GNU Linux-libre 4.14.266-gnu1
[releases.git] / drivers / char / xillybus / xillybus_core.c
1 /*
2  * linux/drivers/misc/xillybus_core.c
3  *
4  * Copyright 2011 Xillybus Ltd, http://xillybus.com
5  *
6  * Driver for the Xillybus FPGA/host framework.
7  *
8  * This driver interfaces with a special IP core in an FPGA, setting up
9  * a pipe between a hardware FIFO in the programmable logic and a device
10  * file in the host. The number of such pipes and their attributes are
11  * set up on the logic. This driver detects these automatically and
12  * creates the device files accordingly.
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the smems of the GNU General Public License as published by
16  * the Free Software Foundation; version 2 of the License.
17  */
18
19 #include <linux/list.h>
20 #include <linux/device.h>
21 #include <linux/module.h>
22 #include <linux/io.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/interrupt.h>
25 #include <linux/sched.h>
26 #include <linux/fs.h>
27 #include <linux/cdev.h>
28 #include <linux/spinlock.h>
29 #include <linux/mutex.h>
30 #include <linux/crc32.h>
31 #include <linux/poll.h>
32 #include <linux/delay.h>
33 #include <linux/slab.h>
34 #include <linux/workqueue.h>
35 #include "xillybus.h"
36
37 MODULE_DESCRIPTION("Xillybus core functions");
38 MODULE_AUTHOR("Eli Billauer, Xillybus Ltd.");
39 MODULE_VERSION("1.07");
40 MODULE_ALIAS("xillybus_core");
41 MODULE_LICENSE("GPL v2");
42
43 /* General timeout is 100 ms, rx timeout is 10 ms */
44 #define XILLY_RX_TIMEOUT (10*HZ/1000)
45 #define XILLY_TIMEOUT (100*HZ/1000)
46
47 #define fpga_msg_ctrl_reg              0x0008
48 #define fpga_dma_control_reg           0x0020
49 #define fpga_dma_bufno_reg             0x0024
50 #define fpga_dma_bufaddr_lowaddr_reg   0x0028
51 #define fpga_dma_bufaddr_highaddr_reg  0x002c
52 #define fpga_buf_ctrl_reg              0x0030
53 #define fpga_buf_offset_reg            0x0034
54 #define fpga_endian_reg                0x0040
55
56 #define XILLYMSG_OPCODE_RELEASEBUF 1
57 #define XILLYMSG_OPCODE_QUIESCEACK 2
58 #define XILLYMSG_OPCODE_FIFOEOF 3
59 #define XILLYMSG_OPCODE_FATAL_ERROR 4
60 #define XILLYMSG_OPCODE_NONEMPTY 5
61
62 static const char xillyname[] = "xillybus";
63
64 static struct class *xillybus_class;
65
66 /*
67  * ep_list_lock is the last lock to be taken; No other lock requests are
68  * allowed while holding it. It merely protects list_of_endpoints, and not
69  * the endpoints listed in it.
70  */
71
72 static LIST_HEAD(list_of_endpoints);
73 static struct mutex ep_list_lock;
74 static struct workqueue_struct *xillybus_wq;
75
76 /*
77  * Locking scheme: Mutexes protect invocations of character device methods.
78  * If both locks are taken, wr_mutex is taken first, rd_mutex second.
79  *
80  * wr_spinlock protects wr_*_buf_idx, wr_empty, wr_sleepy, wr_ready and the
81  * buffers' end_offset fields against changes made by IRQ handler (and in
82  * theory, other file request handlers, but the mutex handles that). Nothing
83  * else.
84  * They are held for short direct memory manipulations. Needless to say,
85  * no mutex locking is allowed when a spinlock is held.
86  *
87  * rd_spinlock does the same with rd_*_buf_idx, rd_empty and end_offset.
88  *
89  * register_mutex is endpoint-specific, and is held when non-atomic
90  * register operations are performed. wr_mutex and rd_mutex may be
91  * held when register_mutex is taken, but none of the spinlocks. Note that
92  * register_mutex doesn't protect against sporadic buf_ctrl_reg writes
93  * which are unrelated to buf_offset_reg, since they are harmless.
94  *
95  * Blocking on the wait queues is allowed with mutexes held, but not with
96  * spinlocks.
97  *
98  * Only interruptible blocking is allowed on mutexes and wait queues.
99  *
100  * All in all, the locking order goes (with skips allowed, of course):
101  * wr_mutex -> rd_mutex -> register_mutex -> wr_spinlock -> rd_spinlock
102  */
103
104 static void malformed_message(struct xilly_endpoint *endpoint, u32 *buf)
105 {
106         int opcode;
107         int msg_channel, msg_bufno, msg_data, msg_dir;
108
109         opcode = (buf[0] >> 24) & 0xff;
110         msg_dir = buf[0] & 1;
111         msg_channel = (buf[0] >> 1) & 0x7ff;
112         msg_bufno = (buf[0] >> 12) & 0x3ff;
113         msg_data = buf[1] & 0xfffffff;
114
115         dev_warn(endpoint->dev,
116                  "Malformed message (skipping): opcode=%d, channel=%03x, dir=%d, bufno=%03x, data=%07x\n",
117                  opcode, msg_channel, msg_dir, msg_bufno, msg_data);
118 }
119
120 /*
121  * xillybus_isr assumes the interrupt is allocated exclusively to it,
122  * which is the natural case MSI and several other hardware-oriented
123  * interrupts. Sharing is not allowed.
124  */
125
126 irqreturn_t xillybus_isr(int irq, void *data)
127 {
128         struct xilly_endpoint *ep = data;
129         u32 *buf;
130         unsigned int buf_size;
131         int i;
132         int opcode;
133         unsigned int msg_channel, msg_bufno, msg_data, msg_dir;
134         struct xilly_channel *channel;
135
136         buf = ep->msgbuf_addr;
137         buf_size = ep->msg_buf_size/sizeof(u32);
138
139         ep->ephw->hw_sync_sgl_for_cpu(ep,
140                                       ep->msgbuf_dma_addr,
141                                       ep->msg_buf_size,
142                                       DMA_FROM_DEVICE);
143
144         for (i = 0; i < buf_size; i += 2) {
145                 if (((buf[i+1] >> 28) & 0xf) != ep->msg_counter) {
146                         malformed_message(ep, &buf[i]);
147                         dev_warn(ep->dev,
148                                  "Sending a NACK on counter %x (instead of %x) on entry %d\n",
149                                  ((buf[i+1] >> 28) & 0xf),
150                                  ep->msg_counter,
151                                  i/2);
152
153                         if (++ep->failed_messages > 10) {
154                                 dev_err(ep->dev,
155                                         "Lost sync with interrupt messages. Stopping.\n");
156                         } else {
157                                 ep->ephw->hw_sync_sgl_for_device(
158                                         ep,
159                                         ep->msgbuf_dma_addr,
160                                         ep->msg_buf_size,
161                                         DMA_FROM_DEVICE);
162
163                                 iowrite32(0x01,  /* Message NACK */
164                                           ep->registers + fpga_msg_ctrl_reg);
165                         }
166                         return IRQ_HANDLED;
167                 } else if (buf[i] & (1 << 22)) /* Last message */
168                         break;
169         }
170
171         if (i >= buf_size) {
172                 dev_err(ep->dev, "Bad interrupt message. Stopping.\n");
173                 return IRQ_HANDLED;
174         }
175
176         buf_size = i + 2;
177
178         for (i = 0; i < buf_size; i += 2) { /* Scan through messages */
179                 opcode = (buf[i] >> 24) & 0xff;
180
181                 msg_dir = buf[i] & 1;
182                 msg_channel = (buf[i] >> 1) & 0x7ff;
183                 msg_bufno = (buf[i] >> 12) & 0x3ff;
184                 msg_data = buf[i+1] & 0xfffffff;
185
186                 switch (opcode) {
187                 case XILLYMSG_OPCODE_RELEASEBUF:
188                         if ((msg_channel > ep->num_channels) ||
189                             (msg_channel == 0)) {
190                                 malformed_message(ep, &buf[i]);
191                                 break;
192                         }
193
194                         channel = ep->channels[msg_channel];
195
196                         if (msg_dir) { /* Write channel */
197                                 if (msg_bufno >= channel->num_wr_buffers) {
198                                         malformed_message(ep, &buf[i]);
199                                         break;
200                                 }
201                                 spin_lock(&channel->wr_spinlock);
202                                 channel->wr_buffers[msg_bufno]->end_offset =
203                                         msg_data;
204                                 channel->wr_fpga_buf_idx = msg_bufno;
205                                 channel->wr_empty = 0;
206                                 channel->wr_sleepy = 0;
207                                 spin_unlock(&channel->wr_spinlock);
208
209                                 wake_up_interruptible(&channel->wr_wait);
210
211                         } else {
212                                 /* Read channel */
213
214                                 if (msg_bufno >= channel->num_rd_buffers) {
215                                         malformed_message(ep, &buf[i]);
216                                         break;
217                                 }
218
219                                 spin_lock(&channel->rd_spinlock);
220                                 channel->rd_fpga_buf_idx = msg_bufno;
221                                 channel->rd_full = 0;
222                                 spin_unlock(&channel->rd_spinlock);
223
224                                 wake_up_interruptible(&channel->rd_wait);
225                                 if (!channel->rd_synchronous)
226                                         queue_delayed_work(
227                                                 xillybus_wq,
228                                                 &channel->rd_workitem,
229                                                 XILLY_RX_TIMEOUT);
230                         }
231
232                         break;
233                 case XILLYMSG_OPCODE_NONEMPTY:
234                         if ((msg_channel > ep->num_channels) ||
235                             (msg_channel == 0) || (!msg_dir) ||
236                             !ep->channels[msg_channel]->wr_supports_nonempty) {
237                                 malformed_message(ep, &buf[i]);
238                                 break;
239                         }
240
241                         channel = ep->channels[msg_channel];
242
243                         if (msg_bufno >= channel->num_wr_buffers) {
244                                 malformed_message(ep, &buf[i]);
245                                 break;
246                         }
247                         spin_lock(&channel->wr_spinlock);
248                         if (msg_bufno == channel->wr_host_buf_idx)
249                                 channel->wr_ready = 1;
250                         spin_unlock(&channel->wr_spinlock);
251
252                         wake_up_interruptible(&channel->wr_ready_wait);
253
254                         break;
255                 case XILLYMSG_OPCODE_QUIESCEACK:
256                         ep->idtlen = msg_data;
257                         wake_up_interruptible(&ep->ep_wait);
258
259                         break;
260                 case XILLYMSG_OPCODE_FIFOEOF:
261                         if ((msg_channel > ep->num_channels) ||
262                             (msg_channel == 0) || (!msg_dir) ||
263                             !ep->channels[msg_channel]->num_wr_buffers) {
264                                 malformed_message(ep, &buf[i]);
265                                 break;
266                         }
267                         channel = ep->channels[msg_channel];
268                         spin_lock(&channel->wr_spinlock);
269                         channel->wr_eof = msg_bufno;
270                         channel->wr_sleepy = 0;
271
272                         channel->wr_hangup = channel->wr_empty &&
273                                 (channel->wr_host_buf_idx == msg_bufno);
274
275                         spin_unlock(&channel->wr_spinlock);
276
277                         wake_up_interruptible(&channel->wr_wait);
278
279                         break;
280                 case XILLYMSG_OPCODE_FATAL_ERROR:
281                         ep->fatal_error = 1;
282                         wake_up_interruptible(&ep->ep_wait); /* For select() */
283                         dev_err(ep->dev,
284                                 "FPGA reported a fatal error. This means that the low-level communication with the device has failed. This hardware problem is most likely unrelated to Xillybus (neither kernel module nor FPGA core), but reports are still welcome. All I/O is aborted.\n");
285                         break;
286                 default:
287                         malformed_message(ep, &buf[i]);
288                         break;
289                 }
290         }
291
292         ep->ephw->hw_sync_sgl_for_device(ep,
293                                          ep->msgbuf_dma_addr,
294                                          ep->msg_buf_size,
295                                          DMA_FROM_DEVICE);
296
297         ep->msg_counter = (ep->msg_counter + 1) & 0xf;
298         ep->failed_messages = 0;
299         iowrite32(0x03, ep->registers + fpga_msg_ctrl_reg); /* Message ACK */
300
301         return IRQ_HANDLED;
302 }
303 EXPORT_SYMBOL(xillybus_isr);
304
305 /*
306  * A few trivial memory management functions.
