 }
719                 break;
720         }
721
722         case SI_SETTING_ENABLES:
723         {
724                 unsigned char msg[4];
725
726                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
727                 if (msg[2] != 0)
728                         dev_warn(smi_info->io.dev,
729                                  "Could not set the global enables: 0x%x.\n",
730                                  msg[2]);
731
732                 if (smi_info->supports_event_msg_buff) {
733                         smi_info->curr_msg = ipmi_alloc_smi_msg();
734                         if (!smi_info->curr_msg) {
735                                 smi_info->si_state = SI_NORMAL;
736                                 break;
737                         }
738                         start_getting_events(smi_info);
739                 } else {
740                         smi_info->si_state = SI_NORMAL;
741                 }
742                 break;
743         }
744         }
745 }
746
747 /*
748  * Called on timeouts and events.  Timeouts should pass the elapsed
749  * time, interrupts should pass in zero.  Must be called with
750  * si_lock held and interrupts disabled.
751  */
752 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
753                                            int time)
754 {
755         enum si_sm_result si_sm_result;
756
757 restart:
758         /*
759          * There used to be a loop here that waited a little while
760          * (around 25us) before giving up.  That turned out to be
761          * pointless, the minimum delays I was seeing were in the 300us
762          * range, which is far too long to wait in an interrupt.  So
763          * we just run until the state machine tells us something
764          * happened or it needs a delay.
765          */
766         si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
767         time = 0;
768         while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
769                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
770
771         if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
772                 smi_inc_stat(smi_info, complete_transactions);
773
774                 handle_transaction_done(smi_info);
775                 goto restart;
776         } else if (si_sm_result == SI_SM_HOSED) {
777                 smi_inc_stat(smi_info, hosed_count);
778
779                 /*
780                  * Do the before return_hosed_msg, because that
781                  * releases the lock.
782                  */
783                 smi_info->si_state = SI_NORMAL;
784                 if (smi_info->curr_msg != NULL) {
785                         /*
786                          * If we were handling a user message, format
787                          * a response to send to the upper layer to
788                          * tell it about the error.
789                          */
790                         return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
791                 }
792                 goto restart;
793         }
794
795         /*
796          * We prefer handling attn over new messages.  But don't do
797          * this if there is not yet an upper layer to handle anything.
798          */
799         if (si_sm_result == SI_SM_ATTN || smi_info->got_attn) {
800                 unsigned char msg[2];
801
802                 if (smi_info->si_state != SI_NORMAL) {
803                         /*
804                          * We got an ATTN, but we are doing something else.
805                          * Handle the ATTN later.
806                          */
807                         smi_info->got_attn = true;
808                 } else {
809                         smi_info->got_attn = false;
810                         smi_inc_stat(smi_info, attentions);
811
812                         /*
813                          * Got a attn, send down a get message flags to see
814                          * what's causing it.  It would be better to handle
815                          * this in the upper layer, but due to the way
816                          * interrupts work with the SMI, that's not really
817                          * possible.
818                          */
819                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
820                         msg[1] = IPMI_GET_MSG_FLAGS_CMD;
821
822                         start_new_msg(smi_info, msg, 2);
823                         smi_info->si_state = SI_GETTING_FLAGS;
824                         goto restart;
825                 }
826         }
827
828         /* If we are currently idle, try to start the next message. */
829         if (si_sm_result == SI_SM_IDLE) {
830                 smi_inc_stat(smi_info, idles);
831
832                 si_sm_result = start_next_msg(smi_info);
833                 if (si_sm_result != SI_SM_IDLE)
834                         goto restart;
835         }
836
837         if ((si_sm_result == SI_SM_IDLE)
838             && (atomic_read(&smi_info->req_events))) {
839                 /*
840                  * We are idle and the upper layer requested that I fetch
841                  * events, so do so.
842                  */
843                 atomic_set(&smi_info->req_events, 0);
844
845                 /*
846                  * Take this opportunity to check the interrupt and
847                  * message enable state for the BMC.  The BMC can be
848                  * asynchronously reset, and may thus get interrupts
849                  * disable and messages disabled.
850                  */
851                 if (smi_info->supports_event_msg_buff || smi_info->io.irq) {
852                         start_check_enables(smi_info);
853                 } else {
854                         smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
855                         if (!smi_info->curr_msg)
856                                 goto out;
857
858                         start_getting_events(smi_info);
859                 }
860                 goto restart;
861         }
862
863         if (si_sm_result == SI_SM_IDLE && smi_info->timer_running) {
864                 /* Ok it if fails, the timer will just go off. */
865                 if (del_timer(&smi_info->si_timer))
866                         smi_info->timer_running = false;
867         }
868
869 out:
870         return si_sm_result;
871 }
872
873 static void check_start_timer_thread(struct smi_info *smi_info)
874 {
875         if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
876                 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
877
878                 if (smi_info->thread)
879                         wake_up_process(smi_info->thread);
880
881                 start_next_msg(smi_info);
882                 smi_event_handler(smi_info, 0);
883         }
884 }
885
886 static void flush_messages(void *send_info)
887 {
888         struct smi_info *smi_info = send_info;
889         enum si_sm_result result;
890
891         /*
892          * Currently, this function is called only in run-to-completion
893          * mode.  This means we are single-threaded, no need for locks.
894          */
895         result = smi_event_handler(smi_info, 0);
896         while (result != SI_SM_IDLE) {
897                 udelay(SI_SHORT_TIMEOUT_USEC);
898                 result = smi_event_handler(smi_info, SI_SHORT_TIMEOUT_USEC);
899         }
900 }
901
902 static void sender(void                *send_info,
903                    struct ipmi_smi_msg *msg)
904 {
905         struct smi_info   *smi_info = send_info;
906         unsigned long     flags;
907
908         debug_timestamp("Enqueue");
909
910         if (smi_info->run_to_completion) {
911                 /*
912                  * If we are running to completion, start it.  Upper
913                  * layer will call flush_messages to clear it out.
914                  */
915                 smi_info->waiting_msg = msg;
916                 return;
917         }
918
919         spin_lock_irqsave(&smi_info->si_lock, flags);
920         /*
921          * The following two lines don't need to be under the lock for
922          * the lock's sake, but they do need SMP memory barriers to
923          * avoid getting things out of order.  We are already claiming
924          * the lock, anyway, so just do it under the lock to avoid the
925          * ordering problem.
