GNU Linux-libre 4.14.266-gnu1
[releases.git] / drivers / clk / bcm / clk-bcm2835.c
1 /*
2  * Copyright (C) 2010,2015 Broadcom
3  * Copyright (C) 2012 Stephen Warren
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  */
16
17 /**
18  * DOC: BCM2835 CPRMAN (clock manager for the "audio" domain)
19  *
20  * The clock tree on the 2835 has several levels.  There's a root
21  * oscillator running at 19.2Mhz.  After the oscillator there are 5
22  * PLLs, roughly divided as "camera", "ARM", "core", "DSI displays",
23  * and "HDMI displays".  Those 5 PLLs each can divide their output to
24  * produce up to 4 channels.  Finally, there is the level of clocks to
25  * be consumed by other hardware components (like "H264" or "HDMI
26  * state machine"), which divide off of some subset of the PLL
27  * channels.
28  *
29  * All of the clocks in the tree are exposed in the DT, because the DT
30  * may want to make assignments of the final layer of clocks to the
31  * PLL channels, and some components of the hardware will actually
32  * skip layers of the tree (for example, the pixel clock comes
33  * directly from the PLLH PIX channel without using a CM_*CTL clock
34  * generator).
35  */
36
37 #include <linux/clk-provider.h>
38 #include <linux/clkdev.h>
39 #include <linux/clk.h>
40 #include <linux/clk/bcm2835.h>
41 #include <linux/debugfs.h>
42 #include <linux/delay.h>
43 #include <linux/module.h>
44 #include <linux/of.h>
45 #include <linux/platform_device.h>
46 #include <linux/slab.h>
47 #include <dt-bindings/clock/bcm2835.h>
48
49 #define CM_PASSWORD             0x5a000000
50
51 #define CM_GNRICCTL             0x000
52 #define CM_GNRICDIV             0x004
53 # define CM_DIV_FRAC_BITS       12
54 # define CM_DIV_FRAC_MASK       GENMASK(CM_DIV_FRAC_BITS - 1, 0)
55
56 #define CM_VPUCTL               0x008
57 #define CM_VPUDIV               0x00c
58 #define CM_SYSCTL               0x010
59 #define CM_SYSDIV               0x014
60 #define CM_PERIACTL             0x018
61 #define CM_PERIADIV             0x01c
62 #define CM_PERIICTL             0x020
63 #define CM_PERIIDIV             0x024
64 #define CM_H264CTL              0x028
65 #define CM_H264DIV              0x02c
66 #define CM_ISPCTL               0x030
67 #define CM_ISPDIV               0x034
68 #define CM_V3DCTL               0x038
69 #define CM_V3DDIV               0x03c
70 #define CM_CAM0CTL              0x040
71 #define CM_CAM0DIV              0x044
72 #define CM_CAM1CTL              0x048
73 #define CM_CAM1DIV              0x04c
74 #define CM_CCP2CTL              0x050
75 #define CM_CCP2DIV              0x054
76 #define CM_DSI0ECTL             0x058
77 #define CM_DSI0EDIV             0x05c
78 #define CM_DSI0PCTL             0x060
79 #define CM_DSI0PDIV             0x064
80 #define CM_DPICTL               0x068
81 #define CM_DPIDIV               0x06c
82 #define CM_GP0CTL               0x070
83 #define CM_GP0DIV               0x074
84 #define CM_GP1CTL               0x078
85 #define CM_GP1DIV               0x07c
86 #define CM_GP2CTL               0x080
87 #define CM_GP2DIV               0x084
88 #define CM_HSMCTL               0x088
89 #define CM_HSMDIV               0x08c
90 #define CM_OTPCTL               0x090
91 #define CM_OTPDIV               0x094
92 #define CM_PCMCTL               0x098
93 #define CM_PCMDIV               0x09c
94 #define CM_PWMCTL               0x0a0
95 #define CM_PWMDIV               0x0a4
96 #define CM_SLIMCTL              0x0a8
97 #define CM_SLIMDIV              0x0ac
98 #define CM_SMICTL               0x0b0
99 #define CM_SMIDIV               0x0b4
100 /* no definition for 0x0b8  and 0x0bc */
101 #define CM_TCNTCTL              0x0c0
102 # define CM_TCNT_SRC1_SHIFT             12
103 #define CM_TCNTCNT              0x0c4
104 #define CM_TECCTL               0x0c8
105 #define CM_TECDIV               0x0cc
106 #define CM_TD0CTL               0x0d0
107 #define CM_TD0DIV               0x0d4
108 #define CM_TD1CTL               0x0d8
109 #define CM_TD1DIV               0x0dc
110 #define CM_TSENSCTL             0x0e0
111 #define CM_TSENSDIV             0x0e4
112 #define CM_TIMERCTL             0x0e8
113 #define CM_TIMERDIV             0x0ec
114 #define CM_UARTCTL              0x0f0
115 #define CM_UARTDIV              0x0f4
116 #define CM_VECCTL               0x0f8
117 #define CM_VECDIV               0x0fc
118 #define CM_PULSECTL             0x190
119 #define CM_PULSEDIV             0x194
120 #define CM_SDCCTL               0x1a8
121 #define CM_SDCDIV               0x1ac
122 #define CM_ARMCTL               0x1b0
123 #define CM_AVEOCTL              0x1b8
124 #define CM_AVEODIV              0x1bc
125 #define CM_EMMCCTL              0x1c0
126 #define CM_EMMCDIV              0x1c4
127
128 /* General bits for the CM_*CTL regs */
129 # define CM_ENABLE                      BIT(4)
130 # define CM_KILL                        BIT(5)
131 # define CM_GATE_BIT                    6
132 # define CM_GATE                        BIT(CM_GATE_BIT)
133 # define CM_BUSY                        BIT(7)
134 # define CM_BUSYD                       BIT(8)
135 # define CM_FRAC                        BIT(9)
136 # define CM_SRC_SHIFT                   0
137 # define CM_SRC_BITS                    4
138 # define CM_SRC_MASK                    0xf
139 # define CM_SRC_GND                     0
140 # define CM_SRC_OSC                     1
141 # define CM_SRC_TESTDEBUG0              2
142 # define CM_SRC_TESTDEBUG1              3
143 # define CM_SRC_PLLA_CORE               4
144 # define CM_SRC_PLLA_PER                4
145 # define CM_SRC_PLLC_CORE0              5
146 # define CM_SRC_PLLC_PER                5
147 # define CM_SRC_PLLC_CORE1              8
148 # define CM_SRC_PLLD_CORE               6
149 # define CM_SRC_PLLD_PER                6
150 # define CM_SRC_PLLH_AUX                7
151 # define CM_SRC_PLLC_CORE1              8
152 # define CM_SRC_PLLC_CORE2              9
153
154 #define CM_OSCCOUNT             0x100
155
156 #define CM_PLLA                 0x104
157 # define CM_PLL_ANARST                  BIT(8)
158 # define CM_PLLA_HOLDPER                BIT(7)
159 # define CM_PLLA_LOADPER                BIT(6)
160 # define CM_PLLA_HOLDCORE               BIT(5)
161 # define CM_PLLA_LOADCORE               BIT(4)
162 # define CM_PLLA_HOLDCCP2               BIT(3)
163 # define CM_PLLA_LOADCCP2               BIT(2)
164 # define CM_PLLA_HOLDDSI0               BIT(1)
165 # define CM_PLLA_LOADDSI0               BIT(0)
166
167 #define CM_PLLC                 0x108
168 # define CM_PLLC_HOLDPER                BIT(7)
169 # define CM_PLLC_LOADPER                BIT(6)
170 # define CM_PLLC_HOLDCORE2              BIT(5)
171 # define CM_PLLC_LOADCORE2              BIT(4)
172 # define CM_PLLC_HOLDCORE1              BIT(3)
173 # define CM_PLLC_LOADCORE1              BIT(2)
174 # define CM_PLLC_HOLDCORE0              BIT(1)
175 # define CM_PLLC_LOADCORE0              BIT(0)
176
177 #define CM_PLLD                 0x10c
178 # define CM_PLLD_HOLDPER                BIT(7)
179 # define CM_PLLD_LOADPER                BIT(6)
180 # define CM_PLLD_HOLDCORE               BIT(5)
181 # define CM_PLLD_LOADCORE               BIT(4)
182 # define CM_PLLD_HOLDDSI1               BIT(3)
183 # define CM_PLLD_LOADDSI1               BIT(2)
184 # define CM_PLLD_HOLDDSI0               BIT(1)
185 # define CM_PLLD_LOADDSI0               BIT(0)
186
187 #define CM_PLLH                 0x110
188 # define CM_PLLH_LOADRCAL               BIT(2)
189 # define CM_PLLH_LOADAUX                BIT(1)
190 # define CM_PLLH_LOADPIX                BIT(0)
191
192 #define CM_LOCK                 0x114
193 # define CM_LOCK_FLOCKH                 BIT(12)
194 # define CM_LOCK_FLOCKD                 BIT(11)
195 # define CM_LOCK_FLOCKC                 BIT(10)
196 # define CM_LOCK_FLOCKB                 BIT(9)
197 # define CM_LOCK_FLOCKA                 BIT(8)
198
199 #define CM_EVENT                0x118
200 #define CM_DSI1ECTL             0x158
201 #define CM_DSI1EDIV             0x15c
202 #define CM_DSI1PCTL             0x160
203 #define CM_DSI1PDIV             0x164
204 #define CM_DFTCTL               0x168
205 #define CM_DFTDIV               0x16c
206
207 #define CM_PLLB                 0x170
208 # define CM_PLLB_HOLDARM                BIT(1)
209 # define CM_PLLB_LOADARM                BIT(0)
210
211 #define A2W_PLLA_CTRL           0x1100
212 #define A2W_PLLC_CTRL           0x1120
213 #define A2W_PLLD_CTRL           0x1140
214 #define A2W_PLLH_CTRL           0x1160
215 #define A2W_PLLB_CTRL           0x11e0
216 # define A2W_PLL_CTRL_PRST_DISABLE      BIT(17)
217 # define A2W_PLL_CTRL_PWRDN             BIT(16)
218 # define A2W_PLL_CTRL_PDIV_MASK         0x000007000
219 # define A2W_PLL_CTRL_PDIV_SHIFT        12
220 # define A2W_PLL_CTRL_NDIV_MASK         0x0000003ff
221 # define A2W_PLL_CTRL_NDIV_SHIFT        0
222
223 #define A2W_PLLA_ANA0           0x1010
224 #define A2W_PLLC_ANA0           0x1030
225 #define A2W_PLLD_ANA0           0x1050
226 #define A2W_PLLH_ANA0           0x1070
227 #define A2W_PLLB_ANA0           0x10f0
228
229 #define A2W_PLL_KA_SHIFT        7
230 #define A2W_PLL_KA_MASK         GENMASK(9, 7)
231 #define A2W_PLL_KI_SHIFT        19
232 #define A2W_PLL_KI_MASK         GENMASK(21, 19)
233 #define A2W_PLL_KP_SHIFT        15
234 #define A2W_PLL_KP_MASK         GENMASK(18, 15)
235
236 #define A2W_PLLH_KA_SHIFT       19
237 #define A2W_PLLH_KA_MASK        GENMASK(21, 19)
238 #define A2W_PLLH_KI_LOW_SHIFT   22
239 #define A2W_PLLH_KI_LOW_MASK    GENMASK(23, 22)
240 #define A2W_PLLH_KI_HIGH_SHIFT  0
241 #define A2W_PLLH_KI_HIGH_MASK   GENMASK(0, 0)
242 #define A2W_PLLH_KP_SHIFT       1
243 #define A2W_PLLH_KP_MASK        GENMASK(4, 1)
244
245 #define A2W_XOSC_CTRL           0x1190
246 # define A2W_XOSC_CTRL_PLLB_ENABLE      BIT(7)
247 # define A2W_XOSC_CTRL_PLLA_ENABLE      BIT(6)
248 # define A2W_XOSC_CTRL_PLLD_ENABLE      BIT(5)
249 # define A2W_XOSC_CTRL_DDR_ENABLE       BIT(4)
250 # define A2W_XOSC_CTRL_CPR1_ENABLE      BIT(3)
251 # define A2W_XOSC_CTRL_USB_ENABLE       BIT(2)
252 # define A2W_XOSC_CTRL_HDMI_ENABLE      BIT(1)
253 # define A2W_XOSC_CTRL_PLLC_ENABLE      BIT(0)
254
255 #define A2W_PLLA_FRAC           0x1200
256 #define A2W_PLLC_FRAC           0x1220
257 #define A2W_PLLD_FRAC           0x1240
258 #define A2W_PLLH_FRAC           0x1260
259 #define A2W_PLLB_FRAC           0x12e0
260 # define A2W_PLL_FRAC_MASK              ((1 << A2W_PLL_FRAC_BITS) - 1)
261 # define A2W_PLL_FRAC_BITS              20
262
263 #define A2W_PLL_CHANNEL_DISABLE         BIT(8)
264 #define A2W_PLL_DIV_BITS                8
265 #define A2W_PLL_DIV_SHIFT               0
266
267 #define A2W_PLLA_DSI0           0x1300
268 #define A2W_PLLA_CORE           0x1400
269 #define A2W_PLLA_PER            0x1500
270 #define A2W_PLLA_CCP2           0x1600
271
272 #define A2W_PLLC_CORE2          0x1320
273 #define A2W_PLLC_CORE1          0x1420
274 #define A2W_PLLC_PER            0x1520
275 #define A2W_PLLC_CORE0          0x1620
276
277 #define A2W_PLLD_DSI0           0x1340
278 #define A2W_PLLD_CORE           0x1440
279 #define A2W_PLLD_PER            0x1540
280 #define A2W_PLLD_DSI1           0x1640
281
282 #define A2W_PLLH_AUX            0x1360
283 #define A2W_PLLH_RCAL           0x1460
284 #define A2W_PLLH_PIX            0x1560
285 #define A2W_PLLH_STS            0x1660
286
287 #define A2W_PLLH_CTRLR          0x1960
288 #define A2W_PLLH_FRACR          0x1a60
289 #define A2W_PLLH_AUXR           0x1b60
290 #define A2W_PLLH_RCALR          0x1c60
291 #define A2W_PLLH_PIXR           0x1d60
292 #define A2W_PLLH_STSR           0x1e60
293
294 #define A2W_PLLB_ARM            0x13e0
295 #define A2W_PLLB_SP0            0x14e0
296 #define A2W_PLLB_SP1            0x15e0
297 #define A2W_PLLB_SP2            0x16e0
298
299 #define LOCK_TIMEOUT_NS         100000000
300 #define BCM2835_MAX_FB_RATE     1750000000u
301
302 /*
303  * Names of clocks used within the driver that need to be replaced
304  * with an external parent's name.  This array is in the order that
305  * the clocks node in the DT references external clocks.
