GNU Linux-libre 4.14.290-gnu1
[releases.git] / drivers / clk / clk-stm32h7.c
1 /*
2  * Copyright (C) Gabriel Fernandez 2017
3  * Author: Gabriel Fernandez <gabriel.fernandez@st.com>
4  *
5  * License terms: GPL V2.0.
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  *
16  * You should have received a copy of the GNU General Public License along with
17  * this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19
20 #include <linux/clk.h>
21 #include <linux/clk-provider.h>
22 #include <linux/err.h>
23 #include <linux/io.h>
24 #include <linux/mfd/syscon.h>
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include <linux/slab.h>
28 #include <linux/spinlock.h>
29 #include <linux/regmap.h>
30
31 #include <dt-bindings/clock/stm32h7-clks.h>
32
33 /* Reset Clock Control Registers */
34 #define RCC_CR          0x00
35 #define RCC_CFGR        0x10
36 #define RCC_D1CFGR      0x18
37 #define RCC_D2CFGR      0x1C
38 #define RCC_D3CFGR      0x20
39 #define RCC_PLLCKSELR   0x28
40 #define RCC_PLLCFGR     0x2C
41 #define RCC_PLL1DIVR    0x30
42 #define RCC_PLL1FRACR   0x34
43 #define RCC_PLL2DIVR    0x38
44 #define RCC_PLL2FRACR   0x3C
45 #define RCC_PLL3DIVR    0x40
46 #define RCC_PLL3FRACR   0x44
47 #define RCC_D1CCIPR     0x4C
48 #define RCC_D2CCIP1R    0x50
49 #define RCC_D2CCIP2R    0x54
50 #define RCC_D3CCIPR     0x58
51 #define RCC_BDCR        0x70
52 #define RCC_CSR         0x74
53 #define RCC_AHB3ENR     0xD4
54 #define RCC_AHB1ENR     0xD8
55 #define RCC_AHB2ENR     0xDC
56 #define RCC_AHB4ENR     0xE0
57 #define RCC_APB3ENR     0xE4
58 #define RCC_APB1LENR    0xE8
59 #define RCC_APB1HENR    0xEC
60 #define RCC_APB2ENR     0xF0
61 #define RCC_APB4ENR     0xF4
62
63 static DEFINE_SPINLOCK(stm32rcc_lock);
64
65 static void __iomem *base;
66 static struct clk_hw **hws;
67
68 /* System clock parent */
69 static const char * const sys_src[] = {
70         "hsi_ck", "csi_ck", "hse_ck", "pll1_p" };
71
72 static const char * const tracein_src[] = {
73         "hsi_ck", "csi_ck", "hse_ck", "pll1_r" };
74
75 static const char * const per_src[] = {
76         "hsi_ker", "csi_ker", "hse_ck", "disabled" };
77
78 static const char * const pll_src[] = {
79         "hsi_ck", "csi_ck", "hse_ck", "no clock" };
80
81 static const char * const sdmmc_src[] = { "pll1_q", "pll2_r" };
82
83 static const char * const dsi_src[] = { "ck_dsi_phy", "pll2_q" };
84
85 static const char * const qspi_src[] = {
86         "hclk", "pll1_q", "pll2_r", "per_ck" };
87
88 static const char * const fmc_src[] = {
89         "hclk", "pll1_q", "pll2_r", "per_ck" };
90
91 /* Kernel clock parent */
92 static const char * const swp_src[] = { "pclk1", "hsi_ker" };
93
94 static const char * const fdcan_src[] = { "hse_ck", "pll1_q", "pll2_q" };
95
96 static const char * const dfsdm1_src[] = { "pclk2", "sys_ck" };
97
98 static const char * const spdifrx_src[] = {
99         "pll1_q", "pll2_r", "pll3_r", "hsi_ker" };
100
101 static const char *spi_src1[5] = {
102         "pll1_q", "pll2_p", "pll3_p", NULL, "per_ck" };
103
104 static const char * const spi_src2[] = {
105         "pclk2", "pll2_q", "pll3_q", "hsi_ker", "csi_ker", "hse_ck" };
106
107 static const char * const spi_src3[] = {
108         "pclk4", "pll2_q", "pll3_q", "hsi_ker", "csi_ker", "hse_ck" };
109
110 static const char * const lptim_src1[] = {
111         "pclk1", "pll2_p", "pll3_r", "lse_ck", "lsi_ck", "per_ck" };
112
113 static const char * const lptim_src2[] = {
114         "pclk4", "pll2_p", "pll3_r", "lse_ck", "lsi_ck", "per_ck" };
115
116 static const char * const cec_src[] = {"lse_ck", "lsi_ck", "csi_ker_div122" };
117
118 static const char * const usbotg_src[] = {"pll1_q", "pll3_q", "rc48_ck" };
119
120 /* i2c 1,2,3 src */
121 static const char * const i2c_src1[] = {
122         "pclk1", "pll3_r", "hsi_ker", "csi_ker" };
123
124 static const char * const i2c_src2[] = {
125         "pclk4", "pll3_r", "hsi_ker", "csi_ker" };
126
127 static const char * const rng_src[] = {
128         "rc48_ck", "pll1_q", "lse_ck", "lsi_ck" };
129
130 /* usart 1,6 src */
131 static const char * const usart_src1[] = {
132         "pclk2", "pll2_q", "pll3_q", "hsi_ker", "csi_ker", "lse_ck" };
133
134 /* usart 2,3,4,5,7,8 src */
135 static const char * const usart_src2[] = {
136         "pclk1", "pll2_q", "pll3_q", "hsi_ker", "csi_ker", "lse_ck" };
137
138 static const char *sai_src[5] = {
139         "pll1_q", "pll2_p", "pll3_p", NULL, "per_ck" };
140
141 static const char * const adc_src[] = { "pll2_p", "pll3_r", "per_ck" };
142
143 /* lptim 2,3,4,5 src */
144 static const char * const lpuart1_src[] = {
145         "pclk3", "pll2_q", "pll3_q", "csi_ker", "lse_ck" };
146
147 static const char * const hrtim_src[] = { "tim2_ker", "d1cpre" };
148
149 /* RTC clock parent */
150 static const char * const rtc_src[] = { "off", "lse_ck", "lsi_ck", "hse_1M" };
151
152 /* Micro-controller output clock parent */
153 static const char * const mco_src1[] = {
154         "hsi_ck", "lse_ck", "hse_ck", "pll1_q", "rc48_ck" };
155
156 static const char * const mco_src2[] = {
157         "sys_ck", "pll2_p", "hse_ck", "pll1_p", "csi_ck", "lsi_ck" };
158
159 /* LCD clock */
160 static const char * const ltdc_src[] = {"pll3_r"};
161
162 /* Gate clock with ready bit and backup domain management */
163 struct stm32_ready_gate {
164         struct  clk_gate gate;
165         u8      bit_rdy;
166 };
167
168 #define to_ready_gate_clk(_rgate) container_of(_rgate, struct stm32_ready_gate,\
169                 gate)
170
171 #define RGATE_TIMEOUT 10000
172
173 static int ready_gate_clk_enable(struct clk_hw *hw)
174 {
175         struct clk_gate *gate = to_clk_gate(hw);
176         struct stm32_ready_gate *rgate = to_ready_gate_clk(gate);
177         int bit_status;
178         unsigned int timeout = RGATE_TIMEOUT;
179
180         if (clk_gate_ops.is_enabled(hw))
181                 return 0;
182
183         clk_gate_ops.enable(hw);
184
185         /* We can't use readl_poll_timeout() because we can blocked if
186          * someone enables this clock before clocksource changes.
187          * Only jiffies counter is available. Jiffies are incremented by
188          * interruptions and enable op does not allow to be interrupted.
