GNU Linux-libre 4.14.290-gnu1
[releases.git] / drivers / cpufreq / acpi-cpufreq.c
1 /*
2  * acpi-cpufreq.c - ACPI Processor P-States Driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2006       Denis Sadykov <denis.m.sadykov@intel.com>
8  *
9  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10  *
11  *  This program is free software; you can redistribute it and/or modify
12  *  it under the terms of the GNU General Public License as published by
13  *  the Free Software Foundation; either version 2 of the License, or (at
14  *  your option) any later version.
15  *
16  *  This program is distributed in the hope that it will be useful, but
17  *  WITHOUT ANY WARRANTY; without even the implied warranty of
18  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  *  General Public License for more details.
20  *
21  *  You should have received a copy of the GNU General Public License along
22  *  with this program; if not, write to the Free Software Foundation, Inc.,
23  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
24  *
25  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
26  */
27
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/init.h>
33 #include <linux/smp.h>
34 #include <linux/sched.h>
35 #include <linux/cpufreq.h>
36 #include <linux/compiler.h>
37 #include <linux/dmi.h>
38 #include <linux/slab.h>
39
40 #include <linux/acpi.h>
41 #include <linux/io.h>
42 #include <linux/delay.h>
43 #include <linux/uaccess.h>
44
45 #include <acpi/processor.h>
46
47 #include <asm/msr.h>
48 #include <asm/processor.h>
49 #include <asm/cpufeature.h>
50
51 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
52 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
53 MODULE_LICENSE("GPL");
54
55 enum {
56         UNDEFINED_CAPABLE = 0,
57         SYSTEM_INTEL_MSR_CAPABLE,
58         SYSTEM_AMD_MSR_CAPABLE,
59         SYSTEM_IO_CAPABLE,
60 };
61
62 #define INTEL_MSR_RANGE         (0xffff)
63 #define AMD_MSR_RANGE           (0x7)
64
65 #define MSR_K7_HWCR_CPB_DIS     (1ULL << 25)
66
67 struct acpi_cpufreq_data {
68         unsigned int resume;
69         unsigned int cpu_feature;
70         unsigned int acpi_perf_cpu;
71         cpumask_var_t freqdomain_cpus;
72         void (*cpu_freq_write)(struct acpi_pct_register *reg, u32 val);
73         u32 (*cpu_freq_read)(struct acpi_pct_register *reg);
74 };
75
76 /* acpi_perf_data is a pointer to percpu data. */
77 static struct acpi_processor_performance __percpu *acpi_perf_data;
78
79 static inline struct acpi_processor_performance *to_perf_data(struct acpi_cpufreq_data *data)
80 {
81         return per_cpu_ptr(acpi_perf_data, data->acpi_perf_cpu);
82 }
83
84 static struct cpufreq_driver acpi_cpufreq_driver;
85
86 static unsigned int acpi_pstate_strict;
87
88 static bool boost_state(unsigned int cpu)
89 {
90         u32 lo, hi;
91         u64 msr;
92
93         switch (boot_cpu_data.x86_vendor) {
94         case X86_VENDOR_INTEL:
95                 rdmsr_on_cpu(cpu, MSR_IA32_MISC_ENABLE, &lo, &hi);
96                 msr = lo | ((u64)hi << 32);
97                 return !(msr & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
98         case X86_VENDOR_AMD:
99                 rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
100                 msr = lo | ((u64)hi << 32);
101                 return !(msr & MSR_K7_HWCR_CPB_DIS);
102         }
103         return false;
104 }
105
106 static int boost_set_msr(bool enable)
107 {
108         u32 msr_addr;
109         u64 msr_mask, val;
110
111         switch (boot_cpu_data.x86_vendor) {
112         case X86_VENDOR_INTEL:
113                 msr_addr = MSR_IA32_MISC_ENABLE;
114                 msr_mask = MSR_IA32_MISC_ENABLE_TURBO_DISABLE;
115                 break;
116         case X86_VENDOR_AMD:
117                 msr_addr = MSR_K7_HWCR;
118                 msr_mask = MSR_K7_HWCR_CPB_DIS;
119                 break;
120         default:
121                 return -EINVAL;
122         }
123
124         rdmsrl(msr_addr, val);