307  * NOTE: These functions are used only on probe and remove, and therefore
308  * no locks are applied!
309  */
310
311 static void xillybus_autoflush(struct work_struct *work);
312
313 struct xilly_alloc_state {
314         void *salami;
315         int left_of_salami;
316         int nbuffer;
317         enum dma_data_direction direction;
318         u32 regdirection;
319 };
320
321 static int xilly_get_dma_buffers(struct xilly_endpoint *ep,
322                                  struct xilly_alloc_state *s,
323                                  struct xilly_buffer **buffers,
324                                  int bufnum, int bytebufsize)
325 {
326         int i, rc;
327         dma_addr_t dma_addr;
328         struct device *dev = ep->dev;
329         struct xilly_buffer *this_buffer = NULL; /* Init to silence warning */
330
331         if (buffers) { /* Not the message buffer */
332                 this_buffer = devm_kcalloc(dev, bufnum,
333                                            sizeof(struct xilly_buffer),
334                                            GFP_KERNEL);
335                 if (!this_buffer)
336                         return -ENOMEM;
337         }
338
339         for (i = 0; i < bufnum; i++) {
340                 /*
341                  * Buffers are expected in descending size order, so there
342                  * is either enough space for this buffer or none at all.
343                  */
344
345                 if ((s->left_of_salami < bytebufsize) &&
346                     (s->left_of_salami > 0)) {
347                         dev_err(ep->dev,
348                                 "Corrupt buffer allocation in IDT. Aborting.\n");
349                         return -ENODEV;
350                 }
351
352                 if (s->left_of_salami == 0) {
353                         int allocorder, allocsize;
354
355                         allocsize = PAGE_SIZE;
356                         allocorder = 0;
357                         while (bytebufsize > allocsize) {
358                                 allocsize *= 2;
359                                 allocorder++;
360                         }
361
362                         s->salami = (void *) devm_get_free_pages(
363                                 dev,
364                                 GFP_KERNEL | __GFP_DMA32 | __GFP_ZERO,
365                                 allocorder);
366                         if (!s->salami)
367                                 return -ENOMEM;
368
369                         s->left_of_salami = allocsize;
370                 }
371
372                 rc = ep->ephw->map_single(ep, s->salami,
373                                           bytebufsize, s->direction,
374                                           &dma_addr);
375                 if (rc)
376                         return rc;
377
378                 iowrite32((u32) (dma_addr & 0xffffffff),
379                           ep->registers + fpga_dma_bufaddr_lowaddr_reg);
380                 iowrite32(((u32) ((((u64) dma_addr) >> 32) & 0xffffffff)),
381                           ep->registers + fpga_dma_bufaddr_highaddr_reg);
382
383                 if (buffers) { /* Not the message buffer */
384                         this_buffer->addr = s->salami;
385                         this_buffer->dma_addr = dma_addr;
386                         buffers[i] = this_buffer++;
387
388                         iowrite32(s->regdirection | s->nbuffer++,
389                                   ep->registers + fpga_dma_bufno_reg);
390                 } else {
391                         ep->msgbuf_addr = s->salami;
392                         ep->msgbuf_dma_addr = dma_addr;
393                         ep->msg_buf_size = bytebufsize;
394
395                         iowrite32(s->regdirection,
396                                   ep->registers + fpga_dma_bufno_reg);
397                 }
398
399                 s->left_of_salami -= bytebufsize;
400                 s->salami += bytebufsize;
401         }
402         return 0;
403 }
404
405 static int xilly_setupchannels(struct xilly_endpoint *ep,
406                                unsigned char *chandesc,
407                                int entries)
408 {
409         struct device *dev = ep->dev;
410         int i, entry, rc;
411         struct xilly_channel *channel;
412         int channelnum, bufnum, bufsize, format, is_writebuf;
413         int bytebufsize;
414         int synchronous, allowpartial, exclusive_open, seekable;
415         int supports_nonempty;
416         int msg_buf_done = 0;
417
418         struct xilly_alloc_state rd_alloc = {
419                 .salami = NULL,
420                 .left_of_salami = 0,
421                 .nbuffer = 1,
422                 .direction = DMA_TO_DEVICE,
423                 .regdirection = 0,
424         };
425
426         struct xilly_alloc_state wr_alloc = {
427                 .salami = NULL,
428                 .left_of_salami = 0,
429                 .nbuffer = 1,
430                 .direction = DMA_FROM_DEVICE,
431                 .regdirection = 0x80000000,
432         };
433
434         channel = devm_kcalloc(dev, ep->num_channels,
435                                sizeof(struct xilly_channel), GFP_KERNEL);
436         if (!channel)
437                 return -ENOMEM;
438
439         ep->channels = devm_kcalloc(dev, ep->num_channels + 1,
440                                     sizeof(struct xilly_channel *),
441                                     GFP_KERNEL);
442         if (!ep->channels)
443                 return -ENOMEM;
444
445         ep->channels[0] = NULL; /* Channel 0 is message buf. */
446
447         /* Initialize all channels with defaults */
448
449         for (i = 1; i <= ep->num_channels; i++) {
450                 channel->wr_buffers = NULL;
451                 channel->rd_buffers = NULL;
452                 channel->num_wr_buffers = 0;
453                 channel->num_rd_buffers = 0;
454                 channel->wr_fpga_buf_idx = -1;
455                 channel->wr_host_buf_idx = 0;
456                 channel->wr_host_buf_pos = 0;
457                 channel->wr_empty = 1;
458                 channel->wr_ready = 0;
459                 channel->wr_sleepy = 1;
460                 channel->rd_fpga_buf_idx = 0;
461                 channel->rd_host_buf_idx = 0;
462                 channel->rd_host_buf_pos = 0;
463                 channel->rd_full = 0;
464                 channel->wr_ref_count = 0;
465                 channel->rd_ref_count = 0;
466
467                 spin_lock_init(&channel->wr_spinlock);
468                 spin_lock_init(&channel->rd_spinlock);
469                 mutex_init(&channel->wr_mutex);
470                 mutex_init(&channel->rd_mutex);
471                 init_waitqueue_head(&channel->rd_wait);
472                 init_waitqueue_head(&channel->wr_wait);
473                 init_waitqueue_head(&channel->wr_ready_wait);
474
475                 INIT_DELAYED_WORK(&channel->rd_workitem, xillybus_autoflush);
476
477                 channel->endpoint = ep;
478                 channel->chan_num = i;
479
480                 channel->log2_element_size = 0;
481
482                 ep->channels[i] = channel++;
483         }
484
485         for (entry = 0; entry < entries; entry++, chandesc += 4) {
486                 struct xilly_buffer **buffers = NULL;
487
488                 is_writebuf = chandesc[0] & 0x01;
489                 channelnum = (chandesc[0] >> 1) | ((chandesc[1] & 0x0f) << 7);
490                 format = (chandesc[1] >> 4) & 0x03;
491                 allowpartial = (chandesc[1] >> 6) & 0x01;
492                 synchronous = (chandesc[1] >> 7) & 0x01;
493                 bufsize = 1 << (chandesc[2] & 0x1f);
494                 bufnum = 1 << (chandesc[3] & 0x0f);
495                 exclusive_open = (chandesc[2] >> 7) & 0x01;
496                 seekable = (chandesc[2] >> 6) & 0x01;
497                 supports_nonempty = (chandesc[2] >> 5) & 0x01;
498
499                 if ((channelnum > ep->num_channels) ||
500                     ((channelnum == 0) && !is_writebuf)) {
501                         dev_err(ep->dev,
502                                 "IDT requests channel out of range. Aborting.\n");
503                         return -ENODEV;
504                 }
505
506                 channel = ep->channels[channelnum]; /* NULL for msg channel */
507
508                 if (!is_writebuf || channelnum > 0) {
509                         channel->log2_element_size = ((format > 2) ?