189          */
190         do {
191                 bit_status = !(readl(gate->reg) & BIT(rgate->bit_rdy));
192
193                 if (bit_status)
194                         udelay(100);
195
196         } while (bit_status && --timeout);
197
198         return bit_status;
199 }
200
201 static void ready_gate_clk_disable(struct clk_hw *hw)
202 {
203         struct clk_gate *gate = to_clk_gate(hw);
204         struct stm32_ready_gate *rgate = to_ready_gate_clk(gate);
205         int bit_status;
206         unsigned int timeout = RGATE_TIMEOUT;
207
208         if (!clk_gate_ops.is_enabled(hw))
209                 return;
210
211         clk_gate_ops.disable(hw);
212
213         do {
214                 bit_status = !!(readl(gate->reg) & BIT(rgate->bit_rdy));
215
216                 if (bit_status)
217                         udelay(100);
218
219         } while (bit_status && --timeout);
220 }
221
222 static const struct clk_ops ready_gate_clk_ops = {
223         .enable         = ready_gate_clk_enable,
224         .disable        = ready_gate_clk_disable,
225         .is_enabled     = clk_gate_is_enabled,
226 };
227
228 static struct clk_hw *clk_register_ready_gate(struct device *dev,
229                 const char *name, const char *parent_name,
230                 void __iomem *reg, u8 bit_idx, u8 bit_rdy,
231                 unsigned long flags, spinlock_t *lock)
232 {
233         struct stm32_ready_gate *rgate;
234         struct clk_init_data init = { NULL };
235         struct clk_hw *hw;
236         int ret;
237
238         rgate = kzalloc(sizeof(*rgate), GFP_KERNEL);
239         if (!rgate)
240                 return ERR_PTR(-ENOMEM);
241
242         init.name = name;
243         init.ops = &ready_gate_clk_ops;
244         init.flags = flags;
245         init.parent_names = &parent_name;
246         init.num_parents = 1;
247
248         rgate->bit_rdy = bit_rdy;
249         rgate->gate.lock = lock;
250         rgate->gate.reg = reg;
251         rgate->gate.bit_idx = bit_idx;
252         rgate->gate.hw.init = &init;
253
254         hw = &rgate->gate.hw;
255         ret = clk_hw_register(dev, hw);
256         if (ret) {
257                 kfree(rgate);
258                 hw = ERR_PTR(ret);
259         }
260
261         return hw;
262 }
263
264 struct gate_cfg {
265         u32 offset;
266         u8  bit_idx;
267 };
268
269 struct muxdiv_cfg {
270         u32 offset;
271         u8 shift;
272         u8 width;
273 };
274
275 struct composite_clk_cfg {
276         struct gate_cfg *gate;
277         struct muxdiv_cfg *mux;
278         struct muxdiv_cfg *div;
279         const char *name;
280         const char * const *parent_name;
281         int num_parents;
282         u32 flags;
283 };
284
285 struct composite_clk_gcfg_t {
286         u8 flags;
287         const struct clk_ops *ops;
288 };
289
290 /*
291  * General config definition of a composite clock (only clock diviser for rate)
292  */
293 struct composite_clk_gcfg {
294         struct composite_clk_gcfg_t *mux;
295         struct composite_clk_gcfg_t *div;
296         struct composite_clk_gcfg_t *gate;
297 };
298
299 #define M_CFG_MUX(_mux_ops, _mux_flags)\
300         .mux = &(struct composite_clk_gcfg_t) { _mux_flags, _mux_ops}
301
302 #define M_CFG_DIV(_rate_ops, _rate_flags)\
303         .div = &(struct composite_clk_gcfg_t) {_rate_flags, _rate_ops}
304
305 #define M_CFG_GATE(_gate_ops, _gate_flags)\
306         .gate = &(struct composite_clk_gcfg_t) { _gate_flags, _gate_ops}
307
308 static struct clk_mux *_get_cmux(void __iomem *reg, u8 shift, u8 width,
309                 u32 flags, spinlock_t *lock)
310 {
311         struct clk_mux *mux;
312
313         mux = kzalloc(sizeof(*mux), GFP_KERNEL);
314         if (!mux)
315                 return ERR_PTR(-ENOMEM);
316
317         mux->reg        = reg;
318         mux->shift      = shift;
319         mux->mask       = (1 << width) - 1;
320         mux->flags      = flags;
321         mux->lock       = lock;
322
323         return mux;
324 }
325
326 static struct clk_divider *_get_cdiv(void __iomem *reg, u8 shift, u8 width,
327                 u32 flags, spinlock_t *lock)
328 {
329         struct clk_divider *div;
330
331         div = kzalloc(sizeof(*div), GFP_KERNEL);
332
333         if (!div)
334                 return ERR_PTR(-ENOMEM);
335
336         div->reg   = reg;
337         div->shift = shift;
338         div->width = width;
339         div->flags = flags;
340         div->lock  = lock;
341
342         return div;
343 }
344
345 static struct clk_gate *_get_cgate(void __iomem *reg, u8 bit_idx, u32 flags,
346                 spinlock_t *lock)
347 {
348         struct clk_gate *gate;
349
350         gate = kzalloc(sizeof(*gate), GFP_KERNEL);
351         if (!gate)
352                 return ERR_PTR(-ENOMEM);
353
354         gate->reg       = reg;
355         gate->bit_idx   = bit_idx;
356         gate->flags     = flags;
357         gate->lock      = lock;
358
359         return gate;
360 }
361
362 struct composite_cfg {
363         struct clk_hw *mux_hw;
364         struct clk_hw *div_hw;
365         struct clk_hw *gate_hw;
366
367         const struct clk_ops *mux_ops;
368         const struct clk_ops *div_ops;
369         const struct clk_ops *gate_ops;
370 };
371
372 static void get_cfg_composite_div(const struct composite_clk_gcfg *gcfg,
373                 const struct composite_clk_cfg *cfg,
374                 struct composite_cfg *composite, spinlock_t *lock)
375 {
376         struct clk_mux     *mux = NULL;
377         struct clk_divider *div = NULL;
378         struct clk_gate    *gate = NULL;
379         const struct clk_ops *mux_ops, *div_ops, *gate_ops;
380         struct clk_hw *mux_hw;
381         struct clk_hw *div_hw;
382         struct clk_hw *gate_hw;
383
384         mux_ops = div_ops = gate_ops = NULL;
385         mux_hw = div_hw = gate_hw = NULL;
386
387         if (gcfg->mux && cfg->mux) {
388                 mux = _get_cmux(base + cfg->mux->offset,
389                                 cfg->mux->shift,
390                                 cfg->mux->width,
391                                 gcfg->mux->flags, lock);
392
393                 if (!IS_ERR(mux)) {
394                         mux_hw = &mux->hw;
395                         mux_ops = gcfg->mux->ops ?
396                                   gcfg->mux->ops : &clk_mux_ops;
397                 }
398         }
399
400         if (gcfg->div && cfg->div) {
401                 div = _get_cdiv(base + cfg->div->offset,
402                                 cfg->div->shift,
403                                 cfg->div->width,
404                                 gcfg->div->flags, lock);
405
406                 if (!IS_ERR(div)) {
407                         div_hw = &div->hw;
408                         div_ops = gcfg->div->ops ?
409                                   gcfg->div->ops : &clk_divider_ops;
410                 }
411         }
412
413         if (gcfg->gate && cfg->gate) {
414                 gate = _get_cgate(base + cfg->gate->offset,
415                                 cfg->gate->bit_idx,
416                                 gcfg->gate->flags, lock);
417
418                 if (!IS_ERR(gate)) {
419                         gate_hw = &gate->hw;
420                         gate_ops = gcfg->gate->ops ?