306  */
307 static const char *const cprman_parent_names[] = {
308         "xosc",
309         "dsi0_byte",
310         "dsi0_ddr2",
311         "dsi0_ddr",
312         "dsi1_byte",
313         "dsi1_ddr2",
314         "dsi1_ddr",
315 };
316
317 struct bcm2835_cprman {
318         struct device *dev;
319         void __iomem *regs;
320         spinlock_t regs_lock; /* spinlock for all clocks */
321
322         /*
323          * Real names of cprman clock parents looked up through
324          * of_clk_get_parent_name(), which will be used in the
325          * parent_names[] arrays for clock registration.
326          */
327         const char *real_parent_names[ARRAY_SIZE(cprman_parent_names)];
328
329         /* Must be last */
330         struct clk_hw_onecell_data onecell;
331 };
332
333 static inline void cprman_write(struct bcm2835_cprman *cprman, u32 reg, u32 val)
334 {
335         writel(CM_PASSWORD | val, cprman->regs + reg);
336 }
337
338 static inline u32 cprman_read(struct bcm2835_cprman *cprman, u32 reg)
339 {
340         return readl(cprman->regs + reg);
341 }
342
343 /* Does a cycle of measuring a clock through the TCNT clock, which may
344  * source from many other clocks in the system.
345  */
346 static unsigned long bcm2835_measure_tcnt_mux(struct bcm2835_cprman *cprman,
347                                               u32 tcnt_mux)
348 {
349         u32 osccount = 19200; /* 1ms */
350         u32 count;
351         ktime_t timeout;
352
353         spin_lock(&cprman->regs_lock);
354
355         cprman_write(cprman, CM_TCNTCTL, CM_KILL);
356
357         cprman_write(cprman, CM_TCNTCTL,
358                      (tcnt_mux & CM_SRC_MASK) |
359                      (tcnt_mux >> CM_SRC_BITS) << CM_TCNT_SRC1_SHIFT);
360
361         cprman_write(cprman, CM_OSCCOUNT, osccount);
362
363         /* do a kind delay at the start */
364         mdelay(1);
365
366         /* Finish off whatever is left of OSCCOUNT */
367         timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
368         while (cprman_read(cprman, CM_OSCCOUNT)) {
369                 if (ktime_after(ktime_get(), timeout)) {
370                         dev_err(cprman->dev, "timeout waiting for OSCCOUNT\n");
371                         count = 0;
372                         goto out;
373                 }
374                 cpu_relax();
375         }
376
377         /* Wait for BUSY to clear. */
378         timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
379         while (cprman_read(cprman, CM_TCNTCTL) & CM_BUSY) {
380                 if (ktime_after(ktime_get(), timeout)) {
381                         dev_err(cprman->dev, "timeout waiting for !BUSY\n");
382                         count = 0;
383                         goto out;
384                 }
385                 cpu_relax();
386         }
387
388         count = cprman_read(cprman, CM_TCNTCNT);
389
390         cprman_write(cprman, CM_TCNTCTL, 0);
391
392 out:
393         spin_unlock(&cprman->regs_lock);
394
395         return count * 1000;
396 }
397
398 static int bcm2835_debugfs_regset(struct bcm2835_cprman *cprman, u32 base,
399                                   struct debugfs_reg32 *regs, size_t nregs,
400                                   struct dentry *dentry)
401 {
402         struct dentry *regdump;
403         struct debugfs_regset32 *regset;
404
405         regset = devm_kzalloc(cprman->dev, sizeof(*regset), GFP_KERNEL);
406         if (!regset)
407                 return -ENOMEM;
408
409         regset->regs = regs;
410         regset->nregs = nregs;
411         regset->base = cprman->regs + base;
412
413         regdump = debugfs_create_regset32("regdump", S_IRUGO, dentry,
414                                           regset);
415
416         return regdump ? 0 : -ENOMEM;
417 }
418
419 /*
420  * These are fixed clocks. They're probably not all root clocks and it may
421  * be possible to turn them on and off but until this is mapped out better
422  * it's the only way they can be used.
423  */
424 void __init bcm2835_init_clocks(void)
425 {
426         struct clk_hw *hw;
427         int ret;
428
429         hw = clk_hw_register_fixed_rate(NULL, "apb_pclk", NULL, 0, 126000000);
430         if (IS_ERR(hw))
431                 pr_err("apb_pclk not registered\n");
432
433         hw = clk_hw_register_fixed_rate(NULL, "uart0_pclk", NULL, 0, 3000000);
434         if (IS_ERR(hw))
435                 pr_err("uart0_pclk not registered\n");
436         ret = clk_hw_register_clkdev(hw, NULL, "20201000.uart");
437         if (ret)
438                 pr_err("uart0_pclk alias not registered\n");
439
440         hw = clk_hw_register_fixed_rate(NULL, "uart1_pclk", NULL, 0, 125000000);
441         if (IS_ERR(hw))
442                 pr_err("uart1_pclk not registered\n");
443         ret = clk_hw_register_clkdev(hw, NULL, "20215000.uart");
444         if (ret)
445                 pr_err("uart1_pclk alias not registered\n");
446 }
447
448 struct bcm2835_pll_data {
449         const char *name;
450         u32 cm_ctrl_reg;
451         u32 a2w_ctrl_reg;
452         u32 frac_reg;
453         u32 ana_reg_base;
454         u32 reference_enable_mask;
455         /* Bit in CM_LOCK to indicate when the PLL has locked. */
456         u32 lock_mask;
457
458         const struct bcm2835_pll_ana_bits *ana;
459
460         unsigned long min_rate;
461         unsigned long max_rate;
462         /*
463          * Highest rate for the VCO before we have to use the
464          * pre-divide-by-2.
