GNU Linux-libre 4.4.288-gnu1
[releases.git] / drivers / clocksource / arm_arch_timer.c
1 /*
2  *  linux/drivers/clocksource/arm_arch_timer.c
3  *
4  *  Copyright (C) 2011 ARM Ltd.
5  *  All Rights Reserved
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/smp.h>
15 #include <linux/cpu.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/interrupt.h>
20 #include <linux/of_irq.h>
21 #include <linux/of_address.h>
22 #include <linux/io.h>
23 #include <linux/slab.h>
24 #include <linux/sched_clock.h>
25 #include <linux/acpi.h>
26
27 #include <asm/arch_timer.h>
28 #include <asm/virt.h>
29
30 #include <clocksource/arm_arch_timer.h>
31
32 #define CNTTIDR         0x08
33 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
34
35 #define CNTVCT_LO       0x08
36 #define CNTVCT_HI       0x0c
37 #define CNTFRQ          0x10
38 #define CNTP_TVAL       0x28
39 #define CNTP_CTL        0x2c
40 #define CNTV_TVAL       0x38
41 #define CNTV_CTL        0x3c
42
43 #define ARCH_CP15_TIMER BIT(0)
44 #define ARCH_MEM_TIMER  BIT(1)
45 static unsigned arch_timers_present __initdata;
46
47 static void __iomem *arch_counter_base;
48
49 struct arch_timer {
50         void __iomem *base;
51         struct clock_event_device evt;
52 };
53
54 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
55
56 static u32 arch_timer_rate;
57
58 enum ppi_nr {
59         PHYS_SECURE_PPI,
60         PHYS_NONSECURE_PPI,
61         VIRT_PPI,
62         HYP_PPI,
63         MAX_TIMER_PPI
64 };
65
66 static int arch_timer_ppi[MAX_TIMER_PPI];
67
68 static struct clock_event_device __percpu *arch_timer_evt;
69
70 static bool arch_timer_use_virtual = true;
71 static bool arch_timer_c3stop;
72 static bool arch_timer_mem_use_virtual;
73
74 /*
75  * Architected system timer support.
76  */
77
78 static __always_inline
79 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
80                           struct clock_event_device *clk)
81 {
82         if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
83                 struct arch_timer *timer = to_arch_timer(clk);
84                 switch (reg) {
85                 case ARCH_TIMER_REG_CTRL:
86                         writel_relaxed(val, timer->base + CNTP_CTL);
87                         break;
88                 case ARCH_TIMER_REG_TVAL:
89                         writel_relaxed(val, timer->base + CNTP_TVAL);
90                         break;
91                 }
92         } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
93                 struct arch_timer *timer = to_arch_timer(clk);
94                 switch (reg) {
95                 case ARCH_TIMER_REG_CTRL:
96                         writel_relaxed(val, timer->base + CNTV_CTL);
97                         break;
98                 case ARCH_TIMER_REG_TVAL:
99                         writel_relaxed(val, timer->base + CNTV_TVAL);
100                         break;
101                 }
102         } else {
103                 arch_timer_reg_write_cp15(access, reg, val);
104         }
105 }
106
107 static __always_inline
108 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
109                         struct clock_event_device *clk)
110 {
111         u32 val;
112
113         if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
114                 struct arch_timer *timer = to_arch_timer(clk);
115                 switch (reg) {
116                 case ARCH_TIMER_REG_CTRL:
117                         val = readl_relaxed(timer->base + CNTP_CTL);
118                         break;
119                 case ARCH_TIMER_REG_TVAL:
120                         val = readl_relaxed(timer->base + CNTP_TVAL);
121                         break;
122                 }
123         } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
124                 struct arch_timer *timer = to_arch_timer(clk);
125                 switch (reg) {
126                 case ARCH_TIMER_REG_CTRL:
127                         val = readl_relaxed(timer->base + CNTV_CTL);
128                         break;
129                 case ARCH_TIMER_REG_TVAL:
130                         val = readl_relaxed(timer->base + CNTV_TVAL);
131                         break;
132                 }
133         } else {
134                 val = arch_timer_reg_read_cp15(access, reg);
135         }
136
137         return val;
138 }
139
140 static __always_inline irqreturn_t timer_handler(const int access,
141                                         struct clock_event_device *evt)
142 {
143         unsigned long ctrl;
144
145         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
146         if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
147                 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
148                 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
149                 evt->event_handler(evt);
150                 return IRQ_HANDLED;
151         }
152
153         return IRQ_NONE;
154 }
155
156 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
157 {
158         struct clock_event_device *evt = dev_id;
159
160         return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
161 }
162
163 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
164 {
165         struct clock_event_device *evt = dev_id;
166
167         return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
168 }
169
170 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
171 {
172         struct clock_event_device *evt = dev_id;
173
174         return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
175 }