926          */
927         BUG_ON(smi_info->waiting_msg);
928         smi_info->waiting_msg = msg;
929         check_start_timer_thread(smi_info);
930         spin_unlock_irqrestore(&smi_info->si_lock, flags);
931 }
932
933 static void set_run_to_completion(void *send_info, bool i_run_to_completion)
934 {
935         struct smi_info   *smi_info = send_info;
936
937         smi_info->run_to_completion = i_run_to_completion;
938         if (i_run_to_completion)
939                 flush_messages(smi_info);
940 }
941
942 /*
943  * Use -1 in the nsec value of the busy waiting timespec to tell that
944  * we are spinning in kipmid looking for something and not delaying
945  * between checks
946  */
947 static inline void ipmi_si_set_not_busy(struct timespec64 *ts)
948 {
949         ts->tv_nsec = -1;
950 }
951 static inline int ipmi_si_is_busy(struct timespec64 *ts)
952 {
953         return ts->tv_nsec != -1;
954 }
955
956 static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result,
957                                         const struct smi_info *smi_info,
958                                         struct timespec64 *busy_until)
959 {
960         unsigned int max_busy_us = 0;
961
962         if (smi_info->si_num < num_max_busy_us)
963                 max_busy_us = kipmid_max_busy_us[smi_info->si_num];
964         if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
965                 ipmi_si_set_not_busy(busy_until);
966         else if (!ipmi_si_is_busy(busy_until)) {
967                 getnstimeofday64(busy_until);
968                 timespec64_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
969         } else {
970                 struct timespec64 now;
971
972                 getnstimeofday64(&now);
973                 if (unlikely(timespec64_compare(&now, busy_until) > 0)) {
974                         ipmi_si_set_not_busy(busy_until);
975                         return 0;
976                 }
977         }
978         return 1;
979 }
980
981
982 /*
983  * A busy-waiting loop for speeding up IPMI operation.
984  *
985  * Lousy hardware makes this hard.  This is only enabled for systems
986  * that are not BT and do not have interrupts.  It starts spinning
987  * when an operation is complete or until max_busy tells it to stop
988  * (if that is enabled).  See the paragraph on kimid_max_busy_us in
989  * Documentation/IPMI.txt for details.
990  */
991 static int ipmi_thread(void *data)
992 {
993         struct smi_info *smi_info = data;
994         unsigned long flags;
995         enum si_sm_result smi_result;
996         struct timespec64 busy_until;
997
998         ipmi_si_set_not_busy(&busy_until);
999         set_user_nice(current, MAX_NICE);
1000         while (!kthread_should_stop()) {
1001                 int busy_wait;
1002
1003                 spin_lock_irqsave(&(smi_info->si_lock), flags);
1004                 smi_result = smi_event_handler(smi_info, 0);
1005
1006                 /*
1007                  * If the driver is doing something, there is a possible
1008                  * race with the timer.  If the timer handler see idle,
1009                  * and the thread here sees something else, the timer
1010                  * handler won't restart the timer even though it is
1011                  * required.  So start it here if necessary.
1012                  */
1013                 if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
1014                         smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
1015
1016                 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1017                 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1018                                                   &busy_until);
1019                 if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
1020                         ; /* do nothing */
1021                 } else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait) {
1022                         /*
1023                          * In maintenance mode we run as fast as
1024                          * possible to allow firmware updates to
1025                          * complete as fast as possible, but normally
1026                          * don't bang on the scheduler.
1027                          */
1028                         if (smi_info->in_maintenance_mode)
1029                                 schedule();
1030                         else
1031                                 usleep_range(100, 200);
1032                 } else if (smi_result == SI_SM_IDLE) {
1033                         if (atomic_read(&smi_info->need_watch)) {
1034                                 schedule_timeout_interruptible(100);
1035                         } else {
1036                                 /* Wait to be woken up when we are needed. */
1037                                 __set_current_state(TASK_INTERRUPTIBLE);
1038                                 schedule();
1039                         }
1040                 } else {
1041                         schedule_timeout_interruptible(1);
1042                 }
1043         }
1044         return 0;
1045 }
1046
1047
1048 static void poll(void *send_info)
1049 {
1050         struct smi_info *smi_info = send_info;
1051         unsigned long flags = 0;
1052         bool run_to_completion = smi_info->run_to_completion;
1053
1054         /*
1055          * Make sure there is some delay in the poll loop so we can
1056          * drive time forward and timeout things.
1057          */
1058         udelay(10);
1059         if (!run_to_completion)
1060                 spin_lock_irqsave(&smi_info->si_lock, flags);
1061         smi_event_handler(smi_info, 10);
1062         if (!run_to_completion)
1063                 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1064 }
1065
1066 static void request_events(void *send_info)
1067 {
1068         struct smi_info *smi_info = send_info;
1069
1070         if (!smi_info->has_event_buffer)
1071                 return;
1072
1073         atomic_set(&smi_info->req_events, 1);
1074 }
1075
1076 static void set_need_watch(void *send_info, unsigned int watch_mask)
1077 {
1078         struct smi_info *smi_info = send_info;
1079         unsigned long flags;
1080         int enable;
1081
1082         enable = !!(watch_mask & ~IPMI_WATCH_MASK_INTERNAL);
1083
1084         atomic_set(&smi_info->need_watch, enable);
1085         spin_lock_irqsave(&smi_info->si_lock, flags);
1086         check_start_timer_thread(smi_info);
1087         spin_unlock_irqrestore(&smi_info->si_lock, flags);
1088 }
1089
1090 static void smi_timeout(struct timer_list *t)
1091 {
1092         struct smi_info   *smi_info = from_timer(smi_info, t, si_timer);
1093         enum si_sm_result smi_result;
1094         unsigned long     flags;
1095         unsigned long     jiffies_now;
1096         long              time_diff;
1097         long              timeout;
1098
1099         spin_lock_irqsave(&(smi_info->si_lock), flags);
1100         debug_timestamp("Timer");
1101
1102         jiffies_now = jiffies;
1103         time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1104                      * SI_USEC_PER_JIFFY);
1105         smi_result = smi_event_handler(smi_info, time_diff);
1106
1107         if ((smi_info->io.irq) && (!smi_info->interrupt_disabled)) {
1108                 /* Running with interrupts, only do long timeouts. */
1109                 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1110                 smi_inc_stat(smi_info, long_timeouts);
1111                 goto do_mod_timer;
1112         }
1113
1114         /*
1115          * If the state machine asks for a short delay, then shorten
1116          * the timer timeout.
1117          */
1118         if (smi_result == SI_SM_CALL_WITH_DELAY) {
1119                 smi_inc_stat(smi_info, short_timeouts);
1120                 timeout = jiffies + 1;
1121         } else {
1122                 smi_inc_stat(smi_info, long_timeouts);
1123                 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1124         }
1125
1126 do_mod_timer:
1127         if (smi_result != SI_SM_IDLE)
1128                 smi_mod_timer(smi_info, timeout);
1129         else
1130                 smi_info->timer_running = false;
1131         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1132 }
1133
1134 irqreturn_t ipmi_si_irq_handler(int irq, void *data)
1135 {
1136         struct smi_info *smi_info = data;
1137         unsigned long   flags;
1138
1139         if (smi_info->io.si_type == SI_BT)
1140                 /* We need to clear the IRQ flag for the BT interface. */
1141                 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1142                                      IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1143                                      | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1144
1145         spin_lock_irqsave(&(smi_info->si_lock), flags);
1146
1147         smi_inc_stat(smi_info, interrupts);
1148
1149         debug_timestamp("Interrupt");
1150
1151         smi_event_handler(smi_info, 0);
1152         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1153         return IRQ_HANDLED;
1154 }
1155
1156 static int smi_start_processing(void            *send_info,
1157                                 struct ipmi_smi *intf)
1158 {
1159         struct smi_info *new_smi = send_info;
1160         int             enable = 0;
1161
1162         new_smi->intf = intf;
1163
1164         /* Set up the timer that drives the interface. */
1165         timer_setup(&new_smi->si_timer, smi_timeout, 0);
1166         new_smi->timer_can_start = true;
1167         smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
1168
1169         /* Try to claim any interrupts. */
1170         if (new_smi->io.irq_setup) {
1171                 new_smi->io.irq_handler_data = new_smi;
1172                 new_smi->io.irq_setup(&new_smi->io);
1173         }
1174
1175         /*
1176          * Check if the user forcefully enabled the daemon.