125
126         if (enable)
127                 val &= ~msr_mask;
128         else
129                 val |= msr_mask;
130
131         wrmsrl(msr_addr, val);
132         return 0;
133 }
134
135 static void boost_set_msr_each(void *p_en)
136 {
137         bool enable = (bool) p_en;
138
139         boost_set_msr(enable);
140 }
141
142 static int set_boost(int val)
143 {
144         get_online_cpus();
145         on_each_cpu(boost_set_msr_each, (void *)(long)val, 1);
146         put_online_cpus();
147         pr_debug("Core Boosting %sabled.\n", val ? "en" : "dis");
148
149         return 0;
150 }
151
152 static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf)
153 {
154         struct acpi_cpufreq_data *data = policy->driver_data;
155
156         if (unlikely(!data))
157                 return -ENODEV;
158
159         return cpufreq_show_cpus(data->freqdomain_cpus, buf);
160 }
161
162 cpufreq_freq_attr_ro(freqdomain_cpus);
163
164 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
165 static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf,
166                          size_t count)
167 {
168         int ret;
169         unsigned int val = 0;
170
171         if (!acpi_cpufreq_driver.set_boost)
172                 return -EINVAL;
173
174         ret = kstrtouint(buf, 10, &val);
175         if (ret || val > 1)
176                 return -EINVAL;
177
178         set_boost(val);
179
180         return count;
181 }
182
183 static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf)
184 {
185         return sprintf(buf, "%u\n", acpi_cpufreq_driver.boost_enabled);
186 }
187
188 cpufreq_freq_attr_rw(cpb);
189 #endif
190
191 static int check_est_cpu(unsigned int cpuid)
192 {
193         struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
194
195         return cpu_has(cpu, X86_FEATURE_EST);
196 }
197
198 static int check_amd_hwpstate_cpu(unsigned int cpuid)
199 {
200         struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
201
202         return cpu_has(cpu, X86_FEATURE_HW_PSTATE);
203 }
204
205 static unsigned extract_io(struct cpufreq_policy *policy, u32 value)
206 {
207         struct acpi_cpufreq_data *data = policy->driver_data;
208         struct acpi_processor_performance *perf;
209         int i;
210
211         perf = to_perf_data(data);
212
213         for (i = 0; i < perf->state_count; i++) {
214                 if (value == perf->states[i].status)
215                         return policy->freq_table[i].frequency;
216         }
217         return 0;
218 }
219
220 static unsigned extract_msr(struct cpufreq_policy *policy, u32 msr)
221 {
222         struct acpi_cpufreq_data *data = policy->driver_data;
223         struct cpufreq_frequency_table *pos;
224         struct acpi_processor_performance *perf;
225
226         if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
227                 msr &= AMD_MSR_RANGE;
228         else
229                 msr &= INTEL_MSR_RANGE;
230
231         perf = to_perf_data(data);
232
233         cpufreq_for_each_entry(pos, policy->freq_table)
234                 if (msr == perf->states[pos->driver_data].status)
235                         return pos->frequency;
236         return policy->freq_table[0].frequency;
237 }
238
239 static unsigned extract_freq(struct cpufreq_policy *policy, u32 val)
240 {
241         struct acpi_cpufreq_data *data = policy->driver_data;
242
243         switch (data->cpu_feature) {
244         case SYSTEM_INTEL_MSR_CAPABLE:
245         case SYSTEM_AMD_MSR_CAPABLE:
246                 return extract_msr(policy, val);
247         case SYSTEM_IO_CAPABLE:
248                 return extract_io(policy, val);
249         default:
250                 return 0;
251         }
252 }
253
254 static u32 cpu_freq_read_intel(struct acpi_pct_register *not_used)
255 {
256         u32 val, dummy;
257
258         rdmsr(MSR_IA32_PERF_CTL, val, dummy);
259         return val;
260 }
261
262 static void cpu_freq_write_intel(struct acpi_pct_register *not_used, u32 val)