510                                                       2 : format);
511
512                         bytebufsize = bufsize *
513                                 (1 << channel->log2_element_size);
514
515                         buffers = devm_kcalloc(dev, bufnum,
516                                                sizeof(struct xilly_buffer *),
517                                                GFP_KERNEL);
518                         if (!buffers)
519                                 return -ENOMEM;
520                 } else {
521                         bytebufsize = bufsize << 2;
522                 }
523
524                 if (!is_writebuf) {
525                         channel->num_rd_buffers = bufnum;
526                         channel->rd_buf_size = bytebufsize;
527                         channel->rd_allow_partial = allowpartial;
528                         channel->rd_synchronous = synchronous;
529                         channel->rd_exclusive_open = exclusive_open;
530                         channel->seekable = seekable;
531
532                         channel->rd_buffers = buffers;
533                         rc = xilly_get_dma_buffers(ep, &rd_alloc, buffers,
534                                                    bufnum, bytebufsize);
535                 } else if (channelnum > 0) {
536                         channel->num_wr_buffers = bufnum;
537                         channel->wr_buf_size = bytebufsize;
538
539                         channel->seekable = seekable;
540                         channel->wr_supports_nonempty = supports_nonempty;
541
542                         channel->wr_allow_partial = allowpartial;
543                         channel->wr_synchronous = synchronous;
544                         channel->wr_exclusive_open = exclusive_open;
545
546                         channel->wr_buffers = buffers;
547                         rc = xilly_get_dma_buffers(ep, &wr_alloc, buffers,
548                                                    bufnum, bytebufsize);
549                 } else {
550                         rc = xilly_get_dma_buffers(ep, &wr_alloc, NULL,
551                                                    bufnum, bytebufsize);
552                         msg_buf_done++;
553                 }
554
555                 if (rc)
556                         return -ENOMEM;
557         }
558
559         if (!msg_buf_done) {
560                 dev_err(ep->dev,
561                         "Corrupt IDT: No message buffer. Aborting.\n");
562                 return -ENODEV;
563         }
564         return 0;
565 }
566
567 static int xilly_scan_idt(struct xilly_endpoint *endpoint,
568                           struct xilly_idt_handle *idt_handle)
569 {
570         int count = 0;
571         unsigned char *idt = endpoint->channels[1]->wr_buffers[0]->addr;
572         unsigned char *end_of_idt = idt + endpoint->idtlen - 4;
573         unsigned char *scan;
574         int len;
575
576         scan = idt;
577         idt_handle->idt = idt;
578
579         scan++; /* Skip version number */
580
581         while ((scan <= end_of_idt) && *scan) {
582                 while ((scan <= end_of_idt) && *scan++)
583                         /* Do nothing, just scan thru string */;
584                 count++;
585         }
586
587         scan++;
588
589         if (scan > end_of_idt) {
590                 dev_err(endpoint->dev,
591                         "IDT device name list overflow. Aborting.\n");
592                 return -ENODEV;
593         }
594         idt_handle->chandesc = scan;
595
596         len = endpoint->idtlen - (3 + ((int) (scan - idt)));
597
598         if (len & 0x03) {
599                 dev_err(endpoint->dev,
600                         "Corrupt IDT device name list. Aborting.\n");
601                 return -ENODEV;
602         }
603
604         idt_handle->entries = len >> 2;
605         endpoint->num_channels = count;
606
607         return 0;
608 }
609
610 static int xilly_obtain_idt(struct xilly_endpoint *endpoint)
611 {
612         struct xilly_channel *channel;
613         unsigned char *version;
614         long t;
615
616         channel = endpoint->channels[1]; /* This should be generated ad-hoc */
617
618         channel->wr_sleepy = 1;
619
620         iowrite32(1 |
621                   (3 << 24), /* Opcode 3 for channel 0 = Send IDT */
622                   endpoint->registers + fpga_buf_ctrl_reg);
623
624         t = wait_event_interruptible_timeout(channel->wr_wait,
625                                              (!channel->wr_sleepy),
626                                              XILLY_TIMEOUT);
627
628         if (t <= 0) {
629                 dev_err(endpoint->dev, "Failed to obtain IDT. Aborting.\n");
630
631                 if (endpoint->fatal_error)
632                         return -EIO;
633
634                 return -ENODEV;
635         }
636
637         endpoint->ephw->hw_sync_sgl_for_cpu(
638                 channel->endpoint,
639                 channel->wr_buffers[0]->dma_addr,
640                 channel->wr_buf_size,
641                 DMA_FROM_DEVICE);
642
643         if (channel->wr_buffers[0]->end_offset != endpoint->idtlen) {
644                 dev_err(endpoint->dev,
645                         "IDT length mismatch (%d != %d). Aborting.\n",
646                         channel->wr_buffers[0]->end_offset, endpoint->idtlen);
647                 return -ENODEV;
648         }
649
650         if (crc32_le(~0, channel->wr_buffers[0]->addr,
651                      endpoint->idtlen+1) != 0) {
652                 dev_err(endpoint->dev, "IDT failed CRC check. Aborting.\n");
653                 return -ENODEV;
654         }
655
656         version = channel->wr_buffers[0]->addr;
657
658         /* Check version number. Reject anything above 0x82. */
659         if (*version > 0x82) {
660                 dev_err(endpoint->dev,
661                         "No support for IDT version 0x%02x. Maybe the xillybus driver needs an upgrade. Aborting.\n",
662                         *version);
663                 return -ENODEV;
664         }
665
666         return 0;
667 }
668
669 static ssize_t xillybus_read(struct file *filp, char __user *userbuf,
670                              size_t count, loff_t *f_pos)
671 {
672         ssize_t rc;
673         unsigned long flags;
674         int bytes_done = 0;
675         int no_time_left = 0;
676         long deadline, left_to_sleep;
677         struct xilly_channel *channel = filp->private_data;
678
679         int empty, reached_eof, exhausted, ready;
680         /* Initializations are there only to silence warnings */
681
682         int howmany = 0, bufpos = 0, bufidx = 0, bufferdone = 0;
683         int waiting_bufidx;
684
685         if (channel->endpoint->fatal_error)
686                 return -EIO;
687
688         deadline = jiffies + 1 + XILLY_RX_TIMEOUT;
689
690         rc = mutex_lock_interruptible(&channel->wr_mutex);
691         if (rc)
692                 return rc;
693
694         while (1) { /* Note that we may drop mutex within this loop */
695                 int bytes_to_do = count - bytes_done;
696
697                 spin_lock_irqsave(&channel->wr_spinlock, flags);
698
699                 empty = channel->wr_empty;
700                 ready = !empty || channel->wr_ready;
701
702                 if (!empty) {
703                         bufidx = channel->wr_host_buf_idx;
704                         bufpos = channel->wr_host_buf_pos;
705                         howmany = ((channel->wr_buffers[bufidx]->end_offset
706                                     + 1) << channel->log2_element_size)
707                                 - bufpos;
708
709                         /* Update wr_host_* to its post-operation state */
710                         if (howmany > bytes_to_do) {
711                                 bufferdone = 0;
712
713                                 howmany = bytes_to_do;
714                                 channel->wr_host_buf_pos += howmany;
715                         } else {
716                                 bufferdone = 1;
717
718                                 channel->wr_host_buf_pos = 0;
719
720                                 if (bufidx == channel->wr_fpga_buf_idx) {
721                                         channel->wr_empty = 1;
722                                         channel->wr_sleepy = 1;
723                                         channel->wr_ready = 0;
724                                 }
725
726                                 if (bufidx >= (channel->num_wr_buffers - 1))
727                                         channel->wr_host_buf_idx = 0;
728                                 else
729                                         channel->wr_host_buf_idx++;
730                         }
731                 }
732
733                 /*
734                  * Marking our situation after the possible changes above,
735                  * for use after releasing the spinlock.
736                  *
737                  * empty = empty before change
738                  * exhasted = empty after possible change
739                  */
740
741                 reached_eof = channel->wr_empty &&
742                         (channel->wr_host_buf_idx == channel->wr_eof);
743                 channel->wr_hangup = reached_eof;
744                 exhausted = channel->wr_empty;
745                 waiting_bufidx = channel->wr_host_buf_idx;
746
747                 spin_unlock_irqrestore(&channel->wr_spinlock, flags);
748
749                 if (!empty) { /* Go on, now without the spinlock */
750
751                         if (bufpos == 0) /* Position zero means it's virgin */
752                                 channel->endpoint->ephw->hw_sync_sgl_for_cpu(
753                                         channel->endpoint,
754                                         channel->wr_buffers[bufidx]->dma_addr,
755                                         channel->wr_buf_size,
756                                         DMA_FROM_DEVICE);
757
758                         if (copy_to_user(
759                                     userbuf,
760                                     channel->wr_buffers[bufidx]->addr
761                                     + bufpos, howmany))
762                                 rc = -EFAULT;
763
764                         userbuf += howmany;
765                         bytes_done += howmany;
766
767                         if (bufferdone) {
768                                 channel->endpoint->ephw->hw_sync_sgl_for_device(
769                                         channel->endpoint,
770                                         channel->wr_buffers[bufidx]->dma_addr,
771                                         channel->wr_buf_size,
772                                         DMA_FROM_DEVICE);
773
774                                 /*
775                                  * Tell FPGA the buffer is done with. It's an
776                                  * atomic operation to the FPGA, so what
777                                  * happens with other channels doesn't matter,
778                                  * and the certain channel is protected with
779                                  * the channel-specific mutex.