1177          */
1178         if (new_smi->si_num < num_force_kipmid)
1179                 enable = force_kipmid[new_smi->si_num];
1180         /*
1181          * The BT interface is efficient enough to not need a thread,
1182          * and there is no need for a thread if we have interrupts.
1183          */
1184         else if ((new_smi->io.si_type != SI_BT) && (!new_smi->io.irq))
1185                 enable = 1;
1186
1187         if (enable) {
1188                 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1189                                               "kipmi%d", new_smi->si_num);
1190                 if (IS_ERR(new_smi->thread)) {
1191                         dev_notice(new_smi->io.dev, "Could not start"
1192                                    " kernel thread due to error %ld, only using"
1193                                    " timers to drive the interface\n",
1194                                    PTR_ERR(new_smi->thread));
1195                         new_smi->thread = NULL;
1196                 }
1197         }
1198
1199         return 0;
1200 }
1201
1202 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1203 {
1204         struct smi_info *smi = send_info;
1205
1206         data->addr_src = smi->io.addr_source;
1207         data->dev = smi->io.dev;
1208         data->addr_info = smi->io.addr_info;
1209         get_device(smi->io.dev);
1210
1211         return 0;
1212 }
1213
1214 static void set_maintenance_mode(void *send_info, bool enable)
1215 {
1216         struct smi_info   *smi_info = send_info;
1217
1218         if (!enable)
1219                 atomic_set(&smi_info->req_events, 0);
1220         smi_info->in_maintenance_mode = enable;
1221 }
1222
1223 static void shutdown_smi(void *send_info);
1224 static const struct ipmi_smi_handlers handlers = {
1225         .owner                  = THIS_MODULE,
1226         .start_processing       = smi_start_processing,
1227         .shutdown               = shutdown_smi,
1228         .get_smi_info           = get_smi_info,
1229         .sender                 = sender,
1230         .request_events         = request_events,
1231         .set_need_watch         = set_need_watch,
1232         .set_maintenance_mode   = set_maintenance_mode,
1233         .set_run_to_completion  = set_run_to_completion,
1234         .flush_messages         = flush_messages,
1235         .poll                   = poll,
1236 };
1237
1238 static LIST_HEAD(smi_infos);
1239 static DEFINE_MUTEX(smi_infos_lock);
1240 static int smi_num; /* Used to sequence the SMIs */
1241
1242 static const char * const addr_space_to_str[] = { "i/o", "mem" };
1243
1244 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1245 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1246                  " disabled(0).  Normally the IPMI driver auto-detects"
1247                  " this, but the value may be overridden by this parm.");
1248 module_param(unload_when_empty, bool, 0);
1249 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1250                  " specified or found, default is 1.  Setting to 0"
1251                  " is useful for hot add of devices using hotmod.");
1252 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1253 MODULE_PARM_DESC(kipmid_max_busy_us,
1254                  "Max time (in microseconds) to busy-wait for IPMI data before"
1255                  " sleeping. 0 (default) means to wait forever. Set to 100-500"
1256                  " if kipmid is using up a lot of CPU time.");
1257
1258 void ipmi_irq_finish_setup(struct si_sm_io *io)
1259 {
1260         if (io->si_type == SI_BT)
1261                 /* Enable the interrupt in the BT interface. */
1262                 io->outputb(io, IPMI_BT_INTMASK_REG,
1263                             IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1264 }
1265
1266 void ipmi_irq_start_cleanup(struct si_sm_io *io)
1267 {
1268         if (io->si_type == SI_BT)
1269                 /* Disable the interrupt in the BT interface. */
1270                 io->outputb(io, IPMI_BT_INTMASK_REG, 0);
1271 }
1272
1273 static void std_irq_cleanup(struct si_sm_io *io)
1274 {
1275         ipmi_irq_start_cleanup(io);
1276         free_irq(io->irq, io->irq_handler_data);
1277 }
1278
1279 int ipmi_std_irq_setup(struct si_sm_io *io)
1280 {
1281         int rv;
1282
1283         if (!io->irq)
1284                 return 0;
1285
1286         rv = request_irq(io->irq,
1287                          ipmi_si_irq_handler,
1288                          IRQF_SHARED,
1289                          DEVICE_NAME,
1290                          io->irq_handler_data);
1291         if (rv) {
1292                 dev_warn(io->dev, "%s unable to claim interrupt %d,"
1293                          " running polled\n",
1294                          DEVICE_NAME, io->irq);
1295                 io->irq = 0;
1296         } else {
1297                 io->irq_cleanup = std_irq_cleanup;
1298                 ipmi_irq_finish_setup(io);
1299                 dev_info(io->dev, "Using irq %d\n", io->irq);
1300         }
1301
1302         return rv;
1303 }
1304
1305 static int wait_for_msg_done(struct smi_info *smi_info)
1306 {
1307         enum si_sm_result     smi_result;
1308
1309         smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
1310         for (;;) {
1311                 if (smi_result == SI_SM_CALL_WITH_DELAY ||
1312                     smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
1313                         schedule_timeout_uninterruptible(1);
1314                         smi_result = smi_info->handlers->event(
1315                                 smi_info->si_sm, jiffies_to_usecs(1));
1316                 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
1317                         smi_result = smi_info->handlers->event(
1318                                 smi_info->si_sm, 0);
1319                 } else
1320                         break;
1321         }
1322         if (smi_result == SI_SM_HOSED)
1323                 /*
1324                  * We couldn't get the state machine to run, so whatever's at
1325                  * the port is probably not an IPMI SMI interface.
1326                  */
1327                 return -ENODEV;
1328
1329         return 0;
1330 }
1331
1332 static int try_get_dev_id(struct smi_info *smi_info)
1333 {
1334         unsigned char         msg[2];
1335         unsigned char         *resp;
1336         unsigned long         resp_len;
1337         int                   rv = 0;
1338
1339         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1340         if (!resp)
1341                 return -ENOMEM;
1342
1343         /*
1344          * Do a Get Device ID command, since it comes back with some
1345          * useful info.