465          */
466         unsigned long max_fb_rate;
467 };
468
469 struct bcm2835_pll_ana_bits {
470         u32 mask0;
471         u32 set0;
472         u32 mask1;
473         u32 set1;
474         u32 mask3;
475         u32 set3;
476         u32 fb_prediv_mask;
477 };
478
479 static const struct bcm2835_pll_ana_bits bcm2835_ana_default = {
480         .mask0 = 0,
481         .set0 = 0,
482         .mask1 = A2W_PLL_KI_MASK | A2W_PLL_KP_MASK,
483         .set1 = (2 << A2W_PLL_KI_SHIFT) | (8 << A2W_PLL_KP_SHIFT),
484         .mask3 = A2W_PLL_KA_MASK,
485         .set3 = (2 << A2W_PLL_KA_SHIFT),
486         .fb_prediv_mask = BIT(14),
487 };
488
489 static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh = {
490         .mask0 = A2W_PLLH_KA_MASK | A2W_PLLH_KI_LOW_MASK,
491         .set0 = (2 << A2W_PLLH_KA_SHIFT) | (2 << A2W_PLLH_KI_LOW_SHIFT),
492         .mask1 = A2W_PLLH_KI_HIGH_MASK | A2W_PLLH_KP_MASK,
493         .set1 = (6 << A2W_PLLH_KP_SHIFT),
494         .mask3 = 0,
495         .set3 = 0,
496         .fb_prediv_mask = BIT(11),
497 };
498
499 struct bcm2835_pll_divider_data {
500         const char *name;
501         const char *source_pll;
502
503         u32 cm_reg;
504         u32 a2w_reg;
505
506         u32 load_mask;
507         u32 hold_mask;
508         u32 fixed_divider;
509         u32 flags;
510 };
511
512 struct bcm2835_clock_data {
513         const char *name;
514
515         const char *const *parents;
516         int num_mux_parents;
517
518         /* Bitmap encoding which parents accept rate change propagation. */
519         unsigned int set_rate_parent;
520
521         u32 ctl_reg;
522         u32 div_reg;
523
524         /* Number of integer bits in the divider */
525         u32 int_bits;
526         /* Number of fractional bits in the divider */
527         u32 frac_bits;
528
529         u32 flags;
530
531         bool is_vpu_clock;
532         bool is_mash_clock;
533         bool low_jitter;
534
535         u32 tcnt_mux;
536 };
537
538 struct bcm2835_gate_data {
539         const char *name;
540         const char *parent;
541
542         u32 ctl_reg;
543 };
544
545 struct bcm2835_pll {
546         struct clk_hw hw;
547         struct bcm2835_cprman *cprman;
548         const struct bcm2835_pll_data *data;
549 };
550
551 static int bcm2835_pll_is_on(struct clk_hw *hw)
552 {
553         struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
554         struct bcm2835_cprman *cprman = pll->cprman;
555         const struct bcm2835_pll_data *data = pll->data;
556
557         return cprman_read(cprman, data->a2w_ctrl_reg) &
558                 A2W_PLL_CTRL_PRST_DISABLE;
559 }
560
561 static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate,
562                                              unsigned long parent_rate,
563                                              u32 *ndiv, u32 *fdiv)
564 {
565         u64 div;
566
567         div = (u64)rate << A2W_PLL_FRAC_BITS;
568         do_div(div, parent_rate);
569
570         *ndiv = div >> A2W_PLL_FRAC_BITS;
571         *fdiv = div & ((1 << A2W_PLL_FRAC_BITS) - 1);
572 }
573
574 static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate,
575                                            u32 ndiv, u32 fdiv, u32 pdiv)
576 {
577         u64 rate;
578
579         if (pdiv == 0)
580                 return 0;
581
582         rate = (u64)parent_rate * ((ndiv << A2W_PLL_FRAC_BITS) + fdiv);
583         do_div(rate, pdiv);
584         return rate >> A2W_PLL_FRAC_BITS;
585 }
586
587 static long bcm2835_pll_round_rate(struct clk_hw *hw, unsigned long rate,
588                                    unsigned long *parent_rate)
589 {
590         struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
591         const struct bcm2835_pll_data *data = pll->data;
592         u32 ndiv, fdiv;
593
594         rate = clamp(rate, data->min_rate, data->max_rate);
595
596         bcm2835_pll_choose_ndiv_and_fdiv(rate, *parent_rate, &ndiv, &fdiv);
597
598         return bcm2835_pll_rate_from_divisors(*parent_rate, ndiv, fdiv, 1);
599 }
600
601 static unsigned long bcm2835_pll_get_rate(struct clk_hw *hw,
602                                           unsigned long parent_rate)
603 {
604         struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
605         struct bcm2835_cprman *cprman = pll->cprman;
606         const struct bcm2835_pll_data *data = pll->data;
607         u32 a2wctrl = cprman_read(cprman, data->a2w_ctrl_reg);
608         u32 ndiv, pdiv, fdiv;
609         bool using_prediv;
610
611         if (parent_rate == 0)
612                 return 0;
613
614         fdiv = cprman_read(cprman, data->frac_reg) & A2W_PLL_FRAC_MASK;
615         ndiv = (a2wctrl & A2W_PLL_CTRL_NDIV_MASK) >> A2W_PLL_CTRL_NDIV_SHIFT;
616         pdiv = (a2wctrl & A2W_PLL_CTRL_PDIV_MASK) >> A2W_PLL_CTRL_PDIV_SHIFT;
617         using_prediv = cprman_read(cprman, data->ana_reg_base + 4) &
618                 data->ana->fb_prediv_mask;
619
620         if (using_prediv) {
621                 ndiv *= 2;
622                 fdiv *= 2;
623         }
624
625         return bcm2835_pll_rate_from_divisors(parent_rate, ndiv, fdiv, pdiv);
626 }
627
628 static void bcm2835_pll_off(struct clk_hw *hw)
629 {
630         struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
631         struct bcm2835_cprman *cprman = pll->cprman;
632         const struct bcm2835_pll_data *data = pll->data;
633
634         spin_lock(&cprman->regs_lock);
635         cprman_write(cprman, data->cm_ctrl_reg, CM_PLL_ANARST);
636         cprman_write(cprman, data->a2w_ctrl_reg,
637                      cprman_read(cprman, data->a2w_ctrl_reg) |
638                      A2W_PLL_CTRL_PWRDN);
639         spin_unlock(&cprman->regs_lock);
640 }
641
642 static int bcm2835_pll_on(struct clk_hw *hw)
643 {
644         struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
645         struct bcm2835_cprman *cprman = pll->cprman;
646         const struct bcm2835_pll_data *data = pll->data;
647         ktime_t timeout;
648
649         cprman_write(cprman, data->a2w_ctrl_reg,
650                      cprman_read(cprman, data->a2w_ctrl_reg) &
651                      ~A2W_PLL_CTRL_PWRDN);
652
653         /* Take the PLL out of reset. */
654         spin_lock(&cprman->regs_lock);
655         cprman_write(cprman, data->cm_ctrl_reg,
656                      cprman_read(cprman, data->cm_ctrl_reg) & ~CM_PLL_ANARST);
657         spin_unlock(&cprman->regs_lock);
658
659         /* Wait for the PLL to lock. */
660         timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
661         while (!(cprman_read(cprman, CM_LOCK) & data->lock_mask)) {
662                 if (ktime_after(ktime_get(), timeout)) {
663                         dev_err(cprman->dev, "%s: couldn't lock PLL\n",
664                                 clk_hw_get_name(hw));
665                         return -ETIMEDOUT;
666                 }
667
668                 cpu_relax();
669         }
670
671         cprman_write(cprman, data->a2w_ctrl_reg,
672                      cprman_read(cprman, data->a2w_ctrl_reg) |
673                      A2W_PLL_CTRL_PRST_DISABLE);
674
675         return 0;
676 }
677
678 static void
679 bcm2835_pll_write_ana(struct bcm2835_cprman *cprman, u32 ana_reg_base, u32 *ana)
680 {
681         int i;
682
683         /*
684          * ANA register setup is done as a series of writes to
685          * ANA3-ANA0, in that order.  This lets us write all 4
686          * registers as a single cycle of the serdes interface (taking
687          * 100 xosc clocks), whereas if we were to update ana0, 1, and
688          * 3 individually through their partial-write registers, each
689          * would be their own serdes cycle.
690          */
691         for (i = 3; i >= 0; i--)
692                 cprman_write(cprman, ana_reg_base + i * 4, ana[i]);
693 }
694
695 static int bcm2835_pll_set_rate(struct clk_hw *hw,
696                                 unsigned long rate, unsigned long parent_rate)
697 {
698         struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
699         struct bcm2835_cprman *cprman = pll->cprman;
700         const struct bcm2835_pll_data *data = pll->data;
701         bool was_using_prediv, use_fb_prediv, do_ana_setup_first;
702         u32 ndiv, fdiv, a2w_ctl;
703         u32 ana[4];
704         int i;
705
706         if (rate > data->max_fb_rate) {
707                 use_fb_prediv = true;
708                 rate /= 2;
709         } else {
710                 use_fb_prediv = false;
711         }
712
713         bcm2835_pll_choose_ndiv_and_fdiv(rate, parent_rate, &ndiv, &fdiv);
714
715         for (i = 3; i >= 0; i--)
716                 ana[i] = cprman_read(cprman, data->ana_reg_base + i * 4);
717
718         was_using_prediv = ana[1] & data->ana->fb_prediv_mask;
719
720         ana[0] &= ~data->ana->mask0;
721         ana[0] |= data->ana->set0;
722         ana[1] &= ~data->ana->mask1;
723         ana[1] |= data->ana->set1;
724         ana[3] &= ~data->ana->mask3;
725         ana[3] |= data->ana->set3;
726
727         if (was_using_prediv && !use_fb_prediv) {
728                 ana[1] &= ~data->ana->fb_prediv_mask;
729                 do_ana_setup_first = true;
730         } else if (!was_using_prediv && use_fb_prediv) {
731                 ana[1] |= data->ana->fb_prediv_mask;
732                 do_ana_setup_first = false;
733         } else {
734                 do_ana_setup_first = true;
735         }
736
737         /* Unmask the reference clock from the oscillator. */
738         spin_lock(&cprman->regs_lock);
739         cprman_write(cprman, A2W_XOSC_CTRL,
740                      cprman_read(cprman, A2W_XOSC_CTRL) |
741                      data->reference_enable_mask);
742         spin_unlock(&cprman->regs_lock);
743
744         if (do_ana_setup_first)
745                 bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
746
747         /* Set the PLL multiplier from the oscillator. */
748         cprman_write(cprman, data->frac_reg, fdiv);
749
750         a2w_ctl = cprman_read(cprman, data->a2w_ctrl_reg);
751         a2w_ctl &= ~A2W_PLL_CTRL_NDIV_MASK;
752         a2w_ctl |= ndiv << A2W_PLL_CTRL_NDIV_SHIFT;
753         a2w_ctl &= ~A2W_PLL_CTRL_PDIV_MASK;
754         a2w_ctl |= 1 << A2W_PLL_CTRL_PDIV_SHIFT;
755         cprman_write(cprman, data->a2w_ctrl_reg, a2w_ctl);
756
757         if (!do_ana_setup_first)
758                 bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
759
760         return 0;
761 }
762
763 static int bcm2835_pll_debug_init(struct clk_hw *hw,
764                                   struct dentry *dentry)
765 {
766         struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
767         struct bcm2835_cprman *cprman = pll->cprman;
768         const struct bcm2835_pll_data *data = pll->data;
769         struct debugfs_reg32 *regs;
770
771         regs = devm_kzalloc(cprman->dev, 7 * sizeof(*regs), GFP_KERNEL);
772         if (!regs)
773                 return -ENOMEM;
774
775         regs[0].name = "cm_ctrl";
776         regs[0].offset = data->cm_ctrl_reg;
777         regs[1].name = "a2w_ctrl";
778         regs[1].offset = data->a2w_ctrl_reg;
779         regs[2].name = "frac";
780         regs[2].offset = data->frac_reg;
781         regs[3].name = "ana0";
782         regs[3].offset = data->ana_reg_base + 0 * 4;
783         regs[4].name = "ana1";
784         regs[4].offset = data->ana_reg_base + 1 * 4;
785         regs[5].name = "ana2";
786         regs[5].offset = data->ana_reg_base + 2 * 4;
787         regs[6].name = "ana3";
788         regs[6].offset = data->ana_reg_base + 3 * 4;
789
790         return bcm2835_debugfs_regset(cprman, 0, regs, 7, dentry);
791 }
792
793 static const struct clk_ops bcm2835_pll_clk_ops = {
794         .is_prepared = bcm2835_pll_is_on,
795         .prepare = bcm2835_pll_on,
796         .unprepare = bcm2835_pll_off,
797         .recalc_rate = bcm2835_pll_get_rate,
798         .set_rate = bcm2835_pll_set_rate,
799         .round_rate = bcm2835_pll_round_rate,
800         .debug_init = bcm2835_pll_debug_init,
801 };
802
803 struct bcm2835_pll_divider {
804         struct clk_divider div;
805         struct bcm2835_cprman *cprman;
806         const struct bcm2835_pll_divider_data *data;
807 };
808
809 static struct bcm2835_pll_divider *
810 bcm2835_pll_divider_from_hw(struct clk_hw *hw)
811 {
812         return container_of(hw, struct bcm2835_pll_divider, div.hw);
813 }
814
815 static int bcm2835_pll_divider_is_on(struct clk_hw *hw)
816 {
817         struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
818         struct bcm2835_cprman *cprman = divider->cprman;
819         const struct bcm2835_pll_divider_data *data = divider->data;
820
821         return !(cprman_read(cprman, data->a2w_reg) & A2W_PLL_CHANNEL_DISABLE);
822 }
823
824 static long bcm2835_pll_divider_round_rate(struct clk_hw *hw,
825                                            unsigned long rate,
826                                            unsigned long *parent_rate)
827 {
828         return clk_divider_ops.round_rate(hw, rate, parent_rate);
829 }
830
831 static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw *hw,
832                                                   unsigned long parent_rate)
833 {
834         return clk_divider_ops.recalc_rate(hw, parent_rate);
835 }
836
837 static void bcm2835_pll_divider_off(struct clk_hw *hw)
838 {
839         struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
840         struct bcm2835_cprman *cprman = divider->cprman;
841         const struct bcm2835_pll_divider_data *data = divider->data;
842
843         spin_lock(&cprman->regs_lock);
844         cprman_write(cprman, data->cm_reg,
845                      (cprman_read(cprman, data->cm_reg) &
846                       ~data->load_mask) | data->hold_mask);
847         cprman_write(cprman, data->a2w_reg,
848                      cprman_read(cprman, data->a2w_reg) |
849                      A2W_PLL_CHANNEL_DISABLE);
850         spin_unlock(&cprman->regs_lock);
851 }
852
853 static int bcm2835_pll_divider_on(struct clk_hw *hw)
854 {
855         struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
856         struct bcm2835_cprman *cprman = divider->cprman;
857         const struct bcm2835_pll_divider_data *data = divider->data;
858
859         spin_lock(&cprman->regs_lock);
860         cprman_write(cprman, data->a2w_reg,
861                      cprman_read(cprman, data->a2w_reg) &
862                      ~A2W_PLL_CHANNEL_DISABLE);
863
864         cprman_write(cprman, data->cm_reg,
865                      cprman_read(cprman, data->cm_reg) & ~data->hold_mask);
866         spin_unlock(&cprman->regs_lock);
867
868         return 0;
869 }
870
871 static int bcm2835_pll_divider_set_rate(struct clk_hw *hw,
872                                         unsigned long rate,
873                                         unsigned long parent_rate)
874 {
875         struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
876         struct bcm2835_cprman *cprman = divider->cprman;
877         const struct bcm2835_pll_divider_data *data = divider->data;
878         u32 cm, div, max_div = 1 << A2W_PLL_DIV_BITS;
879
880         div = DIV_ROUND_UP_ULL(parent_rate, rate);
881
882         div = min(div, max_div);
883         if (div == max_div)
884                 div = 0;
885
886         cprman_write(cprman, data->a2w_reg, div);
887         cm = cprman_read(cprman, data->cm_reg);
888         cprman_write(cprman, data->cm_reg, cm | data->load_mask);
889         cprman_write(cprman, data->cm_reg, cm & ~data->load_mask);
890
891         return 0;
892 }
893
894 static int bcm2835_pll_divider_debug_init(struct clk_hw *hw,
895                                           struct dentry *dentry)
896 {
897         struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
898         struct bcm2835_cprman *cprman = divider->cprman;
899         const struct bcm2835_pll_divider_data *data = divider->data;
900         struct debugfs_reg32 *regs;
901
902         regs = devm_kzalloc(cprman->dev, 7 * sizeof(*regs), GFP_KERNEL);
903         if (!regs)
904                 return -ENOMEM;
905
906         regs[0].name = "cm";
907         regs[0].offset = data->cm_reg;
908         regs[1].name = "a2w";
909         regs[1].offset = data->a2w_reg;
910
911         return bcm2835_debugfs_regset(cprman, 0, regs, 2, dentry);
912 }
913
914 static const struct clk_ops bcm2835_pll_divider_clk_ops = {
915         .is_prepared = bcm2835_pll_divider_is_on,
916         .prepare = bcm2835_pll_divider_on,
917         .unprepare = bcm2835_pll_divider_off,
918         .recalc_rate = bcm2835_pll_divider_get_rate,
919         .set_rate = bcm2835_pll_divider_set_rate,
920         .round_rate = bcm2835_pll_divider_round_rate,
921         .debug_init = bcm2835_pll_divider_debug_init,
922 };
923
924 /*
925  * The CM dividers do fixed-point division, so we can't use the
926  * generic integer divider code like the PLL dividers do (and we can't
927  * fake it by having some fixed shifts preceding it in the clock tree,
928  * because we'd run out of bits in a 32-bit unsigned long).