263 {
264         u32 lo, hi;
265
266         rdmsr(MSR_IA32_PERF_CTL, lo, hi);
267         lo = (lo & ~INTEL_MSR_RANGE) | (val & INTEL_MSR_RANGE);
268         wrmsr(MSR_IA32_PERF_CTL, lo, hi);
269 }
270
271 static u32 cpu_freq_read_amd(struct acpi_pct_register *not_used)
272 {
273         u32 val, dummy;
274
275         rdmsr(MSR_AMD_PERF_CTL, val, dummy);
276         return val;
277 }
278
279 static void cpu_freq_write_amd(struct acpi_pct_register *not_used, u32 val)
280 {
281         wrmsr(MSR_AMD_PERF_CTL, val, 0);
282 }
283
284 static u32 cpu_freq_read_io(struct acpi_pct_register *reg)
285 {
286         u32 val;
287
288         acpi_os_read_port(reg->address, &val, reg->bit_width);
289         return val;
290 }
291
292 static void cpu_freq_write_io(struct acpi_pct_register *reg, u32 val)
293 {
294         acpi_os_write_port(reg->address, val, reg->bit_width);
295 }
296
297 struct drv_cmd {
298         struct acpi_pct_register *reg;
299         u32 val;
300         union {
301                 void (*write)(struct acpi_pct_register *reg, u32 val);
302                 u32 (*read)(struct acpi_pct_register *reg);
303         } func;
304 };
305
306 /* Called via smp_call_function_single(), on the target CPU */
307 static void do_drv_read(void *_cmd)
308 {
309         struct drv_cmd *cmd = _cmd;
310
311         cmd->val = cmd->func.read(cmd->reg);
312 }
313
314 static u32 drv_read(struct acpi_cpufreq_data *data, const struct cpumask *mask)
315 {
316         struct acpi_processor_performance *perf = to_perf_data(data);
317         struct drv_cmd cmd = {
318                 .reg = &perf->control_register,
319                 .func.read = data->cpu_freq_read,
320         };
321         int err;
322
323         err = smp_call_function_any(mask, do_drv_read, &cmd, 1);
324         WARN_ON_ONCE(err);      /* smp_call_function_any() was buggy? */
325         return cmd.val;
326 }
327
328 /* Called via smp_call_function_many(), on the target CPUs */
329 static void do_drv_write(void *_cmd)
330 {
331         struct drv_cmd *cmd = _cmd;
332
333         cmd->func.write(cmd->reg, cmd->val);
334 }
335
336 static void drv_write(struct acpi_cpufreq_data *data,
337                       const struct cpumask *mask, u32 val)
338 {
339         struct acpi_processor_performance *perf = to_perf_data(data);
340         struct drv_cmd cmd = {
341                 .reg = &perf->control_register,
342                 .val = val,
343                 .func.write = data->cpu_freq_write,
344         };
345         int this_cpu;
346
347         this_cpu = get_cpu();
348         if (cpumask_test_cpu(this_cpu, mask))
349                 do_drv_write(&cmd);
350
351         smp_call_function_many(mask, do_drv_write, &cmd, 1);
352         put_cpu();
353 }
354
355 static u32 get_cur_val(const struct cpumask *mask, struct acpi_cpufreq_data *data)
356 {
357         u32 val;
358
359         if (unlikely(cpumask_empty(mask)))
360                 return 0;
361
362         val = drv_read(data, mask);
363
364         pr_debug("get_cur_val = %u\n", val);
365
366         return val;
367 }
368
369 static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
370 {
371         struct acpi_cpufreq_data *data;
372         struct cpufreq_policy *policy;
373         unsigned int freq;
374         unsigned int cached_freq;
375
376         pr_debug("get_cur_freq_on_cpu (%d)\n", cpu);
377
378         policy = cpufreq_cpu_get_raw(cpu);
379         if (unlikely(!policy))
380                 return 0;
381
382         data = policy->driver_data;
383         if (unlikely(!data || !policy->freq_table))
384                 return 0;
385
386         cached_freq = policy->freq_table[to_perf_data(data)->state].frequency;
387         freq = extract_freq(policy, get_cur_val(cpumask_of(cpu), data));
388         if (freq != cached_freq) {
389                 /*
390                  * The dreaded BIOS frequency change behind our back.
391                  * Force set the frequency on next target call.