421                                    gcfg->gate->ops : &clk_gate_ops;
422                 }
423         }
424
425         composite->mux_hw = mux_hw;
426         composite->mux_ops = mux_ops;
427
428         composite->div_hw = div_hw;
429         composite->div_ops = div_ops;
430
431         composite->gate_hw = gate_hw;
432         composite->gate_ops = gate_ops;
433 }
434
435 /* Kernel Timer */
436 struct timer_ker {
437         u8 dppre_shift;
438         struct clk_hw hw;
439         spinlock_t *lock;
440 };
441
442 #define to_timer_ker(_hw) container_of(_hw, struct timer_ker, hw)
443
444 static unsigned long timer_ker_recalc_rate(struct clk_hw *hw,
445                 unsigned long parent_rate)
446 {
447         struct timer_ker *clk_elem = to_timer_ker(hw);
448         u32 timpre;
449         u32 dppre_shift = clk_elem->dppre_shift;
450         u32 prescaler;
451         u32 mul;
452
453         timpre = (readl(base + RCC_CFGR) >> 15) & 0x01;
454
455         prescaler = (readl(base + RCC_D2CFGR) >> dppre_shift) & 0x03;
456
457         mul = 2;
458
459         if (prescaler < 4)
460                 mul = 1;
461
462         else if (timpre && prescaler > 4)
463                 mul = 4;
464
465         return parent_rate * mul;
466 }
467
468 static const struct clk_ops timer_ker_ops = {
469         .recalc_rate = timer_ker_recalc_rate,
470 };
471
472 static struct clk_hw *clk_register_stm32_timer_ker(struct device *dev,
473                 const char *name, const char *parent_name,
474                 unsigned long flags,
475                 u8 dppre_shift,
476                 spinlock_t *lock)
477 {
478         struct timer_ker *element;
479         struct clk_init_data init;
480         struct clk_hw *hw;
481         int err;
482
483         element = kzalloc(sizeof(*element), GFP_KERNEL);
484         if (!element)
485                 return ERR_PTR(-ENOMEM);
486
487         init.name = name;
488         init.ops = &timer_ker_ops;
489         init.flags = flags;
490         init.parent_names = &parent_name;
491         init.num_parents = 1;
492
493         element->hw.init = &init;
494         element->lock = lock;
495         element->dppre_shift = dppre_shift;
496
497         hw = &element->hw;
498         err = clk_hw_register(dev, hw);
499
500         if (err) {
501                 kfree(element);
502                 return ERR_PTR(err);
503         }
504
505         return hw;
506 }
507
508 static const struct clk_div_table d1cpre_div_table[] = {
509         { 0, 1 }, { 1, 1 }, { 2, 1 }, { 3, 1},
510         { 4, 1 }, { 5, 1 }, { 6, 1 }, { 7, 1},
511         { 8, 2 }, { 9, 4 }, { 10, 8 }, { 11, 16 },
512         { 12, 64 }, { 13, 128 }, { 14, 256 },
513         { 15, 512 },
514         { 0 },
515 };
516
517 static const struct clk_div_table ppre_div_table[] = {
518         { 0, 1 }, { 1, 1 }, { 2, 1 }, { 3, 1},
519         { 4, 2 }, { 5, 4 }, { 6, 8 }, { 7, 16 },
520         { 0 },
521 };
522
523 static void register_core_and_bus_clocks(void)
524 {
525         /* CORE AND BUS */
526         hws[SYS_D1CPRE] = clk_hw_register_divider_table(NULL, "d1cpre",
527                         "sys_ck", CLK_IGNORE_UNUSED, base + RCC_D1CFGR, 8, 4, 0,
528                         d1cpre_div_table, &stm32rcc_lock);
529
530         hws[HCLK] = clk_hw_register_divider_table(NULL, "hclk", "d1cpre",
531                         CLK_IGNORE_UNUSED, base + RCC_D1CFGR, 0, 4, 0,
532                         d1cpre_div_table, &stm32rcc_lock);
533
534         /* D1 DOMAIN */
535         /* * CPU Systick */
536         hws[CPU_SYSTICK] = clk_hw_register_fixed_factor(NULL, "systick",
537                         "d1cpre", 0, 1, 8);
538
539         /* * APB3 peripheral */
540         hws[PCLK3] = clk_hw_register_divider_table(NULL, "pclk3", "hclk", 0,
541                         base + RCC_D1CFGR, 4, 3, 0,
542                         ppre_div_table, &stm32rcc_lock);
543
544         /* D2 DOMAIN */
545         /* * APB1 peripheral */
546         hws[PCLK1] = clk_hw_register_divider_table(NULL, "pclk1", "hclk", 0,
547                         base + RCC_D2CFGR, 4, 3, 0,
548                         ppre_div_table, &stm32rcc_lock);
549
550         /* Timers prescaler clocks */
551         clk_register_stm32_timer_ker(NULL, "tim1_ker", "pclk1", 0,
552                         4, &stm32rcc_lock);
553
554         /* * APB2 peripheral */
555         hws[PCLK2] = clk_hw_register_divider_table(NULL, "pclk2", "hclk", 0,
556                         base + RCC_D2CFGR, 8, 3, 0, ppre_div_table,
557                         &stm32rcc_lock);
558
559         clk_register_stm32_timer_ker(NULL, "tim2_ker", "pclk2", 0, 8,
560                         &stm32rcc_lock);
561
562         /* D3 DOMAIN */
563         /* * APB4 peripheral */
564         hws[PCLK4] = clk_hw_register_divider_table(NULL, "pclk4", "hclk", 0,
565                         base + RCC_D3CFGR, 4, 3, 0,
566                         ppre_div_table, &stm32rcc_lock);
567 }
568
569 /* MUX clock configuration */
570 struct stm32_mux_clk {
571         const char *name;
572         const char * const *parents;
573         u8 num_parents;
574         u32 offset;
575         u8 shift;
576         u8 width;
577         u32 flags;
578 };
579
580 #define M_MCLOCF(_name, _parents, _mux_offset, _mux_shift, _mux_width, _flags)\
581 {\
582         .name           = _name,\
583         .parents        = _parents,\
584         .num_parents    = ARRAY_SIZE(_parents),\
585         .offset         = _mux_offset,\
586         .shift          = _mux_shift,\
587         .width          = _mux_width,\
588         .flags          = _flags,\
589 }
590
591 #define M_MCLOC(_name, _parents, _mux_offset, _mux_shift, _mux_width)\
592         M_MCLOCF(_name, _parents, _mux_offset, _mux_shift, _mux_width, 0)\
593
594 static const struct stm32_mux_clk stm32_mclk[] __initconst = {
595         M_MCLOC("per_ck",       per_src,        RCC_D1CCIPR,    28, 3),
596         M_MCLOC("pllsrc",       pll_src,        RCC_PLLCKSELR,   0, 3),
597         M_MCLOC("sys_ck",       sys_src,        RCC_CFGR,        0, 3),
598         M_MCLOC("tracein_ck",   tracein_src,    RCC_CFGR,        0, 3),
599 };
600
601 /* Oscillary clock configuration */