1346          */
1347         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1348         msg[1] = IPMI_GET_DEVICE_ID_CMD;
1349         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1350
1351         rv = wait_for_msg_done(smi_info);
1352         if (rv)
1353                 goto out;
1354
1355         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1356                                                   resp, IPMI_MAX_MSG_LENGTH);
1357
1358         /* Check and record info from the get device id, in case we need it. */
1359         rv = ipmi_demangle_device_id(resp[0] >> 2, resp[1],
1360                         resp + 2, resp_len - 2, &smi_info->device_id);
1361
1362 out:
1363         kfree(resp);
1364         return rv;
1365 }
1366
1367 static int get_global_enables(struct smi_info *smi_info, u8 *enables)
1368 {
1369         unsigned char         msg[3];
1370         unsigned char         *resp;
1371         unsigned long         resp_len;
1372         int                   rv;
1373
1374         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1375         if (!resp)
1376                 return -ENOMEM;
1377
1378         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1379         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
1380         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1381
1382         rv = wait_for_msg_done(smi_info);
1383         if (rv) {
1384                 dev_warn(smi_info->io.dev,
1385                          "Error getting response from get global enables command: %d\n",
1386                          rv);
1387                 goto out;
1388         }
1389
1390         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1391                                                   resp, IPMI_MAX_MSG_LENGTH);
1392
1393         if (resp_len < 4 ||
1394                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1395                         resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
1396                         resp[2] != 0) {
1397                 dev_warn(smi_info->io.dev,
1398                          "Invalid return from get global enables command: %ld %x %x %x\n",
1399                          resp_len, resp[0], resp[1], resp[2]);
1400                 rv = -EINVAL;
1401                 goto out;
1402         } else {
1403                 *enables = resp[3];
1404         }
1405
1406 out:
1407         kfree(resp);
1408         return rv;
1409 }
1410
1411 /*
1412  * Returns 1 if it gets an error from the command.
1413  */
1414 static int set_global_enables(struct smi_info *smi_info, u8 enables)
1415 {
1416         unsigned char         msg[3];
1417         unsigned char         *resp;
1418         unsigned long         resp_len;
1419         int                   rv;
1420
1421         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1422         if (!resp)
1423                 return -ENOMEM;
1424
1425         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1426         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
1427         msg[2] = enables;
1428         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
1429
1430         rv = wait_for_msg_done(smi_info);
1431         if (rv) {
1432                 dev_warn(smi_info->io.dev,
1433                          "Error getting response from set global enables command: %d\n",
1434                          rv);
1435                 goto out;
1436         }
1437
1438         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1439                                                   resp, IPMI_MAX_MSG_LENGTH);
1440
1441         if (resp_len < 3 ||
1442                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1443                         resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
1444                 dev_warn(smi_info->io.dev,
1445                          "Invalid return from set global enables command: %ld %x %x\n",
1446                          resp_len, resp[0], resp[1]);
1447                 rv = -EINVAL;
1448                 goto out;
1449         }
1450
1451         if (resp[2] != 0)
1452                 rv = 1;
1453
1454 out:
1455         kfree(resp);
1456         return rv;
1457 }
1458
1459 /*
1460  * Some BMCs do not support clearing the receive irq bit in the global
1461  * enables (even if they don't support interrupts on the BMC).  Check
1462  * for this and handle it properly.
1463  */
1464 static void check_clr_rcv_irq(struct smi_info *smi_info)
1465 {
1466         u8 enables = 0;
1467         int rv;
1468
1469         rv = get_global_enables(smi_info, &enables);
1470         if (!rv) {
1471                 if ((enables & IPMI_BMC_RCV_MSG_INTR) == 0)
1472                         /* Already clear, should work ok. */
1473                         return;
1474
1475                 enables &= ~IPMI_BMC_RCV_MSG_INTR;
1476                 rv = set_global_enables(smi_info, enables);
1477         }
1478
1479         if (rv < 0) {
1480                 dev_err(smi_info->io.dev,
1481                         "Cannot check clearing the rcv irq: %d\n", rv);
1482                 return;
1483         }
1484
1485         if (rv) {
1486                 /*
1487                  * An error when setting the event buffer bit means
1488                  * clearing the bit is not supported.
1489                  */
1490                 dev_warn(smi_info->io.dev,
1491                          "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n");
1492                 smi_info->cannot_disable_irq = true;
1493         }
1494 }
1495
1496 /*
1497  * Some BMCs do not support setting the interrupt bits in the global
1498  * enables even if they support interrupts.  Clearly bad, but we can
1499  * compensate.
1500  */
1501 static void check_set_rcv_irq(struct smi_info *smi_info)
1502 {
1503         u8 enables = 0;
1504         int rv;
1505
1506         if (!smi_info->io.irq)
1507                 return;
1508
1509         rv = get_global_enables(smi_info, &enables);
1510         if (!rv) {
1511                 enables |= IPMI_BMC_RCV_MSG_INTR;
1512                 rv = set_global_enables(smi_info, enables);
1513         }
1514
1515         if (rv < 0) {
1516                 dev_err(smi_info->io.dev,
1517                         "Cannot check setting the rcv irq: %d\n", rv);
1518                 return;
1519         }
1520
1521         if (rv) {
1522                 /*
1523                  * An error when setting the event buffer bit means
1524                  * setting the bit is not supported.
1525                  */
1526                 dev_warn(smi_info->io.dev,
1527                          "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n");
1528                 smi_info->cannot_disable_irq = true;
1529                 smi_info->irq_enable_broken = true;
1530         }
1531 }
1532
1533 static int try_enable_event_buffer(struct smi_info *smi_info)
1534 {
1535         unsigned char         msg[3];
1536         unsigned char         *resp;
1537         unsigned long         resp_len;
1538         int                   rv = 0;
1539
1540         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1541         if (!resp)
1542                 return -ENOMEM;
1543
1544         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1545         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
1546         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1547
1548         rv = wait_for_msg_done(smi_info);
1549         if (rv) {
1550                 pr_warn(PFX "Error getting response from get global enables command, the event buffer is not enabled.\n");
1551                 goto out;
1552         }
1553
1554         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1555                                                   resp, IPMI_MAX_MSG_LENGTH);
1556
1557         if (resp_len < 4 ||
1558                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1559                         resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
1560                         resp[2] != 0) {
1561                 pr_warn(PFX "Invalid return from get global enables command, cannot enable the event buffer.\n");
1562                 rv = -EINVAL;
1563                 goto out;
1564         }
1565
1566         if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) {
1567                 /* buffer is already enabled, nothing to do. */
1568                 smi_info->supports_event_msg_buff = true;
1569                 goto out;
1570         }
1571
1572         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1573         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
1574         msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
1575         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
1576
1577         rv = wait_for_msg_done(smi_info);
1578         if (rv) {
1579                 pr_warn(PFX "Error getting response from set global, enables command, the event buffer is not enabled.\n");
1580                 goto out;
1581         }
1582
1583         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1584                                                   resp, IPMI_MAX_MSG_LENGTH);
1585
1586         if (resp_len < 3 ||
1587                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1588                         resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
1589                 pr_warn(PFX "Invalid return from get global, enables command, not enable the event buffer.\n");
1590                 rv = -EINVAL;
1591                 goto out;
1592         }
1593
1594         if (resp[2] != 0)
1595                 /*
1596                  * An error when setting the event buffer bit means
1597                  * that the event buffer is not supported.