780                                  */
781
782                                 iowrite32(1 | (channel->chan_num << 1) |
783                                           (bufidx << 12),
784                                           channel->endpoint->registers +
785                                           fpga_buf_ctrl_reg);
786                         }
787
788                         if (rc) {
789                                 mutex_unlock(&channel->wr_mutex);
790                                 return rc;
791                         }
792                 }
793
794                 /* This includes a zero-count return = EOF */
795                 if ((bytes_done >= count) || reached_eof)
796                         break;
797
798                 if (!exhausted)
799                         continue; /* More in RAM buffer(s)? Just go on. */
800
801                 if ((bytes_done > 0) &&
802                     (no_time_left ||
803                      (channel->wr_synchronous && channel->wr_allow_partial)))
804                         break;
805
806                 /*
807                  * Nonblocking read: The "ready" flag tells us that the FPGA
808                  * has data to send. In non-blocking mode, if it isn't on,
809                  * just return. But if there is, we jump directly to the point
810                  * where we ask for the FPGA to send all it has, and wait
811                  * until that data arrives. So in a sense, we *do* block in
812                  * nonblocking mode, but only for a very short time.
813                  */
814
815                 if (!no_time_left && (filp->f_flags & O_NONBLOCK)) {
816                         if (bytes_done > 0)
817                                 break;
818
819                         if (ready)
820                                 goto desperate;
821
822                         rc = -EAGAIN;
823                         break;
824                 }
825
826                 if (!no_time_left || (bytes_done > 0)) {
827                         /*
828                          * Note that in case of an element-misaligned read
829                          * request, offsetlimit will include the last element,
830                          * which will be partially read from.
831                          */
832                         int offsetlimit = ((count - bytes_done) - 1) >>
833                                 channel->log2_element_size;
834                         int buf_elements = channel->wr_buf_size >>
835                                 channel->log2_element_size;
836
837                         /*
838                          * In synchronous mode, always send an offset limit.
839                          * Just don't send a value too big.
840                          */
841
842                         if (channel->wr_synchronous) {
843                                 /* Don't request more than one buffer */
844                                 if (channel->wr_allow_partial &&
845                                     (offsetlimit >= buf_elements))
846                                         offsetlimit = buf_elements - 1;
847
848                                 /* Don't request more than all buffers */
849                                 if (!channel->wr_allow_partial &&
850                                     (offsetlimit >=
851                                      (buf_elements * channel->num_wr_buffers)))
852                                         offsetlimit = buf_elements *
853                                                 channel->num_wr_buffers - 1;
854                         }
855
856                         /*
857                          * In asynchronous mode, force early flush of a buffer
858                          * only if that will allow returning a full count. The
859                          * "offsetlimit < ( ... )" rather than "<=" excludes
860                          * requesting a full buffer, which would obviously
861                          * cause a buffer transmission anyhow
862                          */
863
864                         if (channel->wr_synchronous ||
865                             (offsetlimit < (buf_elements - 1))) {
866                                 mutex_lock(&channel->endpoint->register_mutex);
867
868                                 iowrite32(offsetlimit,
869                                           channel->endpoint->registers +
870                                           fpga_buf_offset_reg);
871
872                                 iowrite32(1 | (channel->chan_num << 1) |
873                                           (2 << 24) |  /* 2 = offset limit */
874                                           (waiting_bufidx << 12),
875                                           channel->endpoint->registers +
876                                           fpga_buf_ctrl_reg);
877
878                                 mutex_unlock(&channel->endpoint->
879                                              register_mutex);
880                         }
881                 }
882
883                 /*
884                  * If partial completion is disallowed, there is no point in
885                  * timeout sleeping. Neither if no_time_left is set and
886                  * there's no data.
887                  */
888
889                 if (!channel->wr_allow_partial ||
890                     (no_time_left && (bytes_done == 0))) {
891                         /*
892                          * This do-loop will run more than once if another
893                          * thread reasserted wr_sleepy before we got the mutex
894                          * back, so we try again.
895                          */
896
897                         do {
898                                 mutex_unlock(&channel->wr_mutex);
899
900                                 if (wait_event_interruptible(
901                                             channel->wr_wait,
902                                             (!channel->wr_sleepy)))
903                                         goto interrupted;
904
905                                 if (mutex_lock_interruptible(
906                                             &channel->wr_mutex))
907                                         goto interrupted;
908                         } while (channel->wr_sleepy);
909
910                         continue;
911
912 interrupted: /* Mutex is not held if got here */
913                         if (channel->endpoint->fatal_error)
914                                 return -EIO;
915                         if (bytes_done)
916                                 return bytes_done;
917                         if (filp->f_flags & O_NONBLOCK)
918                                 return -EAGAIN; /* Don't admit snoozing */
919                         return -EINTR;
920                 }
921
922                 left_to_sleep = deadline - ((long) jiffies);
923
924                 /*
925                  * If our time is out, skip the waiting. We may miss wr_sleepy
926                  * being deasserted but hey, almost missing the train is like
927                  * missing it.
928                  */
929
930                 if (left_to_sleep > 0) {
931                         left_to_sleep =
932                                 wait_event_interruptible_timeout(
933                                         channel->wr_wait,
934                                         (!channel->wr_sleepy),
935                                         left_to_sleep);
936
937                         if (left_to_sleep > 0) /* wr_sleepy deasserted */
938                                 continue;
939
940                         if (left_to_sleep < 0) { /* Interrupt */
941                                 mutex_unlock(&channel->wr_mutex);
942                                 if (channel->endpoint->fatal_error)
943                                         return -EIO;
944                                 if (bytes_done)
945                                         return bytes_done;
946                                 return -EINTR;
947                         }
948                 }
949
950 desperate:
951                 no_time_left = 1; /* We're out of sleeping time. Desperate! */
952
953                 if (bytes_done == 0) {
954                         /*
955                          * Reaching here means that we allow partial return,
956                          * that we've run out of time, and that we have
957                          * nothing to return.
958                          * So tell the FPGA to send anything it has or gets.
959                          */
960
961                         iowrite32(1 | (channel->chan_num << 1) |
962                                   (3 << 24) |  /* Opcode 3, flush it all! */
963                                   (waiting_bufidx << 12),
964                                   channel->endpoint->registers +
965                                   fpga_buf_ctrl_reg);
966                 }
967
968                 /*
969                  * Reaching here means that we *do* have data in the buffer,
970                  * but the "partial" flag disallows returning less than
971                  * required. And we don't have as much. So loop again,
972                  * which is likely to end up blocking indefinitely until
973                  * enough data has arrived.
974                  */
975         }
976
977         mutex_unlock(&channel->wr_mutex);
978
979         if (channel->endpoint->fatal_error)
980                 return -EIO;
981
982         if (rc)
983                 return rc;
984
985         return bytes_done;
986 }
987
988 /*
989  * The timeout argument takes values as follows:
990  *  >0 : Flush with timeout
991  * ==0 : Flush, and wait idefinitely for the flush to complete
992  *  <0 : Autoflush: Flush only if there's a single buffer occupied
993  */
994
995 static int xillybus_myflush(struct xilly_channel *channel, long timeout)
996 {
997         int rc;
998         unsigned long flags;
999
1000         int end_offset_plus1;
1001         int bufidx, bufidx_minus1;
1002         int i;
1003         int empty;
1004         int new_rd_host_buf_pos;
1005
1006         if (channel->endpoint->fatal_error)
1007                 return -EIO;
1008         rc = mutex_lock_interruptible(&channel->rd_mutex);
1009         if (rc)
1010                 return rc;
1011
1012         /*
1013          * Don't flush a closed channel. This can happen when the work queued
1014          * autoflush thread fires off after the file has closed. This is not
1015          * an error, just something to dismiss.
1016          */
1017
1018         if (!channel->rd_ref_count)
1019                 goto done;
1020
1021         bufidx = channel->rd_host_buf_idx;
1022
1023         bufidx_minus1 = (bufidx == 0) ?
1024                 channel->num_rd_buffers - 1 :
1025                 bufidx - 1;
1026
1027         end_offset_plus1 = channel->rd_host_buf_pos >>
1028                 channel->log2_element_size;
1029
1030         new_rd_host_buf_pos = channel->rd_host_buf_pos -
1031                 (end_offset_plus1 << channel->log2_element_size);
1032
1033         /* Submit the current buffer if it's nonempty */
1034         if (end_offset_plus1) {
1035                 unsigned char *tail = channel->rd_buffers[bufidx]->addr +
1036                         (end_offset_plus1 << channel->log2_element_size);
1037
1038                 /* Copy  unflushed data, so we can put it in next buffer */
1039                 for (i = 0; i < new_rd_host_buf_pos; i++)
1040                         channel->rd_leftovers[i] = *tail++;
1041
1042                 spin_lock_irqsave(&channel->rd_spinlock, flags);
1043
1044                 /* Autoflush only if a single buffer is occupied */
1045
1046                 if ((timeout < 0) &&
1047                     (channel->rd_full ||
1048                      (bufidx_minus1 != channel->rd_fpga_buf_idx))) {
1049                         spin_unlock_irqrestore(&channel->rd_spinlock, flags);
1050                         /*
1051                          * A new work item may be queued by the ISR exactly
1052                          * now, since the execution of a work item allows the
1053                          * queuing of a new one while it's running.