176
177 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
178 {
179         struct clock_event_device *evt = dev_id;
180
181         return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
182 }
183
184 static __always_inline int timer_shutdown(const int access,
185                                           struct clock_event_device *clk)
186 {
187         unsigned long ctrl;
188
189         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
190         ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
191         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
192
193         return 0;
194 }
195
196 static int arch_timer_shutdown_virt(struct clock_event_device *clk)
197 {
198         return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
199 }
200
201 static int arch_timer_shutdown_phys(struct clock_event_device *clk)
202 {
203         return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
204 }
205
206 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
207 {
208         return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
209 }
210
211 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
212 {
213         return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
214 }
215
216 static __always_inline void set_next_event(const int access, unsigned long evt,
217                                            struct clock_event_device *clk)
218 {
219         unsigned long ctrl;
220         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
221         ctrl |= ARCH_TIMER_CTRL_ENABLE;
222         ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
223         arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
224         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
225 }
226
227 static int arch_timer_set_next_event_virt(unsigned long evt,
228                                           struct clock_event_device *clk)
229 {
230         set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
231         return 0;
232 }
233
234 static int arch_timer_set_next_event_phys(unsigned long evt,
235                                           struct clock_event_device *clk)
236 {
237         set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
238         return 0;
239 }
240
241 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
242                                               struct clock_event_device *clk)
243 {
244         set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
245         return 0;
246 }
247
248 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
249                                               struct clock_event_device *clk)
250 {
251         set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
252         return 0;
253 }
254
255 static void __arch_timer_setup(unsigned type,
256                                struct clock_event_device *clk)
257 {
258         clk->features = CLOCK_EVT_FEAT_ONESHOT;
259
260         if (type == ARCH_CP15_TIMER) {
261                 if (arch_timer_c3stop)
262                         clk->features |= CLOCK_EVT_FEAT_C3STOP;
263                 clk->name = "arch_sys_timer";
264                 clk->rating = 450;
265                 clk->cpumask = cpumask_of(smp_processor_id());
266                 if (arch_timer_use_virtual) {
267                         clk->irq = arch_timer_ppi[VIRT_PPI];
268                         clk->set_state_shutdown = arch_timer_shutdown_virt;
269                         clk->set_next_event = arch_timer_set_next_event_virt;
270                 } else {
271                         clk->irq = arch_timer_ppi[PHYS_SECURE_PPI];
272                         clk->set_state_shutdown = arch_timer_shutdown_phys;
273                         clk->set_next_event = arch_timer_set_next_event_phys;
274                 }
275         } else {
276                 clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
277                 clk->name = "arch_mem_timer";
278                 clk->rating = 400;
279                 clk->cpumask = cpu_all_mask;
280                 if (arch_timer_mem_use_virtual) {
281                         clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
282                         clk->set_next_event =
283                                 arch_timer_set_next_event_virt_mem;
284                 } else {
285                         clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
286                         clk->set_next_event =
287                                 arch_timer_set_next_event_phys_mem;
288                 }
289         }
290
291         clk->set_state_shutdown(clk);
292
293         clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
294 }
295
296 static void arch_timer_evtstrm_enable(int divider)
297 {
298         u32 cntkctl = arch_timer_get_cntkctl();
299
300         cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
301         /* Set the divider and enable virtual event stream */
302         cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
303                         | ARCH_TIMER_VIRT_EVT_EN;
304         arch_timer_set_cntkctl(cntkctl);
305         elf_hwcap |= HWCAP_EVTSTRM;
306 #ifdef CONFIG_COMPAT
307         compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM;
308 #endif
309 }
310
311 static void arch_timer_configure_evtstream(void)
312 {
313         int evt_stream_div, lsb;
314
315         /*
316          * As the event stream can at most be generated at half the frequency
317          * of the counter, use half the frequency when computing the divider.