1598                  */
1599                 rv = -ENOENT;
1600         else
1601                 smi_info->supports_event_msg_buff = true;
1602
1603 out:
1604         kfree(resp);
1605         return rv;
1606 }
1607
1608 #define IPMI_SI_ATTR(name) \
1609 static ssize_t ipmi_##name##_show(struct device *dev,                   \
1610                                   struct device_attribute *attr,        \
1611                                   char *buf)                            \
1612 {                                                                       \
1613         struct smi_info *smi_info = dev_get_drvdata(dev);               \
1614                                                                         \
1615         return snprintf(buf, 10, "%u\n", smi_get_stat(smi_info, name)); \
1616 }                                                                       \
1617 static DEVICE_ATTR(name, S_IRUGO, ipmi_##name##_show, NULL)
1618
1619 static ssize_t ipmi_type_show(struct device *dev,
1620                               struct device_attribute *attr,
1621                               char *buf)
1622 {
1623         struct smi_info *smi_info = dev_get_drvdata(dev);
1624
1625         return snprintf(buf, 10, "%s\n", si_to_str[smi_info->io.si_type]);
1626 }
1627 static DEVICE_ATTR(type, S_IRUGO, ipmi_type_show, NULL);
1628
1629 static ssize_t ipmi_interrupts_enabled_show(struct device *dev,
1630                                             struct device_attribute *attr,
1631                                             char *buf)
1632 {
1633         struct smi_info *smi_info = dev_get_drvdata(dev);
1634         int enabled = smi_info->io.irq && !smi_info->interrupt_disabled;
1635
1636         return snprintf(buf, 10, "%d\n", enabled);
1637 }
1638 static DEVICE_ATTR(interrupts_enabled, S_IRUGO,
1639                    ipmi_interrupts_enabled_show, NULL);
1640
1641 IPMI_SI_ATTR(short_timeouts);
1642 IPMI_SI_ATTR(long_timeouts);
1643 IPMI_SI_ATTR(idles);
1644 IPMI_SI_ATTR(interrupts);
1645 IPMI_SI_ATTR(attentions);
1646 IPMI_SI_ATTR(flag_fetches);
1647 IPMI_SI_ATTR(hosed_count);
1648 IPMI_SI_ATTR(complete_transactions);
1649 IPMI_SI_ATTR(events);
1650 IPMI_SI_ATTR(watchdog_pretimeouts);
1651 IPMI_SI_ATTR(incoming_messages);
1652
1653 static ssize_t ipmi_params_show(struct device *dev,
1654                                 struct device_attribute *attr,
1655                                 char *buf)
1656 {
1657         struct smi_info *smi_info = dev_get_drvdata(dev);
1658
1659         return snprintf(buf, 200,
1660                         "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
1661                         si_to_str[smi_info->io.si_type],
1662                         addr_space_to_str[smi_info->io.addr_type],
1663                         smi_info->io.addr_data,
1664                         smi_info->io.regspacing,
1665                         smi_info->io.regsize,
1666                         smi_info->io.regshift,
1667                         smi_info->io.irq,
1668                         smi_info->io.slave_addr);
1669 }
1670 static DEVICE_ATTR(params, S_IRUGO, ipmi_params_show, NULL);
1671
1672 static struct attribute *ipmi_si_dev_attrs[] = {
1673         &dev_attr_type.attr,
1674         &dev_attr_interrupts_enabled.attr,
1675         &dev_attr_short_timeouts.attr,
1676         &dev_attr_long_timeouts.attr,
1677         &dev_attr_idles.attr,
1678         &dev_attr_interrupts.attr,
1679         &dev_attr_attentions.attr,
1680         &dev_attr_flag_fetches.attr,
1681         &dev_attr_hosed_count.attr,
1682         &dev_attr_complete_transactions.attr,
1683         &dev_attr_events.attr,
1684         &dev_attr_watchdog_pretimeouts.attr,
1685         &dev_attr_incoming_messages.attr,
1686         &dev_attr_params.attr,
1687         NULL
1688 };
1689
1690 static const struct attribute_group ipmi_si_dev_attr_group = {
1691         .attrs          = ipmi_si_dev_attrs,
1692 };
1693
1694 /*
1695  * oem_data_avail_to_receive_msg_avail
1696  * @info - smi_info structure with msg_flags set
1697  *
1698  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
1699  * Returns 1 indicating need to re-run handle_flags().
1700  */
1701 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
1702 {
1703         smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
1704                                RECEIVE_MSG_AVAIL);
1705         return 1;
1706 }
1707
1708 /*
1709  * setup_dell_poweredge_oem_data_handler
1710  * @info - smi_info.device_id must be populated
1711  *
1712  * Systems that match, but have firmware version < 1.40 may assert
1713  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
1714  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
1715  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
1716  * as RECEIVE_MSG_AVAIL instead.
1717  *
1718  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
1719  * assert the OEM[012] bits, and if it did, the driver would have to
1720  * change to handle that properly, we don't actually check for the
1721  * firmware version.
1722  * Device ID = 0x20                BMC on PowerEdge 8G servers
1723  * Device Revision = 0x80
1724  * Firmware Revision1 = 0x01       BMC version 1.40
1725  * Firmware Revision2 = 0x40       BCD encoded
1726  * IPMI Version = 0x51             IPMI 1.5
1727  * Manufacturer ID = A2 02 00      Dell IANA
1728  *
1729  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
1730  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
1731  *
1732  */
1733 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
1734 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
1735 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
1736 #define DELL_IANA_MFR_ID 0x0002a2
1737 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
1738 {
1739         struct ipmi_device_id *id = &smi_info->device_id;
1740         if (id->manufacturer_id == DELL_IANA_MFR_ID) {
1741                 if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
1742                     id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
1743                     id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
1744                         smi_info->oem_data_avail_handler =
1745                                 oem_data_avail_to_receive_msg_avail;
1746                 } else if (ipmi_version_major(id) < 1 ||
1747                            (ipmi_version_major(id) == 1 &&
1748                             ipmi_version_minor(id) < 5)) {
1749                         smi_info->oem_data_avail_handler =
1750                                 oem_data_avail_to_receive_msg_avail;
1751                 }
1752         }
1753 }
1754
1755 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
1756 static void return_hosed_msg_badsize(struct smi_info *smi_info)
1757 {
1758         struct ipmi_smi_msg *msg = smi_info->curr_msg;
1759
1760         /* Make it a response */
1761         msg->rsp[0] = msg->data[0] | 4;
1762         msg->rsp[1] = msg->data[1];
1763         msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
1764         msg->rsp_size = 3;
1765         smi_info->curr_msg = NULL;
1766         deliver_recv_msg(smi_info, msg);
1767 }
1768
1769 /*
1770  * dell_poweredge_bt_xaction_handler
1771  * @info - smi_info.device_id must be populated
1772  *
1773  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
1774  * not respond to a Get SDR command if the length of the data
1775  * requested is exactly 0x3A, which leads to command timeouts and no
1776  * data returned.  This intercepts such commands, and causes userspace
1777  * callers to try again with a different-sized buffer, which succeeds.