602 struct stm32_osc_clk {
603         const char *name;
604         const char *parent;
605         u32 gate_offset;
606         u8 bit_idx;
607         u8 bit_rdy;
608         u32 flags;
609 };
610
611 #define OSC_CLKF(_name, _parent, _gate_offset, _bit_idx, _bit_rdy, _flags)\
612 {\
613         .name           = _name,\
614         .parent         = _parent,\
615         .gate_offset    = _gate_offset,\
616         .bit_idx        = _bit_idx,\
617         .bit_rdy        = _bit_rdy,\
618         .flags          = _flags,\
619 }
620
621 #define OSC_CLK(_name, _parent, _gate_offset, _bit_idx, _bit_rdy)\
622         OSC_CLKF(_name, _parent, _gate_offset, _bit_idx, _bit_rdy, 0)
623
624 static const struct stm32_osc_clk stm32_oclk[] __initconst = {
625         OSC_CLKF("hsi_ck",  "hsidiv",   RCC_CR,   0,  2, CLK_IGNORE_UNUSED),
626         OSC_CLKF("hsi_ker", "hsidiv",   RCC_CR,   1,  2, CLK_IGNORE_UNUSED),
627         OSC_CLKF("csi_ck",  "clk-csi",  RCC_CR,   7,  8, CLK_IGNORE_UNUSED),
628         OSC_CLKF("csi_ker", "clk-csi",  RCC_CR,   9,  8, CLK_IGNORE_UNUSED),
629         OSC_CLKF("rc48_ck", "clk-rc48", RCC_CR,  12, 13, CLK_IGNORE_UNUSED),
630         OSC_CLKF("lsi_ck",  "clk-lsi",  RCC_CSR,  0,  1, CLK_IGNORE_UNUSED),
631 };
632
633 /* PLL configuration */
634 struct st32h7_pll_cfg {
635         u8 bit_idx;
636         u32 offset_divr;
637         u8 bit_frac_en;
638         u32 offset_frac;
639         u8 divm;
640 };
641
642 struct stm32_pll_data {
643         const char *name;
644         const char *parent_name;
645         unsigned long flags;
646         const struct st32h7_pll_cfg *cfg;
647 };
648
649 static const struct st32h7_pll_cfg stm32h7_pll1 = {
650         .bit_idx = 24,
651         .offset_divr = RCC_PLL1DIVR,
652         .bit_frac_en = 0,
653         .offset_frac = RCC_PLL1FRACR,
654         .divm = 4,
655 };
656
657 static const struct st32h7_pll_cfg stm32h7_pll2 = {
658         .bit_idx = 26,
659         .offset_divr = RCC_PLL2DIVR,
660         .bit_frac_en = 4,
661         .offset_frac = RCC_PLL2FRACR,
662         .divm = 12,
663 };
664
665 static const struct st32h7_pll_cfg stm32h7_pll3 = {
666         .bit_idx = 28,
667         .offset_divr = RCC_PLL3DIVR,
668         .bit_frac_en = 8,
669         .offset_frac = RCC_PLL3FRACR,
670         .divm = 20,
671 };
672
673 static const struct stm32_pll_data stm32_pll[] = {
674         { "vco1", "pllsrc", CLK_IGNORE_UNUSED, &stm32h7_pll1 },
675         { "vco2", "pllsrc", 0, &stm32h7_pll2 },
676         { "vco3", "pllsrc", 0, &stm32h7_pll3 },
677 };
678
679 struct stm32_fractional_divider {
680         void __iomem    *mreg;
681         u8              mshift;
682         u8              mwidth;
683         u32             mmask;
684
685         void __iomem    *nreg;
686         u8              nshift;
687         u8              nwidth;
688
689         void __iomem    *freg_status;
690         u8              freg_bit;
691         void __iomem    *freg_value;
692         u8              fshift;
693         u8              fwidth;
694
695         u8              flags;
696         struct clk_hw   hw;
697         spinlock_t      *lock;
698 };
699
700 struct stm32_pll_obj {
701         spinlock_t *lock;
702         struct stm32_fractional_divider div;
703         struct stm32_ready_gate rgate;
704         struct clk_hw hw;
705 };
706
707 #define to_pll(_hw) container_of(_hw, struct stm32_pll_obj, hw)
708
709 static int pll_is_enabled(struct clk_hw *hw)
710 {
711         struct stm32_pll_obj *clk_elem = to_pll(hw);
712         struct clk_hw *_hw = &clk_elem->rgate.gate.hw;
713
714         __clk_hw_set_clk(_hw, hw);
715
716         return ready_gate_clk_ops.is_enabled(_hw);
717 }
718
719 static int pll_enable(struct clk_hw *hw)
720 {
721         struct stm32_pll_obj *clk_elem = to_pll(hw);
722         struct clk_hw *_hw = &clk_elem->rgate.gate.hw;
723
724         __clk_hw_set_clk(_hw, hw);
725
726         return ready_gate_clk_ops.enable(_hw);
727 }
728
729 static void pll_disable(struct clk_hw *hw)
730 {
731         struct stm32_pll_obj *clk_elem = to_pll(hw);
732         struct clk_hw *_hw = &clk_elem->rgate.gate.hw;
733
734         __clk_hw_set_clk(_hw, hw);
735
736         ready_gate_clk_ops.disable(_hw);
737 }
738
739 static int pll_frac_is_enabled(struct clk_hw *hw)
740 {
741         struct stm32_pll_obj *clk_elem = to_pll(hw);
742         struct stm32_fractional_divider *fd = &clk_elem->div;
743
744         return (readl(fd->freg_status) >> fd->freg_bit) & 0x01;
745 }
746
747 static unsigned long pll_read_frac(struct clk_hw *hw)
748 {
749         struct stm32_pll_obj *clk_elem = to_pll(hw);
750         struct stm32_fractional_divider *fd = &clk_elem->div;
751
752         return (readl(fd->freg_value) >> fd->fshift) &
753                 GENMASK(fd->fwidth - 1, 0);
754 }
755
756 static unsigned long pll_fd_recalc_rate(struct clk_hw *hw,
757                 unsigned long parent_rate)
758 {
759         struct stm32_pll_obj *clk_elem = to_pll(hw);
760         struct stm32_fractional_divider *fd = &clk_elem->div;
761         unsigned long m, n;
762         u32 val, mask;
763         u64 rate, rate1 = 0;
764
765         val = readl(fd->mreg);
766         mask = GENMASK(fd->mwidth - 1, 0) << fd->mshift;
767         m = (val & mask) >> fd->mshift;
768
769         val = readl(fd->nreg);
770         mask = GENMASK(fd->nwidth - 1, 0) << fd->nshift;
771         n = ((val & mask) >> fd->nshift) + 1;
772
773         if (!n || !m)
774                 return parent_rate;
775
776         rate = (u64)parent_rate * n;
777         do_div(rate, m);
778
779         if (pll_frac_is_enabled(hw)) {
780                 val = pll_read_frac(hw);
781                 rate1 = (u64)parent_rate * (u64)val;
782                 do_div(rate1, (m * 8191));
783         }
784
785         return rate + rate1;
786 }
787
788 static const struct clk_ops pll_ops = {
789         .enable         = pll_enable,
790         .disable        = pll_disable,
791         .is_enabled     = pll_is_enabled,
792         .recalc_rate    = pll_fd_recalc_rate,
793 };
794
795 static struct clk_hw *clk_register_stm32_pll(struct device *dev,
796                 const char *name,