392                  */
393                 data->resume = 1;
394         }
395
396         pr_debug("cur freq = %u\n", freq);
397
398         return freq;
399 }
400
401 static unsigned int check_freqs(struct cpufreq_policy *policy,
402                                 const struct cpumask *mask, unsigned int freq)
403 {
404         struct acpi_cpufreq_data *data = policy->driver_data;
405         unsigned int cur_freq;
406         unsigned int i;
407
408         for (i = 0; i < 100; i++) {
409                 cur_freq = extract_freq(policy, get_cur_val(mask, data));
410                 if (cur_freq == freq)
411                         return 1;
412                 udelay(10);
413         }
414         return 0;
415 }
416
417 static int acpi_cpufreq_target(struct cpufreq_policy *policy,
418                                unsigned int index)
419 {
420         struct acpi_cpufreq_data *data = policy->driver_data;
421         struct acpi_processor_performance *perf;
422         const struct cpumask *mask;
423         unsigned int next_perf_state = 0; /* Index into perf table */
424         int result = 0;
425
426         if (unlikely(!data)) {
427                 return -ENODEV;
428         }
429
430         perf = to_perf_data(data);
431         next_perf_state = policy->freq_table[index].driver_data;
432         if (perf->state == next_perf_state) {
433                 if (unlikely(data->resume)) {
434                         pr_debug("Called after resume, resetting to P%d\n",
435                                 next_perf_state);
436                         data->resume = 0;
437                 } else {
438                         pr_debug("Already at target state (P%d)\n",
439                                 next_perf_state);
440                         return 0;
441                 }
442         }
443
444         /*
445          * The core won't allow CPUs to go away until the governor has been
446          * stopped, so we can rely on the stability of policy->cpus.
447          */
448         mask = policy->shared_type == CPUFREQ_SHARED_TYPE_ANY ?
449                 cpumask_of(policy->cpu) : policy->cpus;
450
451         drv_write(data, mask, perf->states[next_perf_state].control);
452
453         if (acpi_pstate_strict) {
454                 if (!check_freqs(policy, mask,
455                                  policy->freq_table[index].frequency)) {
456                         pr_debug("acpi_cpufreq_target failed (%d)\n",
457                                 policy->cpu);
458                         result = -EAGAIN;
459                 }
460         }
461
462         if (!result)
463                 perf->state = next_perf_state;
464
465         return result;
466 }
467
468 unsigned int acpi_cpufreq_fast_switch(struct cpufreq_policy *policy,
469                                       unsigned int target_freq)
470 {
471         struct acpi_cpufreq_data *data = policy->driver_data;
472         struct acpi_processor_performance *perf;
473         struct cpufreq_frequency_table *entry;
474         unsigned int next_perf_state, next_freq, index;
475
476         /*
477          * Find the closest frequency above target_freq.
478          */
479         if (policy->cached_target_freq == target_freq)
480                 index = policy->cached_resolved_idx;
481         else
482                 index = cpufreq_table_find_index_dl(policy, target_freq);
483
484         entry = &policy->freq_table[index];
485         next_freq = entry->frequency;
486         next_perf_state = entry->driver_data;
487
488         perf = to_perf_data(data);
489         if (perf->state == next_perf_state) {
490                 if (unlikely(data->resume))
491                         data->resume = 0;
492                 else
493                         return next_freq;
494         }
495
496         data->cpu_freq_write(&perf->control_register,
497                              perf->states[next_perf_state].control);
498         perf->state = next_perf_state;
499         return next_freq;
500 }
501
502 static unsigned long
503 acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
504 {
505         struct acpi_processor_performance *perf;
506
507         perf = to_perf_data(data);
508         if (cpu_khz) {
509                 /* search the closest match to cpu_khz */
510                 unsigned int i;
511                 unsigned long freq;
512                 unsigned long freqn = perf->states[0].core_frequency * 1000;
513
514                 for (i = 0; i < (perf->state_count-1); i++) {
515                         freq = freqn;
516                         freqn = perf->states[i+1].core_frequency * 1000;
517                         if ((2 * cpu_khz) > (freqn + freq)) {
518                                 perf->state = i;
519                                 return freq;
520                         }
521                 }
522                 perf->state = perf->state_count-1;
523                 return freqn;
524         } else {
525                 /* assume CPU is at P0... */
526                 perf->state = 0;
527                 return perf->states[0].core_frequency * 1000;
528         }
529 }
530
531 static void free_acpi_perf_data(void)
532 {
533         unsigned int i;
534
535         /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
536         for_each_possible_cpu(i)
537                 free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
538                                  ->shared_cpu_map);
539         free_percpu(acpi_perf_data);
540 }
541
542 static int cpufreq_boost_online(unsigned int cpu)
543 {
544         /*
545          * On the CPU_UP path we simply keep the boost-disable flag
546          * in sync with the current global state.