929  */
930 struct bcm2835_clock {
931         struct clk_hw hw;
932         struct bcm2835_cprman *cprman;
933         const struct bcm2835_clock_data *data;
934 };
935
936 static struct bcm2835_clock *bcm2835_clock_from_hw(struct clk_hw *hw)
937 {
938         return container_of(hw, struct bcm2835_clock, hw);
939 }
940
941 static int bcm2835_clock_is_on(struct clk_hw *hw)
942 {
943         struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
944         struct bcm2835_cprman *cprman = clock->cprman;
945         const struct bcm2835_clock_data *data = clock->data;
946
947         return (cprman_read(cprman, data->ctl_reg) & CM_ENABLE) != 0;
948 }
949
950 static u32 bcm2835_clock_choose_div(struct clk_hw *hw,
951                                     unsigned long rate,
952                                     unsigned long parent_rate)
953 {
954         struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
955         const struct bcm2835_clock_data *data = clock->data;
956         u32 unused_frac_mask =
957                 GENMASK(CM_DIV_FRAC_BITS - data->frac_bits, 0) >> 1;
958         u64 temp = (u64)parent_rate << CM_DIV_FRAC_BITS;
959         u64 rem;
960         u32 div, mindiv, maxdiv;
961
962         rem = do_div(temp, rate);
963         div = temp;
964         div &= ~unused_frac_mask;
965
966         /* different clamping limits apply for a mash clock */
967         if (data->is_mash_clock) {
968                 /* clamp to min divider of 2 */
969                 mindiv = 2 << CM_DIV_FRAC_BITS;
970                 /* clamp to the highest possible integer divider */
971                 maxdiv = (BIT(data->int_bits) - 1) << CM_DIV_FRAC_BITS;
972         } else {
973                 /* clamp to min divider of 1 */
974                 mindiv = 1 << CM_DIV_FRAC_BITS;
975                 /* clamp to the highest possible fractional divider */
976                 maxdiv = GENMASK(data->int_bits + CM_DIV_FRAC_BITS - 1,
977                                  CM_DIV_FRAC_BITS - data->frac_bits);
978         }
979
980         /* apply the clamping  limits */
981         div = max_t(u32, div, mindiv);
982         div = min_t(u32, div, maxdiv);
983
984         return div;
985 }
986
987 static long bcm2835_clock_rate_from_divisor(struct bcm2835_clock *clock,
988                                             unsigned long parent_rate,
989                                             u32 div)
990 {
991         const struct bcm2835_clock_data *data = clock->data;
992         u64 temp;
993
994         if (data->int_bits == 0 && data->frac_bits == 0)
995                 return parent_rate;
996
997         /*
998          * The divisor is a 12.12 fixed point field, but only some of
999          * the bits are populated in any given clock.
1000          */
1001         div >>= CM_DIV_FRAC_BITS - data->frac_bits;
1002         div &= (1 << (data->int_bits + data->frac_bits)) - 1;
1003
1004         if (div == 0)
1005                 return 0;
1006
1007         temp = (u64)parent_rate << data->frac_bits;
1008
1009         do_div(temp, div);
1010
1011         return temp;
1012 }
1013
1014 static unsigned long bcm2835_clock_get_rate(struct clk_hw *hw,
1015                                             unsigned long parent_rate)
1016 {
1017         struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1018         struct bcm2835_cprman *cprman = clock->cprman;
1019         const struct bcm2835_clock_data *data = clock->data;
1020         u32 div;
1021
1022         if (data->int_bits == 0 && data->frac_bits == 0)
1023                 return parent_rate;
1024
1025         div = cprman_read(cprman, data->div_reg);
1026
1027         return bcm2835_clock_rate_from_divisor(clock, parent_rate, div);
1028 }
1029
1030 static void bcm2835_clock_wait_busy(struct bcm2835_clock *clock)
1031 {
1032         struct bcm2835_cprman *cprman = clock->cprman;
1033         const struct bcm2835_clock_data *data = clock->data;
1034         ktime_t timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
1035
1036         while (cprman_read(cprman, data->ctl_reg) & CM_BUSY) {
1037                 if (ktime_after(ktime_get(), timeout)) {
1038                         dev_err(cprman->dev, "%s: couldn't lock PLL\n",
1039                                 clk_hw_get_name(&clock->hw));
1040                         return;
1041                 }
1042                 cpu_relax();
1043         }
1044 }
1045
1046 static void bcm2835_clock_off(struct clk_hw *hw)
1047 {
1048         struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1049         struct bcm2835_cprman *cprman = clock->cprman;
1050         const struct bcm2835_clock_data *data = clock->data;
1051
1052         spin_lock(&cprman->regs_lock);
1053         cprman_write(cprman, data->ctl_reg,
1054                      cprman_read(cprman, data->ctl_reg) & ~CM_ENABLE);
1055         spin_unlock(&cprman->regs_lock);
1056
1057         /* BUSY will remain high until the divider completes its cycle. */
1058         bcm2835_clock_wait_busy(clock);
1059 }
1060
1061 static int bcm2835_clock_on(struct clk_hw *hw)
1062 {
1063         struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1064         struct bcm2835_cprman *cprman = clock->cprman;
1065         const struct bcm2835_clock_data *data = clock->data;
1066
1067         spin_lock(&cprman->regs_lock);
1068         cprman_write(cprman, data->ctl_reg,
1069                      cprman_read(cprman, data->ctl_reg) |
1070                      CM_ENABLE |
1071                      CM_GATE);
1072         spin_unlock(&cprman->regs_lock);
1073
1074         /* Debug code to measure the clock once it's turned on to see
1075          * if it's ticking at the rate we expect.
1076          */
1077         if (data->tcnt_mux && false) {
1078                 dev_info(cprman->dev,
1079                          "clk %s: rate %ld, measure %ld\n",
1080                          data->name,
1081                          clk_hw_get_rate(hw),
1082                          bcm2835_measure_tcnt_mux(cprman, data->tcnt_mux));
1083         }
1084
1085         return 0;
1086 }
1087
1088 static int bcm2835_clock_set_rate(struct clk_hw *hw,
1089                                   unsigned long rate, unsigned long parent_rate)
1090 {
1091         struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1092         struct bcm2835_cprman *cprman = clock->cprman;
1093         const struct bcm2835_clock_data *data = clock->data;
1094         u32 div = bcm2835_clock_choose_div(hw, rate, parent_rate);
1095         u32 ctl;
1096
1097         spin_lock(&cprman->regs_lock);
1098
1099         /*
1100          * Setting up frac support
1101          *
1102          * In principle it is recommended to stop/start the clock first,
1103          * but as we set CLK_SET_RATE_GATE during registration of the
1104          * clock this requirement should be take care of by the
1105          * clk-framework.
1106          */
1107         ctl = cprman_read(cprman, data->ctl_reg) & ~CM_FRAC;
1108         ctl |= (div & CM_DIV_FRAC_MASK) ? CM_FRAC : 0;
1109         cprman_write(cprman, data->ctl_reg, ctl);
1110
1111         cprman_write(cprman, data->div_reg, div);
1112
1113         spin_unlock(&cprman->regs_lock);
1114
1115         return 0;
1116 }
1117
1118 static bool
1119 bcm2835_clk_is_pllc(struct clk_hw *hw)
1120 {
1121         if (!hw)
1122                 return false;
1123
1124         return strncmp(clk_hw_get_name(hw), "pllc", 4) == 0;
1125 }
1126
1127 static unsigned long bcm2835_clock_choose_div_and_prate(struct clk_hw *hw,
1128                                                         int parent_idx,
1129                                                         unsigned long rate,
1130                                                         u32 *div,
1131                                                         unsigned long *prate,
1132                                                         unsigned long *avgrate)
1133 {
1134         struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1135         struct bcm2835_cprman *cprman = clock->cprman;
1136         const struct bcm2835_clock_data *data = clock->data;
1137         unsigned long best_rate = 0;
1138         u32 curdiv, mindiv, maxdiv;
1139         struct clk_hw *parent;
1140
1141         parent = clk_hw_get_parent_by_index(hw, parent_idx);
1142
1143         if (!(BIT(parent_idx) & data->set_rate_parent)) {
1144                 *prate = clk_hw_get_rate(parent);
1145                 *div = bcm2835_clock_choose_div(hw, rate, *prate);
1146
1147                 *avgrate = bcm2835_clock_rate_from_divisor(clock, *prate, *div);
1148
1149                 if (data->low_jitter && (*div & CM_DIV_FRAC_MASK)) {
1150                         unsigned long high, low;
1151                         u32 int_div = *div & ~CM_DIV_FRAC_MASK;
1152
1153                         high = bcm2835_clock_rate_from_divisor(clock, *prate,
1154                                                                int_div);
1155                         int_div += CM_DIV_FRAC_MASK + 1;
1156                         low = bcm2835_clock_rate_from_divisor(clock, *prate,
1157                                                               int_div);
1158
1159                         /*
1160                          * Return a value which is the maximum deviation
1161                          * below the ideal rate, for use as a metric.