1778  */
1779
1780 #define STORAGE_NETFN 0x0A
1781 #define STORAGE_CMD_GET_SDR 0x23
1782 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
1783                                              unsigned long unused,
1784                                              void *in)
1785 {
1786         struct smi_info *smi_info = in;
1787         unsigned char *data = smi_info->curr_msg->data;
1788         unsigned int size   = smi_info->curr_msg->data_size;
1789         if (size >= 8 &&
1790             (data[0]>>2) == STORAGE_NETFN &&
1791             data[1] == STORAGE_CMD_GET_SDR &&
1792             data[7] == 0x3A) {
1793                 return_hosed_msg_badsize(smi_info);
1794                 return NOTIFY_STOP;
1795         }
1796         return NOTIFY_DONE;
1797 }
1798
1799 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
1800         .notifier_call  = dell_poweredge_bt_xaction_handler,
1801 };
1802
1803 /*
1804  * setup_dell_poweredge_bt_xaction_handler
1805  * @info - smi_info.device_id must be filled in already
1806  *
1807  * Fills in smi_info.device_id.start_transaction_pre_hook
1808  * when we know what function to use there.
1809  */
1810 static void
1811 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
1812 {
1813         struct ipmi_device_id *id = &smi_info->device_id;
1814         if (id->manufacturer_id == DELL_IANA_MFR_ID &&
1815             smi_info->io.si_type == SI_BT)
1816                 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
1817 }
1818
1819 /*
1820  * setup_oem_data_handler
1821  * @info - smi_info.device_id must be filled in already
1822  *
1823  * Fills in smi_info.device_id.oem_data_available_handler
1824  * when we know what function to use there.
1825  */
1826
1827 static void setup_oem_data_handler(struct smi_info *smi_info)
1828 {
1829         setup_dell_poweredge_oem_data_handler(smi_info);
1830 }
1831
1832 static void setup_xaction_handlers(struct smi_info *smi_info)
1833 {
1834         setup_dell_poweredge_bt_xaction_handler(smi_info);
1835 }
1836
1837 static void check_for_broken_irqs(struct smi_info *smi_info)
1838 {
1839         check_clr_rcv_irq(smi_info);
1840         check_set_rcv_irq(smi_info);
1841 }
1842
1843 static inline void stop_timer_and_thread(struct smi_info *smi_info)
1844 {
1845         if (smi_info->thread != NULL) {
1846                 kthread_stop(smi_info->thread);
1847                 smi_info->thread = NULL;
1848         }
1849
1850         smi_info->timer_can_start = false;
1851         if (smi_info->timer_running)
1852                 del_timer_sync(&smi_info->si_timer);
1853 }
1854
1855 static struct smi_info *find_dup_si(struct smi_info *info)
1856 {
1857         struct smi_info *e;
1858
1859         list_for_each_entry(e, &smi_infos, link) {
1860                 if (e->io.addr_type != info->io.addr_type)
1861                         continue;
1862                 if (e->io.addr_data == info->io.addr_data) {
1863                         /*
1864                          * This is a cheap hack, ACPI doesn't have a defined
1865                          * slave address but SMBIOS does.  Pick it up from
1866                          * any source that has it available.
1867                          */
1868                         if (info->io.slave_addr && !e->io.slave_addr)
1869                                 e->io.slave_addr = info->io.slave_addr;
1870                         return e;
1871                 }
1872         }
1873
1874         return NULL;
1875 }
1876
1877 int ipmi_si_add_smi(struct si_sm_io *io)
1878 {
1879         int rv = 0;
1880         struct smi_info *new_smi, *dup;
1881
1882         /*
1883          * If the user gave us a hard-coded device at the same
1884          * address, they presumably want us to use it and not what is
1885          * in the firmware.
1886          */
1887         if (io->addr_source != SI_HARDCODED &&
1888             ipmi_si_hardcode_match(io->addr_type, io->addr_data)) {
1889                 dev_info(io->dev,
1890                          "Hard-coded device at this address already exists");
1891                 return -ENODEV;
1892         }
1893
1894         if (!io->io_setup) {
1895                 if (io->addr_type == IPMI_IO_ADDR_SPACE) {
1896                         io->io_setup = ipmi_si_port_setup;
1897                 } else if (io->addr_type == IPMI_MEM_ADDR_SPACE) {
1898                         io->io_setup = ipmi_si_mem_setup;
1899                 } else {
1900                         return -EINVAL;
1901                 }
1902         }
1903
1904         new_smi = kzalloc(sizeof(*new_smi), GFP_KERNEL);
1905         if (!new_smi)
1906                 return -ENOMEM;
1907         spin_lock_init(&new_smi->si_lock);
1908
1909         new_smi->io = *io;
1910
1911         mutex_lock(&smi_infos_lock);
1912         dup = find_dup_si(new_smi);
1913         if (dup) {
1914                 if (new_smi->io.addr_source == SI_ACPI &&
1915                     dup->io.addr_source == SI_SMBIOS) {
1916                         /* We prefer ACPI over SMBIOS. */
1917                         dev_info(dup->io.dev,
1918                                  "Removing SMBIOS-specified %s state machine in favor of ACPI\n",
1919                                  si_to_str[new_smi->io.si_type]);
1920                         cleanup_one_si(dup);
1921                 } else {
1922                         dev_info(new_smi->io.dev,
1923                                  "%s-specified %s state machine: duplicate\n",
1924                                  ipmi_addr_src_to_str(new_smi->io.addr_source),
1925                                  si_to_str[new_smi->io.si_type]);
1926                         rv = -EBUSY;
1927                         kfree(new_smi);
1928                         goto out_err;
1929                 }
1930         }
1931
1932         pr_info(PFX "Adding %s-specified %s state machine\n",
1933                 ipmi_addr_src_to_str(new_smi->io.addr_source),
1934                 si_to_str[new_smi->io.si_type]);
1935
1936         list_add_tail(&new_smi->link, &smi_infos);
1937
1938         if (initialized)
1939                 rv = try_smi_init(new_smi);
1940 out_err:
1941         mutex_unlock(&smi_infos_lock);
1942         return rv;
1943 }
1944
1945 /*
1946  * Try to start up an interface.  Must be called with smi_infos_lock
1947  * held, primarily to keep smi_num consistent, we only one to do these
1948  * one at a time.