547          */
548         return boost_set_msr(acpi_cpufreq_driver.boost_enabled);
549 }
550
551 static int cpufreq_boost_down_prep(unsigned int cpu)
552 {
553         /*
554          * Clear the boost-disable bit on the CPU_DOWN path so that
555          * this cpu cannot block the remaining ones from boosting.
556          */
557         return boost_set_msr(1);
558 }
559
560 /*
561  * acpi_cpufreq_early_init - initialize ACPI P-States library
562  *
563  * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
564  * in order to determine correct frequency and voltage pairings. We can
565  * do _PDC and _PSD and find out the processor dependency for the
566  * actual init that will happen later...
567  */
568 static int __init acpi_cpufreq_early_init(void)
569 {
570         unsigned int i;
571         pr_debug("acpi_cpufreq_early_init\n");
572
573         acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
574         if (!acpi_perf_data) {
575                 pr_debug("Memory allocation error for acpi_perf_data.\n");
576                 return -ENOMEM;
577         }
578         for_each_possible_cpu(i) {
579                 if (!zalloc_cpumask_var_node(
580                         &per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
581                         GFP_KERNEL, cpu_to_node(i))) {
582
583                         /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
584                         free_acpi_perf_data();
585                         return -ENOMEM;
586                 }
587         }
588
589         /* Do initialization in ACPI core */
590         acpi_processor_preregister_performance(acpi_perf_data);
591         return 0;
592 }
593
594 #ifdef CONFIG_SMP
595 /*
596  * Some BIOSes do SW_ANY coordination internally, either set it up in hw
597  * or do it in BIOS firmware and won't inform about it to OS. If not
598  * detected, this has a side effect of making CPU run at a different speed
599  * than OS intended it to run at. Detect it and handle it cleanly.
600  */
601 static int bios_with_sw_any_bug;
602
603 static int sw_any_bug_found(const struct dmi_system_id *d)
604 {
605         bios_with_sw_any_bug = 1;
606         return 0;
607 }
608
609 static const struct dmi_system_id sw_any_bug_dmi_table[] = {
610         {
611                 .callback = sw_any_bug_found,
612                 .ident = "Supermicro Server X6DLP",
613                 .matches = {
614                         DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
615                         DMI_MATCH(DMI_BIOS_VERSION, "080010"),
616                         DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
617                 },
618         },
619         { }
620 };
621
622 static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c)
623 {
624         /* Intel Xeon Processor 7100 Series Specification Update
625          * http://www.intel.com/Assets/PDF/specupdate/314554.pdf
626          * AL30: A Machine Check Exception (MCE) Occurring during an
627          * Enhanced Intel SpeedStep Technology Ratio Change May Cause
628          * Both Processor Cores to Lock Up. */
629         if (c->x86_vendor == X86_VENDOR_INTEL) {
630                 if ((c->x86 == 15) &&
631                     (c->x86_model == 6) &&
632                     (c->x86_stepping == 8)) {
633                         pr_info("Intel(R) Xeon(R) 7100 Errata AL30, processors may lock up on frequency changes: disabling acpi-cpufreq\n");
634                         return -ENODEV;
635                     }
636                 }
637         return 0;
638 }
639 #endif
640
641 static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
642 {
643         unsigned int i;
644         unsigned int valid_states = 0;
645         unsigned int cpu = policy->cpu;
646         struct acpi_cpufreq_data *data;
647         unsigned int result = 0;
648         struct cpuinfo_x86 *c = &cpu_data(policy->cpu);
649         struct acpi_processor_performance *perf;
650         struct cpufreq_frequency_table *freq_table;
651 #ifdef CONFIG_SMP
652         static int blacklisted;
653 #endif
654
655         pr_debug("acpi_cpufreq_cpu_init\n");
656
657 #ifdef CONFIG_SMP
658         if (blacklisted)
659                 return blacklisted;
660         blacklisted = acpi_cpufreq_blacklist(c);
661         if (blacklisted)
662                 return blacklisted;
663 #endif
664
665         data = kzalloc(sizeof(*data), GFP_KERNEL);
666         if (!data)
667                 return -ENOMEM;
668
669         if (!zalloc_cpumask_var(&data->freqdomain_cpus, GFP_KERNEL)) {
670                 result = -ENOMEM;
671                 goto err_free;
672         }
673
674         perf = per_cpu_ptr(acpi_perf_data, cpu);
675         data->acpi_perf_cpu = cpu;
676         policy->driver_data = data;
677
678         if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
679                 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
680
681         result = acpi_processor_register_performance(perf, cpu);
682         if (result)
683                 goto err_free_mask;
684
685         policy->shared_type = perf->shared_type;
686
687         /*
688          * Will let policy->cpus know about dependency only when software
689          * coordination is required.