1162                          */
1163                         return *avgrate - max(*avgrate - low, high - *avgrate);
1164                 }
1165                 return *avgrate;
1166         }
1167
1168         if (data->frac_bits)
1169                 dev_warn(cprman->dev,
1170                         "frac bits are not used when propagating rate change");
1171
1172         /* clamp to min divider of 2 if we're dealing with a mash clock */
1173         mindiv = data->is_mash_clock ? 2 : 1;
1174         maxdiv = BIT(data->int_bits) - 1;
1175
1176         /* TODO: Be smart, and only test a subset of the available divisors. */
1177         for (curdiv = mindiv; curdiv <= maxdiv; curdiv++) {
1178                 unsigned long tmp_rate;
1179
1180                 tmp_rate = clk_hw_round_rate(parent, rate * curdiv);
1181                 tmp_rate /= curdiv;
1182                 if (curdiv == mindiv ||
1183                     (tmp_rate > best_rate && tmp_rate <= rate))
1184                         best_rate = tmp_rate;
1185
1186                 if (best_rate == rate)
1187                         break;
1188         }
1189
1190         *div = curdiv << CM_DIV_FRAC_BITS;
1191         *prate = curdiv * best_rate;
1192         *avgrate = best_rate;
1193
1194         return best_rate;
1195 }
1196
1197 static int bcm2835_clock_determine_rate(struct clk_hw *hw,
1198                                         struct clk_rate_request *req)
1199 {
1200         struct clk_hw *parent, *best_parent = NULL;
1201         bool current_parent_is_pllc;
1202         unsigned long rate, best_rate = 0;
1203         unsigned long prate, best_prate = 0;
1204         unsigned long avgrate, best_avgrate = 0;
1205         size_t i;
1206         u32 div;
1207
1208         current_parent_is_pllc = bcm2835_clk_is_pllc(clk_hw_get_parent(hw));
1209
1210         /*
1211          * Select parent clock that results in the closest but lower rate
1212          */
1213         for (i = 0; i < clk_hw_get_num_parents(hw); ++i) {
1214                 parent = clk_hw_get_parent_by_index(hw, i);
1215                 if (!parent)
1216                         continue;
1217
1218                 /*
1219                  * Don't choose a PLLC-derived clock as our parent
1220                  * unless it had been manually set that way.  PLLC's
1221                  * frequency gets adjusted by the firmware due to
1222                  * over-temp or under-voltage conditions, without
1223                  * prior notification to our clock consumer.
1224                  */
1225                 if (bcm2835_clk_is_pllc(parent) && !current_parent_is_pllc)
1226                         continue;
1227
1228                 rate = bcm2835_clock_choose_div_and_prate(hw, i, req->rate,
1229                                                           &div, &prate,
1230                                                           &avgrate);
1231                 if (abs(req->rate - rate) < abs(req->rate - best_rate)) {
1232                         best_parent = parent;
1233                         best_prate = prate;
1234                         best_rate = rate;
1235                         best_avgrate = avgrate;
1236                 }
1237         }
1238
1239         if (!best_parent)
1240                 return -EINVAL;
1241
1242         req->best_parent_hw = best_parent;
1243         req->best_parent_rate = best_prate;
1244
1245         req->rate = best_avgrate;
1246
1247         return 0;
1248 }
1249
1250 static int bcm2835_clock_set_parent(struct clk_hw *hw, u8 index)
1251 {
1252         struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1253         struct bcm2835_cprman *cprman = clock->cprman;
1254         const struct bcm2835_clock_data *data = clock->data;
1255         u8 src = (index << CM_SRC_SHIFT) & CM_SRC_MASK;
1256
1257         cprman_write(cprman, data->ctl_reg, src);
1258         return 0;
1259 }
1260
1261 static u8 bcm2835_clock_get_parent(struct clk_hw *hw)
1262 {
1263         struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1264         struct bcm2835_cprman *cprman = clock->cprman;
1265         const struct bcm2835_clock_data *data = clock->data;
1266         u32 src = cprman_read(cprman, data->ctl_reg);
1267
1268         return (src & CM_SRC_MASK) >> CM_SRC_SHIFT;
1269 }
1270
1271 static struct debugfs_reg32 bcm2835_debugfs_clock_reg32[] = {
1272         {
1273                 .name = "ctl",
1274                 .offset = 0,
1275         },
1276         {
1277                 .name = "div",
1278                 .offset = 4,
1279         },
1280 };
1281
1282 static int bcm2835_clock_debug_init(struct clk_hw *hw,
1283                                     struct dentry *dentry)
1284 {
1285         struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1286         struct bcm2835_cprman *cprman = clock->cprman;
1287         const struct bcm2835_clock_data *data = clock->data;
1288
1289         return bcm2835_debugfs_regset(
1290                 cprman, data->ctl_reg,
1291                 bcm2835_debugfs_clock_reg32,
1292                 ARRAY_SIZE(bcm2835_debugfs_clock_reg32),
1293                 dentry);
1294 }
1295
1296 static const struct clk_ops bcm2835_clock_clk_ops = {
1297         .is_prepared = bcm2835_clock_is_on,
1298         .prepare = bcm2835_clock_on,
1299         .unprepare = bcm2835_clock_off,
1300         .recalc_rate = bcm2835_clock_get_rate,
1301         .set_rate = bcm2835_clock_set_rate,
1302         .determine_rate = bcm2835_clock_determine_rate,
1303         .set_parent = bcm2835_clock_set_parent,
1304         .get_parent = bcm2835_clock_get_parent,
1305         .debug_init = bcm2835_clock_debug_init,
1306 };
1307
1308 static int bcm2835_vpu_clock_is_on(struct clk_hw *hw)
1309 {
1310         return true;
1311 }
1312
1313 /*
1314  * The VPU clock can never be disabled (it doesn't have an ENABLE
1315  * bit), so it gets its own set of clock ops.
1316  */
1317 static const struct clk_ops bcm2835_vpu_clock_clk_ops = {
1318         .is_prepared = bcm2835_vpu_clock_is_on,
1319         .recalc_rate = bcm2835_clock_get_rate,
1320         .set_rate = bcm2835_clock_set_rate,
1321         .determine_rate = bcm2835_clock_determine_rate,
1322         .set_parent = bcm2835_clock_set_parent,
1323         .get_parent = bcm2835_clock_get_parent,
1324         .debug_init = bcm2835_clock_debug_init,
1325 };
1326
1327 static struct clk_hw *bcm2835_register_pll(struct bcm2835_cprman *cprman,
1328                                            const struct bcm2835_pll_data *data)
1329 {
1330         struct bcm2835_pll *pll;
1331         struct clk_init_data init;
1332         int ret;
1333
1334         memset(&init, 0, sizeof(init));
1335
1336         /* All of the PLLs derive from the external oscillator. */
1337         init.parent_names = &cprman->real_parent_names[0];
1338         init.num_parents = 1;
1339         init.name = data->name;
1340         init.ops = &bcm2835_pll_clk_ops;
1341         init.flags = CLK_IGNORE_UNUSED;
1342
1343         pll = kzalloc(sizeof(*pll), GFP_KERNEL);
1344         if (!pll)
1345                 return NULL;
1346
1347         pll->cprman = cprman;
1348         pll->data = data;
1349         pll->hw.init = &init;
1350
1351         ret = devm_clk_hw_register(cprman->dev, &pll->hw);
1352         if (ret) {
1353                 kfree(pll);
1354                 return NULL;
1355         }
1356         return &pll->hw;
1357 }
1358
1359 static struct clk_hw *
1360 bcm2835_register_pll_divider(struct bcm2835_cprman *cprman,
1361                              const struct bcm2835_pll_divider_data *data)
1362 {
1363         struct bcm2835_pll_divider *divider;
1364         struct clk_init_data init;
1365         const char *divider_name;
1366         int ret;
1367
1368         if (data->fixed_divider != 1) {
1369                 divider_name = devm_kasprintf(cprman->dev, GFP_KERNEL,
1370                                               "%s_prediv", data->name);
1371                 if (!divider_name)
1372                         return NULL;
1373         } else {
1374                 divider_name = data->name;
1375         }
1376
1377         memset(&init, 0, sizeof(init));
1378
1379         init.parent_names = &data->source_pll;
1380         init.num_parents = 1;
1381         init.name = divider_name;
1382         init.ops = &bcm2835_pll_divider_clk_ops;
1383         init.flags = data->flags | CLK_IGNORE_UNUSED;
1384
1385         divider = devm_kzalloc(cprman->dev, sizeof(*divider), GFP_KERNEL);
1386         if (!divider)
1387                 return NULL;
1388
1389         divider->div.reg = cprman->regs + data->a2w_reg;
1390         divider->div.shift = A2W_PLL_DIV_SHIFT;
1391         divider->div.width = A2W_PLL_DIV_BITS;
1392         divider->div.flags = CLK_DIVIDER_MAX_AT_ZERO;
1393         divider->div.lock = &cprman->regs_lock;
1394         divider->div.hw.init = &init;
1395         divider->div.table = NULL;
1396
1397         divider->cprman = cprman;
1398         divider->data = data;
1399
1400         ret = devm_clk_hw_register(cprman->dev, &divider->div.hw);
1401         if (ret)
1402                 return ERR_PTR(ret);
1403
1404         /*
1405          * PLLH's channels have a fixed divide by 10 afterwards, which
1406          * is what our consumers are actually using.
1407          */
1408         if (data->fixed_divider != 1) {
1409                 return clk_hw_register_fixed_factor(cprman->dev, data->name,
1410                                                     divider_name,
1411                                                     CLK_SET_RATE_PARENT,
1412                                                     1,
1413                                                     data->fixed_divider);
1414         }
1415
1416         return &divider->div.hw;
1417 }
1418
1419 static struct clk_hw *bcm2835_register_clock(struct bcm2835_cprman *cprman,
1420                                           const struct bcm2835_clock_data *data)
1421 {
1422         struct bcm2835_clock *clock;
1423         struct clk_init_data init;
1424         const char *parents[1 << CM_SRC_BITS];
1425         size_t i, j;
1426         int ret;
1427
1428         /*
1429          * Replace our strings referencing parent clocks with the
1430          * actual clock-output-name of the parent.
1431          */
1432         for (i = 0; i < data->num_mux_parents; i++) {
1433                 parents[i] = data->parents[i];
1434
1435                 for (j = 0; j < ARRAY_SIZE(cprman_parent_names); j++) {
1436                         if (strcmp(parents[i], cprman_parent_names[j]) == 0) {
1437                                 parents[i] = cprman->real_parent_names[j];
1438                                 break;
1439                         }
1440                 }
1441         }
1442
1443         memset(&init, 0, sizeof(init));
1444         init.parent_names = parents;
1445         init.num_parents = data->num_mux_parents;
1446         init.name = data->name;
1447         init.flags = data->flags | CLK_IGNORE_UNUSED;
1448
1449         /*
1450          * Pass the CLK_SET_RATE_PARENT flag if we are allowed to propagate
1451          * rate changes on at least of the parents.
1452          */
1453         if (data->set_rate_parent)
1454                 init.flags |= CLK_SET_RATE_PARENT;
1455
1456         if (data->is_vpu_clock) {
1457                 init.ops = &bcm2835_vpu_clock_clk_ops;
1458         } else {
1459                 init.ops = &bcm2835_clock_clk_ops;
1460                 init.flags |= CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE;
1461
1462                 /* If the clock wasn't actually enabled at boot, it's not
1463                  * critical.