318          */
319         evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ / 2;
320
321         /*
322          * Find the closest power of two to the divisor. If the adjacent bit
323          * of lsb (last set bit, starts from 0) is set, then we use (lsb + 1).
324          */
325         lsb = fls(evt_stream_div) - 1;
326         if (lsb > 0 && (evt_stream_div & BIT(lsb - 1)))
327                 lsb++;
328
329         /* enable event stream */
330         arch_timer_evtstrm_enable(max(0, min(lsb, 15)));
331 }
332
333 static void arch_counter_set_user_access(void)
334 {
335         u32 cntkctl = arch_timer_get_cntkctl();
336
337         /* Disable user access to the timers and the physical counter */
338         /* Also disable virtual event stream */
339         cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
340                         | ARCH_TIMER_USR_VT_ACCESS_EN
341                         | ARCH_TIMER_VIRT_EVT_EN
342                         | ARCH_TIMER_USR_PCT_ACCESS_EN);
343
344         /* Enable user access to the virtual counter */
345         cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
346
347         arch_timer_set_cntkctl(cntkctl);
348 }
349
350 static int arch_timer_setup(struct clock_event_device *clk)
351 {
352         __arch_timer_setup(ARCH_CP15_TIMER, clk);
353
354         if (arch_timer_use_virtual)
355                 enable_percpu_irq(arch_timer_ppi[VIRT_PPI], 0);
356         else {
357                 enable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], 0);
358                 if (arch_timer_ppi[PHYS_NONSECURE_PPI])
359                         enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 0);
360         }
361
362         arch_counter_set_user_access();
363         if (IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM))
364                 arch_timer_configure_evtstream();
365
366         return 0;
367 }
368
369 static void
370 arch_timer_detect_rate(void __iomem *cntbase, struct device_node *np)
371 {
372         /* Who has more than one independent system counter? */
373         if (arch_timer_rate)
374                 return;
375
376         /*
377          * Try to determine the frequency from the device tree or CNTFRQ,
378          * if ACPI is enabled, get the frequency from CNTFRQ ONLY.
379          */
380         if (!acpi_disabled ||
381             of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) {
382                 if (cntbase)
383                         arch_timer_rate = readl_relaxed(cntbase + CNTFRQ);
384                 else
385                         arch_timer_rate = arch_timer_get_cntfrq();
386         }
387
388         /* Check the timer frequency. */
389         if (arch_timer_rate == 0)
390                 pr_warn("Architected timer frequency not available\n");
391 }
392
393 static void arch_timer_banner(unsigned type)
394 {
395         pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
396                      type & ARCH_CP15_TIMER ? "cp15" : "",
397                      type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  " and " : "",
398                      type & ARCH_MEM_TIMER ? "mmio" : "",
399                      (unsigned long)arch_timer_rate / 1000000,
400                      (unsigned long)(arch_timer_rate / 10000) % 100,
401                      type & ARCH_CP15_TIMER ?
402                         arch_timer_use_virtual ? "virt" : "phys" :
403                         "",
404                      type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  "/" : "",
405                      type & ARCH_MEM_TIMER ?