690          */
691         if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
692             policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
693                 cpumask_copy(policy->cpus, perf->shared_cpu_map);
694         }
695         cpumask_copy(data->freqdomain_cpus, perf->shared_cpu_map);
696
697 #ifdef CONFIG_SMP
698         dmi_check_system(sw_any_bug_dmi_table);
699         if (bios_with_sw_any_bug && !policy_is_shared(policy)) {
700                 policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
701                 cpumask_copy(policy->cpus, topology_core_cpumask(cpu));
702         }
703
704         if (check_amd_hwpstate_cpu(cpu) && boot_cpu_data.x86 < 0x19 &&
705             !acpi_pstate_strict) {
706                 cpumask_clear(policy->cpus);
707                 cpumask_set_cpu(cpu, policy->cpus);
708                 cpumask_copy(data->freqdomain_cpus,
709                              topology_sibling_cpumask(cpu));
710                 policy->shared_type = CPUFREQ_SHARED_TYPE_HW;
711                 pr_info_once("overriding BIOS provided _PSD data\n");
712         }
713 #endif
714
715         /* capability check */
716         if (perf->state_count <= 1) {
717                 pr_debug("No P-States\n");
718                 result = -ENODEV;
719                 goto err_unreg;
720         }
721
722         if (perf->control_register.space_id != perf->status_register.space_id) {
723                 result = -ENODEV;
724                 goto err_unreg;
725         }
726
727         switch (perf->control_register.space_id) {
728         case ACPI_ADR_SPACE_SYSTEM_IO:
729                 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
730                     boot_cpu_data.x86 == 0xf) {
731                         pr_debug("AMD K8 systems must use native drivers.\n");
732                         result = -ENODEV;
733                         goto err_unreg;
734                 }
735                 pr_debug("SYSTEM IO addr space\n");
736                 data->cpu_feature = SYSTEM_IO_CAPABLE;
737                 data->cpu_freq_read = cpu_freq_read_io;
738                 data->cpu_freq_write = cpu_freq_write_io;
739                 break;
740         case ACPI_ADR_SPACE_FIXED_HARDWARE:
741                 pr_debug("HARDWARE addr space\n");
742                 if (check_est_cpu(cpu)) {
743                         data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
744                         data->cpu_freq_read = cpu_freq_read_intel;
745                         data->cpu_freq_write = cpu_freq_write_intel;
746                         break;
747                 }
748                 if (check_amd_hwpstate_cpu(cpu)) {
749                         data->cpu_feature = SYSTEM_AMD_MSR_CAPABLE;
750                         data->cpu_freq_read = cpu_freq_read_amd;
751                         data->cpu_freq_write = cpu_freq_write_amd;
752                         break;
753                 }
754                 result = -ENODEV;
755                 goto err_unreg;
756         default:
757                 pr_debug("Unknown addr space %d\n",
758                         (u32) (perf->control_register.space_id));
759                 result = -ENODEV;
760                 goto err_unreg;
761         }
762
763         freq_table = kzalloc(sizeof(*freq_table) *
764                     (perf->state_count+1), GFP_KERNEL);
765         if (!freq_table) {
766                 result = -ENOMEM;
767                 goto err_unreg;
768         }
769
770         /* detect transition latency */
771         policy->cpuinfo.transition_latency = 0;
772         for (i = 0; i < perf->state_count; i++) {
773                 if ((perf->states[i].transition_latency * 1000) >
774                     policy->cpuinfo.transition_latency)
775                         policy->cpuinfo.transition_latency =
776                             perf->states[i].transition_latency * 1000;
777         }
778
779         /* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
780         if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
781             policy->cpuinfo.transition_latency > 20 * 1000) {
782                 policy->cpuinfo.transition_latency = 20 * 1000;
783                 pr_info_once("P-state transition latency capped at 20 uS\n");
784         }
785
786         /* table init */
787         for (i = 0; i < perf->state_count; i++) {
788                 if (i > 0 && perf->states[i].core_frequency >=
789                     freq_table[valid_states-1].frequency / 1000)
790                         continue;
791
792                 freq_table[valid_states].driver_data = i;
793                 freq_table[valid_states].frequency =