1464                  */
1465                 if (!(cprman_read(cprman, data->ctl_reg) & CM_ENABLE))
1466                         init.flags &= ~CLK_IS_CRITICAL;
1467         }
1468
1469         clock = devm_kzalloc(cprman->dev, sizeof(*clock), GFP_KERNEL);
1470         if (!clock)
1471                 return NULL;
1472
1473         clock->cprman = cprman;
1474         clock->data = data;
1475         clock->hw.init = &init;
1476
1477         ret = devm_clk_hw_register(cprman->dev, &clock->hw);
1478         if (ret)
1479                 return ERR_PTR(ret);
1480         return &clock->hw;
1481 }
1482
1483 static struct clk_hw *bcm2835_register_gate(struct bcm2835_cprman *cprman,
1484                                          const struct bcm2835_gate_data *data)
1485 {
1486         return clk_hw_register_gate(cprman->dev, data->name, data->parent,
1487                                     CLK_IGNORE_UNUSED | CLK_SET_RATE_GATE,
1488                                     cprman->regs + data->ctl_reg,
1489                                     CM_GATE_BIT, 0, &cprman->regs_lock);
1490 }
1491
1492 typedef struct clk_hw *(*bcm2835_clk_register)(struct bcm2835_cprman *cprman,
1493                                                const void *data);
1494 struct bcm2835_clk_desc {
1495         bcm2835_clk_register clk_register;
1496         const void *data;
1497 };
1498
1499 /* assignment helper macros for different clock types */
1500 #define _REGISTER(f, ...) { .clk_register = (bcm2835_clk_register)f, \
1501                             .data = __VA_ARGS__ }
1502 #define REGISTER_PLL(...)       _REGISTER(&bcm2835_register_pll,        \
1503                                           &(struct bcm2835_pll_data)    \
1504                                           {__VA_ARGS__})
1505 #define REGISTER_PLL_DIV(...)   _REGISTER(&bcm2835_register_pll_divider, \
1506                                           &(struct bcm2835_pll_divider_data) \
1507                                           {__VA_ARGS__})
1508 #define REGISTER_CLK(...)       _REGISTER(&bcm2835_register_clock,      \
1509                                           &(struct bcm2835_clock_data)  \
1510                                           {__VA_ARGS__})
1511 #define REGISTER_GATE(...)      _REGISTER(&bcm2835_register_gate,       \
1512                                           &(struct bcm2835_gate_data)   \
1513                                           {__VA_ARGS__})
1514
1515 /* parent mux arrays plus helper macros */
1516
1517 /* main oscillator parent mux */
1518 static const char *const bcm2835_clock_osc_parents[] = {
1519         "gnd",
1520         "xosc",
1521         "testdebug0",
1522         "testdebug1"
1523 };
1524
1525 #define REGISTER_OSC_CLK(...)   REGISTER_CLK(                           \
1526         .num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents),       \
1527         .parents = bcm2835_clock_osc_parents,                           \
1528         __VA_ARGS__)
1529
1530 /* main peripherial parent mux */
1531 static const char *const bcm2835_clock_per_parents[] = {
1532         "gnd",
1533         "xosc",
1534         "testdebug0",
1535         "testdebug1",
1536         "plla_per",
1537         "pllc_per",
1538         "plld_per",
1539         "pllh_aux",
1540 };
1541
1542 #define REGISTER_PER_CLK(...)   REGISTER_CLK(                           \
1543         .num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents),       \
1544         .parents = bcm2835_clock_per_parents,                           \
1545         __VA_ARGS__)
1546
1547 /*
1548  * Restrict clock sources for the PCM peripheral to the oscillator and
1549  * PLLD_PER because other source may have varying rates or be switched
1550  * off.
1551  *
1552  * Prevent other sources from being selected by replacing their names in
1553  * the list of potential parents with dummy entries (entry index is
1554  * significant).
1555  */
1556 static const char *const bcm2835_pcm_per_parents[] = {
1557         "-",
1558         "xosc",
1559         "-",
1560         "-",
1561         "-",
1562         "-",
1563         "plld_per",
1564         "-",
1565 };
1566
1567 #define REGISTER_PCM_CLK(...)   REGISTER_CLK(                           \
1568         .num_mux_parents = ARRAY_SIZE(bcm2835_pcm_per_parents),         \
1569         .parents = bcm2835_pcm_per_parents,                             \
1570         __VA_ARGS__)
1571
1572 /* main vpu parent mux */
1573 static const char *const bcm2835_clock_vpu_parents[] = {
1574         "gnd",
1575         "xosc",
1576         "testdebug0",
1577         "testdebug1",
1578         "plla_core",
1579         "pllc_core0",
1580         "plld_core",
1581         "pllh_aux",
1582         "pllc_core1",
1583         "pllc_core2",
1584 };
1585
1586 #define REGISTER_VPU_CLK(...)   REGISTER_CLK(                           \
1587         .num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents),       \
1588         .parents = bcm2835_clock_vpu_parents,                           \
1589         __VA_ARGS__)
1590
1591 /*
1592  * DSI parent clocks.  The DSI byte/DDR/DDR2 clocks come from the DSI
1593  * analog PHY.  The _inv variants are generated internally to cprman,
1594  * but we don't use them so they aren't hooked up.
1595  */
1596 static const char *const bcm2835_clock_dsi0_parents[] = {
1597         "gnd",
1598         "xosc",
1599         "testdebug0",
1600         "testdebug1",
1601         "dsi0_ddr",
1602         "dsi0_ddr_inv",
1603         "dsi0_ddr2",
1604         "dsi0_ddr2_inv",
1605         "dsi0_byte",
1606         "dsi0_byte_inv",
1607 };
1608
1609 static const char *const bcm2835_clock_dsi1_parents[] = {
1610         "gnd",
1611         "xosc",
1612         "testdebug0",
1613         "testdebug1",
1614         "dsi1_ddr",
1615         "dsi1_ddr_inv",
1616         "dsi1_ddr2",
1617         "dsi1_ddr2_inv",
1618         "dsi1_byte",
1619         "dsi1_byte_inv",
1620 };
1621
1622 #define REGISTER_DSI0_CLK(...)  REGISTER_CLK(                           \
1623         .num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi0_parents),      \
1624         .parents = bcm2835_clock_dsi0_parents,                          \
1625         __VA_ARGS__)
1626
1627 #define REGISTER_DSI1_CLK(...)  REGISTER_CLK(                           \
1628         .num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi1_parents),      \
1629         .parents = bcm2835_clock_dsi1_parents,                          \
1630         __VA_ARGS__)
1631
1632 /*
1633  * the real definition of all the pll, pll_dividers and clocks
1634  * these make use of the above REGISTER_* macros
1635  */
1636 static const struct bcm2835_clk_desc clk_desc_array[] = {
1637         /* the PLL + PLL dividers */
1638
1639         /*
1640          * PLLA is the auxiliary PLL, used to drive the CCP2
1641          * (Compact Camera Port 2) transmitter clock.
1642          *
1643          * It is in the PX LDO power domain, which is on when the
1644          * AUDIO domain is on.
1645          */
1646         [BCM2835_PLLA]          = REGISTER_PLL(
1647                 .name = "plla",
1648                 .cm_ctrl_reg = CM_PLLA,
1649                 .a2w_ctrl_reg = A2W_PLLA_CTRL,
1650                 .frac_reg = A2W_PLLA_FRAC,
1651                 .ana_reg_base = A2W_PLLA_ANA0,
1652                 .reference_enable_mask = A2W_XOSC_CTRL_PLLA_ENABLE,
1653                 .lock_mask = CM_LOCK_FLOCKA,
1654
1655                 .ana = &bcm2835_ana_default,
1656
1657                 .min_rate = 600000000u,
1658                 .max_rate = 2400000000u,
1659                 .max_fb_rate = BCM2835_MAX_FB_RATE),
1660         [BCM2835_PLLA_CORE]     = REGISTER_PLL_DIV(
1661                 .name = "plla_core",
1662                 .source_pll = "plla",
1663                 .cm_reg = CM_PLLA,
1664                 .a2w_reg = A2W_PLLA_CORE,
1665                 .load_mask = CM_PLLA_LOADCORE,
1666                 .hold_mask = CM_PLLA_HOLDCORE,
1667                 .fixed_divider = 1,
1668                 .flags = CLK_SET_RATE_PARENT),
1669         [BCM2835_PLLA_PER]      = REGISTER_PLL_DIV(
1670                 .name = "plla_per",
1671                 .source_pll = "plla",
1672                 .cm_reg = CM_PLLA,
1673                 .a2w_reg = A2W_PLLA_PER,
1674                 .load_mask = CM_PLLA_LOADPER,
1675                 .hold_mask = CM_PLLA_HOLDPER,
1676                 .fixed_divider = 1,
1677                 .flags = CLK_SET_RATE_PARENT),
1678         [BCM2835_PLLA_DSI0]     = REGISTER_PLL_DIV(
1679                 .name = "plla_dsi0",
1680                 .source_pll = "plla",
1681                 .cm_reg = CM_PLLA,
1682                 .a2w_reg = A2W_PLLA_DSI0,
1683                 .load_mask = CM_PLLA_LOADDSI0,
1684                 .hold_mask = CM_PLLA_HOLDDSI0,
1685                 .fixed_divider = 1),
1686         [BCM2835_PLLA_CCP2]     = REGISTER_PLL_DIV(
1687                 .name = "plla_ccp2",
1688                 .source_pll = "plla",
1689                 .cm_reg = CM_PLLA,
1690                 .a2w_reg = A2W_PLLA_CCP2,
1691                 .load_mask = CM_PLLA_LOADCCP2,
1692                 .hold_mask = CM_PLLA_HOLDCCP2,
1693                 .fixed_divider = 1,
1694                 .flags = CLK_SET_RATE_PARENT),
1695
1696         /* PLLB is used for the ARM's clock. */
1697         [BCM2835_PLLB]          = REGISTER_PLL(
1698                 .name = "pllb",
1699                 .cm_ctrl_reg = CM_PLLB,
1700                 .a2w_ctrl_reg = A2W_PLLB_CTRL,
1701                 .frac_reg = A2W_PLLB_FRAC,
1702                 .ana_reg_base = A2W_PLLB_ANA0,
1703                 .reference_enable_mask = A2W_XOSC_CTRL_PLLB_ENABLE,
1704                 .lock_mask = CM_LOCK_FLOCKB,
1705
1706                 .ana = &bcm2835_ana_default,
1707
1708                 .min_rate = 600000000u,
1709                 .max_rate = 3000000000u,
1710                 .max_fb_rate = BCM2835_MAX_FB_RATE),
1711         [BCM2835_PLLB_ARM]      = REGISTER_PLL_DIV(
1712                 .name = "pllb_arm",
1713                 .source_pll = "pllb",
1714                 .cm_reg = CM_PLLB,
1715                 .a2w_reg = A2W_PLLB_ARM,
1716                 .load_mask = CM_PLLB_LOADARM,
1717                 .hold_mask = CM_PLLB_HOLDARM,
1718                 .fixed_divider = 1,
1719                 .flags = CLK_SET_RATE_PARENT),
1720
1721         /*
1722          * PLLC is the core PLL, used to drive the core VPU clock.
1723          *
1724          * It is in the PX LDO power domain, which is on when the
1725          * AUDIO domain is on.