797                 const char *parent,
798                 unsigned long flags,
799                 const struct st32h7_pll_cfg *cfg,
800                 spinlock_t *lock)
801 {
802         struct stm32_pll_obj *pll;
803         struct clk_init_data init = { NULL };
804         struct clk_hw *hw;
805         int ret;
806         struct stm32_fractional_divider *div = NULL;
807         struct stm32_ready_gate *rgate;
808
809         pll = kzalloc(sizeof(*pll), GFP_KERNEL);
810         if (!pll)
811                 return ERR_PTR(-ENOMEM);
812
813         init.name = name;
814         init.ops = &pll_ops;
815         init.flags = flags;
816         init.parent_names = &parent;
817         init.num_parents = 1;
818         pll->hw.init = &init;
819
820         hw = &pll->hw;
821         rgate = &pll->rgate;
822
823         rgate->bit_rdy = cfg->bit_idx + 1;
824         rgate->gate.lock = lock;
825         rgate->gate.reg = base + RCC_CR;
826         rgate->gate.bit_idx = cfg->bit_idx;
827
828         div = &pll->div;
829         div->flags = 0;
830         div->mreg = base + RCC_PLLCKSELR;
831         div->mshift = cfg->divm;
832         div->mwidth = 6;
833         div->nreg = base +  cfg->offset_divr;
834         div->nshift = 0;
835         div->nwidth = 9;
836
837         div->freg_status = base + RCC_PLLCFGR;
838         div->freg_bit = cfg->bit_frac_en;
839         div->freg_value = base +  cfg->offset_frac;
840         div->fshift = 3;
841         div->fwidth = 13;
842
843         div->lock = lock;
844
845         ret = clk_hw_register(dev, hw);
846         if (ret) {
847                 kfree(pll);
848                 hw = ERR_PTR(ret);
849         }
850
851         return hw;
852 }
853
854 /* ODF CLOCKS */
855 static unsigned long odf_divider_recalc_rate(struct clk_hw *hw,
856                 unsigned long parent_rate)
857 {
858         return clk_divider_ops.recalc_rate(hw, parent_rate);
859 }
860
861 static long odf_divider_round_rate(struct clk_hw *hw, unsigned long rate,
862                 unsigned long *prate)
863 {
864         return clk_divider_ops.round_rate(hw, rate, prate);
865 }
866
867 static int odf_divider_set_rate(struct clk_hw *hw, unsigned long rate,
868                 unsigned long parent_rate)
869 {
870         struct clk_hw *hwp;
871         int pll_status;
872         int ret;
873
874         hwp = clk_hw_get_parent(hw);
875
876         pll_status = pll_is_enabled(hwp);
877
878         if (pll_status)
879                 pll_disable(hwp);
880
881         ret = clk_divider_ops.set_rate(hw, rate, parent_rate);
882
883         if (pll_status)
884                 pll_enable(hwp);
885
886         return ret;
887 }
888
889 static const struct clk_ops odf_divider_ops = {
890         .recalc_rate    = odf_divider_recalc_rate,
891         .round_rate     = odf_divider_round_rate,
892         .set_rate       = odf_divider_set_rate,
893 };
894
895 static int odf_gate_enable(struct clk_hw *hw)
896 {
897         struct clk_hw *hwp;
898         int pll_status;
899         int ret;
900
901         if (clk_gate_ops.is_enabled(hw))
902                 return 0;
903
904         hwp = clk_hw_get_parent(hw);
905
906         pll_status = pll_is_enabled(hwp);
907
908         if (pll_status)
909                 pll_disable(hwp);
910
911         ret = clk_gate_ops.enable(hw);
912
913         if (pll_status)
914                 pll_enable(hwp);
915
916         return ret;
917 }
918
919 static void odf_gate_disable(struct clk_hw *hw)
920 {
921         struct clk_hw *hwp;
922         int pll_status;
923
924         if (!clk_gate_ops.is_enabled(hw))
925                 return;
926
927         hwp = clk_hw_get_parent(hw);
928
929         pll_status = pll_is_enabled(hwp);
930
931         if (pll_status)
932                 pll_disable(hwp);
933
934         clk_gate_ops.disable(hw);
935
936         if (pll_status)
937                 pll_enable(hwp);
938 }
939
940 static const struct clk_ops odf_gate_ops = {
941         .enable         = odf_gate_enable,
942         .disable        = odf_gate_disable,
943         .is_enabled     = clk_gate_is_enabled,
944 };
945
946 static struct composite_clk_gcfg odf_clk_gcfg = {
947         M_CFG_DIV(&odf_divider_ops, 0),
948         M_CFG_GATE(&odf_gate_ops, 0),
949 };
950
951 #define M_ODF_F(_name, _parent, _gate_offset,  _bit_idx, _rate_offset,\
952                 _rate_shift, _rate_width, _flags)\
953 {\
954         .mux = NULL,\
955         .div = &(struct muxdiv_cfg) {_rate_offset, _rate_shift, _rate_width},\
956         .gate = &(struct gate_cfg) {_gate_offset, _bit_idx },\
957         .name = _name,\
958         .parent_name = &(const char *) {_parent},\
959         .num_parents = 1,\
960         .flags = _flags,\
961 }
962
963 #define M_ODF(_name, _parent, _gate_offset,  _bit_idx, _rate_offset,\
964                 _rate_shift, _rate_width)\
965 M_ODF_F(_name, _parent, _gate_offset,  _bit_idx, _rate_offset,\
966                 _rate_shift, _rate_width, 0)\
967
968 static const struct composite_clk_cfg stm32_odf[3][3] = {
969         {
970                 M_ODF_F("pll1_p", "vco1", RCC_PLLCFGR, 16, RCC_PLL1DIVR,  9, 7,
971                                 CLK_IGNORE_UNUSED),
972                 M_ODF_F("pll1_q", "vco1", RCC_PLLCFGR, 17, RCC_PLL1DIVR, 16, 7,
973                                 CLK_IGNORE_UNUSED),
974                 M_ODF_F("pll1_r", "vco1", RCC_PLLCFGR, 18, RCC_PLL1DIVR, 24, 7,
975                                 CLK_IGNORE_UNUSED),
976         },
977
978         {
979                 M_ODF("pll2_p", "vco2", RCC_PLLCFGR, 19, RCC_PLL2DIVR,  9, 7),
980                 M_ODF("pll2_q", "vco2", RCC_PLLCFGR, 20, RCC_PLL2DIVR, 16, 7),
981                 M_ODF("pll2_r", "vco2", RCC_PLLCFGR, 21, RCC_PLL2DIVR, 24, 7),
982         },
983         {
984                 M_ODF("pll3_p", "vco3", RCC_PLLCFGR, 22, RCC_PLL3DIVR,  9, 7),
985                 M_ODF("pll3_q", "vco3", RCC_PLLCFGR, 23, RCC_PLL3DIVR, 16, 7),
986                 M_ODF("pll3_r", "vco3", RCC_PLLCFGR, 24, RCC_PLL3DIVR, 24, 7),
987         }
988 };
989
990 /* PERIF CLOCKS */
991 struct pclk_t {
992         u32 gate_offset;
993         u8 bit_idx;
994         const char *name;