1949  */
1950 static int try_smi_init(struct smi_info *new_smi)
1951 {
1952         int rv = 0;
1953         int i;
1954         char *init_name = NULL;
1955
1956         pr_info(PFX "Trying %s-specified %s state machine at %s address 0x%lx, slave address 0x%x, irq %d\n",
1957                 ipmi_addr_src_to_str(new_smi->io.addr_source),
1958                 si_to_str[new_smi->io.si_type],
1959                 addr_space_to_str[new_smi->io.addr_type],
1960                 new_smi->io.addr_data,
1961                 new_smi->io.slave_addr, new_smi->io.irq);
1962
1963         switch (new_smi->io.si_type) {
1964         case SI_KCS:
1965                 new_smi->handlers = &kcs_smi_handlers;
1966                 break;
1967
1968         case SI_SMIC:
1969                 new_smi->handlers = &smic_smi_handlers;
1970                 break;
1971
1972         case SI_BT:
1973                 new_smi->handlers = &bt_smi_handlers;
1974                 break;
1975
1976         default:
1977                 /* No support for anything else yet. */
1978                 rv = -EIO;
1979                 goto out_err;
1980         }
1981
1982         new_smi->si_num = smi_num;
1983
1984         /* Do this early so it's available for logs. */
1985         if (!new_smi->io.dev) {
1986                 init_name = kasprintf(GFP_KERNEL, "ipmi_si.%d",
1987                                       new_smi->si_num);
1988
1989                 /*
1990                  * If we don't already have a device from something
1991                  * else (like PCI), then register a new one.
1992                  */
1993                 new_smi->pdev = platform_device_alloc("ipmi_si",
1994                                                       new_smi->si_num);
1995                 if (!new_smi->pdev) {
1996                         pr_err(PFX "Unable to allocate platform device\n");
1997                         rv = -ENOMEM;
1998                         goto out_err;
1999                 }
2000                 new_smi->io.dev = &new_smi->pdev->dev;
2001                 new_smi->io.dev->driver = &ipmi_platform_driver.driver;
2002                 /* Nulled by device_add() */
2003                 new_smi->io.dev->init_name = init_name;
2004         }
2005
2006         /* Allocate the state machine's data and initialize it. */
2007         new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
2008         if (!new_smi->si_sm) {
2009                 rv = -ENOMEM;
2010                 goto out_err;
2011         }
2012         new_smi->io.io_size = new_smi->handlers->init_data(new_smi->si_sm,
2013                                                            &new_smi->io);
2014
2015         /* Now that we know the I/O size, we can set up the I/O. */
2016         rv = new_smi->io.io_setup(&new_smi->io);
2017         if (rv) {
2018                 dev_err(new_smi->io.dev, "Could not set up I/O space\n");
2019                 goto out_err;
2020         }
2021
2022         /* Do low-level detection first. */
2023         if (new_smi->handlers->detect(new_smi->si_sm)) {
2024                 if (new_smi->io.addr_source)
2025                         dev_err(new_smi->io.dev,
2026                                 "Interface detection failed\n");
2027                 rv = -ENODEV;
2028                 goto out_err;
2029         }
2030
2031         /*
2032          * Attempt a get device id command.  If it fails, we probably
2033          * don't have a BMC here.
2034          */
2035         rv = try_get_dev_id(new_smi);
2036         if (rv) {
2037                 if (new_smi->io.addr_source)
2038                         dev_err(new_smi->io.dev,
2039                                "There appears to be no BMC at this location\n");
2040                 goto out_err;
2041         }
2042
2043         setup_oem_data_handler(new_smi);
2044         setup_xaction_handlers(new_smi);
2045         check_for_broken_irqs(new_smi);
2046
2047         new_smi->waiting_msg = NULL;
2048         new_smi->curr_msg = NULL;
2049         atomic_set(&new_smi->req_events, 0);
2050         new_smi->run_to_completion = false;
2051         for (i = 0; i < SI_NUM_STATS; i++)
2052                 atomic_set(&new_smi->stats[i], 0);
2053
2054         new_smi->interrupt_disabled = true;
2055         atomic_set(&new_smi->need_watch, 0);
2056
2057         rv = try_enable_event_buffer(new_smi);
2058         if (rv == 0)
2059                 new_smi->has_event_buffer = true;
2060
2061         /*
2062          * Start clearing the flags before we enable interrupts or the
2063          * timer to avoid racing with the timer.
2064          */
2065         start_clear_flags(new_smi);
2066
2067         /*
2068          * IRQ is defined to be set when non-zero.  req_events will
2069          * cause a global flags check that will enable interrupts.
2070          */
2071         if (new_smi->io.irq) {
2072                 new_smi->interrupt_disabled = false;
2073                 atomic_set(&new_smi->req_events, 1);
2074         }
2075
2076         if (new_smi->pdev && !new_smi->pdev_registered) {
2077                 rv = platform_device_add(new_smi->pdev);
2078                 if (rv) {
2079                         dev_err(new_smi->io.dev,
2080                                 "Unable to register system interface device: %d\n",
2081                                 rv);
2082                         goto out_err;
2083                 }
2084                 new_smi->pdev_registered = true;
2085         }
2086
2087         dev_set_drvdata(new_smi->io.dev, new_smi);
2088         rv = device_add_group(new_smi->io.dev, &ipmi_si_dev_attr_group);
2089         if (rv) {
2090                 dev_err(new_smi->io.dev,
2091                         "Unable to add device attributes: error %d\n",
2092                         rv);
2093                 goto out_err;
2094         }
2095         new_smi->dev_group_added = true;
2096
2097         rv = ipmi_register_smi(&handlers,
2098                                new_smi,
2099                                new_smi->io.dev,
2100                                new_smi->io.slave_addr);
2101         if (rv) {
2102                 dev_err(new_smi->io.dev,
2103                         "Unable to register device: error %d\n",
2104                         rv);
2105                 goto out_err;
2106         }
2107
2108         /* Don't increment till we know we have succeeded. */
2109         smi_num++;
2110
2111         dev_info(new_smi->io.dev, "IPMI %s interface initialized\n",
2112                  si_to_str[new_smi->io.si_type]);
2113
2114         WARN_ON(new_smi->io.dev->init_name != NULL);
2115
2116  out_err:
2117         if (rv && new_smi->io.io_cleanup) {
2118                 new_smi->io.io_cleanup(&new_smi->io);
2119                 new_smi->io.io_cleanup = NULL;
2120         }
2121
2122         kfree(init_name);
2123         return rv;
2124 }
2125
2126 static int __init init_ipmi_si(void)
2127 {
2128         struct smi_info *e;
2129         enum ipmi_addr_src type = SI_INVALID;
2130
2131         if (initialized)
2132                 return 0;
2133
2134         ipmi_hardcode_init();
2135         pr_info("IPMI System Interface driver.\n");
2136
2137         ipmi_si_platform_init();
2138
2139         ipmi_si_pci_init();
2140
2141         ipmi_si_parisc_init();
2142
2143         /* We prefer devices with interrupts, but in the case of a machine