794                     perf->states[i].core_frequency * 1000;
795                 valid_states++;
796         }
797         freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
798         perf->state = 0;
799
800         result = cpufreq_table_validate_and_show(policy, freq_table);
801         if (result)
802                 goto err_freqfree;
803
804         if (perf->states[0].core_frequency * 1000 != policy->cpuinfo.max_freq)
805                 pr_warn(FW_WARN "P-state 0 is not max freq\n");
806
807         switch (perf->control_register.space_id) {
808         case ACPI_ADR_SPACE_SYSTEM_IO:
809                 /*
810                  * The core will not set policy->cur, because
811                  * cpufreq_driver->get is NULL, so we need to set it here.
812                  * However, we have to guess it, because the current speed is
813                  * unknown and not detectable via IO ports.
814                  */
815                 policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
816                 break;
817         case ACPI_ADR_SPACE_FIXED_HARDWARE:
818                 acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
819                 break;
820         default:
821                 break;
822         }
823
824         /* notify BIOS that we exist */
825         acpi_processor_notify_smm(THIS_MODULE);
826
827         pr_debug("CPU%u - ACPI performance management activated.\n", cpu);
828         for (i = 0; i < perf->state_count; i++)
829                 pr_debug("     %cP%d: %d MHz, %d mW, %d uS\n",
830                         (i == perf->state ? '*' : ' '), i,
831                         (u32) perf->states[i].core_frequency,
832                         (u32) perf->states[i].power,
833                         (u32) perf->states[i].transition_latency);
834
835         /*
836          * the first call to ->target() should result in us actually
837          * writing something to the appropriate registers.
838          */
839         data->resume = 1;
840
841         policy->fast_switch_possible = !acpi_pstate_strict &&
842                 !(policy_is_shared(policy) && policy->shared_type != CPUFREQ_SHARED_TYPE_ANY);
843
844         return result;
845
846 err_freqfree:
847         kfree(freq_table);
848 err_unreg:
849         acpi_processor_unregister_performance(cpu);
850 err_free_mask:
851         free_cpumask_var(data->freqdomain_cpus);
852 err_free:
853         kfree(data);
854         policy->driver_data = NULL;
855
856         return result;
857 }
858
859 static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
860 {
861         struct acpi_cpufreq_data *data = policy->driver_data;
862
863         pr_debug("acpi_cpufreq_cpu_exit\n");
864
865         policy->fast_switch_possible = false;
866         policy->driver_data = NULL;
867         acpi_processor_unregister_performance(data->acpi_perf_cpu);
868         free_cpumask_var(data->freqdomain_cpus);
869         kfree(policy->freq_table);
870         kfree(data);
871
872         return 0;
873 }
874
875 static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
876 {
877         struct acpi_cpufreq_data *data = policy->driver_data;
878
879         pr_debug("acpi_cpufreq_resume\n");
880
881         data->resume = 1;
882
883         return 0;
884 }
885
886 static struct freq_attr *acpi_cpufreq_attr[] = {
887         &cpufreq_freq_attr_scaling_available_freqs,
888         &freqdomain_cpus,
889 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
890         &cpb,
891 #endif
892         NULL,
893 };
894
895 static struct cpufreq_driver acpi_cpufreq_driver = {
896         .verify         = cpufreq_generic_frequency_table_verify,
897         .target_index   = acpi_cpufreq_target,
898         .fast_switch    = acpi_cpufreq_fast_switch,
899         .bios_limit     = acpi_processor_get_bios_limit,
900         .init           = acpi_cpufreq_cpu_init,
901         .exit           = acpi_cpufreq_cpu_exit,
902         .resume         = acpi_cpufreq_resume,
903         .name           = "acpi-cpufreq",
904         .attr           = acpi_cpufreq_attr,
905 };
906
907 static enum cpuhp_state acpi_cpufreq_online;
908
909 static void __init acpi_cpufreq_boost_init(void)
910 {
911         int ret;
912
913         if (!(boot_cpu_has(X86_FEATURE_CPB) || boot_cpu_has(X86_FEATURE_IDA))) {
914                 pr_debug("Boost capabilities not present in the processor\n");
915                 return;
916         }
917
918         acpi_cpufreq_driver.set_boost = set_boost;
919         acpi_cpufreq_driver.boost_enabled = boost_state(0);
920
921         /*
922          * This calls the online callback on all online cpu and forces all
923          * MSRs to the same value.