406                         arch_timer_mem_use_virtual ? "virt" : "phys" :
407                         "");
408 }
409
410 u32 arch_timer_get_rate(void)
411 {
412         return arch_timer_rate;
413 }
414
415 static u64 arch_counter_get_cntvct_mem(void)
416 {
417         u32 vct_lo, vct_hi, tmp_hi;
418
419         do {
420                 vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
421                 vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
422                 tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
423         } while (vct_hi != tmp_hi);
424
425         return ((u64) vct_hi << 32) | vct_lo;
426 }
427
428 /*
429  * Default to cp15 based access because arm64 uses this function for
430  * sched_clock() before DT is probed and the cp15 method is guaranteed
431  * to exist on arm64. arm doesn't use this before DT is probed so even
432  * if we don't have the cp15 accessors we won't have a problem.
433  */
434 u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
435
436 static cycle_t arch_counter_read(struct clocksource *cs)
437 {
438         return arch_timer_read_counter();
439 }
440
441 static cycle_t arch_counter_read_cc(const struct cyclecounter *cc)
442 {
443         return arch_timer_read_counter();
444 }
445
446 static struct clocksource clocksource_counter = {
447         .name   = "arch_sys_counter",
448         .rating = 400,
449         .read   = arch_counter_read,
450         .mask   = CLOCKSOURCE_MASK(56),
451         .flags  = CLOCK_SOURCE_IS_CONTINUOUS | CLOCK_SOURCE_SUSPEND_NONSTOP,
452 };
453
454 static struct cyclecounter cyclecounter = {
455         .read   = arch_counter_read_cc,
456         .mask   = CLOCKSOURCE_MASK(56),
457 };
458
459 static struct timecounter timecounter;
460
461 struct timecounter *arch_timer_get_timecounter(void)
462 {
463         return &timecounter;
464 }
465
466 static void __init arch_counter_register(unsigned type)
467 {
468         u64 start_count;
469
470         /* Register the CP15 based counter if we have one */
471         if (type & ARCH_CP15_TIMER) {
472                 if (IS_ENABLED(CONFIG_ARM64) || arch_timer_use_virtual)
473                         arch_timer_read_counter = arch_counter_get_cntvct;
474                 else
475                         arch_timer_read_counter = arch_counter_get_cntpct;
476         } else {
477                 arch_timer_read_counter = arch_counter_get_cntvct_mem;
478
479                 /* If the clocksource name is "arch_sys_counter" the
480                  * VDSO will attempt to read the CP15-based counter.
481                  * Ensure this does not happen when CP15-based
482                  * counter is not available.
483                  */
484                 clocksource_counter.name = "arch_mem_counter";
485         }
486
487         start_count = arch_timer_read_counter();
488         clocksource_register_hz(&clocksource_counter, arch_timer_rate);
489         cyclecounter.mult = clocksource_counter.mult;
490         cyclecounter.shift = clocksource_counter.shift;
491         timecounter_init(&timecounter, &cyclecounter, start_count);
492
493         /* 56 bits minimum, so we assume worst case rollover */
494         sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
495 }
496
497 static void arch_timer_stop(struct clock_event_device *clk)
498 {
499         pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
500                  clk->irq, smp_processor_id());
501
502         if (arch_timer_use_virtual)
503                 disable_percpu_irq(arch_timer_ppi[VIRT_PPI]);
504         else {
505                 disable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI]);
506                 if (arch_timer_ppi[PHYS_NONSECURE_PPI])
507                         disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
508         }
509
510         clk->set_state_shutdown(clk);
511 }
512
513 static int arch_timer_cpu_notify(struct notifier_block *self,
514                                            unsigned long action, void *hcpu)
515 {
516         /*
517          * Grab cpu pointer in each case to avoid spurious
518          * preemptible warnings
519          */
520         switch (action & ~CPU_TASKS_FROZEN) {
521         case CPU_STARTING:
522                 arch_timer_setup(this_cpu_ptr(arch_timer_evt));
523                 break;
524         case CPU_DYING:
525                 arch_timer_stop(this_cpu_ptr(arch_timer_evt));
526                 break;
527         }
528
529         return NOTIFY_OK;
530 }
531
532 static struct notifier_block arch_timer_cpu_nb = {
533         .notifier_call = arch_timer_cpu_notify,
534 };
535
536 #ifdef CONFIG_CPU_PM
537 static unsigned int saved_cntkctl;
538 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
539                                     unsigned long action, void *hcpu)
540 {
541         if (action == CPU_PM_ENTER)
542                 saved_cntkctl = arch_timer_get_cntkctl();
543         else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT)
544                 arch_timer_set_cntkctl(saved_cntkctl);
545         return NOTIFY_OK;
546 }
547
548 static struct notifier_block arch_timer_cpu_pm_notifier = {
549         .notifier_call = arch_timer_cpu_pm_notify,
550 };
551
552 static int __init arch_timer_cpu_pm_init(void)
553 {
554         return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
555 }
556 #else
557 static int __init arch_timer_cpu_pm_init(void)
558 {
559         return 0;
560 }
561 #endif
562
563 static int __init arch_timer_register(void)
564 {
565         int err;
566         int ppi;
567
568         arch_timer_evt = alloc_percpu(struct clock_event_device);
569         if (!arch_timer_evt) {
570                 err = -ENOMEM;
571                 goto out;
572         }
573
574         if (arch_timer_use_virtual) {
575                 ppi = arch_timer_ppi[VIRT_PPI];
576                 err = request_percpu_irq(ppi, arch_timer_handler_virt,
577                                          "arch_timer", arch_timer_evt);
578         } else {
579                 ppi = arch_timer_ppi[PHYS_SECURE_PPI];
580                 err = request_percpu_irq(ppi, arch_timer_handler_phys,
581                                          "arch_timer", arch_timer_evt);
582                 if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
583                         ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
584                         err = request_percpu_irq(ppi, arch_timer_handler_phys,
585                                                  "arch_timer", arch_timer_evt);
586                         if (err)
587                                 free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
588                                                 arch_timer_evt);
589                 }
590         }
591
592         if (err) {
593                 pr_err("arch_timer: can't register interrupt %d (%d)\n",
594                        ppi, err);
595                 goto out_free;
596         }
597
598         err = register_cpu_notifier(&arch_timer_cpu_nb);
599         if (err)
600                 goto out_free_irq;
601
602         err = arch_timer_cpu_pm_init();
603         if (err)
604                 goto out_unreg_notify;
605
606         /* Immediately configure the timer on the boot CPU */
607         arch_timer_setup(this_cpu_ptr(arch_timer_evt));
608
609         return 0;
610
611 out_unreg_notify:
612         unregister_cpu_notifier(&arch_timer_cpu_nb);
613 out_free_irq:
614         if (arch_timer_use_virtual)
615                 free_percpu_irq(arch_timer_ppi[VIRT_PPI], arch_timer_evt);
616         else {
617                 free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
618                                 arch_timer_evt);
619                 if (arch_timer_ppi[PHYS_NONSECURE_PPI])
620                         free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
621                                         arch_timer_evt);
622         }
623
624 out_free:
625         free_percpu(arch_timer_evt);
626 out:
627         return err;
628 }
629
630 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
631 {
632         int ret;
633         irq_handler_t func;
634         struct arch_timer *t;
635
636         t = kzalloc(sizeof(*t), GFP_KERNEL);
637         if (!t)
638                 return -ENOMEM;
639
640         t->base = base;
641         t->evt.irq = irq;
642         __arch_timer_setup(ARCH_MEM_TIMER, &t->evt);
643
644         if (arch_timer_mem_use_virtual)
645                 func = arch_timer_handler_virt_mem;
646         else
647                 func = arch_timer_handler_phys_mem;
648
649         ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
650         if (ret) {