995         const char *parent;
996         u32 flags;
997 };
998
999 #define PER_CLKF(_gate_offset, _bit_idx, _name, _parent, _flags)\
1000 {\
1001         .gate_offset    = _gate_offset,\
1002         .bit_idx        = _bit_idx,\
1003         .name           = _name,\
1004         .parent         = _parent,\
1005         .flags          = _flags,\
1006 }
1007
1008 #define PER_CLK(_gate_offset, _bit_idx, _name, _parent)\
1009         PER_CLKF(_gate_offset, _bit_idx, _name, _parent, 0)
1010
1011 static const struct pclk_t pclk[] = {
1012         PER_CLK(RCC_AHB3ENR, 31, "d1sram1", "hclk"),
1013         PER_CLK(RCC_AHB3ENR, 30, "itcm", "hclk"),
1014         PER_CLK(RCC_AHB3ENR, 29, "dtcm2", "hclk"),
1015         PER_CLK(RCC_AHB3ENR, 28, "dtcm1", "hclk"),
1016         PER_CLK(RCC_AHB3ENR, 8, "flitf", "hclk"),
1017         PER_CLK(RCC_AHB3ENR, 5, "jpgdec", "hclk"),
1018         PER_CLK(RCC_AHB3ENR, 4, "dma2d", "hclk"),
1019         PER_CLK(RCC_AHB3ENR, 0, "mdma", "hclk"),
1020         PER_CLK(RCC_AHB1ENR, 28, "usb2ulpi", "hclk"),
1021         PER_CLK(RCC_AHB1ENR, 26, "usb1ulpi", "hclk"),
1022         PER_CLK(RCC_AHB1ENR, 17, "eth1rx", "hclk"),
1023         PER_CLK(RCC_AHB1ENR, 16, "eth1tx", "hclk"),
1024         PER_CLK(RCC_AHB1ENR, 15, "eth1mac", "hclk"),
1025         PER_CLK(RCC_AHB1ENR, 14, "art", "hclk"),
1026         PER_CLK(RCC_AHB1ENR, 1, "dma2", "hclk"),
1027         PER_CLK(RCC_AHB1ENR, 0, "dma1", "hclk"),
1028         PER_CLK(RCC_AHB2ENR, 31, "d2sram3", "hclk"),
1029         PER_CLK(RCC_AHB2ENR, 30, "d2sram2", "hclk"),
1030         PER_CLK(RCC_AHB2ENR, 29, "d2sram1", "hclk"),
1031         PER_CLK(RCC_AHB2ENR, 5, "hash", "hclk"),
1032         PER_CLK(RCC_AHB2ENR, 4, "crypt", "hclk"),
1033         PER_CLK(RCC_AHB2ENR, 0, "camitf", "hclk"),
1034         PER_CLK(RCC_AHB4ENR, 28, "bkpram", "hclk"),
1035         PER_CLK(RCC_AHB4ENR, 25, "hsem", "hclk"),
1036         PER_CLK(RCC_AHB4ENR, 21, "bdma", "hclk"),
1037         PER_CLK(RCC_AHB4ENR, 19, "crc", "hclk"),
1038         PER_CLK(RCC_AHB4ENR, 10, "gpiok", "hclk"),
1039         PER_CLK(RCC_AHB4ENR, 9, "gpioj", "hclk"),
1040         PER_CLK(RCC_AHB4ENR, 8, "gpioi", "hclk"),
1041         PER_CLK(RCC_AHB4ENR, 7, "gpioh", "hclk"),
1042         PER_CLK(RCC_AHB4ENR, 6, "gpiog", "hclk"),
1043         PER_CLK(RCC_AHB4ENR, 5, "gpiof", "hclk"),
1044         PER_CLK(RCC_AHB4ENR, 4, "gpioe", "hclk"),
1045         PER_CLK(RCC_AHB4ENR, 3, "gpiod", "hclk"),
1046         PER_CLK(RCC_AHB4ENR, 2, "gpioc", "hclk"),
1047         PER_CLK(RCC_AHB4ENR, 1, "gpiob", "hclk"),
1048         PER_CLK(RCC_AHB4ENR, 0, "gpioa", "hclk"),
1049         PER_CLK(RCC_APB3ENR, 6, "wwdg1", "pclk3"),
1050         PER_CLK(RCC_APB1LENR, 29, "dac12", "pclk1"),
1051         PER_CLK(RCC_APB1LENR, 11, "wwdg2", "pclk1"),
1052         PER_CLK(RCC_APB1LENR, 8, "tim14", "tim1_ker"),
1053         PER_CLK(RCC_APB1LENR, 7, "tim13", "tim1_ker"),
1054         PER_CLK(RCC_APB1LENR, 6, "tim12", "tim1_ker"),
1055         PER_CLK(RCC_APB1LENR, 5, "tim7", "tim1_ker"),
1056         PER_CLK(RCC_APB1LENR, 4, "tim6", "tim1_ker"),
1057         PER_CLK(RCC_APB1LENR, 3, "tim5", "tim1_ker"),
1058         PER_CLK(RCC_APB1LENR, 2, "tim4", "tim1_ker"),
1059         PER_CLK(RCC_APB1LENR, 1, "tim3", "tim1_ker"),
1060         PER_CLK(RCC_APB1LENR, 0, "tim2", "tim1_ker"),
1061         PER_CLK(RCC_APB1HENR, 5, "mdios", "pclk1"),
1062         PER_CLK(RCC_APB1HENR, 4, "opamp", "pclk1"),
1063         PER_CLK(RCC_APB1HENR, 1, "crs", "pclk1"),
1064         PER_CLK(RCC_APB2ENR, 18, "tim17", "tim2_ker"),
1065         PER_CLK(RCC_APB2ENR, 17, "tim16", "tim2_ker"),
1066         PER_CLK(RCC_APB2ENR, 16, "tim15", "tim2_ker"),
1067         PER_CLK(RCC_APB2ENR, 1, "tim8", "tim2_ker"),
1068         PER_CLK(RCC_APB2ENR, 0, "tim1", "tim2_ker"),
1069         PER_CLK(RCC_APB4ENR, 26, "tmpsens", "pclk4"),
1070         PER_CLK(RCC_APB4ENR, 16, "rtcapb", "pclk4"),
1071         PER_CLK(RCC_APB4ENR, 15, "vref", "pclk4"),
1072         PER_CLK(RCC_APB4ENR, 14, "comp12", "pclk4"),
1073         PER_CLK(RCC_APB4ENR, 1, "syscfg", "pclk4"),
1074 };
1075
1076 /* KERNEL CLOCKS */
1077 #define KER_CLKF(_gate_offset, _bit_idx,\
1078                 _mux_offset, _mux_shift, _mux_width,\
1079                 _name, _parent_name,\
1080                 _flags) \
1081 { \
1082         .gate = &(struct gate_cfg) {_gate_offset, _bit_idx},\
1083         .mux = &(struct muxdiv_cfg) {_mux_offset, _mux_shift, _mux_width },\
1084         .name = _name, \
1085         .parent_name = _parent_name, \
1086         .num_parents = ARRAY_SIZE(_parent_name),\
1087         .flags = _flags,\
1088 }
1089
1090 #define KER_CLK(_gate_offset, _bit_idx, _mux_offset, _mux_shift, _mux_width,\
1091                 _name, _parent_name) \
1092 KER_CLKF(_gate_offset, _bit_idx, _mux_offset, _mux_shift, _mux_width,\
1093                 _name, _parent_name, 0)\
1094
1095 #define KER_CLKF_NOMUX(_gate_offset, _bit_idx,\
1096                 _name, _parent_name,\
1097                 _flags) \
1098 { \
1099         .gate = &(struct gate_cfg) {_gate_offset, _bit_idx},\
1100         .mux = NULL,\
1101         .name = _name, \
1102         .parent_name = _parent_name, \
1103         .num_parents = 1,\
1104         .flags = _flags,\
1105 }
1106
1107 static const struct composite_clk_cfg kclk[] = {
1108         KER_CLK(RCC_AHB3ENR,  16, RCC_D1CCIPR,  16, 1, "sdmmc1", sdmmc_src),
1109         KER_CLKF(RCC_AHB3ENR, 14, RCC_D1CCIPR,   4, 2, "quadspi", qspi_src,
1110                         CLK_IGNORE_UNUSED),
1111         KER_CLKF(RCC_AHB3ENR, 12, RCC_D1CCIPR,   0, 2, "fmc", fmc_src,
1112                         CLK_IGNORE_UNUSED),
1113         KER_CLK(RCC_AHB1ENR,  27, RCC_D2CCIP2R, 20, 2, "usb2otg", usbotg_src),
1114         KER_CLK(RCC_AHB1ENR,  25, RCC_D2CCIP2R, 20, 2, "usb1otg", usbotg_src),
1115         KER_CLK(RCC_AHB1ENR,   5, RCC_D3CCIPR,  16, 2, "adc12", adc_src),
1116         KER_CLK(RCC_AHB2ENR,   9, RCC_D1CCIPR,  16, 1, "sdmmc2", sdmmc_src),
1117         KER_CLK(RCC_AHB2ENR,   6, RCC_D2CCIP2R,  8, 2, "rng", rng_src),
1118         KER_CLK(RCC_AHB4ENR,  24, RCC_D3CCIPR,  16, 2, "adc3", adc_src),
1119         KER_CLKF(RCC_APB3ENR,   4, RCC_D1CCIPR,  8, 1, "dsi", dsi_src,