1726          */
1727         [BCM2835_PLLC]          = REGISTER_PLL(
1728                 .name = "pllc",
1729                 .cm_ctrl_reg = CM_PLLC,
1730                 .a2w_ctrl_reg = A2W_PLLC_CTRL,
1731                 .frac_reg = A2W_PLLC_FRAC,
1732                 .ana_reg_base = A2W_PLLC_ANA0,
1733                 .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1734                 .lock_mask = CM_LOCK_FLOCKC,
1735
1736                 .ana = &bcm2835_ana_default,
1737
1738                 .min_rate = 600000000u,
1739                 .max_rate = 3000000000u,
1740                 .max_fb_rate = BCM2835_MAX_FB_RATE),
1741         [BCM2835_PLLC_CORE0]    = REGISTER_PLL_DIV(
1742                 .name = "pllc_core0",
1743                 .source_pll = "pllc",
1744                 .cm_reg = CM_PLLC,
1745                 .a2w_reg = A2W_PLLC_CORE0,
1746                 .load_mask = CM_PLLC_LOADCORE0,
1747                 .hold_mask = CM_PLLC_HOLDCORE0,
1748                 .fixed_divider = 1,
1749                 .flags = CLK_SET_RATE_PARENT),
1750         [BCM2835_PLLC_CORE1]    = REGISTER_PLL_DIV(
1751                 .name = "pllc_core1",
1752                 .source_pll = "pllc",
1753                 .cm_reg = CM_PLLC,
1754                 .a2w_reg = A2W_PLLC_CORE1,
1755                 .load_mask = CM_PLLC_LOADCORE1,
1756                 .hold_mask = CM_PLLC_HOLDCORE1,
1757                 .fixed_divider = 1,
1758                 .flags = CLK_SET_RATE_PARENT),
1759         [BCM2835_PLLC_CORE2]    = REGISTER_PLL_DIV(
1760                 .name = "pllc_core2",
1761                 .source_pll = "pllc",
1762                 .cm_reg = CM_PLLC,
1763                 .a2w_reg = A2W_PLLC_CORE2,
1764                 .load_mask = CM_PLLC_LOADCORE2,
1765                 .hold_mask = CM_PLLC_HOLDCORE2,
1766                 .fixed_divider = 1,
1767                 .flags = CLK_SET_RATE_PARENT),
1768         [BCM2835_PLLC_PER]      = REGISTER_PLL_DIV(
1769                 .name = "pllc_per",
1770                 .source_pll = "pllc",
1771                 .cm_reg = CM_PLLC,
1772                 .a2w_reg = A2W_PLLC_PER,
1773                 .load_mask = CM_PLLC_LOADPER,
1774                 .hold_mask = CM_PLLC_HOLDPER,
1775                 .fixed_divider = 1,
1776                 .flags = CLK_SET_RATE_PARENT),
1777
1778         /*
1779          * PLLD is the display PLL, used to drive DSI display panels.
1780          *
1781          * It is in the PX LDO power domain, which is on when the
1782          * AUDIO domain is on.
1783          */
1784         [BCM2835_PLLD]          = REGISTER_PLL(
1785                 .name = "plld",
1786                 .cm_ctrl_reg = CM_PLLD,
1787                 .a2w_ctrl_reg = A2W_PLLD_CTRL,
1788                 .frac_reg = A2W_PLLD_FRAC,
1789                 .ana_reg_base = A2W_PLLD_ANA0,
1790                 .reference_enable_mask = A2W_XOSC_CTRL_DDR_ENABLE,
1791                 .lock_mask = CM_LOCK_FLOCKD,
1792
1793                 .ana = &bcm2835_ana_default,
1794
1795                 .min_rate = 600000000u,
1796                 .max_rate = 2400000000u,
1797                 .max_fb_rate = BCM2835_MAX_FB_RATE),
1798         [BCM2835_PLLD_CORE]     = REGISTER_PLL_DIV(
1799                 .name = "plld_core",
1800                 .source_pll = "plld",
1801                 .cm_reg = CM_PLLD,
1802                 .a2w_reg = A2W_PLLD_CORE,
1803                 .load_mask = CM_PLLD_LOADCORE,
1804                 .hold_mask = CM_PLLD_HOLDCORE,
1805                 .fixed_divider = 1,
1806                 .flags = CLK_SET_RATE_PARENT),
1807         [BCM2835_PLLD_PER]      = REGISTER_PLL_DIV(
1808                 .name = "plld_per",
1809                 .source_pll = "plld",
1810                 .cm_reg = CM_PLLD,
1811                 .a2w_reg = A2W_PLLD_PER,
1812                 .load_mask = CM_PLLD_LOADPER,
1813                 .hold_mask = CM_PLLD_HOLDPER,
1814                 .fixed_divider = 1,
1815                 .flags = CLK_SET_RATE_PARENT),
1816         [BCM2835_PLLD_DSI0]     = REGISTER_PLL_DIV(
1817                 .name = "plld_dsi0",
1818                 .source_pll = "plld",
1819                 .cm_reg = CM_PLLD,
1820                 .a2w_reg = A2W_PLLD_DSI0,
1821                 .load_mask = CM_PLLD_LOADDSI0,
1822                 .hold_mask = CM_PLLD_HOLDDSI0,
1823                 .fixed_divider = 1),
1824         [BCM2835_PLLD_DSI1]     = REGISTER_PLL_DIV(
1825                 .name = "plld_dsi1",
1826                 .source_pll = "plld",
1827                 .cm_reg = CM_PLLD,
1828                 .a2w_reg = A2W_PLLD_DSI1,
1829                 .load_mask = CM_PLLD_LOADDSI1,
1830                 .hold_mask = CM_PLLD_HOLDDSI1,
1831                 .fixed_divider = 1),
1832
1833         /*
1834          * PLLH is used to supply the pixel clock or the AUX clock for the
1835          * TV encoder.
1836          *
1837          * It is in the HDMI power domain.
1838          */
1839         [BCM2835_PLLH]          = REGISTER_PLL(
1840                 "pllh",
1841                 .cm_ctrl_reg = CM_PLLH,
1842                 .a2w_ctrl_reg = A2W_PLLH_CTRL,
1843                 .frac_reg = A2W_PLLH_FRAC,
1844                 .ana_reg_base = A2W_PLLH_ANA0,
1845                 .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1846                 .lock_mask = CM_LOCK_FLOCKH,
1847
1848                 .ana = &bcm2835_ana_pllh,
1849
1850                 .min_rate = 600000000u,
1851                 .max_rate = 3000000000u,
1852                 .max_fb_rate = BCM2835_MAX_FB_RATE),
1853         [BCM2835_PLLH_RCAL]     = REGISTER_PLL_DIV(
1854                 .name = "pllh_rcal",
1855                 .source_pll = "pllh",
1856                 .cm_reg = CM_PLLH,
1857                 .a2w_reg = A2W_PLLH_RCAL,
1858                 .load_mask = CM_PLLH_LOADRCAL,
1859                 .hold_mask = 0,
1860                 .fixed_divider = 10,
1861                 .flags = CLK_SET_RATE_PARENT),
1862         [BCM2835_PLLH_AUX]      = REGISTER_PLL_DIV(
1863                 .name = "pllh_aux",
1864                 .source_pll = "pllh",
1865                 .cm_reg = CM_PLLH,
1866                 .a2w_reg = A2W_PLLH_AUX,
1867                 .load_mask = CM_PLLH_LOADAUX,
1868                 .hold_mask = 0,
1869                 .fixed_divider = 1,
1870                 .flags = CLK_SET_RATE_PARENT),
1871         [BCM2835_PLLH_PIX]      = REGISTER_PLL_DIV(
1872                 .name = "pllh_pix",
1873                 .source_pll = "pllh",
1874                 .cm_reg = CM_PLLH,
1875                 .a2w_reg = A2W_PLLH_PIX,
1876                 .load_mask = CM_PLLH_LOADPIX,
1877                 .hold_mask = 0,
1878                 .fixed_divider = 10,
1879                 .flags = CLK_SET_RATE_PARENT),
1880
1881         /* the clocks */
1882
1883         /* clocks with oscillator parent mux */
1884
1885         /* One Time Programmable Memory clock.  Maximum 10Mhz. */
1886         [BCM2835_CLOCK_OTP]     = REGISTER_OSC_CLK(
1887                 .name = "otp",
1888                 .ctl_reg = CM_OTPCTL,
1889                 .div_reg = CM_OTPDIV,
1890                 .int_bits = 4,
1891                 .frac_bits = 0,
1892                 .tcnt_mux = 6),
1893         /*
1894          * Used for a 1Mhz clock for the system clocksource, and also used
1895          * bythe watchdog timer and the camera pulse generator.
1896          */
1897         [BCM2835_CLOCK_TIMER]   = REGISTER_OSC_CLK(
1898                 .name = "timer",
1899                 .ctl_reg = CM_TIMERCTL,
1900                 .div_reg = CM_TIMERDIV,
1901                 .int_bits = 6,
1902                 .frac_bits = 12),
1903         /*
1904          * Clock for the temperature sensor.
1905          * Generally run at 2Mhz, max 5Mhz.
1906          */
1907         [BCM2835_CLOCK_TSENS]   = REGISTER_OSC_CLK(
1908                 .name = "tsens",
1909                 .ctl_reg = CM_TSENSCTL,
1910                 .div_reg = CM_TSENSDIV,
1911                 .int_bits = 5,
1912                 .frac_bits = 0),
1913         [BCM2835_CLOCK_TEC]     = REGISTER_OSC_CLK(
1914                 .name = "tec",
1915                 .ctl_reg = CM_TECCTL,
1916                 .div_reg = CM_TECDIV,
1917                 .int_bits = 6,
1918                 .frac_bits = 0),
1919
1920         /* clocks with vpu parent mux */
1921         [BCM2835_CLOCK_H264]    = REGISTER_VPU_CLK(
1922                 .name = "h264",
1923                 .ctl_reg = CM_H264CTL,
1924                 .div_reg = CM_H264DIV,
1925                 .int_bits = 4,
1926                 .frac_bits = 8,
1927                 .tcnt_mux = 1),
1928         [BCM2835_CLOCK_ISP]     = REGISTER_VPU_CLK(
1929                 .name = "isp",
1930                 .ctl_reg = CM_ISPCTL,
1931                 .div_reg = CM_ISPDIV,
1932                 .int_bits = 4,
1933                 .frac_bits = 8,
1934                 .tcnt_mux = 2),
1935
1936         /*
1937          * Secondary SDRAM clock.  Used for low-voltage modes when the PLL
1938          * in the SDRAM controller can't be used.
1939          */
1940         [BCM2835_CLOCK_SDRAM]   = REGISTER_VPU_CLK(
1941                 .name = "sdram",
1942                 .ctl_reg = CM_SDCCTL,
1943                 .div_reg = CM_SDCDIV,
1944                 .int_bits = 6,
1945                 .frac_bits = 0,
1946                 .tcnt_mux = 3),
1947         [BCM2835_CLOCK_V3D]     = REGISTER_VPU_CLK(
1948                 .name = "v3d",
1949                 .ctl_reg = CM_V3DCTL,
1950                 .div_reg = CM_V3DDIV,
1951                 .int_bits = 4,
1952                 .frac_bits = 8,
1953                 .tcnt_mux = 4),
1954         /*
1955          * VPU clock.  This doesn't have an enable bit, since it drives
1956          * the bus for everything else, and is special so it doesn't need
1957          * to be gated for rate changes.  It is also known as "clk_audio"
1958          * in various hardware documentation.