1054                          */
1055                         goto done;
1056                 }
1057
1058                 /* The 4th element is never needed for data, so it's a flag */
1059                 channel->rd_leftovers[3] = (new_rd_host_buf_pos != 0);
1060
1061                 /* Set up rd_full to reflect a certain moment's state */
1062
1063                 if (bufidx == channel->rd_fpga_buf_idx)
1064                         channel->rd_full = 1;
1065                 spin_unlock_irqrestore(&channel->rd_spinlock, flags);
1066
1067                 if (bufidx >= (channel->num_rd_buffers - 1))
1068                         channel->rd_host_buf_idx = 0;
1069                 else
1070                         channel->rd_host_buf_idx++;
1071
1072                 channel->endpoint->ephw->hw_sync_sgl_for_device(
1073                         channel->endpoint,
1074                         channel->rd_buffers[bufidx]->dma_addr,
1075                         channel->rd_buf_size,
1076                         DMA_TO_DEVICE);
1077
1078                 mutex_lock(&channel->endpoint->register_mutex);
1079
1080                 iowrite32(end_offset_plus1 - 1,
1081                           channel->endpoint->registers + fpga_buf_offset_reg);
1082
1083                 iowrite32((channel->chan_num << 1) | /* Channel ID */
1084                           (2 << 24) |  /* Opcode 2, submit buffer */
1085                           (bufidx << 12),
1086                           channel->endpoint->registers + fpga_buf_ctrl_reg);
1087
1088                 mutex_unlock(&channel->endpoint->register_mutex);
1089         } else if (bufidx == 0) {
1090                 bufidx = channel->num_rd_buffers - 1;
1091         } else {
1092                 bufidx--;
1093         }
1094
1095         channel->rd_host_buf_pos = new_rd_host_buf_pos;
1096
1097         if (timeout < 0)
1098                 goto done; /* Autoflush */
1099
1100         /*
1101          * bufidx is now the last buffer written to (or equal to
1102          * rd_fpga_buf_idx if buffer was never written to), and
1103          * channel->rd_host_buf_idx the one after it.
1104          *
1105          * If bufidx == channel->rd_fpga_buf_idx we're either empty or full.
1106          */
1107
1108         while (1) { /* Loop waiting for draining of buffers */
1109                 spin_lock_irqsave(&channel->rd_spinlock, flags);
1110
1111                 if (bufidx != channel->rd_fpga_buf_idx)
1112                         channel->rd_full = 1; /*
1113                                                * Not really full,
1114                                                * but needs waiting.
1115                                                */
1116
1117                 empty = !channel->rd_full;
1118
1119                 spin_unlock_irqrestore(&channel->rd_spinlock, flags);
1120
1121                 if (empty)
1122                         break;
1123
1124                 /*
1125                  * Indefinite sleep with mutex taken. With data waiting for
1126                  * flushing user should not be surprised if open() for write
1127                  * sleeps.
1128                  */
1129                 if (timeout == 0)
1130                         wait_event_interruptible(channel->rd_wait,
1131                                                  (!channel->rd_full));
1132
1133                 else if (wait_event_interruptible_timeout(
1134                                  channel->rd_wait,
1135                                  (!channel->rd_full),
1136                                  timeout) == 0) {
1137                         dev_warn(channel->endpoint->dev,
1138                                  "Timed out while flushing. Output data may be lost.\n");
1139
1140                         rc = -ETIMEDOUT;
1141                         break;
1142                 }
1143
1144                 if (channel->rd_full) {
1145                         rc = -EINTR;
1146                         break;
1147                 }
1148         }
1149
1150 done:
1151         mutex_unlock(&channel->rd_mutex);
1152
1153         if (channel->endpoint->fatal_error)
1154                 return -EIO;
1155
1156         return rc;
1157 }
1158
1159 static int xillybus_flush(struct file *filp, fl_owner_t id)
1160 {
1161         if (!(filp->f_mode & FMODE_WRITE))
1162                 return 0;
1163
1164         return xillybus_myflush(filp->private_data, HZ); /* 1 second timeout */
1165 }
1166
1167 static void xillybus_autoflush(struct work_struct *work)
1168 {
1169         struct delayed_work *workitem = container_of(
1170                 work, struct delayed_work, work);
1171         struct xilly_channel *channel = container_of(
1172                 workitem, struct xilly_channel, rd_workitem);
1173         int rc;
1174
1175         rc = xillybus_myflush(channel, -1);
1176         if (rc == -EINTR)
1177                 dev_warn(channel->endpoint->dev,
1178                          "Autoflush failed because work queue thread got a signal.\n");
1179         else if (rc)
1180                 dev_err(channel->endpoint->dev,
1181                         "Autoflush failed under weird circumstances.\n");
1182 }
1183
1184 static ssize_t xillybus_write(struct file *filp, const char __user *userbuf,
1185                               size_t count, loff_t *f_pos)
1186 {
1187         ssize_t rc;
1188         unsigned long flags;
1189         int bytes_done = 0;
1190         struct xilly_channel *channel = filp->private_data;
1191
1192         int full, exhausted;
1193         /* Initializations are there only to silence warnings */
1194
1195         int howmany = 0, bufpos = 0, bufidx = 0, bufferdone = 0;
1196         int end_offset_plus1 = 0;
1197
1198         if (channel->endpoint->fatal_error)
1199                 return -EIO;
1200
1201         rc = mutex_lock_interruptible(&channel->rd_mutex);
1202         if (rc)
1203                 return rc;
1204
1205         while (1) {
1206                 int bytes_to_do = count - bytes_done;
1207
1208                 spin_lock_irqsave(&channel->rd_spinlock, flags);
1209
1210                 full = channel->rd_full;
1211
1212                 if (!full) {
1213                         bufidx = channel->rd_host_buf_idx;
1214                         bufpos = channel->rd_host_buf_pos;
1215                         howmany = channel->rd_buf_size - bufpos;
1216
1217                         /*
1218                          * Update rd_host_* to its state after this operation.
1219                          * count=0 means committing the buffer immediately,
1220                          * which is like flushing, but not necessarily block.
1221                          */
1222
1223                         if ((howmany > bytes_to_do) &&
1224                             (count ||
1225                              ((bufpos >> channel->log2_element_size) == 0))) {
1226                                 bufferdone = 0;
1227
1228                                 howmany = bytes_to_do;
1229                                 channel->rd_host_buf_pos += howmany;
1230                         } else {
1231                                 bufferdone = 1;
1232
1233                                 if (count) {
1234                                         end_offset_plus1 =
1235                                                 channel->rd_buf_size >>
1236                                                 channel->log2_element_size;
1237                                         channel->rd_host_buf_pos = 0;
1238                                 } else {
1239                                         unsigned char *tail;
1240                                         int i;
1241
1242                                         howmany = 0;
1243
1244                                         end_offset_plus1 = bufpos >>
1245                                                 channel->log2_element_size;
1246
1247                                         channel->rd_host_buf_pos -=
1248                                                 end_offset_plus1 <<
1249                                                 channel->log2_element_size;
1250
1251                                         tail = channel->
1252                                                 rd_buffers[bufidx]->addr +
1253                                                 (end_offset_plus1 <<
1254                                                  channel->log2_element_size);
1255
1256                                         for (i = 0;
1257                                              i < channel->rd_host_buf_pos;
1258                                              i++)
1259                                                 channel->rd_leftovers[i] =
1260                                                         *tail++;
1261                                 }
1262
1263                                 if (bufidx == channel->rd_fpga_buf_idx)
1264                                         channel->rd_full = 1;
1265
1266                                 if (bufidx >= (channel->num_rd_buffers - 1))
1267                                         channel->rd_host_buf_idx = 0;
1268                                 else
1269                                         channel->rd_host_buf_idx++;
1270                         }
1271                 }
1272
1273                 /*
1274                  * Marking our situation after the possible changes above,
1275                  * for use  after releasing the spinlock.