1120                         CLK_SET_RATE_PARENT),
1121         KER_CLKF_NOMUX(RCC_APB3ENR, 3, "ltdc", ltdc_src, CLK_SET_RATE_PARENT),
1122         KER_CLK(RCC_APB1LENR, 31, RCC_D2CCIP2R,  0, 3, "usart8", usart_src2),
1123         KER_CLK(RCC_APB1LENR, 30, RCC_D2CCIP2R,  0, 3, "usart7", usart_src2),
1124         KER_CLK(RCC_APB1LENR, 27, RCC_D2CCIP2R, 22, 2, "hdmicec", cec_src),
1125         KER_CLK(RCC_APB1LENR, 23, RCC_D2CCIP2R, 12, 2, "i2c3", i2c_src1),
1126         KER_CLK(RCC_APB1LENR, 22, RCC_D2CCIP2R, 12, 2, "i2c2", i2c_src1),
1127         KER_CLK(RCC_APB1LENR, 21, RCC_D2CCIP2R, 12, 2, "i2c1", i2c_src1),
1128         KER_CLK(RCC_APB1LENR, 20, RCC_D2CCIP2R,  0, 3, "uart5", usart_src2),
1129         KER_CLK(RCC_APB1LENR, 19, RCC_D2CCIP2R,  0, 3, "uart4", usart_src2),
1130         KER_CLK(RCC_APB1LENR, 18, RCC_D2CCIP2R,  0, 3, "usart3", usart_src2),
1131         KER_CLK(RCC_APB1LENR, 17, RCC_D2CCIP2R,  0, 3, "usart2", usart_src2),
1132         KER_CLK(RCC_APB1LENR, 16, RCC_D2CCIP1R, 20, 2, "spdifrx", spdifrx_src),
1133         KER_CLK(RCC_APB1LENR, 15, RCC_D2CCIP1R, 16, 3, "spi3", spi_src1),
1134         KER_CLK(RCC_APB1LENR, 14, RCC_D2CCIP1R, 16, 3, "spi2", spi_src1),
1135         KER_CLK(RCC_APB1LENR,  9, RCC_D2CCIP2R, 28, 3, "lptim1", lptim_src1),
1136         KER_CLK(RCC_APB1HENR,  8, RCC_D2CCIP1R, 28, 2, "fdcan", fdcan_src),
1137         KER_CLK(RCC_APB1HENR,  2, RCC_D2CCIP1R, 31, 1, "swp", swp_src),
1138         KER_CLK(RCC_APB2ENR,  29, RCC_CFGR,     14, 1, "hrtim", hrtim_src),
1139         KER_CLK(RCC_APB2ENR,  28, RCC_D2CCIP1R, 24, 1, "dfsdm1", dfsdm1_src),
1140         KER_CLKF(RCC_APB2ENR,  24, RCC_D2CCIP1R,  6, 3, "sai3", sai_src,
1141                  CLK_SET_RATE_PARENT | CLK_SET_RATE_NO_REPARENT),
1142         KER_CLKF(RCC_APB2ENR,  23, RCC_D2CCIP1R,  6, 3, "sai2", sai_src,
1143                  CLK_SET_RATE_PARENT | CLK_SET_RATE_NO_REPARENT),
1144         KER_CLKF(RCC_APB2ENR,  22, RCC_D2CCIP1R,  0, 3, "sai1", sai_src,
1145                  CLK_SET_RATE_PARENT | CLK_SET_RATE_NO_REPARENT),
1146         KER_CLK(RCC_APB2ENR,  20, RCC_D2CCIP1R, 16, 3, "spi5", spi_src2),
1147         KER_CLK(RCC_APB2ENR,  13, RCC_D2CCIP1R, 16, 3, "spi4", spi_src2),
1148         KER_CLK(RCC_APB2ENR,  12, RCC_D2CCIP1R, 16, 3, "spi1", spi_src1),
1149         KER_CLK(RCC_APB2ENR,   5, RCC_D2CCIP2R,  3, 3, "usart6", usart_src1),
1150         KER_CLK(RCC_APB2ENR,   4, RCC_D2CCIP2R,  3, 3, "usart1", usart_src1),
1151         KER_CLK(RCC_APB4ENR,  21, RCC_D3CCIPR,  24, 3, "sai4b", sai_src),
1152         KER_CLK(RCC_APB4ENR,  21, RCC_D3CCIPR,  21, 3, "sai4a", sai_src),
1153         KER_CLK(RCC_APB4ENR,  12, RCC_D3CCIPR,  13, 3, "lptim5", lptim_src2),
1154         KER_CLK(RCC_APB4ENR,  11, RCC_D3CCIPR,  13, 3, "lptim4", lptim_src2),
1155         KER_CLK(RCC_APB4ENR,  10, RCC_D3CCIPR,  13, 3, "lptim3", lptim_src2),
1156         KER_CLK(RCC_APB4ENR,   9, RCC_D3CCIPR,  10, 3, "lptim2", lptim_src2),
1157         KER_CLK(RCC_APB4ENR,   7, RCC_D3CCIPR,   8, 2, "i2c4", i2c_src2),
1158         KER_CLK(RCC_APB4ENR,   5, RCC_D3CCIPR,  28, 3, "spi6", spi_src3),
1159         KER_CLK(RCC_APB4ENR,   3, RCC_D3CCIPR,   0, 3, "lpuart1", lpuart1_src),
1160 };
1161
1162 static struct composite_clk_gcfg kernel_clk_cfg = {
1163         M_CFG_MUX(NULL, 0),
1164         M_CFG_GATE(NULL, 0),
1165 };
1166
1167 /* RTC clock */
1168 /*
1169  * RTC & LSE registers are protected against parasitic write access.
1170  * PWR_CR_DBP bit must be set to enable write access to RTC registers.
1171  */
1172 /* STM32_PWR_CR */
1173 #define PWR_CR                          0x00
1174 /* STM32_PWR_CR bit field */
1175 #define PWR_CR_DBP                      BIT(8)
1176
1177 static struct composite_clk_gcfg rtc_clk_cfg = {
1178         M_CFG_MUX(NULL, 0),
1179         M_CFG_GATE(NULL, 0),
1180 };
1181
1182 static const struct composite_clk_cfg rtc_clk =
1183         KER_CLK(RCC_BDCR, 15, RCC_BDCR, 8, 2, "rtc_ck", rtc_src);
1184
1185 /* Micro-controller output clock */
1186 static struct composite_clk_gcfg mco_clk_cfg = {
1187         M_CFG_MUX(NULL, 0),
1188         M_CFG_DIV(NULL, CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO),
1189 };
1190
1191 #define M_MCO_F(_name, _parents, _mux_offset,  _mux_shift, _mux_width,\
1192                 _rate_offset, _rate_shift, _rate_width,\
1193                 _flags)\
1194 {\
1195         .mux = &(struct muxdiv_cfg) {_mux_offset, _mux_shift, _mux_width },\
1196         .div = &(struct muxdiv_cfg) {_rate_offset, _rate_shift, _rate_width},\
1197         .gate = NULL,\
1198         .name = _name,\
1199         .parent_name = _parents,\
1200         .num_parents = ARRAY_SIZE(_parents),\
1201         .flags = _flags,\
1202 }
1203
1204 static const struct composite_clk_cfg mco_clk[] = {
1205         M_MCO_F("mco1", mco_src1, RCC_CFGR, 22, 4, RCC_CFGR, 18, 4, 0),
1206         M_MCO_F("mco2", mco_src2, RCC_CFGR, 29, 3, RCC_CFGR, 25, 4, 0),
1207 };
1208
1209 static void __init stm32h7_rcc_init(struct device_node *np)
1210 {
1211         struct clk_hw_onecell_data *clk_data;
1212         struct composite_cfg c_cfg;
1213         int n;
1214         const char *hse_clk, *lse_clk, *i2s_clk;
1215         struct regmap *pdrm;
1216
1217         clk_data = kzalloc(sizeof(*clk_data) +
1218                         sizeof(*clk_data->hws) * STM32H7_MAX_CLKS,
1219                         GFP_KERNEL);
1220         if (!clk_data)
1221                 return;
1222
1223         clk_data->num = STM32H7_MAX_CLKS;
1224
1225         hws = clk_data->hws;
1226
1227         for (n = 0; n < STM32H7_MAX_CLKS; n++)
1228                 hws[n] = ERR_PTR(-ENOENT);
1229
1230         /* get RCC base @ from DT */
1231         base = of_iomap(np, 0);
1232         if (!base) {
1233                 pr_err("%s: unable to map resource", np->name);
1234                 goto err_free_clks;
1235         }
1236
1237         pdrm = syscon_regmap_lookup_by_phandle(np, "st,syscfg");
1238         if (IS_ERR(pdrm))
1239                 pr_warn("%s: Unable to get syscfg\n", __func__);
1240         else
1241                 /* In any case disable backup domain write protection
1242                  * and will never be enabled.
1243                  * Needed by LSE & RTC clocks.