651                 pr_err("arch_timer: Failed to request mem timer irq\n");
652                 kfree(t);
653         }
654
655         return ret;
656 }
657
658 static const struct of_device_id arch_timer_of_match[] __initconst = {
659         { .compatible   = "arm,armv7-timer",    },
660         { .compatible   = "arm,armv8-timer",    },
661         {},
662 };
663
664 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
665         { .compatible   = "arm,armv7-timer-mem", },
666         {},
667 };
668
669 static bool __init
670 arch_timer_needs_probing(int type, const struct of_device_id *matches)
671 {
672         struct device_node *dn;
673         bool needs_probing = false;
674
675         dn = of_find_matching_node(NULL, matches);
676         if (dn && of_device_is_available(dn) && !(arch_timers_present & type))
677                 needs_probing = true;
678         of_node_put(dn);
679
680         return needs_probing;
681 }
682
683 static void __init arch_timer_common_init(void)
684 {
685         unsigned mask = ARCH_CP15_TIMER | ARCH_MEM_TIMER;
686
687         /* Wait until both nodes are probed if we have two timers */
688         if ((arch_timers_present & mask) != mask) {
689                 if (arch_timer_needs_probing(ARCH_MEM_TIMER, arch_timer_mem_of_match))
690                         return;
691                 if (arch_timer_needs_probing(ARCH_CP15_TIMER, arch_timer_of_match))
692                         return;
693         }
694
695         arch_timer_banner(arch_timers_present);
696         arch_counter_register(arch_timers_present);
697         arch_timer_arch_init();
698 }
699
700 static void __init arch_timer_init(void)
701 {
702         /*
703          * If HYP mode is available, we know that the physical timer
704          * has been configured to be accessible from PL1. Use it, so
705          * that a guest can use the virtual timer instead.
706          *
707          * If no interrupt provided for virtual timer, we'll have to
708          * stick to the physical timer. It'd better be accessible...
709          */
710         if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) {
711                 arch_timer_use_virtual = false;
712
713                 if (!arch_timer_ppi[PHYS_SECURE_PPI] ||
714                     !arch_timer_ppi[PHYS_NONSECURE_PPI]) {
715                         pr_warn("arch_timer: No interrupt available, giving up\n");
716                         return;
717                 }
718         }
719
720         arch_timer_register();
721         arch_timer_common_init();
722 }
723
724 static void __init arch_timer_of_init(struct device_node *np)
725 {
726         int i;
727
728         if (arch_timers_present & ARCH_CP15_TIMER) {
729                 pr_warn("arch_timer: multiple nodes in dt, skipping\n");
730                 return;
731         }
732
733         arch_timers_present |= ARCH_CP15_TIMER;
734         for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
735                 arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
736
737         arch_timer_detect_rate(NULL, np);
738
739         arch_timer_c3stop = !of_property_read_bool(np, "always-on");
740
741         /*
742          * If we cannot rely on firmware initializing the timer registers then
743          * we should use the physical timers instead.
744          */
745         if (IS_ENABLED(CONFIG_ARM) &&
746             of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
747                         arch_timer_use_virtual = false;
748
749         arch_timer_init();
750 }
751 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
752 CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
753
754 static void __init arch_timer_mem_init(struct device_node *np)
755 {
756         struct device_node *frame, *best_frame = NULL;
757         void __iomem *cntctlbase, *base;
758         unsigned int irq;
759         u32 cnttidr;
760
761         arch_timers_present |= ARCH_MEM_TIMER;
762         cntctlbase = of_iomap(np, 0);
763         if (!cntctlbase) {
764                 pr_err("arch_timer: Can't find CNTCTLBase\n");
765                 return;
766         }
767
768         cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
769         iounmap(cntctlbase);
770
771         /*
772          * Try to find a virtual capable frame. Otherwise fall back to a
773          * physical capable frame.