1276                  *
1277                  * full = full before change
1278                  * exhasted = full after possible change
1279                  */
1280
1281                 exhausted = channel->rd_full;
1282
1283                 spin_unlock_irqrestore(&channel->rd_spinlock, flags);
1284
1285                 if (!full) { /* Go on, now without the spinlock */
1286                         unsigned char *head =
1287                                 channel->rd_buffers[bufidx]->addr;
1288                         int i;
1289
1290                         if ((bufpos == 0) || /* Zero means it's virgin */
1291                             (channel->rd_leftovers[3] != 0)) {
1292                                 channel->endpoint->ephw->hw_sync_sgl_for_cpu(
1293                                         channel->endpoint,
1294                                         channel->rd_buffers[bufidx]->dma_addr,
1295                                         channel->rd_buf_size,
1296                                         DMA_TO_DEVICE);
1297
1298                                 /* Virgin, but leftovers are due */
1299                                 for (i = 0; i < bufpos; i++)
1300                                         *head++ = channel->rd_leftovers[i];
1301
1302                                 channel->rd_leftovers[3] = 0; /* Clear flag */
1303                         }
1304
1305                         if (copy_from_user(
1306                                     channel->rd_buffers[bufidx]->addr + bufpos,
1307                                     userbuf, howmany))
1308                                 rc = -EFAULT;
1309
1310                         userbuf += howmany;
1311                         bytes_done += howmany;
1312
1313                         if (bufferdone) {
1314                                 channel->endpoint->ephw->hw_sync_sgl_for_device(
1315                                         channel->endpoint,
1316                                         channel->rd_buffers[bufidx]->dma_addr,
1317                                         channel->rd_buf_size,
1318                                         DMA_TO_DEVICE);
1319
1320                                 mutex_lock(&channel->endpoint->register_mutex);
1321
1322                                 iowrite32(end_offset_plus1 - 1,
1323                                           channel->endpoint->registers +
1324                                           fpga_buf_offset_reg);
1325
1326                                 iowrite32((channel->chan_num << 1) |
1327                                           (2 << 24) |  /* 2 = submit buffer */
1328                                           (bufidx << 12),
1329                                           channel->endpoint->registers +
1330                                           fpga_buf_ctrl_reg);
1331
1332                                 mutex_unlock(&channel->endpoint->
1333                                              register_mutex);
1334
1335                                 channel->rd_leftovers[3] =
1336                                         (channel->rd_host_buf_pos != 0);
1337                         }
1338
1339                         if (rc) {
1340                                 mutex_unlock(&channel->rd_mutex);
1341
1342                                 if (channel->endpoint->fatal_error)
1343                                         return -EIO;
1344
1345                                 if (!channel->rd_synchronous)
1346                                         queue_delayed_work(
1347                                                 xillybus_wq,
1348                                                 &channel->rd_workitem,
1349                                                 XILLY_RX_TIMEOUT);
1350
1351                                 return rc;
1352                         }
1353                 }
1354
1355                 if (bytes_done >= count)
1356                         break;
1357
1358                 if (!exhausted)
1359                         continue; /* If there's more space, just go on */
1360
1361                 if ((bytes_done > 0) && channel->rd_allow_partial)
1362                         break;
1363
1364                 /*
1365                  * Indefinite sleep with mutex taken. With data waiting for
1366                  * flushing, user should not be surprised if open() for write
1367                  * sleeps.
1368                  */
1369
1370                 if (filp->f_flags & O_NONBLOCK) {
1371                         rc = -EAGAIN;
1372                         break;
1373                 }
1374
1375                 if (wait_event_interruptible(channel->rd_wait,
1376                                              (!channel->rd_full))) {
1377                         mutex_unlock(&channel->rd_mutex);
1378
1379                         if (channel->endpoint->fatal_error)
1380                                 return -EIO;
1381
1382                         if (bytes_done)
1383                                 return bytes_done;
1384                         return -EINTR;
1385                 }
1386         }
1387
1388         mutex_unlock(&channel->rd_mutex);
1389
1390         if (!channel->rd_synchronous)
1391                 queue_delayed_work(xillybus_wq,
1392                                    &channel->rd_workitem,
1393                                    XILLY_RX_TIMEOUT);
1394
1395         if (channel->endpoint->fatal_error)
1396                 return -EIO;
1397
1398         if (rc)
1399                 return rc;
1400
1401         if ((channel->rd_synchronous) && (bytes_done > 0)) {
1402                 rc = xillybus_myflush(filp->private_data, 0); /* No timeout */
1403
1404                 if (rc && (rc != -EINTR))
1405                         return rc;
1406         }
1407
1408         return bytes_done;
1409 }
1410
1411 static int xillybus_open(struct inode *inode, struct file *filp)
1412 {
1413         int rc = 0;
1414         unsigned long flags;
1415         int minor = iminor(inode);
1416         int major = imajor(inode);
1417         struct xilly_endpoint *ep_iter, *endpoint = NULL;
1418         struct xilly_channel *channel;
1419
1420         mutex_lock(&ep_list_lock);
1421
1422         list_for_each_entry(ep_iter, &list_of_endpoints, ep_list) {
1423                 if ((ep_iter->major == major) &&
1424                     (minor >= ep_iter->lowest_minor) &&
1425                     (minor < (ep_iter->lowest_minor +
1426                               ep_iter->num_channels))) {
1427                         endpoint = ep_iter;
1428                         break;
1429                 }
1430         }
1431         mutex_unlock(&ep_list_lock);
1432
1433         if (!endpoint) {
1434                 pr_err("xillybus: open() failed to find a device for major=%d and minor=%d\n",
1435                        major, minor);
1436                 return -ENODEV;
1437         }
1438
1439         if (endpoint->fatal_error)
1440                 return -EIO;
1441
1442         channel = endpoint->channels[1 + minor - endpoint->lowest_minor];
1443         filp->private_data = channel;
1444
1445         /*
1446          * It gets complicated because:
1447          * 1. We don't want to take a mutex we don't have to
1448          * 2. We don't want to open one direction if the other will fail.
1449          */
1450
1451         if ((filp->f_mode & FMODE_READ) && (!channel->num_wr_buffers))
1452                 return -ENODEV;
1453
1454         if ((filp->f_mode & FMODE_WRITE) && (!channel->num_rd_buffers))
1455                 return -ENODEV;
1456
1457         if ((filp->f_mode & FMODE_READ) && (filp->f_flags & O_NONBLOCK) &&
1458             (channel->wr_synchronous || !channel->wr_allow_partial ||
1459              !channel->wr_supports_nonempty)) {
1460                 dev_err(endpoint->dev,
1461                         "open() failed: O_NONBLOCK not allowed for read on this device\n");
1462                 return -ENODEV;
1463         }
1464
1465         if ((filp->f_mode & FMODE_WRITE) && (filp->f_flags & O_NONBLOCK) &&
1466             (channel->rd_synchronous || !channel->rd_allow_partial)) {
1467                 dev_err(endpoint->dev,
1468                         "open() failed: O_NONBLOCK not allowed for write on this device\n");
1469                 return -ENODEV;
1470         }
1471
1472         /*
1473          * Note: open() may block on getting mutexes despite O_NONBLOCK.
1474          * This shouldn't occur normally, since multiple open of the same
1475          * file descriptor is almost always prohibited anyhow
1476          * (*_exclusive_open is normally set in real-life systems).
1477          */
1478
1479         if (filp->f_mode & FMODE_READ) {
1480                 rc = mutex_lock_interruptible(&channel->wr_mutex);
1481                 if (rc)
1482                         return rc;
1483         }
1484
1485         if (filp->f_mode & FMODE_WRITE) {
1486                 rc = mutex_lock_interruptible(&channel->rd_mutex);
1487                 if (rc)
1488                         goto unlock_wr;
1489         }
1490
1491         if ((filp->f_mode & FMODE_READ) &&
1492             (channel->wr_ref_count != 0) &&
1493             (channel->wr_exclusive_open)) {
1494                 rc = -EBUSY;
1495                 goto unlock;
1496         }
1497
1498         if ((filp->f_mode & FMODE_WRITE) &&
1499             (channel->rd_ref_count != 0) &&
1500             (channel->rd_exclusive_open)) {
1501                 rc = -EBUSY;
1502                 goto unlock;
1503         }
1504
1505         if (filp->f_mode & FMODE_READ) {
1506                 if (channel->wr_ref_count == 0) { /* First open of file */
1507                         /* Move the host to first buffer */
1508                         spin_lock_irqsave(&channel->wr_spinlock, flags);
1509                         channel->wr_host_buf_idx = 0;
1510                         channel->wr_host_buf_pos = 0;
1511                         channel->wr_fpga_buf_idx = -1;
1512                         channel->wr_empty = 1;
1513                         channel->wr_ready = 0;
1514                         channel->wr_sleepy = 1;
1515                         channel->wr_eof = -1;
1516                         channel->wr_hangup = 0;
1517
1518                         spin_unlock_irqrestore(&channel->wr_spinlock, flags);
1519
1520                         iowrite32(1 | (channel->chan_num << 1) |
1521                                   (4 << 24) |  /* Opcode 4, open channel */
1522                                   ((channel->wr_synchronous & 1) << 23),
1523                                   channel->endpoint->registers +
1524                                   fpga_buf_ctrl_reg);
1525                 }
1526
1527                 channel->wr_ref_count++;
1528         }
1529
1530         if (filp->f_mode & FMODE_WRITE) {
1531                 if (channel->rd_ref_count == 0) { /* First open of file */
1532                         /* Move the host to first buffer */
1533                         spin_lock_irqsave(&channel->rd_spinlock, flags);
1534                         channel->rd_host_buf_idx = 0;
1535                         channel->rd_host_buf_pos = 0;
1536                         channel->rd_leftovers[3] = 0; /* No leftovers. */
1537                         channel->rd_fpga_buf_idx = channel->num_rd_buffers - 1;
1538                         channel->rd_full = 0;
1539
1540                         spin_unlock_irqrestore(&channel->rd_spinlock, flags);
1541
1542                         iowrite32((channel->chan_num << 1) |
1543                                   (4 << 24),   /* Opcode 4, open channel */
1544                                   channel->endpoint->registers +
1545                                   fpga_buf_ctrl_reg);
1546                 }
1547
1548                 channel->rd_ref_count++;
1549         }
1550
1551 unlock:
1552         if (filp->f_mode & FMODE_WRITE)
1553                 mutex_unlock(&channel->rd_mutex);
1554 unlock_wr:
1555         if (filp->f_mode & FMODE_READ)
1556                 mutex_unlock(&channel->wr_mutex);
1557
1558         if (!rc && (!channel->seekable))
1559                 return nonseekable_open(inode, filp);
1560
1561         return rc;
1562 }
1563
1564 static int xillybus_release(struct inode *inode, struct file *filp)
1565 {
1566         unsigned long flags;
1567         struct xilly_channel *channel = filp->private_data;
1568
1569         int buf_idx;
1570         int eof;
1571
1572         if (channel->endpoint->fatal_error)
1573                 return -EIO;
1574
1575         if (filp->f_mode & FMODE_WRITE) {
1576                 mutex_lock(&channel->rd_mutex);
1577
1578                 channel->rd_ref_count--;
1579
1580                 if (channel->rd_ref_count == 0) {
1581                         /*
1582                          * We rely on the kernel calling flush()
1583                          * before we get here.