1244                  */
1245                 regmap_update_bits(pdrm, PWR_CR, PWR_CR_DBP, PWR_CR_DBP);
1246
1247         /* Put parent names from DT */
1248         hse_clk = of_clk_get_parent_name(np, 0);
1249         lse_clk = of_clk_get_parent_name(np, 1);
1250         i2s_clk = of_clk_get_parent_name(np, 2);
1251
1252         sai_src[3] = i2s_clk;
1253         spi_src1[3] = i2s_clk;
1254
1255         /* Register Internal oscillators */
1256         clk_hw_register_fixed_rate(NULL, "clk-hsi", NULL, 0, 64000000);
1257         clk_hw_register_fixed_rate(NULL, "clk-csi", NULL, 0, 4000000);
1258         clk_hw_register_fixed_rate(NULL, "clk-lsi", NULL, 0, 32000);
1259         clk_hw_register_fixed_rate(NULL, "clk-rc48", NULL, 0, 48000);
1260
1261         /* This clock is coming from outside. Frequencies unknown */
1262         hws[CK_DSI_PHY] = clk_hw_register_fixed_rate(NULL, "ck_dsi_phy", NULL,
1263                         0, 0);
1264
1265         hws[HSI_DIV] = clk_hw_register_divider(NULL, "hsidiv", "clk-hsi", 0,
1266                         base + RCC_CR, 3, 2, CLK_DIVIDER_POWER_OF_TWO,
1267                         &stm32rcc_lock);
1268
1269         hws[HSE_1M] = clk_hw_register_divider(NULL, "hse_1M", "hse_ck", 0,
1270                         base + RCC_CFGR, 8, 6, CLK_DIVIDER_ONE_BASED |
1271                         CLK_DIVIDER_ALLOW_ZERO,
1272                         &stm32rcc_lock);
1273
1274         /* Mux system clocks */
1275         for (n = 0; n < ARRAY_SIZE(stm32_mclk); n++)
1276                 hws[MCLK_BANK + n] = clk_hw_register_mux(NULL,
1277                                 stm32_mclk[n].name,
1278                                 stm32_mclk[n].parents,
1279                                 stm32_mclk[n].num_parents,
1280                                 stm32_mclk[n].flags,
1281                                 stm32_mclk[n].offset + base,
1282                                 stm32_mclk[n].shift,
1283                                 stm32_mclk[n].width,
1284                                 0,
1285                                 &stm32rcc_lock);
1286
1287         register_core_and_bus_clocks();
1288
1289         /* Oscillary clocks */
1290         for (n = 0; n < ARRAY_SIZE(stm32_oclk); n++)
1291                 hws[OSC_BANK + n] = clk_register_ready_gate(NULL,
1292                                 stm32_oclk[n].name,
1293                                 stm32_oclk[n].parent,
1294                                 stm32_oclk[n].gate_offset + base,
1295                                 stm32_oclk[n].bit_idx,
1296                                 stm32_oclk[n].bit_rdy,
1297                                 stm32_oclk[n].flags,
1298                                 &stm32rcc_lock);
1299
1300         hws[HSE_CK] = clk_register_ready_gate(NULL,
1301                                 "hse_ck",
1302                                 hse_clk,
1303                                 RCC_CR + base,
1304                                 16, 17,
1305                                 0,
1306                                 &stm32rcc_lock);
1307
1308         hws[LSE_CK] = clk_register_ready_gate(NULL,
1309                                 "lse_ck",
1310                                 lse_clk,
1311                                 RCC_BDCR + base,
1312                                 0, 1,
1313                                 0,
1314                                 &stm32rcc_lock);
1315
1316         hws[CSI_KER_DIV122 + n] = clk_hw_register_fixed_factor(NULL,
1317                         "csi_ker_div122", "csi_ker", 0, 1, 122);
1318
1319         /* PLLs */
1320         for (n = 0; n < ARRAY_SIZE(stm32_pll); n++) {
1321                 int odf;
1322
1323                 /* Register the VCO */
1324                 clk_register_stm32_pll(NULL, stm32_pll[n].name,
1325                                 stm32_pll[n].parent_name, stm32_pll[n].flags,
1326                                 stm32_pll[n].cfg,
1327                                 &stm32rcc_lock);
1328
1329                 /* Register the 3 output dividers */
1330                 for (odf = 0; odf < 3; odf++) {
1331                         int idx = n * 3 + odf;
1332
1333                         get_cfg_composite_div(&odf_clk_gcfg, &stm32_odf[n][odf],
1334                                         &c_cfg, &stm32rcc_lock);
1335
1336                         hws[ODF_BANK + idx] = clk_hw_register_composite(NULL,
1337                                         stm32_odf[n][odf].name,
1338                                         stm32_odf[n][odf].parent_name,
1339                                         stm32_odf[n][odf].num_parents,
1340                                         c_cfg.mux_hw, c_cfg.mux_ops,
1341                                         c_cfg.div_hw, c_cfg.div_ops,
1342                                         c_cfg.gate_hw, c_cfg.gate_ops,
1343                                         stm32_odf[n][odf].flags);
1344                 }
1345         }
1346
1347         /* Peripheral clocks */
1348         for (n = 0; n < ARRAY_SIZE(pclk); n++)
1349                 hws[PERIF_BANK + n] = clk_hw_register_gate(NULL, pclk[n].name,
1350                                 pclk[n].parent,
1351                                 pclk[n].flags, base + pclk[n].gate_offset,
1352                                 pclk[n].bit_idx, pclk[n].flags, &stm32rcc_lock);
1353
1354         /* Kernel clocks */
1355         for (n = 0; n < ARRAY_SIZE(kclk); n++) {
1356                 get_cfg_composite_div(&kernel_clk_cfg, &kclk[n], &c_cfg,
1357                                 &stm32rcc_lock);
1358
1359                 hws[KERN_BANK + n] = clk_hw_register_composite(NULL,
1360                                 kclk[n].name,
1361                                 kclk[n].parent_name,
1362                                 kclk[n].num_parents,
1363                                 c_cfg.mux_hw, c_cfg.mux_ops,
1364                                 c_cfg.div_hw, c_cfg.div_ops,
1365                                 c_cfg.gate_hw, c_cfg.gate_ops,
1366                                 kclk[n].flags);
1367         }
1368
1369         /* RTC clock (default state is off) */
1370         clk_hw_register_fixed_rate(NULL, "off", NULL, 0, 0);
1371
1372         get_cfg_composite_div(&rtc_clk_cfg, &rtc_clk, &c_cfg, &stm32rcc_lock);
1373
1374         hws[RTC_CK] = clk_hw_register_composite(NULL,
1375                         rtc_clk.name,
1376                         rtc_clk.parent_name,
1377                         rtc_clk.num_parents,
1378                         c_cfg.mux_hw, c_cfg.mux_ops,
1379                         c_cfg.div_hw, c_cfg.div_ops,
1380                         c_cfg.gate_hw, c_cfg.gate_ops,
1381                         rtc_clk.flags);
1382
1383         /* Micro-controller clocks */
1384         for (n = 0; n < ARRAY_SIZE(mco_clk); n++) {
1385                 get_cfg_composite_div(&mco_clk_cfg, &mco_clk[n], &c_cfg,
1386                                 &stm32rcc_lock);
1387
1388                 hws[MCO_BANK + n] = clk_hw_register_composite(NULL,
1389                                 mco_clk[n].name,
1390                                 mco_clk[n].parent_name,
1391                                 mco_clk[n].num_parents,
1392                                 c_cfg.mux_hw, c_cfg.mux_ops,
1393                                 c_cfg.div_hw, c_cfg.div_ops,
1394                                 c_cfg.gate_hw, c_cfg.gate_ops,
1395                                 mco_clk[n].flags);
1396         }
1397
1398         of_clk_add_hw_provider(np, of_clk_hw_onecell_get, clk_data);
1399
1400         return;
1401
1402 err_free_clks:
1403         kfree(clk_data);
1404 }
1405
1406 /* The RCC node is a clock and reset controller, and these
1407  * functionalities are supported by different drivers that
1408  * matches the same compatible strings.
1409  */
1410 CLK_OF_DECLARE_DRIVER(stm32h7_rcc, "st,stm32h743-rcc", stm32h7_rcc_init);