774          */
775         for_each_available_child_of_node(np, frame) {
776                 int n;
777
778                 if (of_property_read_u32(frame, "frame-number", &n)) {
779                         pr_err("arch_timer: Missing frame-number\n");
780                         of_node_put(best_frame);
781                         of_node_put(frame);
782                         return;
783                 }
784
785                 if (cnttidr & CNTTIDR_VIRT(n)) {
786                         of_node_put(best_frame);
787                         best_frame = frame;
788                         arch_timer_mem_use_virtual = true;
789                         break;
790                 }
791                 of_node_put(best_frame);
792                 best_frame = of_node_get(frame);
793         }
794
795         base = arch_counter_base = of_iomap(best_frame, 0);
796         if (!base) {
797                 pr_err("arch_timer: Can't map frame's registers\n");
798                 of_node_put(best_frame);
799                 return;
800         }
801
802         if (arch_timer_mem_use_virtual)
803                 irq = irq_of_parse_and_map(best_frame, 1);
804         else
805                 irq = irq_of_parse_and_map(best_frame, 0);
806         of_node_put(best_frame);
807         if (!irq) {
808                 pr_err("arch_timer: Frame missing %s irq",
809                        arch_timer_mem_use_virtual ? "virt" : "phys");
810                 return;
811         }
812
813         arch_timer_detect_rate(base, np);
814         arch_timer_mem_register(base, irq);
815         arch_timer_common_init();
816 }
817 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
818                        arch_timer_mem_init);
819
820 #ifdef CONFIG_ACPI
821 static int __init map_generic_timer_interrupt(u32 interrupt, u32 flags)
822 {
823         int trigger, polarity;
824
825         if (!interrupt)
826                 return 0;
827
828         trigger = (flags & ACPI_GTDT_INTERRUPT_MODE) ? ACPI_EDGE_SENSITIVE
829                         : ACPI_LEVEL_SENSITIVE;
830
831         polarity = (flags & ACPI_GTDT_INTERRUPT_POLARITY) ? ACPI_ACTIVE_LOW
832                         : ACPI_ACTIVE_HIGH;
833
834         return acpi_register_gsi(NULL, interrupt, trigger, polarity);
835 }
836
837 /* Initialize per-processor generic timer */
838 static int __init arch_timer_acpi_init(struct acpi_table_header *table)
839 {
840         struct acpi_table_gtdt *gtdt;
841
842         if (arch_timers_present & ARCH_CP15_TIMER) {
843                 pr_warn("arch_timer: already initialized, skipping\n");
844                 return -EINVAL;
845         }
846
847         gtdt = container_of(table, struct acpi_table_gtdt, header);
848
849         arch_timers_present |= ARCH_CP15_TIMER;
850
851         arch_timer_ppi[PHYS_SECURE_PPI] =
852                 map_generic_timer_interrupt(gtdt->secure_el1_interrupt,
853                 gtdt->secure_el1_flags);
854
855         arch_timer_ppi[PHYS_NONSECURE_PPI] =
856                 map_generic_timer_interrupt(gtdt->non_secure_el1_interrupt,
857                 gtdt->non_secure_el1_flags);
858
859         arch_timer_ppi[VIRT_PPI] =
860                 map_generic_timer_interrupt(gtdt->virtual_timer_interrupt,
861                 gtdt->virtual_timer_flags);
862
863         arch_timer_ppi[HYP_PPI] =
864                 map_generic_timer_interrupt(gtdt->non_secure_el2_interrupt,
865                 gtdt->non_secure_el2_flags);
866
867         /* Get the frequency from CNTFRQ */
868         arch_timer_detect_rate(NULL, NULL);
869
870         /* Always-on capability */
871         arch_timer_c3stop = !(gtdt->non_secure_el1_flags & ACPI_GTDT_ALWAYS_ON);
872
873         arch_timer_init();
874         return 0;
875 }
876 CLOCKSOURCE_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
877 #endif