1584                          */
1585
1586                         iowrite32((channel->chan_num << 1) | /* Channel ID */
1587                                   (5 << 24),  /* Opcode 5, close channel */
1588                                   channel->endpoint->registers +
1589                                   fpga_buf_ctrl_reg);
1590                 }
1591                 mutex_unlock(&channel->rd_mutex);
1592         }
1593
1594         if (filp->f_mode & FMODE_READ) {
1595                 mutex_lock(&channel->wr_mutex);
1596
1597                 channel->wr_ref_count--;
1598
1599                 if (channel->wr_ref_count == 0) {
1600                         iowrite32(1 | (channel->chan_num << 1) |
1601                                   (5 << 24),  /* Opcode 5, close channel */
1602                                   channel->endpoint->registers +
1603                                   fpga_buf_ctrl_reg);
1604
1605                         /*
1606                          * This is crazily cautious: We make sure that not
1607                          * only that we got an EOF (be it because we closed
1608                          * the channel or because of a user's EOF), but verify
1609                          * that it's one beyond the last buffer arrived, so
1610                          * we have no leftover buffers pending before wrapping
1611                          * up (which can only happen in asynchronous channels,
1612                          * BTW)
1613                          */
1614
1615                         while (1) {
1616                                 spin_lock_irqsave(&channel->wr_spinlock,
1617                                                   flags);
1618                                 buf_idx = channel->wr_fpga_buf_idx;
1619                                 eof = channel->wr_eof;
1620                                 channel->wr_sleepy = 1;
1621                                 spin_unlock_irqrestore(&channel->wr_spinlock,
1622                                                        flags);
1623
1624                                 /*
1625                                  * Check if eof points at the buffer after
1626                                  * the last one the FPGA submitted. Note that
1627                                  * no EOF is marked by negative eof.
1628                                  */
1629
1630                                 buf_idx++;
1631                                 if (buf_idx == channel->num_wr_buffers)
1632                                         buf_idx = 0;
1633
1634                                 if (buf_idx == eof)
1635                                         break;
1636
1637                                 /*
1638                                  * Steal extra 100 ms if awaken by interrupt.
1639                                  * This is a simple workaround for an
1640                                  * interrupt pending when entering, which would
1641                                  * otherwise result in declaring the hardware
1642                                  * non-responsive.
1643                                  */
1644
1645                                 if (wait_event_interruptible(
1646                                             channel->wr_wait,
1647                                             (!channel->wr_sleepy)))
1648                                         msleep(100);
1649
1650                                 if (channel->wr_sleepy) {
1651                                         mutex_unlock(&channel->wr_mutex);
1652                                         dev_warn(channel->endpoint->dev,
1653                                                  "Hardware failed to respond to close command, therefore left in messy state.\n");
1654                                         return -EINTR;
1655                                 }
1656                         }
1657                 }
1658
1659                 mutex_unlock(&channel->wr_mutex);
1660         }
1661
1662         return 0;
1663 }
1664
1665 static loff_t xillybus_llseek(struct file *filp, loff_t offset, int whence)
1666 {
1667         struct xilly_channel *channel = filp->private_data;
1668         loff_t pos = filp->f_pos;
1669         int rc = 0;
1670
1671         /*
1672          * Take both mutexes not allowing interrupts, since it seems like
1673          * common applications don't expect an -EINTR here. Besides, multiple
1674          * access to a single file descriptor on seekable devices is a mess
1675          * anyhow.
1676          */
1677
1678         if (channel->endpoint->fatal_error)
1679                 return -EIO;
1680
1681         mutex_lock(&channel->wr_mutex);
1682         mutex_lock(&channel->rd_mutex);
1683
1684         switch (whence) {
1685         case SEEK_SET:
1686                 pos = offset;
1687                 break;
1688         case SEEK_CUR:
1689                 pos += offset;
1690                 break;
1691         case SEEK_END:
1692                 pos = offset; /* Going to the end => to the beginning */
1693                 break;
1694         default:
1695                 rc = -EINVAL;
1696                 goto end;
1697         }
1698
1699         /* In any case, we must finish on an element boundary */
1700         if (pos & ((1 << channel->log2_element_size) - 1)) {
1701                 rc = -EINVAL;
1702                 goto end;
1703         }
1704
1705         mutex_lock(&channel->endpoint->register_mutex);
1706
1707         iowrite32(pos >> channel->log2_element_size,
1708                   channel->endpoint->registers + fpga_buf_offset_reg);
1709
1710         iowrite32((channel->chan_num << 1) |
1711                   (6 << 24),  /* Opcode 6, set address */
1712                   channel->endpoint->registers + fpga_buf_ctrl_reg);
1713
1714         mutex_unlock(&channel->endpoint->register_mutex);
1715
1716 end:
1717         mutex_unlock(&channel->rd_mutex);
1718         mutex_unlock(&channel->wr_mutex);
1719
1720         if (rc) /* Return error after releasing mutexes */
1721                 return rc;
1722
1723         filp->f_pos = pos;
1724
1725         /*
1726          * Since seekable devices are allowed only when the channel is
1727          * synchronous, we assume that there is no data pending in either
1728          * direction (which holds true as long as no concurrent access on the
1729          * file descriptor takes place).
1730          * The only thing we may need to throw away is leftovers from partial
1731          * write() flush.
1732          */
1733
1734         channel->rd_leftovers[3] = 0;
1735
1736         return pos;
1737 }
1738
1739 static unsigned int xillybus_poll(struct file *filp, poll_table *wait)
1740 {
1741         struct xilly_channel *channel = filp->private_data;
1742         unsigned int mask = 0;
1743         unsigned long flags;
1744
1745         poll_wait(filp, &channel->endpoint->ep_wait, wait);
1746
1747         /*
1748          * poll() won't play ball regarding read() channels which
1749          * aren't asynchronous and support the nonempty message. Allowing
1750          * that will create situations where data has been delivered at
1751          * the FPGA, and users expecting select() to wake up, which it may
1752          * not.
1753          */
1754
1755         if (!channel->wr_synchronous && channel->wr_supports_nonempty) {
1756                 poll_wait(filp, &channel->wr_wait, wait);
1757                 poll_wait(filp, &channel->wr_ready_wait, wait);
1758
1759                 spin_lock_irqsave(&channel->wr_spinlock, flags);
1760                 if (!channel->wr_empty || channel->wr_ready)
1761                         mask |= POLLIN | POLLRDNORM;
1762
1763                 if (channel->wr_hangup)
1764                         /*
1765                          * Not POLLHUP, because its behavior is in the
1766                          * mist, and POLLIN does what we want: Wake up
1767                          * the read file descriptor so it sees EOF.
1768                          */
1769                         mask |=  POLLIN | POLLRDNORM;
1770                 spin_unlock_irqrestore(&channel->wr_spinlock, flags);
1771         }
1772
1773         /*
1774          * If partial data write is disallowed on a write() channel,
1775          * it's pointless to ever signal OK to write, because is could
1776          * block despite some space being available.