2144            with multiple BMCs we assume that there will be several instances
2145            of a given type so if we succeed in registering a type then also
2146            try to register everything else of the same type */
2147         mutex_lock(&smi_infos_lock);
2148         list_for_each_entry(e, &smi_infos, link) {
2149                 /* Try to register a device if it has an IRQ and we either
2150                    haven't successfully registered a device yet or this
2151                    device has the same type as one we successfully registered */
2152                 if (e->io.irq && (!type || e->io.addr_source == type)) {
2153                         if (!try_smi_init(e)) {
2154                                 type = e->io.addr_source;
2155                         }
2156                 }
2157         }
2158
2159         /* type will only have been set if we successfully registered an si */
2160         if (type)
2161                 goto skip_fallback_noirq;
2162
2163         /* Fall back to the preferred device */
2164
2165         list_for_each_entry(e, &smi_infos, link) {
2166                 if (!e->io.irq && (!type || e->io.addr_source == type)) {
2167                         if (!try_smi_init(e)) {
2168                                 type = e->io.addr_source;
2169                         }
2170                 }
2171         }
2172
2173 skip_fallback_noirq:
2174         initialized = 1;
2175         mutex_unlock(&smi_infos_lock);
2176
2177         if (type)
2178                 return 0;
2179
2180         mutex_lock(&smi_infos_lock);
2181         if (unload_when_empty && list_empty(&smi_infos)) {
2182                 mutex_unlock(&smi_infos_lock);
2183                 cleanup_ipmi_si();
2184                 pr_warn(PFX "Unable to find any System Interface(s)\n");
2185                 return -ENODEV;
2186         } else {
2187                 mutex_unlock(&smi_infos_lock);
2188                 return 0;
2189         }
2190 }
2191 module_init(init_ipmi_si);
2192
2193 static void wait_msg_processed(struct smi_info *smi_info)
2194 {
2195         unsigned long jiffies_now;
2196         long time_diff;
2197
2198         while (smi_info->curr_msg || (smi_info->si_state != SI_NORMAL)) {
2199                 jiffies_now = jiffies;
2200                 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
2201                      * SI_USEC_PER_JIFFY);
2202                 smi_event_handler(smi_info, time_diff);
2203                 schedule_timeout_uninterruptible(1);
2204         }
2205 }
2206
2207 static void shutdown_smi(void *send_info)
2208 {
2209         struct smi_info *smi_info = send_info;
2210
2211         if (smi_info->dev_group_added) {
2212                 device_remove_group(smi_info->io.dev, &ipmi_si_dev_attr_group);
2213                 smi_info->dev_group_added = false;
2214         }
2215         if (smi_info->io.dev)
2216                 dev_set_drvdata(smi_info->io.dev, NULL);
2217
2218         /*
2219          * Make sure that interrupts, the timer and the thread are
2220          * stopped and will not run again.
2221          */
2222         smi_info->interrupt_disabled = true;
2223         if (smi_info->io.irq_cleanup) {
2224                 smi_info->io.irq_cleanup(&smi_info->io);
2225                 smi_info->io.irq_cleanup = NULL;
2226         }
2227         stop_timer_and_thread(smi_info);
2228
2229         /*
2230          * Wait until we know that we are out of any interrupt
2231          * handlers might have been running before we freed the
2232          * interrupt.
2233          */
2234         synchronize_sched();
2235
2236         /*
2237          * Timeouts are stopped, now make sure the interrupts are off
2238          * in the BMC.  Note that timers and CPU interrupts are off,
2239          * so no need for locks.
2240          */
2241         wait_msg_processed(smi_info);
2242
2243         if (smi_info->handlers)
2244                 disable_si_irq(smi_info);
2245
2246         wait_msg_processed(smi_info);
2247
2248         if (smi_info->handlers)
2249                 smi_info->handlers->cleanup(smi_info->si_sm);
2250
2251         if (smi_info->io.addr_source_cleanup) {
2252                 smi_info->io.addr_source_cleanup(&smi_info->io);
2253                 smi_info->io.addr_source_cleanup = NULL;
2254         }
2255         if (smi_info->io.io_cleanup) {
2256                 smi_info->io.io_cleanup(&smi_info->io);
2257                 smi_info->io.io_cleanup = NULL;
2258         }
2259
2260         kfree(smi_info->si_sm);
2261         smi_info->si_sm = NULL;
2262
2263         smi_info->intf = NULL;
2264 }
2265
2266 /*
2267  * Must be called with smi_infos_lock held, to serialize the
2268  * smi_info->intf check.
2269  */
2270 static void cleanup_one_si(struct smi_info *smi_info)
2271 {
2272         if (!smi_info)
2273                 return;
2274
2275         list_del(&smi_info->link);
2276
2277         if (smi_info->intf)
2278                 ipmi_unregister_smi(smi_info->intf);
2279
2280         if (smi_info->pdev) {
2281                 if (smi_info->pdev_registered)
2282                         platform_device_unregister(smi_info->pdev);
2283                 else
2284                         platform_device_put(smi_info->pdev);
2285         }
2286
2287         kfree(smi_info);
2288 }
2289
2290 int ipmi_si_remove_by_dev(struct device *dev)
2291 {
2292         struct smi_info *e;
2293         int rv = -ENOENT;
2294
2295         mutex_lock(&smi_infos_lock);
2296         list_for_each_entry(e, &smi_infos, link) {
2297                 if (e->io.dev == dev) {
2298                         cleanup_one_si(e);
2299                         rv = 0;
2300                         break;
2301                 }
2302         }
2303         mutex_unlock(&smi_infos_lock);
2304
2305         return rv;
2306 }
2307
2308 void ipmi_si_remove_by_data(int addr_space, enum si_type si_type,
2309                             unsigned long addr)
2310 {
2311         /* remove */
2312         struct smi_info *e, *tmp_e;
2313
2314         mutex_lock(&smi_infos_lock);
2315         list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
2316                 if (e->io.addr_type != addr_space)
2317                         continue;
2318                 if (e->io.si_type != si_type)
2319                         continue;
2320                 if (e->io.addr_data == addr)
2321                         cleanup_one_si(e);
2322         }
2323         mutex_unlock(&smi_infos_lock);
2324 }
2325
2326 static void cleanup_ipmi_si(void)
2327 {
2328         struct smi_info *e, *tmp_e;
2329
2330         if (!initialized)
2331                 return;
2332
2333         ipmi_si_pci_shutdown();
2334
2335         ipmi_si_parisc_shutdown();
2336
2337         ipmi_si_platform_shutdown();
2338
2339         mutex_lock(&smi_infos_lock);
2340         list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
2341                 cleanup_one_si(e);
2342         mutex_unlock(&smi_infos_lock);
2343
2344         ipmi_si_hardcode_exit();
2345 }
2346 module_exit(cleanup_ipmi_si);
2347
2348 MODULE_ALIAS("platform:dmi-ipmi-si");
2349 MODULE_LICENSE("GPL");
2350 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
2351 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
2352                    " system interfaces.");