1959          */
1960         [BCM2835_CLOCK_VPU]     = REGISTER_VPU_CLK(
1961                 .name = "vpu",
1962                 .ctl_reg = CM_VPUCTL,
1963                 .div_reg = CM_VPUDIV,
1964                 .int_bits = 12,
1965                 .frac_bits = 8,
1966                 .flags = CLK_IS_CRITICAL,
1967                 .is_vpu_clock = true,
1968                 .tcnt_mux = 5),
1969
1970         /* clocks with per parent mux */
1971         [BCM2835_CLOCK_AVEO]    = REGISTER_PER_CLK(
1972                 .name = "aveo",
1973                 .ctl_reg = CM_AVEOCTL,
1974                 .div_reg = CM_AVEODIV,
1975                 .int_bits = 4,
1976                 .frac_bits = 0,
1977                 .tcnt_mux = 38),
1978         [BCM2835_CLOCK_CAM0]    = REGISTER_PER_CLK(
1979                 .name = "cam0",
1980                 .ctl_reg = CM_CAM0CTL,
1981                 .div_reg = CM_CAM0DIV,
1982                 .int_bits = 4,
1983                 .frac_bits = 8,
1984                 .tcnt_mux = 14),
1985         [BCM2835_CLOCK_CAM1]    = REGISTER_PER_CLK(
1986                 .name = "cam1",
1987                 .ctl_reg = CM_CAM1CTL,
1988                 .div_reg = CM_CAM1DIV,
1989                 .int_bits = 4,
1990                 .frac_bits = 8,
1991                 .tcnt_mux = 15),
1992         [BCM2835_CLOCK_DFT]     = REGISTER_PER_CLK(
1993                 .name = "dft",
1994                 .ctl_reg = CM_DFTCTL,
1995                 .div_reg = CM_DFTDIV,
1996                 .int_bits = 5,
1997                 .frac_bits = 0),
1998         [BCM2835_CLOCK_DPI]     = REGISTER_PER_CLK(
1999                 .name = "dpi",
2000                 .ctl_reg = CM_DPICTL,
2001                 .div_reg = CM_DPIDIV,
2002                 .int_bits = 4,
2003                 .frac_bits = 8,
2004                 .tcnt_mux = 17),
2005
2006         /* Arasan EMMC clock */
2007         [BCM2835_CLOCK_EMMC]    = REGISTER_PER_CLK(
2008                 .name = "emmc",
2009                 .ctl_reg = CM_EMMCCTL,
2010                 .div_reg = CM_EMMCDIV,
2011                 .int_bits = 4,
2012                 .frac_bits = 8,
2013                 .tcnt_mux = 39),
2014
2015         /* General purpose (GPIO) clocks */
2016         [BCM2835_CLOCK_GP0]     = REGISTER_PER_CLK(
2017                 .name = "gp0",
2018                 .ctl_reg = CM_GP0CTL,
2019                 .div_reg = CM_GP0DIV,
2020                 .int_bits = 12,
2021                 .frac_bits = 12,
2022                 .is_mash_clock = true,
2023                 .tcnt_mux = 20),
2024         [BCM2835_CLOCK_GP1]     = REGISTER_PER_CLK(
2025                 .name = "gp1",
2026                 .ctl_reg = CM_GP1CTL,
2027                 .div_reg = CM_GP1DIV,
2028                 .int_bits = 12,
2029                 .frac_bits = 12,
2030                 .flags = CLK_IS_CRITICAL,
2031                 .is_mash_clock = true,
2032                 .tcnt_mux = 21),
2033         [BCM2835_CLOCK_GP2]     = REGISTER_PER_CLK(
2034                 .name = "gp2",
2035                 .ctl_reg = CM_GP2CTL,
2036                 .div_reg = CM_GP2DIV,
2037                 .int_bits = 12,
2038                 .frac_bits = 12,
2039                 .flags = CLK_IS_CRITICAL),
2040
2041         /* HDMI state machine */
2042         [BCM2835_CLOCK_HSM]     = REGISTER_PER_CLK(
2043                 .name = "hsm",
2044                 .ctl_reg = CM_HSMCTL,
2045                 .div_reg = CM_HSMDIV,
2046                 .int_bits = 4,
2047                 .frac_bits = 8,
2048                 .tcnt_mux = 22),
2049         [BCM2835_CLOCK_PCM]     = REGISTER_PCM_CLK(
2050                 .name = "pcm",
2051                 .ctl_reg = CM_PCMCTL,
2052                 .div_reg = CM_PCMDIV,
2053                 .int_bits = 12,
2054                 .frac_bits = 12,
2055                 .is_mash_clock = true,
2056                 .low_jitter = true,
2057                 .tcnt_mux = 23),
2058         [BCM2835_CLOCK_PWM]     = REGISTER_PER_CLK(
2059                 .name = "pwm",
2060                 .ctl_reg = CM_PWMCTL,
2061                 .div_reg = CM_PWMDIV,
2062                 .int_bits = 12,
2063                 .frac_bits = 12,
2064                 .is_mash_clock = true,
2065                 .tcnt_mux = 24),
2066         [BCM2835_CLOCK_SLIM]    = REGISTER_PER_CLK(
2067                 .name = "slim",
2068                 .ctl_reg = CM_SLIMCTL,
2069                 .div_reg = CM_SLIMDIV,
2070                 .int_bits = 12,
2071                 .frac_bits = 12,
2072                 .is_mash_clock = true,
2073                 .tcnt_mux = 25),
2074         [BCM2835_CLOCK_SMI]     = REGISTER_PER_CLK(
2075                 .name = "smi",
2076                 .ctl_reg = CM_SMICTL,
2077                 .div_reg = CM_SMIDIV,
2078                 .int_bits = 4,
2079                 .frac_bits = 8,
2080                 .tcnt_mux = 27),
2081         [BCM2835_CLOCK_UART]    = REGISTER_PER_CLK(
2082                 .name = "uart",
2083                 .ctl_reg = CM_UARTCTL,
2084                 .div_reg = CM_UARTDIV,
2085                 .int_bits = 10,
2086                 .frac_bits = 12,
2087                 .tcnt_mux = 28),
2088
2089         /* TV encoder clock.  Only operating frequency is 108Mhz.  */
2090         [BCM2835_CLOCK_VEC]     = REGISTER_PER_CLK(
2091                 .name = "vec",
2092                 .ctl_reg = CM_VECCTL,
2093                 .div_reg = CM_VECDIV,
2094                 .int_bits = 4,
2095                 .frac_bits = 0,
2096                 /*
2097                  * Allow rate change propagation only on PLLH_AUX which is
2098                  * assigned index 7 in the parent array.
2099                  */
2100                 .set_rate_parent = BIT(7),
2101                 .tcnt_mux = 29),
2102
2103         /* dsi clocks */
2104         [BCM2835_CLOCK_DSI0E]   = REGISTER_PER_CLK(
2105                 .name = "dsi0e",
2106                 .ctl_reg = CM_DSI0ECTL,
2107                 .div_reg = CM_DSI0EDIV,
2108                 .int_bits = 4,
2109                 .frac_bits = 8,
2110                 .tcnt_mux = 18),
2111         [BCM2835_CLOCK_DSI1E]   = REGISTER_PER_CLK(
2112                 .name = "dsi1e",
2113                 .ctl_reg = CM_DSI1ECTL,
2114                 .div_reg = CM_DSI1EDIV,
2115                 .int_bits = 4,
2116                 .frac_bits = 8,
2117                 .tcnt_mux = 19),
2118         [BCM2835_CLOCK_DSI0P]   = REGISTER_DSI0_CLK(
2119                 .name = "dsi0p",
2120                 .ctl_reg = CM_DSI0PCTL,
2121                 .div_reg = CM_DSI0PDIV,
2122                 .int_bits = 0,
2123                 .frac_bits = 0,
2124                 .tcnt_mux = 12),
2125         [BCM2835_CLOCK_DSI1P]   = REGISTER_DSI1_CLK(
2126                 .name = "dsi1p",
2127                 .ctl_reg = CM_DSI1PCTL,
2128                 .div_reg = CM_DSI1PDIV,
2129                 .int_bits = 0,
2130                 .frac_bits = 0,
2131                 .tcnt_mux = 13),
2132
2133         /* the gates */
2134
2135         /*
2136          * CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if
2137          * you have the debug bit set in the power manager, which we
2138          * don't bother exposing) are individual gates off of the
2139          * non-stop vpu clock.
2140          */
2141         [BCM2835_CLOCK_PERI_IMAGE] = REGISTER_GATE(
2142                 .name = "peri_image",
2143                 .parent = "vpu",
2144                 .ctl_reg = CM_PERIICTL),
2145 };
2146
2147 /*
2148  * Permanently take a reference on the parent of the SDRAM clock.
2149  *
2150  * While the SDRAM is being driven by its dedicated PLL most of the
2151  * time, there is a little loop running in the firmware that
2152  * periodically switches the SDRAM to using our CM clock to do PVT
2153  * recalibration, with the assumption that the previously configured
2154  * SDRAM parent is still enabled and running.
2155  */
2156 static int bcm2835_mark_sdc_parent_critical(struct clk *sdc)
2157 {
2158         struct clk *parent = clk_get_parent(sdc);
2159
2160         if (IS_ERR(parent))
2161                 return PTR_ERR(parent);
2162
2163         return clk_prepare_enable(parent);
2164 }
2165
2166 static int bcm2835_clk_probe(struct platform_device *pdev)
2167 {
2168         struct device *dev = &pdev->dev;
2169         struct clk_hw **hws;
2170         struct bcm2835_cprman *cprman;
2171         struct resource *res;
2172         const struct bcm2835_clk_desc *desc;
2173         const size_t asize = ARRAY_SIZE(clk_desc_array);
2174         size_t i;
2175         int ret;
2176
2177         cprman = devm_kzalloc(dev, sizeof(*cprman) +
2178                               sizeof(*cprman->onecell.hws) * asize,
2179                               GFP_KERNEL);
2180         if (!cprman)
2181                 return -ENOMEM;
2182
2183         spin_lock_init(&cprman->regs_lock);
2184         cprman->dev = dev;
2185         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2186         cprman->regs = devm_ioremap_resource(dev, res);
2187         if (IS_ERR(cprman->regs))
2188                 return PTR_ERR(cprman->regs);
2189
2190         memcpy(cprman->real_parent_names, cprman_parent_names,
2191                sizeof(cprman_parent_names));
2192         of_clk_parent_fill(dev->of_node, cprman->real_parent_names,
2193                            ARRAY_SIZE(cprman_parent_names));
2194
2195         /*
2196          * Make sure the external oscillator has been registered.
2197          *
2198          * The other (DSI) clocks are not present on older device
2199          * trees, which we still need to support for backwards
2200          * compatibility.
2201          */
2202         if (!cprman->real_parent_names[0])
2203                 return -ENODEV;
2204
2205         platform_set_drvdata(pdev, cprman);
2206
2207         cprman->onecell.num = asize;
2208         hws = cprman->onecell.hws;
2209
2210         for (i = 0; i < asize; i++) {
2211                 desc = &clk_desc_array[i];
2212                 if (desc->clk_register && desc->data)
2213                         hws[i] = desc->clk_register(cprman, desc->data);
2214         }
2215
2216         ret = bcm2835_mark_sdc_parent_critical(hws[BCM2835_CLOCK_SDRAM]->clk);
2217         if (ret)
2218                 return ret;
2219
2220         return of_clk_add_hw_provider(dev->of_node, of_clk_hw_onecell_get,
2221                                       &cprman->onecell);
2222 }
2223
2224 static const struct of_device_id bcm2835_clk_of_match[] = {
2225         { .compatible = "brcm,bcm2835-cprman", },
2226         {}
2227 };
2228 MODULE_DEVICE_TABLE(of, bcm2835_clk_of_match);
2229
2230 static struct platform_driver bcm2835_clk_driver = {
2231         .driver = {
2232                 .name = "bcm2835-clk",
2233                 .of_match_table = bcm2835_clk_of_match,
2234         },
2235         .probe          = bcm2835_clk_probe,
2236 };
2237
2238 builtin_platform_driver(bcm2835_clk_driver);
2239
2240 MODULE_AUTHOR("Eric Anholt <eric@anholt.net>");
2241 MODULE_DESCRIPTION("BCM2835 clock driver");
2242 MODULE_LICENSE("GPL v2");