1777          */
1778
1779         if (channel->rd_allow_partial) {
1780                 poll_wait(filp, &channel->rd_wait, wait);
1781
1782                 spin_lock_irqsave(&channel->rd_spinlock, flags);
1783                 if (!channel->rd_full)
1784                         mask |= POLLOUT | POLLWRNORM;
1785                 spin_unlock_irqrestore(&channel->rd_spinlock, flags);
1786         }
1787
1788         if (channel->endpoint->fatal_error)
1789                 mask |= POLLERR;
1790
1791         return mask;
1792 }
1793
1794 static const struct file_operations xillybus_fops = {
1795         .owner      = THIS_MODULE,
1796         .read       = xillybus_read,
1797         .write      = xillybus_write,
1798         .open       = xillybus_open,
1799         .flush      = xillybus_flush,
1800         .release    = xillybus_release,
1801         .llseek     = xillybus_llseek,
1802         .poll       = xillybus_poll,
1803 };
1804
1805 static int xillybus_init_chrdev(struct xilly_endpoint *endpoint,
1806                                 const unsigned char *idt)
1807 {
1808         int rc;
1809         dev_t dev;
1810         int devnum, i, minor, major;
1811         char devname[48];
1812         struct device *device;
1813
1814         rc = alloc_chrdev_region(&dev, 0, /* minor start */
1815                                  endpoint->num_channels,
1816                                  xillyname);
1817         if (rc) {
1818                 dev_warn(endpoint->dev, "Failed to obtain major/minors");
1819                 return rc;
1820         }
1821
1822         endpoint->major = major = MAJOR(dev);
1823         endpoint->lowest_minor = minor = MINOR(dev);
1824
1825         cdev_init(&endpoint->cdev, &xillybus_fops);
1826         endpoint->cdev.owner = endpoint->ephw->owner;
1827         rc = cdev_add(&endpoint->cdev, MKDEV(major, minor),
1828                       endpoint->num_channels);
1829         if (rc) {
1830                 dev_warn(endpoint->dev, "Failed to add cdev. Aborting.\n");
1831                 goto unregister_chrdev;
1832         }
1833
1834         idt++;
1835
1836         for (i = minor, devnum = 0;
1837              devnum < endpoint->num_channels;
1838              devnum++, i++) {
1839                 snprintf(devname, sizeof(devname)-1, "xillybus_%s", idt);
1840
1841                 devname[sizeof(devname)-1] = 0; /* Should never matter */
1842
1843                 while (*idt++)
1844                         /* Skip to next */;
1845
1846                 device = device_create(xillybus_class,
1847                                        NULL,
1848                                        MKDEV(major, i),
1849                                        NULL,
1850                                        "%s", devname);
1851
1852                 if (IS_ERR(device)) {
1853                         dev_warn(endpoint->dev,
1854                                  "Failed to create %s device. Aborting.\n",
1855                                  devname);
1856                         rc = -ENODEV;
1857                         goto unroll_device_create;
1858                 }
1859         }
1860
1861         dev_info(endpoint->dev, "Created %d device files.\n",
1862                  endpoint->num_channels);
1863         return 0; /* succeed */
1864
1865 unroll_device_create:
1866         devnum--; i--;
1867         for (; devnum >= 0; devnum--, i--)
1868                 device_destroy(xillybus_class, MKDEV(major, i));
1869
1870         cdev_del(&endpoint->cdev);
1871 unregister_chrdev:
1872         unregister_chrdev_region(MKDEV(major, minor), endpoint->num_channels);
1873
1874         return rc;
1875 }
1876
1877 static void xillybus_cleanup_chrdev(struct xilly_endpoint *endpoint)
1878 {
1879         int minor;
1880
1881         for (minor = endpoint->lowest_minor;
1882              minor < (endpoint->lowest_minor + endpoint->num_channels);
1883              minor++)
1884                 device_destroy(xillybus_class, MKDEV(endpoint->major, minor));
1885         cdev_del(&endpoint->cdev);
1886         unregister_chrdev_region(MKDEV(endpoint->major,
1887                                        endpoint->lowest_minor),
1888                                  endpoint->num_channels);
1889
1890         dev_info(endpoint->dev, "Removed %d device files.\n",
1891                  endpoint->num_channels);
1892 }
1893
1894 struct xilly_endpoint *xillybus_init_endpoint(struct pci_dev *pdev,
1895                                               struct device *dev,
1896                                               struct xilly_endpoint_hardware
1897                                               *ephw)
1898 {
1899         struct xilly_endpoint *endpoint;
1900
1901         endpoint = devm_kzalloc(dev, sizeof(*endpoint), GFP_KERNEL);
1902         if (!endpoint)
1903                 return NULL;
1904
1905         endpoint->pdev = pdev;
1906         endpoint->dev = dev;
1907         endpoint->ephw = ephw;
1908         endpoint->msg_counter = 0x0b;
1909         endpoint->failed_messages = 0;
1910         endpoint->fatal_error = 0;
1911
1912         init_waitqueue_head(&endpoint->ep_wait);
1913         mutex_init(&endpoint->register_mutex);
1914
1915         return endpoint;
1916 }
1917 EXPORT_SYMBOL(xillybus_init_endpoint);
1918
1919 static int xilly_quiesce(struct xilly_endpoint *endpoint)
1920 {
1921         long t;
1922
1923         endpoint->idtlen = -1;
1924
1925         iowrite32((u32) (endpoint->dma_using_dac & 0x0001),
1926                   endpoint->registers + fpga_dma_control_reg);
1927
1928         t = wait_event_interruptible_timeout(endpoint->ep_wait,
1929                                              (endpoint->idtlen >= 0),
1930                                              XILLY_TIMEOUT);
1931         if (t <= 0) {
1932                 dev_err(endpoint->dev,
1933                         "Failed to quiesce the device on exit.\n");
1934                 return -ENODEV;
1935         }
1936         return 0;
1937 }
1938
1939 int xillybus_endpoint_discovery(struct xilly_endpoint *endpoint)
1940 {
1941         int rc;
1942         long t;
1943
1944         void *bootstrap_resources;
1945         int idtbuffersize = (1 << PAGE_SHIFT);
1946         struct device *dev = endpoint->dev;
1947
1948         /*
1949          * The bogus IDT is used during bootstrap for allocating the initial
1950          * message buffer, and then the message buffer and space for the IDT
1951          * itself. The initial message buffer is of a single page's size, but
1952          * it's soon replaced with a more modest one (and memory is freed).
1953          */
1954
1955         unsigned char bogus_idt[8] = { 1, 224, (PAGE_SHIFT)-2, 0,
1956                                        3, 192, PAGE_SHIFT, 0 };
1957         struct xilly_idt_handle idt_handle;
1958
1959         /*
1960          * Writing the value 0x00000001 to Endianness register signals which
1961          * endianness this processor is using, so the FPGA can swap words as
1962          * necessary.
1963          */
1964
1965         iowrite32(1, endpoint->registers + fpga_endian_reg);
1966
1967         /* Bootstrap phase I: Allocate temporary message buffer */
1968
1969         bootstrap_resources = devres_open_group(dev, NULL, GFP_KERNEL);
1970         if (!bootstrap_resources)
1971                 return -ENOMEM;
1972
1973         endpoint->num_channels = 0;
1974
1975         rc = xilly_setupchannels(endpoint, bogus_idt, 1);
1976         if (rc)
1977                 return rc;
1978
1979         /* Clear the message subsystem (and counter in particular) */
1980         iowrite32(0x04, endpoint->registers + fpga_msg_ctrl_reg);
1981
1982         endpoint->idtlen = -1;
1983
1984         /*
1985          * Set DMA 32/64 bit mode, quiesce the device (?!) and get IDT
1986          * buffer size.
1987          */
1988         iowrite32((u32) (endpoint->dma_using_dac & 0x0001),
1989                   endpoint->registers + fpga_dma_control_reg);
1990
1991         t = wait_event_interruptible_timeout(endpoint->ep_wait,
1992                                              (endpoint->idtlen >= 0),
1993                                              XILLY_TIMEOUT);
1994         if (t <= 0) {
1995                 dev_err(endpoint->dev, "No response from FPGA. Aborting.\n");
1996                 return -ENODEV;
1997         }
1998
1999         /* Enable DMA */
2000         iowrite32((u32) (0x0002 | (endpoint->dma_using_dac & 0x0001)),
2001                   endpoint->registers + fpga_dma_control_reg);
2002
2003         /* Bootstrap phase II: Allocate buffer for IDT and obtain it */
2004         while (endpoint->idtlen >= idtbuffersize) {
2005                 idtbuffersize *= 2;
2006                 bogus_idt[6]++;
2007         }
2008
2009         endpoint->num_channels = 1;
2010
2011         rc = xilly_setupchannels(endpoint, bogus_idt, 2);
2012         if (rc)
2013                 goto failed_idt;
2014
2015         rc = xilly_obtain_idt(endpoint);
2016         if (rc)
2017                 goto failed_idt;
2018
2019         rc = xilly_scan_idt(endpoint, &idt_handle);
2020         if (rc)
2021                 goto failed_idt;
2022
2023         devres_close_group(dev, bootstrap_resources);
2024
2025         /* Bootstrap phase III: Allocate buffers according to IDT */
2026
2027         rc = xilly_setupchannels(endpoint,
2028                                  idt_handle.chandesc,
2029                                  idt_handle.entries);
2030         if (rc)
2031                 goto failed_idt;
2032
2033         /*
2034          * endpoint is now completely configured. We put it on the list
2035          * available to open() before registering the char device(s)
2036          */
2037
2038         mutex_lock(&ep_list_lock);
2039         list_add_tail(&endpoint->ep_list, &list_of_endpoints);
2040         mutex_unlock(&ep_list_lock);
2041
2042         rc = xillybus_init_chrdev(endpoint, idt_handle.idt);
2043         if (rc)
2044                 goto failed_chrdevs;
2045
2046         devres_release_group(dev, bootstrap_resources);
2047
2048         return 0;
2049
2050 failed_chrdevs:
2051         mutex_lock(&ep_list_lock);
2052         list_del(&endpoint->ep_list);
2053         mutex_unlock(&ep_list_lock);
2054
2055 failed_idt:
2056         xilly_quiesce(endpoint);
2057         flush_workqueue(xillybus_wq);
2058
2059         return rc;
2060 }
2061 EXPORT_SYMBOL(xillybus_endpoint_discovery);
2062
2063 void xillybus_endpoint_remove(struct xilly_endpoint *endpoint)
2064 {
2065         xillybus_cleanup_chrdev(endpoint);
2066
2067         mutex_lock(&ep_list_lock);
2068         list_del(&endpoint->ep_list);
2069         mutex_unlock(&ep_list_lock);
2070
2071         xilly_quiesce(endpoint);
2072
2073         /*
2074          * Flushing is done upon endpoint release to prevent access to memory
2075          * just about to be released. This makes the quiesce complete.
2076          */
2077         flush_workqueue(xillybus_wq);
2078 }
2079 EXPORT_SYMBOL(xillybus_endpoint_remove);
2080
2081 static int __init xillybus_init(void)
2082 {
2083         mutex_init(&ep_list_lock);
2084
2085         xillybus_class = class_create(THIS_MODULE, xillyname);
2086         if (IS_ERR(xillybus_class))
2087                 return PTR_ERR(xillybus_class);
2088
2089         xillybus_wq = alloc_workqueue(xillyname, 0, 0);
2090         if (!xillybus_wq) {
2091                 class_destroy(xillybus_class);
2092                 return -ENOMEM;
2093         }
2094
2095         return 0;
2096 }
2097
2098 static void __exit xillybus_exit(void)
2099 {
2100         /* flush_workqueue() was called for each endpoint released */
2101         destroy_workqueue(xillybus_wq);
2102
2103         class_destroy(xillybus_class);
2104 }
2105
2106 module_init(xillybus_init);
2107 module_exit(xillybus_exit);