924          */
925         ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "cpufreq/acpi:online",
926                                 cpufreq_boost_online, cpufreq_boost_down_prep);
927         if (ret < 0) {
928                 pr_err("acpi_cpufreq: failed to register hotplug callbacks\n");
929                 return;
930         }
931         acpi_cpufreq_online = ret;
932 }
933
934 static void acpi_cpufreq_boost_exit(void)
935 {
936         if (acpi_cpufreq_online > 0)
937                 cpuhp_remove_state_nocalls(acpi_cpufreq_online);
938 }
939
940 static int __init acpi_cpufreq_init(void)
941 {
942         int ret;
943
944         if (acpi_disabled)
945                 return -ENODEV;
946
947         /* don't keep reloading if cpufreq_driver exists */
948         if (cpufreq_get_current_driver())
949                 return -EEXIST;
950
951         pr_debug("acpi_cpufreq_init\n");
952
953         ret = acpi_cpufreq_early_init();
954         if (ret)
955                 return ret;
956
957 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
958         /* this is a sysfs file with a strange name and an even stranger
959          * semantic - per CPU instantiation, but system global effect.
960          * Lets enable it only on AMD CPUs for compatibility reasons and
961          * only if configured. This is considered legacy code, which
962          * will probably be removed at some point in the future.
963          */
964         if (!check_amd_hwpstate_cpu(0)) {
965                 struct freq_attr **attr;
966
967                 pr_debug("CPB unsupported, do not expose it\n");
968
969                 for (attr = acpi_cpufreq_attr; *attr; attr++)
970                         if (*attr == &cpb) {
971                                 *attr = NULL;
972                                 break;
973                         }
974         }
975 #endif
976         acpi_cpufreq_boost_init();
977
978         ret = cpufreq_register_driver(&acpi_cpufreq_driver);
979         if (ret) {
980                 free_acpi_perf_data();
981                 acpi_cpufreq_boost_exit();
982         }
983         return ret;
984 }
985
986 static void __exit acpi_cpufreq_exit(void)
987 {
988         pr_debug("acpi_cpufreq_exit\n");
989
990         acpi_cpufreq_boost_exit();
991
992         cpufreq_unregister_driver(&acpi_cpufreq_driver);
993
994         free_acpi_perf_data();
995 }
996
997 module_param(acpi_pstate_strict, uint, 0644);
998 MODULE_PARM_DESC(acpi_pstate_strict,
999         "value 0 or non-zero. non-zero -> strict ACPI checks are "
1000         "performed during frequency changes.");
1001
1002 late_initcall(acpi_cpufreq_init);
1003 module_exit(acpi_cpufreq_exit);
1004
1005 static const struct x86_cpu_id acpi_cpufreq_ids[] = {
1006         X86_FEATURE_MATCH(X86_FEATURE_ACPI),
1007         X86_FEATURE_MATCH(X86_FEATURE_HW_PSTATE),
1008         {}
1009 };
1010 MODULE_DEVICE_TABLE(x86cpu, acpi_cpufreq_ids);
1011
1012 static const struct acpi_device_id processor_device_ids[] = {
1013         {ACPI_PROCESSOR_OBJECT_HID, },
1014         {ACPI_PROCESSOR_DEVICE_HID, },
1015         {},
1016 };
1017 MODULE_DEVICE_TABLE(acpi, processor_device_ids);
1018
1019 MODULE_ALIAS("acpi");